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We use the framework of upwind summation-by-parts (SBP) operators developed by

Mattsson (2017, doi:10.1016/j.jcp.2017.01.042) and study different flux vector splittings

in this context. To do so, we introduce discontinuous-Galerkin-like interface terms

for multi-block upwind SBP methods applied to nonlinear conservation laws. We in-

vestigate the behavior of the upwind SBP methods for flux vector splittings of varying

complexity on Cartesian as well as unstructured curvilinear multi-block meshes. More-

over, we analyze the local linear/energy stability of these methods following Gassner,

Svärd, and Hindenlang (2022, doi:10.1007/s10915-021-01720-8). Finally, we investigate

the robustness of upwind SBP methods for challenging examples of shock-free flows

of the compressible Euler equations such as a Kelvin-Helmholtz instability and the

inviscid Taylor-Green vortex.
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1 Introduction

Stability and robustness are crucial properties of numerical methods for conservation laws to

obtain reliable simulations, in particular for under-resolved flows. At the same time, high-order

methods can be very efficient and fit well to modern hardware. However, it is non-trivial to ensure

robustness of high-order methods without destroying their high-order accuracy.

Over the last decade, entropy-based methods have emerged as a popular choice to construct

robust high-order methods in a wide range of applications. Built from the seminal work of

Tadmor [80, 81], high-order extensions have been developed in [22, 39]. These flux differencing

schemes work well for under-resolved flows, e.g., [14, 25, 33, 66, 73]. However, some doubts have

been raised recently within the high-order community by Gassner, Svärd, and Hindenlang [23]. In

their article, the authors demonstrated critical failures of high-order entropy-dissipative methods

for a conceptually simple setup of the 1D compressible Euler equations; with constant velocity

and pressure, these equations reduce to simple linear advection of the density. Central schemes

without any entropy properties perform well in this case but crash for demanding simulations

of under-resolved flows such as the inviscid Taylor-Green vortex. In contrast, entropy-stable flux

differencing methods work well for the Taylor-Green vortex but fail for the apparently simple

advection example.

Failures due to positivity issues can be fixed by adding invariant domain preserving techniques,

e.g., [27, 44, 53, 67]. However, it is desirable to combine such shock-capturing and invariant domain

preserving approaches with a good baseline scheme such that the amount of additional dissipation

can be kept low [68]. Thus, we are interested in high-order baseline schemes that come already with

some built-in dissipation everywhere, not only at element interfaces as typical in discontinuous

Galerkin (DG) methods. At the same time, we would like to avoid having additional parameters

in the schemes that need to be tuned manually.

Many high-order methods with some provable stability properties can be obtained in the general

framework of summation-by-parts (SBP) operators. SBP operators were originally developed for

finite difference methods [36, 76]. They are the basis of entropy-stable flux differencing methods by

mimicking integration by parts discretely. Many common numerical methods can be formulated

using SBP operators, e.g., finite volume methods [50, 51], continuous Galerkin methods [1, 2, 30,

31], DG methods [9, 12, 24], and flux reconstruction methods [32, 61]. Further information and

background material on SBP operators is collected in the review articles [21, 78].

Classical SBP operators can be used to design numerical schemes that are provably stable. Typ-

ically, SBP methods are based on central-type discretizations in the interior and weak imposition

of boundary data using simultaneous approximation terms (SATs) [10, 11] that introduce some

dissipation. In a multi-block finite difference or DG setting, such SATs are also used to couple

the blocks/elements weakly and introduce additional dissipation — but only at interfaces, not in

the interior of the block/elements. To obtain additional dissipation everywhere, artificial dissipa-

tion operators can be used [49]. These operators can be combined with a user-chosen amount of

dissipation and it may be non-trivial to choose an appropriate amount of dissipation.

Combining classical SBP operators and artificial dissipation can be interpreted as upwinding

[48, 77]. Mattsson [46] introduced a general definition of upwind SBP operators and constructed

a range of schemes with good numerical properties, resulting in a parameter-free combination of

central-type SBP operators and artificial dissipation. These upwind SBP operators have been used

successfully for a range of applications such as the shallow water equations [43], atmospheric flows

[69], and scalar conservation laws [75]. They have also been extended to staggered grids in [47].

Their relations to DG methods have been discussed in [52, 60].

To apply upwind SBP operators to nonlinear conservation laws, a flux vector splitting is required

[46]. Across the literature [43, 46, 48, 69, 75, 77] the numerical testing is predominantly done with

Lax-Friedrichs type splittings. For many numerical schemes, such Lax-Friedrichs type splittings

are not ideal. As stated by Stiernström, Lundgren, Nazarov, and Mattsson [75, Remark 4.2], many

other flux vector splittings are available but have not been studied in detail with upwind SBP

2



operators so far. One of the goals of this article is to fill this gap and investigate the impact of

different flux vector splittings on robustness for challenging examples on Cartesian and curvilinear

meshes.

To do so, we first review upwind SBP operators [46] and classical flux vector splittings [82,

Chapter 8] in Section 2. These flux vector splitting methods have been widely developed and used

in the last century [8, 18, 28, 38, 41, 74] but were abandoned in favor of other techniques due to their

significant amount of numerical dissipation [37]. We will see that the combination of flux vector

splitting techniques with high-order difference operators does not lead to an excessive amount of

artificial dissipation.

Next, we formulate high-order upwind SBP methods for nonlinear problems in Section 3 based

on the seminal works of Mattsson and collaborators [43, 46, 48, 69, 75, 77]. To enable an investigation

across a range of different flux vector splittings in multi-block finite difference methods, we need

to introduce appropriate SATs. To do so, we start with a classical upwind SBP formulation and

introduce interface terms as in DG methods — using numerical fluxes resulting from the flux

vector splitting. We then discuss the relation of this formulation to the construction of global

upwind SBP operators as done in [60].

In the final part of Section 3, we consider the upwind SBP methods on unstructured curvilinear

multi-block meshes. The formulation in generalized coordinates reveals a subtle interplay between

the finite difference operator and the particular flux vector splitting. Moreover, we demonstrate

that these subtleties are not an issue for Lax-Friedrichs type splittings; however, they are present

for more sophisticated splitting techniques.

Afterwards, we follow Gassner, Svärd, and Hindenlang [23] and analyze the local linear/energy

stability properties of upwind SBP methods in Section 4. In particular, we prove local linear/energy

stability for Burgers’ equation in the setting where Gassner, Svärd, and Hindenlang [23] observed

stability issues for entropy-stable methods based on classical SBP operators.

In Section 5, we investigate the behavior of upwind SBP methods with different flux vector

splittings numerically. We begin with 1D convergence tests, verify the local linear/energy stability

results, and then proceed to 2D and 3D simulations of under-resolved flows on Cartesian meshes.

In particular, we consider shock-free setups for the compressible Euler equations and study the

robustness for two challenging setups: a Kelvin-Helmholtz instability and the inviscid Taylor-

Green vortex. We further study the convergence and free-stream preservation properties on

unstructured curvilinear meshes with different flux vector splittings. Finally, we summarize our

findings and provide an outlook on further research in Section 6.

2 Review of upwind SBP operators and flux vector splitting

Consider a hyperbolic conservation law

𝜕𝑡𝑢(𝑡 , 𝑥) + 𝜕𝑥 𝑓
(
𝑢(𝑡 , 𝑥)

)
= 0, 𝑡 ∈ (0, 𝑇), 𝑥 ∈ (𝑥

min
, 𝑥

max
), (2.1)

with conserved variable 𝑢 and flux 𝑓 in one space dimension, equipped with appropriate initial

and boundary conditions. For now, we concentrate on the 1D setting to describe the overall

methodologies. Extension of the method to multiple space dimensions is done using a tensor

product structure. We delay a detailed discussion of the continuous and discrete formulations in

generalized curvilinear coordinates to Section 3.4.

In this section, we review classical flux vector splitting techniques, the basic idea of upwind

SBP methods, and collect some useful properties of upwind SBP operators for reference. All these

concepts and results are well-known in the literature, but we collect them here to make the article

self-contained.
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2.1 Flux vector splitting

The classical flux vector splitting approach [82, Chapter 8] to create (semi-)discretizations of the

conservation law (2.1) begins with an appropriate splitting of the flux 𝑓 such that

𝑓 (𝑢) = 𝑓
−(𝑢) + 𝑓

+(𝑢), (2.2)

where the eigenvalues 𝜆±
𝑖 of the Jacobians 𝐽

±
= 𝜕𝑢 𝑓

±
satisfy

∀𝑖 : 𝜆−
𝑖 ≤ 0, 𝜆+

𝑖 ≥ 0. (2.3)

There is a great deal of freedom in the construction of a flux vector splitting (2.2) to create an

upwind scheme. The design of 𝑓
−(𝑢) and 𝑓

+(𝑢) typically relies on the mathematically sound

characteristic theory for hyperbolic partial differential equations. Depending on how one treats

the different characteristics, for instance separating the convective and pressure components of

the compressible Euler equations, leads to a wide variety of flux vector splittings, e.g., [28, 38,

40, 41, 85]. Because the flux vector splitting separates the upwind directions with which solution

information propagates, the resulting scheme does not require the (approximate) solution of a

Riemann problem. This makes flux vector splitting based algorithms particularly attractive due to

their simplicity and ability to approximate shock waves. To demonstrate this simplicity, consider

a classical first-order finite volume method of the form

𝜕𝑡𝑢𝑢𝑢 𝑖 +
1

Δ𝑥

(
𝑓

num(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢 𝑖+1
) − 𝑓

num(𝑢𝑢𝑢 𝑖−1
, 𝑢𝑢𝑢 𝑖)

)
= 0 (2.4)

with numerical flux 𝑓
num

. In the flux vector splitting approach, the numerical flux is chosen as

𝑓
num(𝑢𝑙 , 𝑢𝑟) = 𝑓

+(𝑢𝑙) + 𝑓
−(𝑢𝑟). (2.5)

Thus, the chosen splitting determines the scheme completely.

Example 2.1. The global Lax-Friedrichs splitting requires a global upper bound 𝜆 on the possible

wave speeds and uses

𝑓
±(𝑢) = 1

2

(
𝑓 (𝑢) ± 𝜆𝑢

)
. (2.6)

This results in the numerical flux

𝑓
num(𝑢𝑙 , 𝑢𝑟) = 𝑓

+(𝑢𝑙) + 𝑓
−(𝑢𝑟) =

1

2

(
𝑓 (𝑢𝑙) + 𝑓 (𝑢𝑟)

)
− 𝜆

2

(𝑢𝑟 − 𝑢𝑙). (2.7)

This splitting has predominantly been used in previous works on upwind SBP operators, e.g., [43,

46, 75]. ⊳

Next, we present some examples for the 1D compressible Euler equations

𝜕𝑡
©­­«
𝜚
𝜚𝑣
𝜚𝑒

ª®®¬ + 𝜕𝑥
©­­«

𝜚𝑣
𝜚𝑣2 + 𝑝
(𝜚𝑒 + 𝑝)𝑣

ª®®¬ = 0 (2.8)

of an ideal gas with density 𝜚 , velocity 𝑣, total energy density 𝜚𝑒, and pressure

𝑝 = (𝛾 − 1)
(
𝜚𝑒 − 1

2

𝜚𝑣2

)
, (2.9)

where the ratio of specific heats is usually chosen as 𝛾 = 1.4. To the best of our knowledge, the

splittings described in the following examples have not been combined with upwind SBP operators

in the existing literature [43, 46, 48, 69, 75, 77] or only in less detail.
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Example 2.2. To describe the Steger-Warming splitting [74], we use the standard notation

𝜆±
𝑖 =

𝜆𝑖 ± |𝜆𝑖 |
2

(2.10)

for the positive/negative part of an eigenvalue 𝜆𝑖 . The wave speeds of the 1D Euler equations are

𝜆
1
= 𝑣 − 𝑎, 𝜆

2
= 𝑣, 𝜆

3
= 𝑣 + 𝑎, (2.11)

where the speed of sound is 𝑎 =
√
𝛾𝑝/𝜚 . Then, the flux splitting of Steger and Warming is given

by

𝑓
±
=

𝜚

2𝛾

©­­«
𝜆±

1
+ 2(𝛾 − 1)𝜆±

2
+ 𝜆±

3

(𝑣 − 𝑎)𝜆±
1
+ 2(𝛾 − 1)𝑣𝜆±

2
+ (𝑣 − 𝑎)𝜆±

3

(𝐻 − 𝑣𝑎)𝜆±
1
+ (𝛾 − 1)𝑣2𝜆±

2
+ (𝐻 + 𝑣𝑎)𝜆±

3

ª®®¬ , (2.12)

where 𝐻 = (𝜚𝑒 + 𝑝)/𝜚 = 𝑣
2/2 + 𝑎2/(𝛾 − 1) is the enthalpy, see also [82, Section 8.4.2]. ⊳

Example 2.3. Next, we describe the van Leer-Hänel splitting [28, 38, 41] based on a splitting of van

Leer with a modification of the energy flux proposed by Hänel et al. and the “p4” splitting of the

pressure proposed by Liou and Steffen. First, we introduce the signed Mach number 𝑀 = 𝑣/𝑎 and

the pressure splitting

𝑝
±
=

1 ± 𝛾𝑀

2

𝑝. (2.13)

The fluxes are given by

𝑓
±
= ±𝜚𝑎(𝑀 ± 1)2

4

©­­«
1

𝑣

𝐻

ª®®¬ +
©­­«

0

𝑝
±

0

ª®®¬ , (2.14)

where 𝐻 = (𝜚𝑒 + 𝑝)/𝜚 = 𝑣
2/2 + 𝑎2/(𝛾 − 1) is again the enthalpy. ⊳

2.2 Upwind SBP operators

In this article, we focus on a collocation setting as in classical finite difference methods. Thus, we

consider a grid 𝑥𝑥𝑥 = (𝑥𝑥𝑥 𝑖)
𝑁
𝑖=1

with nodes 𝑥𝑥𝑥 𝑖 and use pointwise approximations such as 𝑢𝑢𝑢 𝑖 = 𝑢(𝑥𝑥𝑥 𝑖) and

111 = (1, . . . , 1)𝑇 . We also assume that the grid includes the boundary nodes of the domain, i.e.,

𝑥𝑥𝑥
1
= 𝑥

min
, 𝑥𝑥𝑥𝑁 = 𝑥

max
. (2.15)

Then, classical SBP operators are constructed to mimic integration-by-parts, cf. [21, 78].

Definition 2.4. An SBP operator on the domain [𝑥
min

, 𝑥
max

] consists of a grid 𝑥𝑥𝑥, a symmetric and

positive definite mass/norm matrix 𝑀 satisfying 111
𝑇
𝑀111 = 𝑥

max
− 𝑥

min
, and a consistent derivative

operator 𝐷 such that

𝑀𝐷 + 𝐷𝑇
𝑀 = 𝑡𝑡𝑡𝑅𝑡𝑡𝑡

𝑇
𝑅 − 𝑡𝑡𝑡𝐿𝑡𝑡𝑡

𝑇
𝐿 , (2.16)

where 𝑡𝑡𝑡
𝑇
𝑅 = (0, . . . , 0, 1) and 𝑡𝑡𝑡𝐿 = (1, 0, . . . , 0)𝑇 . It is called diagonal-norm operator if 𝑀 is diagonal.

⊳

We often identify an SBP operator with the derivative operator𝐷 and assume that the remaining

parts are clear from the context. Since the boundary nodes are included, (2.16) guarantees that the

discrete operators mimic integration-by-parts as

𝑢𝑢𝑢
𝑇
𝑀𝐷𝑣𝑣𝑣 + 𝑢𝑢𝑢𝑇𝐷𝑇

𝑀𝑣𝑣𝑣︸                    ︷︷                    ︸ = 𝑢𝑢𝑢
𝑇
𝑡𝑡𝑡𝑅𝑡𝑡𝑡

𝑇
𝑅𝑣𝑣𝑣 − 𝑢𝑢𝑢

𝑇
𝑡𝑡𝑡𝐿𝑡𝑡𝑡

𝑇
𝐿𝑣𝑣𝑣,︸                   ︷︷                   ︸

≈ ≈︷                                  ︸︸                                  ︷∫ 𝑥
max

𝑥
min

𝑢 (𝜕𝑥𝑣) +
∫ 𝑥

max

𝑥
min

(𝜕𝑥𝑢) 𝑣 =

︷                                     ︸︸                                     ︷
𝑢(𝑥

max
)𝑣(𝑥

max
) − 𝑢(𝑥

min
)𝑣(𝑥

min
) .

(2.17)
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Upwind SBP operators were introduced by Mattsson [46]. The basic idea is to introduce two

derivative operators 𝐷± that mimic integration-by-parts together and are compatible in the sense

that their difference is negative semidefinite, which allows to introduce aritficial dissipation.

Definition 2.5. An upwind SBP operator on the domain [𝑥
min

, 𝑥
max

] consists of a grid 𝑥𝑥𝑥, a symmetric

and positive definite mass/norm matrix 𝑀 satisfying 111
𝑇
𝑀111 = 𝑥

max
− 𝑥

min
, and two consistent

derivative operators 𝐷± such that

𝑀𝐷+ + 𝐷𝑇
−𝑀 = 𝑡𝑡𝑡𝑅𝑡𝑡𝑡

𝑇
𝑅 − 𝑡𝑡𝑡𝐿𝑡𝑡𝑡

𝑇
𝐿 , 𝑀(𝐷+ − 𝐷−) is negative semidefinite, (2.18)

where again 𝑡𝑡𝑡
𝑇
𝑅 = (0, . . . , 0, 1) and 𝑡𝑡𝑡𝐿 = (1, 0, . . . , 0)𝑇 . It is called diagonal-norm operator if 𝑀 is

diagonal. ⊳

For convenience, we also identify an upwind SBP operator simply with the derivative matrices

𝐷±. In matrix form, the upwind SBP operators derived by Mattsson [46] are constructed such that

𝐷+ is biased toward the upper-triangular part, i.e., it has more non-zero entries above the diagonal.

Similarly, 𝐷− is biased toward the lower-triangular part.

Example 2.6. The second-order accurate upwind operators of [46] are given by

𝐷+ =
1

Δ𝑥

©­­­­­­­­­­«

−3 5 −2

−1/5 −1 8/5 −2/5

−3/2 2 −1/2

. . .
. . .

. . .

3/2 2 −1/2

−1 1

−1 1

ª®®®®®®®®®®¬
, (2.19)

𝐷− =
1

Δ𝑥

©­­­­­­­­­­­­«

−1 1

−1 1

1/2 −2 3/2

1/2 −2 3/2

. . .
. . .

. . .

1/2 −2 3/2

2/5 −8/5 1 1/5

2 −5 3

ª®®®®®®®®®®®®¬
, (2.20)

and 𝑀 = Δ𝑥 diag(1/4, 5/4, 1, . . . , 1, 5/4, 1/4). ⊳

Upwind SBP operators are constructed to create provably stable semidiscretizations of linear

transport problems as already described in [46]. For completeness and as an example, consider

the linear advection equation

𝜕𝑡𝑢(𝑡 , 𝑥) + 𝜕𝑥𝑢(𝑡 , 𝑥) = 0, 𝑡 ∈ (0, 𝑇), 𝑥 ∈ (𝑥
min

, 𝑥
max

),
𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ [𝑥

min
, 𝑥

max
],

𝑢(𝑡 , 𝑥
min

) = 𝑔𝐿(𝑡), 𝑡 ∈ [0, 𝑇].
(2.21)

Since the transport happens from left to right, we choose the left-biased upwind operator 𝐷−
such that solution information from the correct characteristic direction is used and obtain a stable

semidiscretization

𝜕𝑡𝑢𝑢𝑢 + 𝐷−𝑢𝑢𝑢 = 𝑀
−1

𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡
𝑇
𝐿𝑢𝑢𝑢). (2.22)

This semidiscretization is globally conservative, since

𝜕𝑡(111
𝑇
𝑀𝑢𝑢𝑢) = 111

𝑇
𝑀𝜕𝑡𝑢𝑢𝑢 = −111

𝑇
𝑀𝐷−𝑢𝑢𝑢 + 111

𝑇
𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡

𝑇
𝐿𝑢𝑢𝑢)

= 111
𝑇
𝐷
𝑇
+𝑀𝑢𝑢𝑢 − 111

𝑇(𝑡𝑡𝑡𝑅𝑡𝑡𝑡
𝑇
𝑅 − 𝑡𝑡𝑡𝐿𝑡𝑡𝑡

𝑇
𝐿)𝑢𝑢𝑢 + 111

𝑇
𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡

𝑇
𝐿𝑢𝑢𝑢) = 𝑔𝐿 − 𝑡𝑡𝑡

𝑇
𝑅𝑢𝑢𝑢,

(2.23)
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where we have used the upwind SBP property (2.18) and consistency of the derivative operator.

Furthermore, the semidiscretization (2.22) is energy-stable since

𝜕𝑡 ∥𝑢𝑢𝑢∥
2

𝑀 = 2𝑢𝑢𝑢
𝑇
𝑀𝜕𝑡𝑢𝑢𝑢 = −2𝑢𝑢𝑢

𝑇
𝑀𝐷−𝑢𝑢𝑢 + 2𝑢𝑢𝑢

𝑇
𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡

𝑇
𝐿𝑢𝑢𝑢)

= −𝑢𝑢𝑢𝑇𝑀𝐷−𝑢𝑢𝑢 + 𝑢𝑢𝑢𝑇𝐷𝑇
+𝑀𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑇(𝑡𝑡𝑡𝑅𝑡𝑡𝑡

𝑇
𝑅 − 𝑡𝑡𝑡𝐿𝑡𝑡𝑡

𝑇
𝐿)𝑢𝑢𝑢 + 2𝑢𝑢𝑢

𝑇
𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡

𝑇
𝐿𝑢𝑢𝑢)

≤ 2(𝑡𝑡𝑡𝑇𝐿𝑢𝑢𝑢)𝑔𝐿 − (𝑡𝑡𝑡𝑇𝐿𝑢𝑢𝑢)
2 − (𝑡𝑡𝑡𝑇𝑅𝑢𝑢𝑢)

2

= 𝑔
2

𝐿 − (𝑡𝑡𝑡𝑇𝑅𝑢𝑢𝑢)
2 − (𝑔𝐿 − 𝑡𝑡𝑡

𝑇
𝐿𝑢𝑢𝑢)

2

,

(2.24)

mimicking the estimate

𝜕𝑡 ∥𝑢(𝑡)∥
2

𝐿
2
= 𝑔𝐿(𝑡)

2 − 𝑢(𝑡 , 𝑥
max

)2 (2.25)

up to additional artificial dissipation due to the upwind operators and the weak imposition of

boundary data.

2.3 Some useful properties of upwind SBP operators

As described in [46], upwind SBP operators can be interpreted as classical SBP operators plus

artificial dissipation in the context of the linear advection equation. Indeed,

𝐷+ =
1

2

(𝐷− + 𝐷+) +
1

2

(𝐷+ − 𝐷−),

𝐷− =
1

2

(𝐷− + 𝐷+) −
1

2

(𝐷+ − 𝐷−).
(2.26)

The average of the upwind operators is a classical SBP operator since [46]

𝑀(𝐷− + 𝐷+) + (𝐷− + 𝐷+)
𝑇
𝑀 = (𝑀𝐷+ + 𝐷𝑇

−𝑀) + (𝑀𝐷− + 𝐷𝑇
+𝑀) = 2(𝑡𝑡𝑡𝑅𝑡𝑡𝑡

𝑇
𝑅 − 𝑡𝑡𝑡𝐿𝑡𝑡𝑡

𝑇
𝐿). (2.27)

The difference of the upwind SBP operators introduces artificial dissipation for the linear advec-

tion equation when multiplied by the mass matrix 𝑀 by construction. Thus, the upwind SBP

discretization (2.22) can be written as [46]

𝜕𝑡𝑢𝑢𝑢 +
𝐷− + 𝐷+

2

𝑢𝑢𝑢︸         ︷︷         ︸
central

−𝐷+ − 𝐷−
2

𝑢𝑢𝑢︸         ︷︷         ︸
dissipation

= 𝑀
−1

𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡
𝑇
𝐿𝑢𝑢𝑢). (2.28)

This is the form of a central SBP discretization plus artificial dissipation for linear advection. For

general nonlinear problems, we can still use the negative semidefiniteness of the difference of

the operators to introduce artificial dissipation, but we need proper upwinding as discussed in

Section 3.

2.4 Upwind SBP operators in periodic domains

In periodic domains, we require boundary terms to vanish, resulting in the following definitions

[60].

Definition 2.7. A periodic SBP operator on the domain [𝑥
min

, 𝑥
max

] consists of a grid 𝑥𝑥𝑥, a symmetric

and positive definite mass/norm matrix 𝑀 satisfying 111
𝑇
𝑀111 = 𝑥

max
− 𝑥

min
, and a consistent

derivative operator 𝐷 such that

𝑀𝐷 + 𝐷𝑇
𝑀 = 0. (2.29)

It is called diagonal-norm operator if 𝑀 is diagonal. ⊳

Definition 2.8. A periodic upwind SBP operator on the domain [𝑥
min

, 𝑥
max

] consists of a grid 𝑥𝑥𝑥, a

symmetric and positive definite mass/norm matrix 𝑀 satisfying 111
𝑇
𝑀111 = 𝑥

max
− 𝑥

min
, and two

consistent derivative operators 𝐷± such that

𝑀𝐷+ + 𝐷𝑇
−𝑀 = 0, 𝑀(𝐷+ − 𝐷−) is negative semidefinite. (2.30)

It is called diagonal-norm operator if 𝑀 is diagonal. ⊳
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An upwind SBP discretization of the linear advection equation

𝜕𝑡𝑢(𝑡 , 𝑥) + 𝜕𝑥𝑢(𝑡 , 𝑥) = 0, 𝑡 ∈ (0, 𝑇), 𝑥 ∈ (𝑥
min

, 𝑥
max

),
𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ [𝑥

min
, 𝑥

max
],

(2.31)

with periodic boundary conditions is

𝜕𝑡𝑢𝑢𝑢 + 𝐷−𝑢𝑢𝑢 = 000. (2.32)

Following the same steps as in the case of a bounded domain, we see that it is conservative, i.e.,

𝜕𝑡(111
𝑇
𝑀𝑢𝑢𝑢) = 0, (2.33)

and energy-stable, i.e.,

𝜕𝑡 ∥𝑢𝑢𝑢∥
2

𝑀 ≤ 0. (2.34)

Example 2.9. The interior stencils of the second-order accurate upwind operators of [46] shown in

Example 2.6 yield periodic upwind operators. Specifically, we have

𝐷+ =
1

Δ𝑥

©­­­­­­­­­­«

−3/2 2 −1/2

−3/2 2 −1/2

−3/2 2 −1/2

. . .
. . .

. . .

3/2 2 −1/2

−1/2 −3/2 2

2 −1/2 −3/2

ª®®®®®®®®®®¬
, (2.35)

𝐷− =
1

Δ𝑥

©­­­­­­­­­­­­«

3/2 1/2 −2

−2 3/2 1/2

1/2 −2 3/2

1/2 −2 3/2

. . .
. . .

. . .

1/2 −2 3/2

1/2 −2 3/2

1/2 −2 3/2

ª®®®®®®®®®®®®¬
, (2.36)

and 𝑀 = Δ𝑥 diag(1, . . . , 1). ⊳

3 Formulation of upwind SBP methods for nonlinear problems

Following earlier work on upwind SBP operators [46], we first apply the flux vector splitting (2.2)

and rewrite the hyperbolic conservation law in one space dimension (2.1) as

𝜕𝑡𝑢 + 𝜕𝑥 𝑓
−(𝑢) + 𝜕𝑥 𝑓

+(𝑢) = 0. (3.1)

Next, we discretize the conservation law in space by using upwind SBP operators as

𝜕𝑡𝑢𝑢𝑢 + 𝐷+ 𝑓
−𝑓 −𝑓 − + 𝐷− 𝑓

+𝑓 +𝑓 + = 000. (3.2)

These formulations are well-known in the literature, e.g., [43, 46, 48, 75, 77]. To couple multiple

blocks of upwind SBP operators, we introduce interface terms as in discontinuous Galerkin meth-

ods in the following. On each element, we will use the semidiscretzation (3.2) as a baseline and

add additional terms to couple the elements weakly at the interfaces. Such a construction has been

used for central-type SBP operators in several works, e.g., [24].

After describing and contextualizing the method in one space dimension, we describe and

analyze the method in two-dimensional curvilinear coordinates in Section 3.4.

Remark 3.1. The indices ± of the upwind operators and the fluxes do not match. This is due to

historical reasons since we want to keep backwards compatibility with both the notation of flux

vector splitting methods [82, Chapter 8] and upwind SBP operators as introduced in [46]. ⊳
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3.1 Local upwind SBP formulation with SATs and numerical fluxes

On each element, we consider a discretization of the form

𝜕𝑡𝑢𝑢𝑢 + 𝐷+ 𝑓
−𝑓 −𝑓 − + 𝐷− 𝑓

+𝑓 +𝑓 + = SATSATSAT (3.3)

with a simultaneous approximation term SATSATSAT. To motivate the construction of the SAT, we

consider the upwind SBP discretization (3.3) with the global Lax-Friedrichs flux vector splitting,

resulting in

𝜕𝑡𝑢𝑢𝑢 + 1

2

𝐷+( 𝑓𝑓𝑓 + 𝜆𝑢𝑢𝑢) + 1

2

𝐷−( 𝑓𝑓𝑓 − 𝜆𝑢𝑢𝑢) = SATSATSAT. (3.4)

We can formulate this in the central SBP plus dissipation form as

𝜕𝑡𝑢𝑢𝑢 + 1

2

(𝐷− + 𝐷+) 𝑓𝑓𝑓 +
𝜆
2

(𝐷+ − 𝐷−)𝑢𝑢𝑢 = SATSATSAT. (3.5)

The second term is the central SBP discretization and the third term is the artificial dissipation term

built into the upwind operators. Thus, we select the standard SAT for a central SBP discretization,

i.e.,

SATSATSAT = −𝑀−1

𝑡𝑡𝑡𝑅( 𝑓
num

𝑅 − 𝑡𝑡𝑡𝑇𝑅 𝑓𝑓𝑓 ) +𝑀
−1

𝑡𝑡𝑡𝐿( 𝑓
num

𝐿 − 𝑡𝑡𝑡𝑇𝐿 𝑓𝑓𝑓 ), (3.6)

where 𝑓
num

𝐿/𝑅 is the numerical flux at the left/right interface of the element. To clarify this notation,

we use an upper index to denote the element. Thus, 𝑢𝑢𝑢
𝑘

is the numerical solution in element 𝑘.

Then, the SAT in element 𝑘 becomes

SATSATSAT
𝑘
= −𝑀−1

𝑡𝑡𝑡𝑅

(
𝑓

num(𝑢𝑢𝑢𝑘𝑅 , 𝑢𝑢𝑢
𝑘+1

𝐿 ) − 𝑓𝑓𝑓
𝑘
𝑅

)
+𝑀−1

𝑡𝑡𝑡𝐿

(
𝑓

num(𝑢𝑢𝑢𝑘−1

𝑅 , 𝑢𝑢𝑢
𝑘
𝐿) − 𝑓𝑓𝑓

𝑘
𝐿

)
, (3.7)

where we have abbreviated the left/right interface value as 𝑢𝑢𝑢𝐿/𝑅 = 𝑡𝑡𝑡
𝑇
𝐿/𝑅𝑢𝑢𝑢.

There are many classical numerical fluxes that we can use for 𝑓
num

. Next, we use the flux vector

splitting to design the numerical fluxes. We demonstrate this procedure first for the right interface.

Using the same splitting for the numerical flux and the physical flux yields

𝑓
num(𝑢𝑢𝑢𝑘𝑅 , 𝑢𝑢𝑢

𝑘+1

𝐿 ) − 𝑓𝑓𝑓
𝑘
𝑅 =

(
𝑓
+(𝑢𝑢𝑢𝑘𝑅) + 𝑓

−(𝑢𝑢𝑢𝑘+1

𝐿 )
)
−

(
𝑓
+(𝑢𝑢𝑢𝑘𝑅) + 𝑓

−(𝑢𝑢𝑢𝑘𝑅)
)

= 𝑓
−(𝑢𝑢𝑢𝑘+1

𝐿 ) − 𝑓
−(𝑢𝑢𝑢𝑘𝑅).

(3.8)

Similarly, we get

𝑓
num(𝑢𝑢𝑢𝑘−1

𝑅 , 𝑢𝑢𝑢
𝑘
𝐿) − 𝑓𝑓𝑓

𝑘
𝐿 =

(
𝑓
+(𝑢𝑢𝑢𝑘−1

𝑅 ) + 𝑓
−(𝑢𝑢𝑢𝑘𝐿)

)
−

(
𝑓
+(𝑢𝑢𝑢𝑘𝐿) + 𝑓

−(𝑢𝑢𝑢𝑘𝐿)
)

= 𝑓
+(𝑢𝑢𝑢𝑘−1

𝑅 ) − 𝑓
+(𝑢𝑢𝑢𝑘𝐿).

(3.9)

for the left interface. Thus, the SAT becomes

SATSATSAT
𝑘
= −𝑀−1

𝑡𝑡𝑡𝑅

(
𝑓
−(𝑢𝑢𝑢𝑘+1

𝐿 ) − 𝑓
−(𝑢𝑢𝑢𝑘𝑅)

)
+𝑀−1

𝑡𝑡𝑡𝐿

(
𝑓
+(𝑢𝑢𝑢𝑘−1

𝑅 ) − 𝑓
+(𝑢𝑢𝑢𝑘𝐿)

)
. (3.10)

To sum up, we arrive at the upwind SBP discretization

𝜕𝑡𝑢𝑢𝑢 + 𝐷+ 𝑓
−𝑓 −𝑓 − + 𝐷− 𝑓

+𝑓 +𝑓 + = SATSATSAT
𝑘
, (3.11)

where the simultaneous approximation term can be expressed using (general) numerical fluxes as

SATSATSAT
𝑘
= −𝑀−1

𝑡𝑡𝑡𝑅

(
𝑓

num(𝑢𝑢𝑢𝑘𝑅 , 𝑢𝑢𝑢
𝑘+1

𝐿 ) − 𝑓𝑓𝑓
𝑘
𝑅

)
+𝑀−1

𝑡𝑡𝑡𝐿

(
𝑓

num(𝑢𝑢𝑢𝑘−1

𝑅 , 𝑢𝑢𝑢
𝑘
𝐿) − 𝑓𝑓𝑓

𝑘
𝐿

)
(3.12)

or specifically using the upwind fluxes as

SATSATSAT
𝑘
= −𝑀−1

𝑡𝑡𝑡𝑅

(
𝑓
−(𝑢𝑢𝑢𝑘+1

𝐿 ) − 𝑓
−(𝑢𝑢𝑢𝑘𝑅)

)
+𝑀−1

𝑡𝑡𝑡𝐿

(
𝑓
+(𝑢𝑢𝑢𝑘−1

𝑅 ) − 𝑓
+(𝑢𝑢𝑢𝑘𝐿)

)
. (3.13)

Finally, we can integrate the semidiscretization in time using any suitable time integration

scheme, e.g., Runge-Kutta methods.
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Remark 3.2. If the corresponding upwind flux is used at interfaces as in (3.13), the final discretiza-

tion of the hyperbolic conservation law (2.1) is actually agnostic to the flux and does not require

the solution to a Riemann problem. All the physics is contained in the particular flux splitting one

considers. ⊳

3.2 Global upwind SBP formulation

There is another formulation of the method above that is useful as an interpretation. Instead of first

introducing an upwind SBP discretization on each element and coupling terms in a second step,

we can directly couple the element-local upwind operators to obtain a global upwind operator as

described in [60]. Here, we just concentrate on a coupling as in DG methods.

Theorem 3.3 (Theorem 2.2 of [60]). Consider two upwind SBP operators 𝐷±,𝑙/𝑟 on the grids 𝑥𝑥𝑥 𝑙/𝑟 with
𝑥𝑥𝑥𝑁𝑙 ,𝑙 = 𝑥

𝑥𝑥
1,𝑟 . Then,

𝐷+ =

(
𝐷+,𝑙 −𝑀

−1

𝑙 𝑡𝑡𝑡𝑅,𝑙𝑡𝑡𝑡
𝑇
𝑅,𝑙 𝑀

−1

𝑙 𝑡𝑡𝑡𝑅,𝑙𝑡𝑡𝑡
𝑇
𝐿,𝑟

0 𝐷+,𝑟

)
, 𝐷− =

(
𝐷−,𝑙 0

−𝑀−1

𝑟 𝑡𝑡𝑡𝐿,𝑟𝑡𝑡𝑡
𝑇
𝑅,𝑙 𝐷−,𝑟 +𝑀

−1

𝑟 𝑡𝑡𝑡𝐿,𝑟𝑡𝑡𝑡
𝑇
𝐿,𝑟

)
,

𝑀 =

(
𝑀𝑙 0

0 𝑀𝑟

)
,

(3.14)

yield upwind SBP operators on the joint grid 𝑥𝑥𝑥 = (𝑥𝑥𝑥
1,𝑙 , . . . , 𝑥𝑥𝑥𝑁𝑙 ,𝑙 , 𝑥

𝑥𝑥
1,𝑟 , . . . , 𝑥𝑥𝑥𝑁𝑟 ,𝑟)

𝑇 with 𝑁 = 𝑁𝑙 + 𝑁𝑟

nodes. These global operators have the same order of accuracy as the less accurate one of the given local
operators.

The global upwind SBP operators described in Theorem 3.3 are obtained by taking upwind

numerical fluxes in a DG-type discretization. Indeed, consider the discretization of two elements

and their shared interface written using the coupled upwind operators of Theorem 3.3. We have

𝜕𝑡

(
𝑢𝑢𝑢 𝑙
𝑢𝑢𝑢𝑟

)
+ 𝐷+

(
𝑓𝑓𝑓
−
𝑙

𝑓𝑓𝑓
−
𝑟

)
+ 𝐷−

(
𝑓𝑓𝑓
+
𝑙

𝑓𝑓𝑓
+
𝑟

)
= BTsBTsBTs. (3.15)

where BTsBTsBTs collects the surface terms of their non-shared interfaces. For the left element, we get

𝜕𝑡𝑢𝑢𝑢 𝑙 + (𝐷+,𝑙 −𝑀
−1

𝑙 𝑡𝑡𝑡𝑅,𝑙𝑡𝑡𝑡
𝑇
𝑅,𝑙) 𝑓𝑓𝑓

−
𝑙 +𝑀

−1

𝑙 𝑡𝑡𝑡𝑅,𝑙𝑡𝑡𝑡
𝑇
𝐿,𝑟 𝑓𝑓𝑓

−
𝑟 + 𝐷−,𝑙 𝑓𝑓𝑓

+
𝑙 = BTsBTsBTs𝑙 . (3.16)

Replacing the index 𝑙 by the element number 𝑘 leads to

𝜕𝑡𝑢𝑢𝑢
𝑘 + 𝐷+ 𝑓

−𝑓 −𝑓 − + 𝐷− 𝑓
+𝑓 +𝑓 + = −𝑀−1

𝑡𝑡𝑡𝑅

(
𝑓
−(𝑢𝑢𝑢𝑘+1

𝐿 ) − 𝑓
−(𝑢𝑢𝑢𝑘𝑅)

)
+BTsBTsBTs

𝑘
. (3.17)

Thus, the interface term is identical to the SAT (3.13) using the upwind numerical flux coming

from the flux vector splitting.

In particular, the discontinuous Galerkin spectral element method (DGSEM) with upwind flux

for the linear advection equation yields an upwind SBP operator. Indeed, the local operators

used on each element with Gauss-Lobatto-Legendre nodes are classical SBP operators [24] and the

upwind (Godunov) flux yields exactly the interface coupling described in Theorem 3.3.

Example 3.4. Consider the DGSEM with polynomials of degree 𝑝 = 2 and two elements in the

domain [0, 2]. The corresponding nodes are

𝑥𝑥𝑥 𝑙 = (0, 1/2, 1)𝑇 , 𝑥𝑥𝑥𝑟 = (1, 3/2, 2)𝑇 . (3.18)

The polynomial derivative matrix 𝐷 and the mass matrix 𝑀 on each element with length unity

are given by

𝐷 =
©­­«
−3 4 −1

−1 0 1

1 −4 3

ª®®¬ , 𝑀 =
©­­«
1/6

2/3

1/6

ª®®¬ . (3.19)
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These matrices satisfy 𝑀𝐷 + 𝐷𝑇
𝑀 = diag(−1, 0, 1), i.e., the SBP property (2.16). The construction

in Theorem 3.3 yields the global operators

𝐷+ =

©­­­­­­­«

−3 4 −1

−1 0 1

1 −4 −3 6

−3 4 −1

−1 0 1

1 −4 3

ª®®®®®®®¬
, 𝐷− =

©­­­­­­­«

−3 4 −1

−1 0 1

1 −4 3

−6 3 4 −1

−1 0 1

1 −4 3

ª®®®®®®®¬
, (3.20)

and 𝑀 = diag(1/6, 2/3, 1/6, 1/6, 2/3, 1/6). These operators satisfy

𝑀𝐷+ + 𝐷𝑇
−𝑀 = diag(−1, 0, 0, 0, 0, 1), 𝑀(𝐷+ − 𝐷−) =

©­­­­­­­«

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 1 0 0

0 0 1 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ª®®®®®®®¬
. (3.21)

The eigenvalues of the symmetric matrix 𝑀(𝐷+−𝐷−) are zero (with multiplicity five) and −2 (with

multiplicity one). Thus, it is symmetric and negative semidefinite. Hence, the defining property

(2.18) of upwind SBP operators is satisfied. ⊳

Remark 3.5. This also holds on periodic domains. Indeed, coupling upwind SBP operators as in

Theorem 3.3 on all interfaces results in periodic upwind SBP operators. ⊳

3.3 Classical flux vector splitting using upwind SBP operators

There are no first-order accurate upwind SBP operators in [46]. However, we can construct such

finite difference operators as

𝐷− =
1

Δ𝑥

©­­­­­­«

0 0

−1 1

. . .
. . .

−1 1

−2 2

ª®®®®®®¬
, 𝐷+ =

1

Δ𝑥

©­­­­­­«

−2 2

−1 1

. . .
. . .

−1 1

0 0

ª®®®®®®¬
,

𝑀 = Δ𝑥 diag(1/2, 1, . . . , 1, 1/2).

(3.22)

Indeed,

𝑀𝐷+ + 𝐷𝑇
−𝑀 = diag(−1, 0, . . . , 0, 1) (3.23)

and

𝑀(𝐷+ − 𝐷−) =

©­­­­­­«

−1 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −1

ª®®®®®®¬
(3.24)

is negative semidefinite. In fact, (3.24) is the classical finite difference discretization of the Laplacian

with homogeneous Neumann boundary conditions. Note that the order of accuracy of𝐷± at one of

the boundaries is reduced to zero, in accordance with the general order reduction of SBP operators.

An upwind SBP semidiscretization of a conservation law 𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (𝑢) = 0 is the scheme

𝜕𝑡𝑢𝑢𝑢 + 𝐷+ 𝑓𝑓𝑓
− + 𝐷− 𝑓𝑓𝑓

+
= SATsSATsSATs, (3.25)
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where SATsSATsSATs are boundary terms used to impose the boundary conditions. Applying the upwind

SBP operators shown above in such a discretization results in the classical first-order flux vector

splitting

𝜕𝑡𝑢𝑖 = − 1

Δ𝑥

(
𝑓
∗
𝑖+ 1

2

− 𝑓
∗
𝑖− 1

2

)
= − 1

Δ𝑥

(
( 𝑓 +𝑖 + 𝑓

−
𝑖+1

) − ( 𝑓 +𝑖−1
+ 𝑓

−
𝑖 )

)
= − 1

Δ𝑥

(
( 𝑓 +𝑖 − 𝑓

+
𝑖−1

) + ( 𝑓 −𝑖+1
− 𝑓

−
𝑖 )

) (3.26)

in the interior. Thus, high-order upwind SBP methods can be seen as extensions of the classical

first-order flux vector splitting methods.

3.4 Formulation in two-dimensional curvilinear coordinates

The generic conservation law in two dimensions takes the form

𝜕𝑡𝑢(𝑡 , 𝑥, 𝑦) + 𝜕𝑥 𝑓1
(
𝑢(𝑡 , 𝑥, 𝑦)

)
+ 𝜕𝑦 𝑓2

(
𝑢(𝑡 , 𝑥, 𝑦)

)
= 0, 𝑡 ∈ (0, 𝑇), (𝑥, 𝑦) ∈ Ω ⊂ R2

, (3.27)

with conserved variable 𝑢 and fluxes 𝑓
1
, 𝑓

2
in each coordinate direction, equipped with appropriate

initial and boundary conditions. We first subdivide the problem domainΩ into 𝐾 non-overlapping

quadrilateral elements 𝐸𝑘 , 𝑘 = 1, . . . , 𝐾. In the following, we consider the conservation law (3.27)

on an individual element and suppress the index 𝑘.

Next, we create a transformation on each element 𝐸𝑘 between the computational coordinates

(𝜉, 𝜂) ∈ 𝐸
0

where 𝐸
0
= [−1, 1]2 is the reference element and the physical coordinates (𝑥, 𝑦) as

𝑥 = 𝑋(𝜉, 𝜂), 𝑦 = 𝑌(𝜉, 𝜂). (3.28)

Typically, this mapping is a linear blending transfinite map between the opposing sides of an

element [26, 34]. When the element sides are straight, the mapping (3.28) is linear in each coordinate

direction. However, if the sides are curved and high-order polynomials are used to approximate

the element boundaries, then the mapping (3.28) is a polynomial in each direction. In that case,

we represent the mapping as a polynomial of degree 𝑁
geo

in each coordinate direction.

Under this transformation, the conservation law in physical coordinates remains a conservation

law in reference coordinates, see, e.g., [34, 69]

𝐽𝜕𝑡𝑢(𝑡 , 𝜉, 𝜂) + 𝜕𝜉 𝑓1
(
𝑢(𝑡 , 𝜉, 𝜂)

)
+ 𝜕𝜂 𝑓2

(
𝑢(𝑡 , 𝜉, 𝜂)

)
= 0, (3.29)

where the contravariant fluxes 𝑓 and Jacobian 𝐽 for the two dimensional transformation are

𝑓
1
= 𝑌𝜂 𝑓1 − 𝑋𝜂 𝑓2 , 𝑓

2
= −𝑌𝜉 𝑓1 + 𝑋𝜉 𝑓2 , 𝐽 = 𝑌𝜂𝑋𝜉 − 𝑌𝜉𝑋𝜂 . (3.30)

For convenience we introduce a compact notation for the flux in the contravariant (or normal)

direction. The normal direction (but not normalized) vectors in reference space are written as

𝑛̂
1

= (𝑌𝜂 ,−𝑋𝜂)
𝑇

and 𝑛̂
2

= (−𝑌𝜉 , 𝑋𝜉)
𝑇
, (3.31)

where 𝑋𝜉 , 𝑋𝜂 , 𝑌𝜉 , 𝑌𝜂 are the metric terms. So, for example, the first contravariant flux is given by

𝑓
1
= 𝑓

1
𝑛̂

1

1
+ 𝑓

2
𝑛̂

1

2
. Additionally, the metric terms satisfy two metric identities

𝜕𝜉𝑌𝜂 − 𝜕𝜂𝑌𝜉 = 0 and − 𝜕𝜉𝑋𝜂 + 𝜕𝜂𝑋𝜉 = 0 (3.32)

that are crucial to guarantee free-stream preservation (FSP) [34, 83, 84]. That is, given a flux that is

constant in space, its divergence vanishes and the (constant) solution of (3.27) does not change in

time. We will revisit the recovery of FSP on the discrete level later in this section.
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From the mapped conservation law (3.29) the next step is to perform a flux vector splitting.

However, it is important to note that one cannot simply multiply the Cartesian flux vector splittings

with the metric terms to create their curvilinear counterparts. This would lead to inconsistencies

with respect to the directionality of the waves in the considered splitting. Instead, one follows a

procedure of rotation into a generalized coordinate’s normal direction, performing the flux vector

splitting, and back-rotating the result, see [5, 7] for complete details. This process guarantees that

the flux vector splittings satisfy the following relationship in each contravariant direction

𝑓𝑖(𝑢) = 𝑓
1
(𝑢)𝑛̂ 𝑖

1
+ 𝑓

2
(𝑢)𝑛̂ 𝑖

2
= 𝑓

+(𝑢; 𝑛̂
𝑖) + 𝑓

−(𝑢; 𝑛̂
𝑖) = 𝑓

+
𝑖 (𝑢) + 𝑓

−
𝑖 (𝑢), 𝑖 = 1, 2. (3.33)

We introduce the notation 𝑓
±(𝑢; 𝑛̂

𝑖) to highlight that the normal direction components can no

longer be factored out of the flux vector splitting and different flux components may depend on

the normal direction in different ways. To clarify the form of the flux vector splittings in generalized

coordinate directions we highlight three examples for the compressible Euler equations.

Example 3.6. The local Lax-Friedrichs splitting in the contravariant directions uses a local estimate

for the largest value of 𝜆 for the possible wave speeds and has the form

𝑓
±
𝑖 = 𝑓

±(𝑢; 𝑛̂
𝑖) = 1

2

(
𝑓𝑖(𝑢) ± 𝜆𝑢

)
, 𝑖 = 1, 2, (3.34)

where 𝑢 = (𝜚 , 𝜚𝑣
1
, 𝜚𝑣

2
, 𝜚𝑒)𝑇 and 𝜆 =

√
𝑣

2

1
+ 𝑣2

2
+ 𝑎. As discussed above, (3.34) has a linear de-

pendency on the mapping terms; however they cannot be factored out to separate the Cartesian

splitting from the normal directions as was the case for the complete physical flux (3.30). ⊳

Example 3.7. We describe an improved variant of the Steger-Warming splitting (Example 2.2) for

generalized coordinates due to Drikakis and Tsangaris [20]. We, again, use the standard notation

for the positive/negative part of an eigenvalue 𝜆𝑖 with

𝜆±
𝑖 =

𝜆𝑖 + |𝜆𝑖 |
2

. (3.35)

The wave speeds in the normal direction 𝑛̂
𝑖
used by this splitting are

𝜆̃
1
= 𝑣

1
𝑛̂
𝑖
1
+ 𝑣

2
𝑛̂
𝑖
2
− 𝑎, 𝜆̃

2
= 𝑣

1
𝑛̂
𝑖
1
+ 𝑣

2
𝑛̂
𝑖
2
+ 𝑎, (3.36)

with the sound speed 𝑎 =
√
𝛾𝑝/𝜚 . The flux vector splitting of Drikakis and Tsangaris is given by

𝑓
±
𝑖 = 𝑓

±(𝑢; 𝑛̂
𝑖) = 𝜚

2

©­­­­­­«

𝜆̃±
1
+ 𝜆̃±

2

(𝜆̃±
1
+ 𝜆̃±

2
)𝑣

1
+ 𝑎𝑛̂

𝑖
1

𝛾 (𝜆̃±
2
− 𝜆̃±

1
)

(𝜆̃±
1
+ 𝜆̃±

2
)𝑣

2
+ 𝑎𝑛̂

𝑖
2

𝛾 (𝜆̃±
2
− 𝜆̃±

1
)

(𝜆̃±
1
+ 𝜆̃±

2
)𝐻

ª®®®®®®¬
, (3.37)

where 𝐻 = (𝜚𝑒 + 𝑝)/𝜚 = 𝑣
2/2 + 𝑎2/(𝛾 − 1) is again the enthalpy. ⊳

Example 3.8. As a last example, we describe the van Leer-Hänel splitting [28, 38, 41] rotated into a

contravariant normal direction [5]. We introduce the signed Mach number in the normal direction

𝑀̃ =
𝑣

1
𝑛̂
𝑖
1
+ 𝑣

2
𝑛̂
𝑖
2

𝑎
, 𝑖 = 1, 2, (3.38)

and the pressure splitting

𝑝
±
=

1 ± 𝛾𝑀̃

2

𝑝. (3.39)
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The flux splittings are then given by

𝑓
±
𝑖 = 𝑓

±(𝑢; 𝑛̂
𝑖) = ±𝜚𝑎(𝑀̃ ± 1)2

4

©­­­­«
1

𝑣
1

𝑣
2

𝐻

ª®®®®¬
+

©­­­­«
0

𝑛̂
𝑖
1
𝑝
±

𝑛̂
𝑖
2
𝑝
±

0

ª®®®®¬
, (3.40)

where 𝐻 is the enthalpy. ⊳

Remark 3.9. Notice, as the flux vector splittings become more sophisticated their dependency on

the normal direction (and in turn the metric terms) increase in complexity as well. That is, the local

Lax-Friedrichs splitting (3.34) is linear in the metric terms, the Drikakis-Tsangaris splitting (3.37)

is linear in the advective components and quadratic in the metric terms for the pressure splitting,

and the van Leer-Hänel splitting (3.40) is quadratic in the metric terms in all components. ⊳

With appropriate flux vector splittings that satisfy (3.33) in hand, we split the contravariant

fluxes in mapped conservation law on each element (3.29) to have

𝐽𝜕𝑡𝑢 + 𝜕𝜉 𝑓
+
1
+ 𝜕𝜉 𝑓

−
1
+ 𝜕𝜂 𝑓

+
2
+ 𝜕𝜂 𝑓

−
2
= 0. (3.41)

Just as in Section 3.1, we discretize the mapped conservation law in space with upwind SBP

operators and couple the element to its neighbor elements with appropriate SATsSATsSATs. These SATsSATsSATs

have the same form as given in (3.12) along each of the four element interfaces. As before, if the

same splitting in the normal direction is used for the numerical flux as the physical flux, then we

recover analogous statements to (3.8) and (3.9). We then have a generic statement of a SATSATSAT in the

normal direction on an interface in element 𝑘

S̃ATSATSAT

𝑘
= −𝑀−1

𝑡𝑡𝑡𝑅

(
𝑓

num(𝑢𝑢𝑢𝑘𝑅 , 𝑢𝑢𝑢
𝑘+1

𝐿 ; 𝑛̂
𝑖) − 𝑓𝑓𝑓

𝑘

𝑅

)
+𝑀−1

𝑡𝑡𝑡𝐿

(
𝑓

num(𝑢𝑢𝑢𝑘−1

𝑅 , 𝑢𝑢𝑢
𝑘
𝐿; 𝑛̂

𝑖) − 𝑓𝑓𝑓
𝑘

𝐿

)
. (3.42)

The resulting upwind SBP discretization on element 𝑘 takes the form

𝐽𝐽𝐽𝜕𝑡𝑢𝑢𝑢 + 𝐷− 𝑓𝑓𝑓
+
1
+ 𝐷+ 𝑓𝑓𝑓

−
1
+ 𝑓𝑓𝑓

+
2
𝐷
𝑇
− + 𝑓𝑓𝑓

−
2
𝐷
𝑇
+ = �

SATsSATsSATs

𝑘
, (3.43)

where multiplication from the left with 𝐷± approximates the derivative in the 𝜉-direction and

multiplication from the right with 𝐷
𝑇
± approximates the derivative in the 𝜂-direction.

The final component to fully describe the upwind SBP method on curvilinear domains (3.43) is

to discuss how the metric terms are approximated. By design, from [46], the upwind SBP operators

𝐷±, as well as the central SBP operator (𝐷+ +𝐷−)/2 they generate, have 𝑝
th

order accurate interior

stencils and 𝑝/2 order accurate boundary stencils. This boundary closure means that any of the

three available differencing operators can differentiate polynomials up to degree 𝑝/2 exactly. For

instance, one available upwind SBP operator is the fourth-order interior, second-order boundary

closure, denoted 4-2, operator where 𝐷± or 𝐷 = (𝐷+ + 𝐷−)/2 can differentiate up to quadratic

polynomials exactly.

Because all available upwind SBP operators of a given order have the same boundary closure

accuracy, we use the central operator 𝐷 = (𝐷+ + 𝐷−)/2 to compute the metric terms by directly

differentiating the mapping 𝑋(𝜉, 𝜂) from (3.28), i.e.,

𝑋𝜉 ≈ 𝐷𝑋𝑋𝑋 = 𝑋𝜉𝑋𝜉𝑋𝜉 , 𝑋𝜂 ≈ 𝑋𝑋𝑋𝐷𝑇
= 𝑋𝜂𝑋𝜂𝑋𝜂 , 𝑌𝜉 ≈ 𝐷𝑌𝑌𝑌 = 𝑌𝜉𝑌𝜉𝑌𝜉 , 𝑌𝜂 ≈ 𝑌𝑌𝑌𝐷𝑇

= 𝑌𝜂𝑌𝜂𝑌𝜂 . (3.44)

We note, depending on the strategy used to compute the discrete metric terms, one may or may

not recover a discrete equivalent of the metric identities (3.32). That is, it is possible to lose discrete

FSP [34, 83, 84]. Applying the approximation strategy from (3.44), we examine the discrete version

of the metric identities (3.32) to find

𝐷𝑌𝜂𝑌𝜂𝑌𝜂 −𝑌𝜉𝑌𝜉𝑌𝜉𝐷
𝑇
= 𝐷𝑌𝑌𝑌𝐷

𝑇 − 𝐷𝑌𝑌𝑌𝐷𝑇
= 000 and − 𝐷𝑋𝜂𝑋𝜂𝑋𝜂 +𝑋𝜉𝑋𝜉𝑋𝜉𝐷

𝑇
= −𝐷𝑋𝑋𝑋𝐷𝑇 + 𝐷𝑋𝑋𝑋𝐷𝑇

= 000. (3.45)
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Thus, the metric identities hold discretely as has been shown previously for finite difference

methods in two-dimensional curvilinear coordinates, e.g., [4, 83, 84]. Moreover, the result (3.45)

actually holds independently of the boundary closure accuracy or the polynomial degree 𝑁
geo

of

the mapping (3.28). The result that a central SBP finite difference method is free-stream preserving,

via the discrete metric identities (3.45), is directly related to the fact that the contravariant fluxes

(3.30) have a linear dependency on the metric terms. However, as discussed in Remark 3.9, this is

not always the case for a splitting in curvilinear coordinates.

For more sophisticated splittings, like that of van Leer-Hänel in Example 3.8, the issue of FSP

becomes more subtle. There is a delicate interplay between the dependency a given splitting has

with respect to the metric terms, the boundary closure order of the upwind SBP operator, and

the polynomial degree 𝑁
geo

of the mapping. We collect the implications of this interplay into the

following theorem.

Theorem 3.10 (FSP for the curvilinear upwind SBP method). Consider a flux vector splitting that has a
maximum dependency on the metric terms of degree𝑚, a set of upwind SBP operators with 𝑝th order interior
stencils, and mappings 𝑋(𝜉, 𝜂) and 𝑌(𝜉, 𝜂) with polynomial degree of 𝑁

geo
in each coordinate direction.

The curvilinear upwind SBP method (3.43) is free-stream preserving when either

1. 𝑚 = 1, i.e, there is a linear dependence on the metric terms, or

2. 𝑚 > 1 and the polynomial degree of the mapping satisfies

𝑁
geo

≤ 𝑝

2𝑚
. (3.46)

That is, the boundary closure can exactly differentiate polynomials up to degree 𝑚𝑁
geo

≤ 𝑝/2.

Proof. Assume we have a constant solution 𝑢∞ for the conservation law (3.27). The physical variable

terms in the flux vector are then also constants.

Part 1 (𝑚 = 1): By construction, the metric terms in the approximation satisfy the discrete metric

identities (3.45). Therefore, the flux splitting terms with a linear dependence on the metric terms

vanish from the same reasoning that the standard, non-split curvilinear flux formulation vanishes.

Part 2 (𝑚 > 1): To guarantee that the curvilinear divergence of the upwind SBP scheme (3.43)

vanishes, it is sufficient if the following terms individually vanish

𝐷−𝑌𝜂𝑌𝜂𝑌𝜂
𝑚 −𝑌𝜉𝑌𝜉𝑌𝜉

𝑚
𝐷
𝑇
− , 𝐷+𝑌𝜂𝑌𝜂𝑌𝜂

𝑚 −𝑌𝜉𝑌𝜉𝑌𝜉
𝑚
𝐷
𝑇
+ , −𝐷−𝑋𝜂𝑋𝜂𝑋𝜂

𝑚 +𝑋𝜉𝑋𝜉𝑋𝜉
𝑚
𝐷
𝑇
− , −𝐷+𝑋𝜂𝑋𝜂𝑋𝜂

𝑚 +𝑋𝜉𝑋𝜉𝑋𝜉
𝑚
𝐷
𝑇
+ . (3.47)

The four terms above are similar to the discrete metric identities, but the metric terms are now

polynomials of higher degree.

Consider the first term in (3.47), i.e., 𝐷−𝑌𝜂𝑌𝜂𝑌𝜂
𝑚 −𝑌𝜉𝑌𝜉𝑌𝜉

𝑚
𝐷
𝑇
− . From the constraint on the polynomial

degree of the mapping (3.46) we know that the boundary closure order of the upwind SBP

operators can exactly differentiate polynomials up to degree 𝑚𝑁
geo

≤ 𝑝/2. The discrete metric

term 𝑌𝜂𝑌𝜂𝑌𝜂 = 𝑌𝑌𝑌𝐷
𝑇

is a polynomial of degree 𝑁
geo

in the 𝜉-direction and degree 𝑁
geo

− 1 in the 𝜂-

direction and the discrete metric term𝑌𝜉𝑌𝜉𝑌𝜉 = 𝐷𝑌𝑌𝑌 is a polynomial of degree𝑁
geo

−1 in the 𝜉-direction

and degree 𝑁
geo

in the 𝜂-direction. Taking these metric terms to the power 𝑚 means that𝑌𝜂𝑌𝜂𝑌𝜂
𝑚

is a

polynomial of degree 𝑚𝑁
geo

in the 𝜉-direction and degree 𝑚(𝑁
geo

− 1) in the 𝜂-direction and𝑌𝜉𝑌𝜉𝑌𝜉
𝑚

is a polynomial of degree 𝑚(𝑁
geo

− 1) in the 𝜉-direction and degree 𝑚𝑁
geo

in the 𝜂-direction. By

design, the upwind SBP derivative operators 𝐷± and 𝐷 = (𝐷++𝐷−)/2 all have the same boundary

order closure and can differentiate polynomials up to degree 𝑝/2 exactly. Therefore, under the

constraint (3.46) the 𝐷− operator can exactly differentiate the term𝑌𝜂𝑌𝜂𝑌𝜂
𝑚

in the 𝜉- direction as it is a

polynomial of degree 𝑚𝑁
geo

. Similarly, the 𝐷− operator can exactly differentiate the term 𝑌𝜉𝑌𝜉𝑌𝜉
𝑚

in

the 𝜂- direction as it is also a polynomial of degree 𝑚𝑁
geo

. Thus,

𝐷−𝑌𝜂𝑌𝜂𝑌𝜂
𝑚 −𝑌𝜉𝑌𝜉𝑌𝜉

𝑚
𝐷
𝑇
− = 000, (3.48)
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due to the exactness of polynomial differentiation of the boundary closure. The remaining three

terms from (3.47) individually vanish from a similar argument. Therefore, the curvilinear upwind

SBP method is FSP. □

The result of Theorem 3.10 is two-fold. If the dependency of the curvilinear flux vector splitting

on the metric terms remains linear, i.e. 𝑚 = 1, then the curvilinear upwind SBP method (3.43)

retains discrete FSP regardless of the boundary closure order and polynomial degree of the map-

ping 𝑁
geo

. This is the case for the local Lax-Friedrichs splitting in Example 3.6 and, as shown in

Section 5.5, this splitting retains discrete FSP for all considered upwind SBP operators and meshes.

These results agree with the previous work of Rydin et al. [69], where the global Lax-Friedrichs

splitting was used and there were no reported spurious wave artifacts due to curved elements.

However, if the curvilinear flux vector splitting has a higher degree polynomial dependence on

the metric terms it places a cap on the polynomial degree of curvilinear elements. This is the

case for the Drikakis-Tsangaris and van Leer-Hänel splittings of the compressible Euler equations

given in Examples 3.7 and 3.8, respectively. For both curvilinear splittings, the maximum depen-

dency on the metric terms is quadratic, so 𝑚 = 2. Thus, upwind SBP operators with a boundary

closure order of two are restricted to unstructured bi-linear element meshes and operators with a

boundary closure order of four are restricted to at most 𝑁
geo

= 2 or quadratic polynomial bound-

aries. If curvilinear meshes are constructed with boundaries beyond these values for 𝑁
geo

, then

the method is not FSP. We numerically examine the FSP properties of the high-order, curvilinear

upwind SBP method (3.43) with different splittings, boundary closures, and mesh polynomial

degrees in Section 5.5.

Remark 3.11. As a word of caution, one must take care when adapting a flux vector splitting into

the curvilinear high-order upwind SBP context. For instance, the pressure for the van Leer-Hänel

splitting (3.39) considered herein is linear with respect to the signed Mach number in the normal

direction. This means that the pressure term is quadratic in the metric terms as the pressure

splitting is multiplied with the components of the normal direction vector 𝑛̂
𝑖
. Other pressure

splittings are proposed by Liou and Steffen [41], e.g.,

𝑝
±
=

1

4

(𝑀̃ ± 1)2(2 ∓ 𝑀̃)𝑝, (3.49)

which is cubic in the signed Mach number and, in turn, cubic with respect to the metric terms.

This means that overall, the van Leer-Hänel splitting with the above pressure splitting has 𝑚 = 4.

Thus, bi-linear element meshes with 𝑁
geo

= 1 require at least fourth order boundary closures to

guarantee FSP of the upwind SBP method. ⊳

Remark 3.12. The constraint on the boundary polynomial degree (3.46) is similar to the constraint

found by Kopriva [34, Theorem 4] for three-dimensional cross-product discrete metric terms. ⊳

4 Analysis of local linear/energy stability

From the review and discussion of upwind SBP methods for nonlinear conservation laws, we now

turn to one goal of this article: the analysis of local linear/energy stability properties. We follow

[23] and consider local linear/energy stability for Burgers’ equation

𝜕𝑡𝑢(𝑡 , 𝑥) + 𝜕𝑥
𝑢(𝑡 , 𝑥)2

2

= 0 (4.1)

with periodic boundary conditions. Thus, we linearize the equation around a baseflow 𝑢̃, write

𝑢 = 𝑢̃ + 𝑣, and get

𝜕𝑡𝑣 + 𝜕𝑥(𝑢̃𝑣) = 0. (4.2)

This is a linear advection equation for the perturbation 𝑣 with variable coefficient 𝑢̃. For a positive

baseflow 𝑢̃ > 0, the spatial operator has an imaginary spectrum since it is skew-symmetric with

respect to the weighted 𝐿
2

inner product (𝑣, 𝑤) ↦→
∫
𝑢̃𝑣𝑤 [23, 45].

16



However, Gassner, Svärd, and Hindenlang [23] observed that high-order semidiscretizations

conserving/dissipating the 𝐿
2

entropy

∫
𝑢

2

lead to a linearized operator having some eigenvalues

with a significantly positive real part for a non-constant baseflow 𝑢̃. They discussed this in the

context of local linear/energy stability and issues of discretizations for under-resolved flows, see

also [59].

From the results and discussion in [23], it appears to be desirable that a semidiscretization

mimics the property of a linearization having eigenvalues with non-positive real part for all

positive baseflows 𝑢̃. Before studying the upwind SBP method specifically for Burgers’ equation,

we concentrate on constant baseflows in a general setting.

Consider a scalar conservation law 𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (𝑢) = 0 with periodic boundary conditions. We

first consider entropy-conservative flux differencing schemes of the form

𝜕𝑡𝑢𝑢𝑢 𝑖 +
∑
𝑗

2𝐷𝑖 𝑗 𝑓
vol(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢 𝑗) = 0, (4.3)

where 𝐷 is a periodic SBP operator and 𝑓
vol

is an entropy-conservative numerical flux in the sense

of Tadmor [80, 81], i.e., it satisfies

∀𝑢𝑙 , 𝑢𝑟 :

(
𝑤(𝑢𝑟) − 𝑤(𝑢𝑙)

)
· 𝑓 vol(𝑢𝑙 , 𝑢𝑟) = 𝜓(𝑢𝑟) − 𝜓(𝑢𝑙), (4.4)

where 𝑤(𝑢) = 𝑈
′(𝑢) are the entropy variables and 𝜓 is the flux potential associated to a convex

entropy𝑈 . These methods have been introduced in [22, 39]; see also [16, 62].

Theorem 4.1. Entropy-conservative semidiscretizations using flux differencing in periodic domains are
linearly/energy stable around constant states; in particular, their Jacobian has a purely imaginary spectrum.

Proof. Here, we use the notation of [15, Theorem 2.1], i.e., 𝑄 = 𝑀𝐷 and 𝐹𝑖 𝑗 = 𝑓
vol(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢 𝑗). The

Jacobian (multiplied by the negative mass matrix) is

𝐽 = 2(𝑄 ◦ 𝐹𝑦) − diag(1𝑇(2𝑄 ◦ 𝐹𝑦)), (4.5)

where𝑄 is skew-symmetric (due to the periodic boundary conditions) and◦denotes the Hadamard

(pointwise) product of two matrices. The matrix 𝐹𝑦 is given by the entries 𝜕
2
𝑓

vol(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢 𝑗), i.e., the

derivatives of the numerical flux 𝑓
vol

with respect to the second argument evaluated at the states

𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢 𝑗 . Since the derivative 𝐹𝑦 is evaluated at a constant state 𝑢̃, all of its components are the same.

In particular, ∀𝑖 , 𝑗 : (𝐹𝑦)𝑖 𝑗 = 1

2
𝑓
′(𝑢) [55, Lemma 3.1]. Thus,

𝐽 = 2(𝑄 ◦ 𝐹𝑦) − diag(1𝑇(2𝑄 ◦ 𝐹𝑦)) = 𝑓
′(𝑢)

(
𝑄 − diag(1𝑇𝑄)

)
= 𝑓

′(𝑢)𝑄, (4.6)

where we used the SBP property. Hence, 𝐽 is skew-symmetric and has a purely imaginary spectrum.

□

Next, we consider a central SBP discretization of the form

𝜕𝑡𝑢𝑢𝑢 + 𝐷𝑓𝑓𝑓 = 000, (4.7)

where 𝐷 is a periodic SBP operator. As observed numerically in [23], this leads to a purely

imaginary spectrum of the linearization.

Theorem 4.2. Central nodal SBP semidiscretizations of conservation laws in periodic domains are linearly
stable around states with positive speed 𝑓

′(𝑢̃) > 0 if a diagonal mass matrix is used; in particular, the
Jacobian has a purely imaginary spectrum.

Proof. The Jacobian (multiplied by the negative mass matrix) is

𝐽 = 𝑄 diag( 𝑓𝑓𝑓 ′). (4.8)

Thus, it is skew-symmetric w.r.t. the inner product weighted by 𝑓𝑓𝑓
′ > 0. □

17



Next, we consider fully upwind SBP methods.

Theorem 4.3. Consider a possibly spatially varying baseflow 𝑢̃ with positive speed 𝑓
′(𝑢̃) > 0 everywhere.

Upwind nodal SBP semidiscretizations of the form 𝜕𝑡𝑢𝑢𝑢 + 𝐷− 𝑓𝑓𝑓 = 000 in periodic domains are linearly stable
if a diagonal mass matrix is used; in particular, the Jacobian has a spectrum in the left half of the complex
plane.

Proof. The Jacobian of the semidiscretization −𝐷− 𝑓𝑓𝑓 is

𝐽 = −𝐷− diag( 𝑓𝑓𝑓 ′). (4.9)

The spectrum of this operator must be in the left half of the complex plane, since for each (possibly

complex-valued) vector 𝑣𝑣𝑣

2 Re⟨𝑣𝑣𝑣, 𝐽𝑣𝑣𝑣⟩
diag( 𝑓𝑓𝑓 ′)𝑀 = ⟨𝑣𝑣𝑣, 𝐽𝑣𝑣𝑣⟩

diag( 𝑓𝑓𝑓 ′)𝑀 + ⟨𝐽𝑣𝑣𝑣, 𝑣𝑣𝑣⟩
diag( 𝑓𝑓𝑓 ′)𝑀

= −𝑣𝑣𝑣∗ diag( 𝑓𝑓𝑓 ′)𝑀𝐷− diag( 𝑓𝑓𝑓 ′)𝑣𝑣𝑣 − 𝑣𝑣𝑣∗ diag( 𝑓𝑓𝑓 ′)𝐷𝑇
−𝑀 diag( 𝑓𝑓𝑓 ′)𝑣𝑣𝑣

= 𝑣𝑣𝑣
∗
diag( 𝑓𝑓𝑓 ′)(−𝐷𝑇

−𝑀 −𝑀𝐷−)diag( 𝑓𝑓𝑓 ′)𝑣𝑣𝑣
= 𝑣𝑣𝑣

∗
diag( 𝑓𝑓𝑓 ′)(𝑀𝐷+ −𝑀𝐷−)diag( 𝑓𝑓𝑓 ′)𝑣𝑣𝑣 ≤ 0,

(4.10)

where we used the SBP property and negative semidefiniteness for periodic upwind operators

(2.30) in the last two steps. □

Remark 4.4. The assumption of a positive speed 𝑓
′(𝑢̃) > 0 is equivalent to a positive baseflow 𝑢̃ for

Burgers’ equation. While this is a strong assumption, it is exactly the situation investigated in [23]

where local linear/energy stability fails for entropy-stable methods. ⊳

We get similar results for splittings such as the Lax-Friedrichs splitting, at least for Burgers’

equation.

Theorem 4.5. Upwind nodal SBP semidiscretizations of Burgers’ equation with local Lax-Friedrichs flux
splitting in periodic domains are linearly stable around positive states if a diagonal mass matrix is used. In
particular, the Jacobian has a spectrum in the left half of the complex plane.

Proof. The flux splitting is

𝑢
2

2

=
1

2

(
𝑢

2

2

+ |𝑢 |𝑢
)
+ 1

2

(
𝑢

2

2

− |𝑢 |𝑢
)
. (4.11)

For positive 𝑢𝑢𝑢, the semidiscretization is

𝜕𝑡𝑢𝑢𝑢 = −3

4

𝐷−𝑢𝑢𝑢
2 + 1

4

𝐷+𝑢𝑢𝑢
2

. (4.12)

The Jacobian of the right-hand side is

𝐽 = −3

4

𝐷− diag((𝑢𝑢𝑢2)′) + 1

4

𝐷+ diag((𝑢𝑢𝑢2)′). (4.13)

As in Theorem 4.3, we can show that this Jacobian has a spectrum in the left half of the complex

plane, since for all (complex) grid vectors 𝑣𝑣𝑣

2 Re⟨𝑣𝑣𝑣, 𝐽𝑣𝑣𝑣⟩
diag((𝑢𝑢𝑢2)′)𝑀 = −3

2

𝑣𝑣𝑣
∗
diag((𝑢𝑢𝑢2)′)𝑀𝐷− diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣 + 1

2

𝑣𝑣𝑣
∗
diag((𝑢𝑢𝑢2)′)𝑀𝐷+ diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣

− 3

2

𝑣𝑣𝑣
∗
diag((𝑢𝑢𝑢2)′)𝐷𝑇

−𝑀 diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣 + 1

2

𝑣𝑣𝑣
∗
diag((𝑢𝑢𝑢2)′)𝐷𝑇

+𝑀 diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣

=
3

2

𝑣𝑣𝑣
∗
diag((𝑢𝑢𝑢2)′)

(
−𝑀𝐷− − 𝐷𝑇

−𝑀
)

diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣

+ 1

2

𝑣𝑣𝑣
∗
diag((𝑢𝑢𝑢2)′)

(
𝑀𝐷+ + 𝐷𝑇

+𝑀
)

diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣
(4.14)
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Both matrices in brackets are negative semidefinite, since the upwind SBP properties guarantee

that

−𝑀𝐷− − 𝐷𝑇
−𝑀 = 𝑀𝐷+ −𝑀𝐷− = 𝑀𝐷+ + 𝐷𝑇

+𝑀 (4.15)

is negative semidefinite. □

Remark 4.6. The proof of Theorem 4.5 holds for scalar conservation laws with homogeneous flux

𝑓 (𝑠𝑢) = 𝑠
𝛼
𝑓 (𝑢). In this case, the flux splitting with positive speeds is

𝑓+ =
1

2

(
𝑓 + 𝑓𝑢𝑢

)
=

1 + 𝛼
2

𝑓 , 𝑓− =
1

2

(
𝑓 − 𝑓𝑢𝑢

)
=

1 − 𝛼
2

𝑓 , (4.16)

due to Eulers’ theorem. ⊳

4.1 A special choice of entropy

We relate standard central schemes 𝜕𝑡𝑢𝑢𝑢 + 𝐷𝑓𝑓𝑓 = 000 to entropy-conservative schemes with a special

choice of entropy function. Consider a scalar conservation law 𝜕𝑡𝑢+𝜕𝑥 𝑓 (𝑢) = 0 with positive wave

speeds 𝑓
′(𝑢) > 0. In this case, the primitive𝑈(𝑢) =

∫ 𝑢
𝑓 (𝑦)d𝑦 of the flux is a convex entropy with

entropy flux 𝐹 = 𝑓
2/2, cf. [79]. The associated entropy variable 𝑤 = 𝑈

′
= 𝑓 is the flux itself and a

smooth solution yields

𝜕𝑡𝑈 + 𝜕𝑥𝐹 = 𝜕𝑡𝑈 + 𝜕𝑥
𝑓

2

2

= 𝑓 · (𝜕𝑡𝑢 + 𝜕𝑥 𝑓 ) = 0. (4.17)

Thus, the entropy-conservative numerical flux of Tadmor is given by the central flux since

( 𝑓𝑟 − 𝑓𝑙)
𝑓𝑟 + 𝑓𝑙

2

=
𝑓

2

𝑟

2

−
𝑓

2

𝑙

2

, (4.18)

where we have used the entropy flux potential

𝜓 = 𝑤 · 𝑓 − 𝐹 = 𝑓
2 −

𝑓
2

2

=
𝑓

2

2

. (4.19)

Finally, flux differencing methods using the central numerical flux are equivalent to the central

discretization 𝜕𝑡𝑢𝑢𝑢+𝐷𝑓𝑓𝑓 = 000. Thus, nonlinear entropy stability and local linear/energy stability can

be combined in this very special situation.

Remark 4.7. The dissipation introduced by upwind SBP operators is compatible with the structure

of the local linear/energy stability estimate. In particular, the dissipation introduced compared to

a central scheme dissipates the entropy𝑈(𝑢) =
∫ 𝑢

𝑓 (𝑦)d𝑦, since

𝑓𝑓𝑓
𝑇
𝑀(−𝐷− 𝑓𝑓𝑓 ) = − 𝑓𝑓𝑓 𝑇𝑀𝐷+ + 𝐷−

2

𝑓𝑓𝑓 + 𝑓𝑓𝑓
𝑇
𝑀
𝐷+ − 𝐷−

2

𝑓𝑓𝑓 ≤ − 𝑓𝑓𝑓 𝑇𝑀𝐷+ + 𝐷−
2

𝑓𝑓𝑓 . (4.20)

The central scheme with operator (𝐷+ +𝐷−)/2 conserves this entropy, so the total upwind scheme

is entropy-dissipative. ⊳

4.2 Discussion

Following [23], three desirable properties of numerical methods are i) nonlinear entropy stability, ii)

local linear/energy stability, and iii) high-order accuracy. There have been substantial discussions

in the high-order community about these properties. Clearly, central-type schemes can be high-

order accurate and just satisfy local linear/energy stability without any dissipation. We have

shown that upwind SBP methods can have the same properties while coming with some built-in

dissipation. However, it is unclear whether they have some nonlinear/entropy stability properties

besides the special, academic choice of entropy in the previous subsection. Clearly, first-order

methods such as Godunov’s method can have both nonlinear entropy and local linear/energy

stability properties. It is an open question whether higher-order methods can have both of these

stability properties as well.

19



5 Numerical experiments

We use the Julia programming language [6] for the numerical experiments. Time integration is

performed using Runge-Kutta methods implemented in OrdinaryDiffEq.jl [54] (specific choices of

the Runge-Kutta methods are stated below). The spatial discretizations are available in Trixi.jl [63,

70]. All numerical experiments presented in this section use diagonal-norm upwind SBP operators

of [46] available from SummationByPartsOperators.jl [57] (unless stated otherwise). Some of the

unstructured curvilinear quadrilateral meshes were constructed with HOHQMesh.jl
1

. We use

Plots.jl [17] and ParaView [3] to visualize the results. All source code required to reproduce the

numerical experiments is available online in our reproducibility repository [64].

5.1 Convergence experiments with linear advection

First, we consider the linear advection equation

𝜕𝑡𝑢(𝑡 , 𝑥) + 𝜕𝑥𝑢(𝑡 , 𝑥) = 0, 𝑡 ∈ (0, 5), 𝑥 ∈ (−1, 1),
𝑢(0, 𝑥) = sin(𝜋𝑥), 𝑥 ∈ [−1, 1],

(5.1)

with periodic boundary conditions. We use the classical Lax-Friedrichs flux vector splitting with

𝜆 = 1, i.e.,

𝑓
−(𝑢) = 0, 𝑓

+(𝑢) = 𝑢. (5.2)

Table 1: Convergence results using upwind SBP discretizations of the linear advection equation with Lax-

Friedrichs splitting, 𝐾 elements, 𝑁 nodes per element, and an interior order of accuracy 2.

𝐾 𝑁 𝐿
2

error EOC

1 20 3.46 × 10
−1

2 20 9.24 × 10
−2

1.91

4 20 2.33 × 10
−2

1.99

8 20 5.83 × 10
−3

2.00

16 20 1.46 × 10
−3

2.00

32 20 3.64 × 10
−4

2.00

64 20 9.11 × 10
−5

2.00

128 20 2.28 × 10
−5

2.00

𝐾 𝑁 𝐿
2

error EOC

4 10 9.32 × 10
−2

4 20 2.33 × 10
−2

2.00

4 40 5.77 × 10
−3

2.01

4 80 1.44 × 10
−3

2.01

4 160 3.58 × 10
−4

2.00

4 320 8.94 × 10
−5

2.00

4 640 2.23 × 10
−5

2.00

4 1280 5.58 × 10
−6

2.00

Table 2: Convergence results using upwind SBP discretizations of the linear advection equation with Lax-

Friedrichs splitting, 𝐾 elements, 𝑁 nodes per element, and an interior order of accuracy 3.

𝐾 𝑁 𝐿
2

error EOC

1 20 3.40 × 10
−2

2 20 4.93 × 10
−3

2.78

4 20 8.73 × 10
−4

2.50

8 20 1.87 × 10
−4

2.22

16 20 4.47 × 10
−5

2.07

32 20 1.11 × 10
−5

2.01

64 20 2.76 × 10
−6

2.00

128 20 6.90 × 10
−7

2.00

𝐾 𝑁 𝐿
2

error EOC

4 10 7.98 × 10
−3

4 20 8.73 × 10
−4

3.19

4 40 1.05 × 10
−4

3.06

4 80 1.34 × 10
−5

2.96

4 160 1.83 × 10
−6

2.87

4 320 2.68 × 10
−7

2.77

4 640 4.20 × 10
−8

2.68

4 1280 6.91 × 10
−9

2.60

1

https://github.com/trixi-framework/HOHQMesh.jl
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Table 3: Convergence results using upwind SBP discretizations of the linear advection equation with Lax-

Friedrichs splitting, 𝐾 elements, 𝑁 nodes per element, and an interior order of accuracy 4.

𝐾 𝑁 𝐿
2

error EOC

1 20 5.03 × 10
−3

2 20 3.96 × 10
−4

3.67

4 20 3.19 × 10
−5

3.63

8 20 3.66 × 10
−6

3.12

16 20 4.51 × 10
−7

3.02

32 20 5.57 × 10
−8

3.02

64 20 6.96 × 10
−9

3.00

128 20 8.73 × 10
−10

3.00

𝐾 𝑁 𝐿
2

error EOC

4 10 3.86 × 10
−4

4 20 3.19 × 10
−5

3.60

4 40 2.57 × 10
−6

3.63

4 80 2.10 × 10
−7

3.61

4 160 1.77 × 10
−8

3.57

4 320 1.51 × 10
−9

3.55

4 640 1.30 × 10
−10

3.54

4 1280 1.17 × 10
−11

3.48

Table 4: Convergence results using upwind SBP discretizations of the linear advection equation with Lax-

Friedrichs splitting, 𝐾 elements, 𝑁 nodes per element, and an interior order of accuracy 5.

𝐾 𝑁 𝐿
2

error EOC

1 20 3.49 × 10
−3

2 20 3.77 × 10
−4

3.21

4 20 3.31 × 10
−5

3.51

8 20 4.09 × 10
−6

3.01

16 20 5.13 × 10
−7

3.00

32 20 6.43 × 10
−8

3.00

64 20 8.02 × 10
−9

3.00

128 20 1.01 × 10
−9

2.99

𝐾 𝑁 𝐿
2

error EOC

4 10 5.17 × 10
−4

4 20 3.31 × 10
−5

3.97

4 40 2.64 × 10
−6

3.65

4 80 2.23 × 10
−7

3.56

4 160 1.93 × 10
−8

3.53

4 320 1.69 × 10
−9

3.51

4 640 1.51 × 10
−10

3.48

4 1280 1.34 × 10
−11

3.49
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We use the fourth-order accurate Runge-Kutta method of [58] with error-based step size control

and a sufficiently small tolerance to integrate the semidiscretizations in time. We measure the

discrete 𝐿
2

error using the quadrature rule induced by the mass matrix 𝑀. Results of these

convergence experiments, including the experimental order of convergence (EOC), are shown in

Tables 1–4.

When used in DG refinement mode, i.e., increasing the number of elements while keeping the

number of nodes per element constant, the methods with an interior order of accuracy 𝑝 converge

with an EOC of ⌊𝑝/2+1⌋. When used in FD refinement mode, i.e., increasing the number of nodes

per element while keeping the number of elements constant, the methods with an interior order

of accuracy 𝑝 converge with an EOC of roughly max(𝑝, ⌊𝑝/2 + 1⌋ + 1/2).

5.2 Convergence experiments with the compressible Euler equations

Next, we investigate the experimental order of convergence for the upwind SBP framework with

different flux vector splittings in one and two space dimensions. The one-dimensional results are

presented in Section 5.2.1 and the two-dimensional results on unstructured curvilinear meshes are

given in Section 5.2.2.

5.2.1 One spatial dimension

Consider the 1D compressible Euler equations

𝜕𝑡
©­­«
𝜚
𝜚𝑣
𝜚𝑒

ª®®¬ + 𝜕𝑥
©­­«

𝜚𝑣
𝜚𝑣2 + 𝑝
(𝜚𝑒 + 𝑝)𝑣

ª®®¬ = 0 (5.3)

of an ideal gas with density 𝜚 , velocity 𝑣, total energy density 𝜚𝑒, and pressure

𝑝 = (𝛾 − 1)
(
𝜚𝑒 − 1

2

𝜚𝑣2

)
, (5.4)

where the ratio of specific heats is chosen as 𝛾 = 1.4. We add a source term to create the

manufactured solution

𝜚(𝑡 , 𝑥) = ℎ(𝑡 , 𝑥), 𝑣(𝑡 , 𝑥) = 1, 𝜚𝑒(𝑡 , 𝑥) = ℎ(𝑡 , 𝑥)2 , (5.5)

with

ℎ(𝑡 , 𝑥) = 2 + 0.1 sin

(
𝜋(𝑥 − 𝑡)

)
(5.6)

for 𝑡 ∈ [0, 2] and 𝑥 ∈ [0, 2]. We use the flux vector splittings introduced in Examples 2.2 and 2.3.

The convergence results for the compressible Euler equations shown in Tables 5–8 confirm that

the behavior of the experimental order of convergence observed earlier for the linear advection

equation remains the same for a nonlinear hyperbolic system.

5.2.2 Two spatial dimensions

Next, consider the 2D compressible Euler equations

𝜕𝑡

©­­­­«
𝜚
𝜚𝑣

1

𝜚𝑣
2

𝜚𝑒

ª®®®®¬
+ 𝜕𝑥

©­­­­«
𝜚𝑣

1

𝜚𝑣2

1
+ 𝑝

𝜚𝑣
1
𝑣

2

(𝜚𝑒 + 𝑝)𝑣
1

ª®®®®¬
+ 𝜕𝑦

©­­­­«
𝜚𝑣

2

𝜚𝑣
1
𝑣

2

𝜚𝑣2

2
+ 𝑝

(𝜚𝑒 + 𝑝)𝑣
2

ª®®®®¬
= 0 (5.7)
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Table 5: Convergence results using upwind SBP discretizations of the compressible Euler equations with 𝐾
elements, 𝑁 nodes per element, and an interior order of accuracy 2.

(a) van Leer-Hänel spl. [28, 38, 41].

𝐾 𝑁 𝐿
2

error EOC

1 20 1.01 × 10
−2

2 20 2.94 × 10
−3

1.78

4 20 7.55 × 10
−4

1.96

8 20 1.91 × 10
−4

1.98

16 20 4.79 × 10
−5

2.00

32 20 1.19 × 10
−5

2.01

64 20 2.98 × 10
−6

2.00

128 20 7.45 × 10
−7

2.00

(b) Steger-Warming splitting [74].

𝐾 𝑁 𝐿
2

error EOC

1 20 1.02 × 10
−2

2 20 2.95 × 10
−3

1.79

4 20 7.59 × 10
−4

1.96

8 20 1.92 × 10
−4

1.99

16 20 4.79 × 10
−5

2.00

32 20 1.19 × 10
−5

2.01

64 20 2.98 × 10
−6

2.00

128 20 7.46 × 10
−7

2.00

(c) Steger-Warming splitting [74].

𝐾 𝑁 𝐿
2

error EOC

4 10 2.97 × 10
−3

4 20 7.59 × 10
−4

1.97

4 40 1.89 × 10
−4

2.01

4 80 4.69 × 10
−5

2.01

4 160 1.17 × 10
−5

2.01

4 320 2.92 × 10
−6

2.00

4 640 7.29 × 10
−7

2.00

4 1280 1.82 × 10
−7

2.00

Table 6: Convergence results using upwind SBP discretizations of the compressible Euler equations with 𝐾
elements, 𝑁 nodes per element, and an interior order of accuracy 3.

(a) van Leer-Hänel spl. [28, 38, 41].

𝐾 𝑁 𝐿
2

error EOC

1 20 1.14 × 10
−3

2 20 1.75 × 10
−4

2.70

4 20 4.41 × 10
−5

1.99

8 20 1.21 × 10
−5

1.86

16 20 3.16 × 10
−6

1.94

32 20 5.96 × 10
−7

2.41

64 20 1.43 × 10
−7

2.06

128 20 3.43 × 10
−8

2.06

(b) Steger-Warming splitting [74].

𝐾 𝑁 𝐿
2

error EOC

1 20 1.18 × 10
−3

2 20 1.83 × 10
−4

2.69

4 20 4.51 × 10
−5

2.02

8 20 1.21 × 10
−5

1.90

16 20 3.05 × 10
−6

1.98

32 20 5.59 × 10
−7

2.45

64 20 1.35 × 10
−7

2.05

128 20 3.22 × 10
−8

2.07

(c) Steger-Warming splitting [74].

𝐾 𝑁 𝐿
2

error EOC

4 10 2.97 × 10
−4

4 20 4.51 × 10
−5

2.72

4 40 7.56 × 10
−6

2.58

4 80 1.16 × 10
−6

2.70

4 160 1.78 × 10
−7

2.70

4 320 2.81 × 10
−8

2.66

4 640 4.59 × 10
−9

2.62

4 1280 7.69 × 10
−10

2.58

Table 7: Convergence results using upwind SBP discretizations of the compressible Euler equations with 𝐾
elements, 𝑁 nodes per element, and an interior order of accuracy 4.

(a) van Leer-Hänel spl. [28, 38, 41].

𝐾 𝑁 𝐿
2

error EOC

1 20 3.01 × 10
−4

2 20 3.51 × 10
−5

3.10

4 20 4.14 × 10
−6

3.08

8 20 5.84 × 10
−7

2.83

16 20 6.60 × 10
−8

3.14

32 20 6.68 × 10
−9

3.31

64 20 8.24 × 10
−10

3.02

128 20 9.63 × 10
−11

3.10

(b) Steger-Warming splitting [74].

𝐾 𝑁 𝐿
2

error EOC

1 20 2.30 × 10
−4

2 20 2.71 × 10
−5

3.09

4 20 4.21 × 10
−6

2.69

8 20 5.88 × 10
−7

2.84

16 20 6.50 × 10
−8

3.18

32 20 6.53 × 10
−9

3.32

64 20 7.94 × 10
−10

3.04

128 20 9.17 × 10
−11

3.11

(c) Steger-Warming splitting [74].

𝐾 𝑁 𝐿
2

error EOC

4 10 3.72 × 10
−5

4 20 4.21 × 10
−6

3.14

4 40 3.66 × 10
−7

3.52

4 80 2.66 × 10
−8

3.78

4 160 1.95 × 10
−9

3.77

4 320 1.60 × 10
−10

3.61

4 640 1.37 × 10
−11

3.54

4 1280 2.05 × 10
−12

2.74
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Table 8: Convergence results using upwind SBP discretizations of the compressible Euler equations with 𝐾
elements, 𝑁 nodes per element, and an interior order of accuracy 5.

(a) van Leer-Hänel spl. [28, 38, 41].

𝐾 𝑁 𝐿
2

error EOC

1 20 2.05 × 10
−4

2 20 3.29 × 10
−5

2.64

4 20 3.74 × 10
−6

3.14

8 20 5.15 × 10
−7

2.86

16 20 5.99 × 10
−8

3.10

32 20 6.97 × 10
−9

3.10

64 20 8.67 × 10
−10

3.01

128 20 1.05 × 10
−10

3.04

(b) Steger-Warming splitting [74].

𝐾 𝑁 𝐿
2

error EOC

1 20 1.17 × 10
−4

2 20 2.44 × 10
−5

2.26

4 20 4.13 × 10
−6

2.56

8 20 5.20 × 10
−7

2.99

16 20 5.85 × 10
−8

3.15

32 20 6.78 × 10
−9

3.11

64 20 8.38 × 10
−10

3.02

128 20 1.02 × 10
−10

3.04

(c) Steger-Warming splitting [74].

𝐾 𝑁 𝐿
2

error EOC

4 10 4.20 × 10
−5

4 20 4.13 × 10
−6

3.35

4 40 3.28 × 10
−7

3.66

4 80 2.53 × 10
−8

3.69

4 160 2.05 × 10
−9

3.63

4 320 1.75 × 10
−10

3.55

4 640 1.52 × 10
−11

3.52

4 1280 1.63 × 10
−12

3.23

of an ideal gas with density 𝜚 , velociteis 𝑣
1
, 𝑣

2
, total energy density 𝜚𝑒, and pressure

𝑝 = (𝛾 − 1)
(
𝜚𝑒 − 1

2

𝜚(𝑣2

1
+ 𝑣2

2
)
)
, (5.8)

where the ratio of specific heats is chosen as 𝛾 = 1.4. We add a source term to create the

manufactured solution

𝜚(𝑡 , 𝑥) = ℎ(𝑡 , 𝑥), 𝑣
1
(𝑡 , 𝑥) = 𝑣

2
(𝑡 , 𝑥) = 1, 𝜚𝑒(𝑡 , 𝑥) = ℎ(𝑡 , 𝑥)2 , (5.9)

with

ℎ(𝑡 , 𝑥) = 2 + 0.1 sin

(√
2𝜋(𝑥 − 𝑡)

)
(5.10)

for 𝑡 ∈ [0, 2], 𝑥 ∈ [0,
√

2]2, and periodic boundary conditions. The full expressions of the source

terms and all code required to reproduce these experiments is available in our reproducibility

repository [64].

We subdivide the domain [0,
√

2]2 with 16 non-overlapping quadrilateral elements. For these

convergence tests we consider two unstructured meshes, one with only bi-linear elements and the

other containing internal element boundaries approximated with quadratic polynomials. More-

over, we design these meshes such that several neighboring elements have flipped local coordinate

systems, as is possible in unstructured mesh computations. Even so, the domain discretized with

either mesh remains periodic as required by the manufactured solution setup. The two meshes

used for the convergence testing are given in Figure 1.

We use the manufactured solution described above to compute the experimental order of con-

vergence for the Lax-Friedrichs, Drikakis-Tsangaris, and van Leer-Hänel splittings on both meshes

given in Figure 1. In particular, we use the bi-linear unstructured mesh from Figure 1(a) to test

convergence of the 4-2 and 6-3 upwind SBP operators and the quadratic unstructured mesh shown

in Figure 1(b) to test the convergence of the 8-4 upwind SBP operator.

The convergence results for the compressible Euler equations shown in Tables 9–11 confirm

the behavior of the experimental order of convergence observed for the earlier one-dimensional

convergence tests.

5.3 Spectral analysis

We consider the same linear advection setup with periodic boundary conditions as in Section 5.1

and compute the spectra of the semidiscretizations. The results visualized in Figure 2 demonstrate

the linear stability of the upwind discretizations, since the spectra are contained in the left half of
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(b) Mesh with (possibly) quadratic elements.

Figure 1: Non-overlapping quadrilateral meshes used for the convergence testing on unstructured meshes.

The local coordinate axes on each element denoted with 𝜉 and 𝜂 demonstrate that several elements

have flipped local coordinate systems with respect to their neighbor elements.

Table 9: Convergence results using curvilinear upwind SBP discretizations for the compressible Euler equa-

tions with 𝐾 elements, 𝑁 nodes per element, and an interior order of accuracy 4 on the unstructured

bi-linear mesh shown in Figure 1(a).

(a) local Lax-Friedrichs spl. Ex. 3.6.

𝐾 𝑁 𝐿
2

error EOC

16 17 1.92 × 10
−4

16 34 1.60 × 10
−5

3.58

16 68 1.46 × 10
−6

3.45

16 136 1.53 × 10
−7

3.26

16 272 1.66 × 10
−8

3.20

(b) Drikakis-Tsangaris splitting [20].

𝐾 𝑁 𝐿
2

error EOC

16 17 1.35 × 10
−4

16 34 1.18 × 10
−5

3.52

16 68 1.14 × 10
−6

3.36

16 136 1.18 × 10
−7

3.27

16 272 1.30 × 10
−8

3.18

(c) van Leer-Hänel splitting [5].

𝐾 𝑁 𝐿
2

error EOC

16 17 9.21 × 10
−5

16 34 8.07 × 10
−6

3.51

16 68 8.15 × 10
−7

3.31

16 136 8.19 × 10
−8

3.31

16 272 8.83 × 10
−9

3.21

Table 10: Convergence results using curvilinear upwind SBP discretizations for the compressible Euler

equations with 𝐾 elements, 𝑁 nodes per element, and an interior order of accuracy 6 on the

unstructured bi-linear mesh shown in Figure 1(a).

(a) local Lax-Friedrichs spl. Ex. 3.6.

𝐾 𝑁 𝐿
2

error EOC

16 17 1.95 × 10
−5

16 34 9.26 × 10
−7

4.40

16 68 4.71 × 10
−8

4.30

16 136 2.46 × 10
−9

4.26

16 272 1.32 × 10
−10

4.22

(b) Drikakis-Tsangaris splitting [20].

𝐾 𝑁 𝐿
2

error EOC

16 17 2.15 × 10
−5

16 34 1.04 × 10
−6

4.37

16 68 5.75 × 10
−8

4.17

16 136 3.06 × 10
−9

4.23

16 272 1.65 × 10
−10

4.21

(c) van Leer-Hänel splitting [5].

𝐾 𝑁 𝐿
2

error EOC

16 17 2.33 × 10
−5

16 34 1.15 × 10
−6

4.34

16 68 6.74 × 10
−8

4.09

16 136 3.70 × 10
−9

4.19

16 272 2.06 × 10
−10

4.17
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Table 11: Convergence results using curvilinear upwind SBP discretizations for the compressible Euler

equations with 𝐾 elements, 𝑁 nodes per element, and an interior order of accuracy 8 on the

unstructured quadratic curvilinear mesh shown in Figure 1(b).

(a) local Lax-Friedrichs spl. Ex. 3.6.

𝐾 𝑁 𝐿
2

error EOC

16 17 1.71 × 10
−5

16 34 4.16 × 10
−7

5.36

16 68 1.17 × 10
−8

5.15

16 136 3.64 × 10
−10

5.01

16 272 1.15 × 10
−11

4.99

(b) Drikakis-Tsangaris splitting [20].

𝐾 𝑁 𝐿
2

error EOC

16 17 1.71 × 10
−5

16 34 4.40 × 10
−7

5.28

16 68 1.32 × 10
−8

5.06

16 136 4.33 × 10
−10

4.93

16 272 1.33 × 10
−11

5.02

(c) van Leer-Hänel splitting [5].

𝐾 𝑁 𝐿
2

error EOC

16 17 1.66 × 10
−5

16 34 4.51 × 10
−7

5.20

16 68 1.42 × 10
−8

4.99

16 136 4.84 × 10
−10

4.88

16 272 1.52 × 10
−11

4.99

the complex plane and the maximum real part is zero up to machine precision. Furthermore, they

indicate that the stiffness of the methods (as measured by the largest eigenvalue by magnitude)

increases when reducing the number of elements and increasing the number of nodes per element

such that the total number of degrees of freedom (DOFs) is constant.

(a) Upwind SBP methods with interior order of accuracy 4

and classical DGSEM with polynomial degree 𝑝 = 2.

(b) Upwind SBP methods with interior order of accuracy 6

and classical DGSEM with polynomial degree 𝑝 = 3.

Figure 2: Spectra of semidiscretizations of the 1D linear scalar advection equation with periodic boundary

conditions. The maximum real part of all eigenvalues is around machine precision.

In general, the spectra are comparable to the spectra obtained by the classical nodal DGSEM

method on Gauss-Lobatto-Legendre nodes. The spectra shown in Figure 2 suggest that the upwind

SBP methods with an interior order of accuracy 4 are stiffer than DGSEM with a polynomial degree

of 2; the situation is reversed for upwind SBP methods with an interior of accuracy 6 and DGSEM

with a polynomial degree of 3.

5.4 Local linear/energy stability

Next, we verify the local linear/energy stability properties discussed in Section 4 numerically. For

this, we discretize Burgers’ equation in the domain (−1, 1)with periodic boundary conditions using

upwind SBP methods with a fully upwind discretization using only𝐷−. To stress the methods, we

consider a completely under-resolved case by computing the Jacobian at a random non-negative

state using automatic/algorithmic differentiation via ForwardDiff.jl [65].
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Table 12: Maximal real part of the spectrum of upwind SBP discretizations of Burgers’ equation with different

interior order of accuracy 𝑝, 𝐾 elements, 𝑁 nodes per element, and a purely upwind discretization

using only 𝐷−.

𝑝 𝐾 𝑁 max Re 𝜎

2 1 13 2.93 × 10
−16

2 1 14 −5.58 × 10
−16

2 2 13 2.62 × 10
−15

2 2 14 1.89 × 10
−15

3 1 13 3.08 × 10
−17

3 1 14 4.76 × 10
−16

3 2 13 5.51 × 10
−16

3 2 14 −2.78 × 10
−16

𝑝 𝐾 𝑁 max Re 𝜎

4 1 13 −4.67 × 10
−16

4 1 14 2.29 × 10
−16

4 2 13 −6.84 × 10
−17

4 2 14 3.39 × 10
−16

5 1 13 −1.67 × 10
−16

5 1 14 1.77 × 10
−17

5 2 13 2.11 × 10
−16

5 2 14 4.03 × 10
−16

𝑝 𝐾 𝑁 max Re 𝜎

6 1 13 −2.08 × 10
−16

6 1 14 −2.67 × 10
−16

6 2 13 −2.40 × 10
−16

6 2 14 −3.08 × 10
−16

7 1 13 1.65 × 10
−16

7 1 14 2.72 × 10
−16

7 2 13 4.33 × 10
−16

7 2 14 1.23 × 10
−16

The results are shown in Table 12. Clearly, the maximal positive real part of the spectrum is

around machine precision for 64 bit floating point numbers in all cases.

5.5 Free-stream preservation on unstructured meshes

In this section, we present numerical evidence for the proof of free-stream preservation for the

upwind SBP framework presented in Theorem 3.10. This theorem found that more complicated

splittings, like the Drikakis-Tsangaris, for the upwind method in curvilinear coordinates are only

guaranteed to be FSP under a particular interplay between the boundary (or interface) polynomial

degree of an unstructured curvilinear mesh, the particular flux vector splitting, and the boundary

closure order of the upwind SBP operator. The analysis in Section 3.4 also demonstrated that FSP is

easily obtained provided the splitting technique remains linear as a function of the metrics terms,

as was the case for the local Lax-Friedrichs splitting.

We reiterate that on a Cartesian box mesh, where all metric terms are constants proportional to

fixed values of Δ𝑥 or Δ𝑦, there is no issue with FSP. It is only when we move the approximation

into generalized curvilinear coordinates that one must take care of the mapping, the metric terms,

and their approximation strategy. The importance, and subtleties, of the discrete approximation

of the metric terms has been known for decades across different computational fluid dynamics

communities, e.g., [34, 83, 84].

Setting up an FSP test is straightforward and, at a glance, fairly innocuous. A constant solu-

tion should remain constant (up to machine precision) for all time as indicated by the governing

equations (3.27) with appropriate boundary conditions. For the test herein we consider the com-

pressible Euler equations in two space dimensions (5.7). Given the free-stream solution state of

the conservative variables

𝑢∞ =

©­­­­«
𝜚∞

(𝜚𝑣
1
)∞

(𝜚𝑣
2
)∞

(𝜚𝑒)∞

ª®®®®¬
=

©­­­­«
1.0

0.1

−0.2

10.0

ª®®®®¬
, (5.11)

the fluxes are all constant and their divergence vanishes on the continuous level. However, in the

discrete setting this is (potentially) not always the case.

For the tests in this section we consider a domain with a circular outer boundary and an interior

boundary composed of two straight lines and a semicircle. This domain is then divided into 204

non-overlapping quadrilateral elements. We create two versions of the mesh presented in Figure 3:

one composed only of bi-linear elements and the other with bi-linear elements in the interior and

boundaries approximated with quadratic polynomials.

27



x

y

(a) Mesh with linear boundary polynomials.

x

y

(b) Mesh with quadratic boundary polynomials.

Figure 3: Non-overlapping quadrilateral meshes used for the free-stream preservation testing.

Whether or not a particular upwind SBP operator is FSP depends upon the splitting, the bound-

ary closure accuracy, and the polynomial degree of the curvilinear boundary approximations

in the mesh. We use the two meshes shown in Figure 3 to examine the theoretical finding of

Theorem 3.10 for different combinations of the upwind SBP operator, the flux vector splitting in

generalized coordinates, and the polynomial degree of the mesh. For the FSP testing we fix the

spatial resolution to be 17 nodes in each spatial direction and integrate the constant solution initial

condition (5.11) up to a final time of 10. We present results of the FSP test in Tables 13–15 where we

vary the curvilinear splitting and consider the upwind SBP operators provided by Mattsson [46]

from interior order 2 up to interior order 9.

Table 13: Free-stream preservation error at final time 10 for the local Lax-Friedrichs splitting on two mesh

types with 17 nodes in each spatial direction. As expected from the results in Section 3.4, the local

Lax-Friedrichs splitting is FSP across all configurations.

interior order 2 3 4 5 6 7 8 9

bi-linear mesh 7.55 × 10
−14

1.16 × 10
−13

6.28 × 10
−14

6.99 × 10
−15

1.52 × 10
−13

1.16 × 10
−13

4.35 × 10
−14

3.89 × 10
−14

quadratic mesh 2.38 × 10
−14

4.72 × 10
−14

8.41 × 10
−14

5.48 × 10
−14

1.22 × 10
−13

1.47 × 10
−14

3.83 × 10
−14

4.18 × 10
−14

Table 14: Free-stream preservation error at final time 10 for the Drikakis-Tsangaris splitting on two mesh

types with 17 nodes in each spatial direction. As shown from the result of Theorem 3.10, this split-

ting is FSP provided the boundary closure is accurate enough to exactly differentiate polynomials

of degree 2𝑁
geo

.

interior order 2 3 4 5 6 7 8 9

bi-linear mesh 2.04 × 10
−6

9.13 × 10
−7

3.34 × 10
−14

1.77 × 10
−14

3.34 × 10
−14

1.24 × 10
−14

8.20 × 10
−14

2.05 × 10
−14

quadratic mesh 2.08 × 10
−6

9.32 × 10
−7

5.74 × 10
−9

2.75 × 10
−9

7.09 × 10
−11

3.33 × 10
−11

2.18 × 10
−14

1.55 × 10
−14

As anticipated from the discussion in Section 3.4 the local Lax-Friedrichs splitting maintains FSP

for both meshes and all operator orders. The results also support the conclusion of Theorem 3.10

for the more complicated Drikakis-Tsangaris and van Leer-Hänel splittings. Both of these splittings

have a maximum quadratic dependence on the metric terms. We see that the operators with interior

accuracy 2 and 3 (and boundary closure accuracy 1) are not FSP for either the Drikakis-Tsangaris

nor van Lerr-Hänel splittings due to the lack of accuracy in the boundary closures. The numerical

results show that FSP is maintained on the bi-linear test mesh for all operator orders above interior
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Table 15: Free-stream preservation error at final time 10 for the van Leer-Hänel splitting on two mesh types

with 17 nodes in each spatial direction. As shown from the result of Theorem 3.10, this splitting

is FSP provided the boundary closure is accurate enough to exactly differentiate polynomials of

degree 2𝑁
geo

.

interior order 2 3 4 5 6 7 8 9

bi-linear mesh 3.32 × 10
−6

1.46 × 10
−6

4.78 × 10
−14

5.26 × 10
−15

3.36 × 10
−14

1.02 × 10
−14

2.66 × 10
−14

1.95 × 10
−14

quadratic mesh 3.40 × 10
−6

1.49 × 10
−6

8.78 × 10
−9

4.20 × 10
−9

1.06 × 10
−10

4.98 × 10
−11

1.62 × 10
−14

5.43 × 10
−14

order 4 whereas FSP is only maintained on the quadratic test mesh for the 8-4 and 9-4 operators.

All upwind SBP operator with interior order less than eight lack the required boundary closure

accuracy to guarantee FSP on a quadratic mesh.

5.6 Isentropic vortex

We consider the classical isentropic vortex test case of [72] with initial conditions

𝑇 = 𝑇
0
− (𝛾 − 1)𝜀2

8𝛾𝜋2

exp

(
1 − 𝑟2

)
, 𝜚 = 𝜚

0
(𝑇/𝑇

0
)1/(𝛾−1)

,

𝑣 = 𝑣
0
+ 𝜀

2𝜋
exp

(
(1 − 𝑟2)/2

)
(−𝑥

2
, 𝑥

1
)𝑇 ,

(5.12)

where 𝜀 = 10 is the vortex strength, 𝑟 is the distance from the origin, 𝑇 = 𝑝/𝜚 the temperature,

𝜚
0
= 1 the background density, 𝑣

0
= (1, 1)𝑇 the background velocity, 𝑝

0
= 10 the background

pressure, 𝛾 = 1.4, and 𝑇
0
= 𝑝

0
/𝜚

0
the background temperature. The domain [−5, 5]2 is equipped

with periodic boundary conditions.

(a) 4
2

blocks with 16
2

nodes each using the operators of

[46] with different interior order of accuracy.

(b) A single block with 64
2

nodes and fully periodic oper-

ators using only the interior stencils of [46].

Figure 4: Discrete 𝐿
2

of the density for long-time simulations of the isentropic vortex for the 2D compressible

Euler equations.

Following [73], we use this setup to demonstrate the long-time stability of the methods. We use

the same time integration method and approach to compute the discrete 𝐿
2

error of the density as

in Section 5.2. As shown in Figure 4, the upwind methods remain stable and are able to run the

simulations successfully for long times.

To demonstrate the robustness of the upwind methods on curvilinear meshes we, again, consider

the isentropic vortex (5.12) with 𝜀 = 5 and 𝑝
0
= 25. We take Ω = [−10, 10]2 and subdivide the

domain with eight elements in each spatial direction for a total of 64 elements. The Cartesian
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domain of Ω = [−10, 10]2 is then heavily warped with a strategy adapted from [13, 29] where

𝑦 = 𝜂 +
𝐿𝑦

8

cos

(
3𝜋
2

(
2𝜉 − 𝐿𝑥
𝐿𝑥

))
cos

©­«𝜋2
(
2𝜂 − 𝐿𝑦
𝐿𝑦

)ª®¬ ,
𝑥 = 𝜉 + 𝐿𝑥

8

cos

(
𝜋
2

(
2𝜉 − 𝐿𝑥
𝐿𝑥

))
cos

©­«2𝜋

(
2𝑦 − 𝐿𝑦
𝐿𝑦

)ª®¬ ,
(5.13)

with 𝐿𝑥 = 𝐿𝑦 = 10. All domain boundaries remain periodic under this mapping. The resulting

mesh, given as the overlay of curvilinear quadrilaterals in Figure 5, is extremely distorted with

many element that approach degeneracy. That is, several elements in the mesh are close to having

an internal angle near 180 degrees that renders the transfinite interpolation procedure to create the

element mapping ill-conditioned. This extreme warping to a “poor” quality mesh was purposely

done to demonstrate that the upwind methods remain robust for the isentropic vortex test case

even in this extreme problem setup.

(a) 𝑡 = 0 (b) 𝑡 = 5 (c) 𝑡 = 10

(d) 𝑡 = 15 (e) 𝑡 = 20

Figure 5: Isentropic vortex evolution up to final time 𝑡 = 20 on a heavily distorted quadrilateral mesh of

64 elements. All curvilinear interior boundaries of the warping (5.13) are approximated with

quadratic polynomials. This result used the curvilinear van Leer-Hänel splitting, Example 3.8,

with 17 nodes in each spatial direction and the 8th order interior, 4th order boundary accurate

upwind SBP operators.

We approximate the internal curved boundaries with quadratic polynomials. On each element

we take 17 nodes in each spatial direction and use the upwind SBP operator that is 8th order

in the interior with 4th order boundary closures. We present in Figure 5 the results at different

times between 𝑡 = 0 and 𝑡 = 20 using the curvilinear van Leer-Hänel splitting from Example 3.8.

Although there are some grid artifacts as the vortex passes through extremely distorted elements,

the method maintains the shape of the vortex well. In Figure 6 we show the 𝐿
2

density error
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for a long time simulation for the curvilinear local Lax-Friedrichs, Drikakis-Tsangaris, and van

Leer-Hänel splittings. All three splittings of this heavily distorted curvilinear mesh remain stable.

Because the test case configuration is well-resolved, any differences in density errors between the

three splitting techniques are unnoticeable in the eyeball norm.

Figure 6: Discrete 𝐿
2

of the density for long-time simulation of three curvilinear splittings applied to the

isentropic vortex for the 2D compressible Euler equations. Each run used the same heavily

distorted quadrilateral mesh.

5.7 Kelvin-Helmholtz instability

Next, we move beyond well-resolved test configurations and use a Kelvin-Helmholtz instability

setup for the 2D compressible Euler equations of an ideal fluid to further test the robustness of the

methods and their different splittings in various under-resolved regimes in detail. Specifically, we

use the same setup as in [14], i.e., the initial condition

𝜚 =
1

2

+ 3

4

𝐵(𝑥, 𝑦), 𝑝 = 1, 𝑣
1
=

1

2

(
𝐵(𝑥, 𝑦) − 1

)
, 𝑣

2
=

1

10

sin(2𝜋𝑥), (5.14)

where 𝐵(𝑥, 𝑦) is the smoothed approximation

𝐵(𝑥, 𝑦) = tanh(15𝑦 + 7.5) − tanh(15𝑦 − 7.5) (5.15)

to a discontinuous step function. The domain is [−1, 1]2 with time interval [0, 15]. We integrate

the semidiscretizations in time with the third-order, four-stage SSP method of [35] with embedded

method of [19] and error-based step size controller developed in [58] with absolute and relative

tolerances chosen as 10
−6

.

We use two types of semidiscretizations: i) the upwind SBP methods described in this article and

ii) flux differencing DGSEM with different volume fluxes and a local Lax-Friedrichs (Rusanov) sur-

face flux. We refer to [62] for a description of this DGSEM variant and its efficient implementation

and to [42] for convergence results.

The final times of the simulations are summarized in Table 16. First, it is interesting to observe

that all upwind SBP methods with few numbers of elements 𝐾 ∈ {1, 4} completed the simulation

successfully. The same is true for low interior orders of accuracy ∈ {2, 3}. However, setups with

more elements and higher orders of accuracy became unstable and crashed before 𝑡 = 5.

The same general trend can be observed for flux differencing DGSEM, where nearly all setups

became unstable and crashed. It is particularly interesting that the simulations with only a few

elements remained stable, even if their total number of DOFs is comparable to DGSEM setups. For
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Table 16: Final times of numerical simulations of the Kelvin-Helmholtz instability with 𝐾 elements using 16

nodes per coordinate direction for the upwind SBP methods. Final times less than 15 indicate that

the simulation crashed.

(a) Upwind SBP, van Leer-Hänel splitting [28, 38, 41].

𝐾 interior order of accuracy

2 3 4 5 6 7

1 15.0 15.0 15.0 15.0 15.0 15.0

4 15.0 15.0 15.0 15.0 15.0 15.0

16 15.0 15.0 15.0 15.0 4.72 3.97

64 15.0 15.0 4.53 3.86 4.17 3.36

256 15.0 15.0 5.80 3.70 3.66 3.68

(b) Upwind SBP, Steger-Warming splitting [74].

𝐾 interior order of accuracy

2 3 4 5 6 7

1 15.0 15.0 15.0 15.0 15.0 15.0

4 15.0 15.0 15.0 15.0 15.0 15.0

16 15.0 15.0 15.0 15.0 4.87 3.88

64 15.0 15.0 4.55 3.85 4.13 4.07

256 15.0 15.0 5.80 3.69 3.66 3.67

(c) Flux differencing DGSEM, flux of Ranocha [55, 56, 59].

𝐾 polynomial degree

2 3 4 5 6 7

16 15.0 4.46 2.47 3.01 2.80 3.59

64 4.68 1.53 4.04 3.70 4.10 3.56

256 4.81 3.77 4.44 3.74 3.37 3.64

1024 4.12 3.66 4.27 3.54 3.66 3.56

(d) Flux differencing DGSEM, flux of Shima et al. [71].

𝐾 polynomial degree

2 3 4 5 6 7

16 15.0 2.73 1.81 2.42 1.86 2.27

64 2.92 1.38 3.05 3.07 1.82 2.02

256 3.25 2.82 3.29 2.82 2.84 2.96

1024 3.03 2.88 3.36 2.91 3.08 3.25

example, the upwind SBP methods with 𝐾 = 4 elements and 16 nodes per coordinate direction

have 𝐾 ·16
2

= 1024 DOFs, the same amount as the DGSEM with 𝐾 = 64 elements and a polynomial

degree 𝑝 = 3.

Table 17: Final times of numerical simulations of the Kelvin-Helmholtz instability with 𝐾 elements using

256/
√
𝐾 nodes per coordinate direction so that the total number of DOFs stays fixed at 65 536. Final

times less than 15 indicate that the simulation crashed.

(a) Upwind SBP, van Leer-Hänel splitting [28, 38, 41].

𝐾 interior order of accuracy

2 3 4 5 6 7

1 15.0 15.0 15.0 15.0 5.83 4.73

4 15.0 15.0 6.35 15.0 5.83 4.72

16 15.0 15.0 15.0 15.0 5.18 4.00

64 15.0 15.0 15.0 5.80 4.37 3.99

256 15.0 15.0 5.80 3.70 3.66 3.68

(b) Upwind SBP, Steger-Warming splitting [74].

𝐾 interior order of accuracy

2 3 4 5 6 7

1 15.0 15.0 15.0 15.0 5.86 4.80

4 15.0 15.0 15.0 15.0 15.0 4.79

16 15.0 15.0 15.0 15.0 5.43 4.03

64 15.0 15.0 15.0 5.68 4.36 4.02

256 15.0 15.0 5.80 3.69 3.66 3.67

To further investigate this behavior, we ran additional simulations with upwind SBP operators.

Here, we choose the number of nodes such that the total number of DOFs remains constant. The

resulting final simulation times are shown in Table 17. As in the case of a constant number of

nodes per element investigated before, increasing the number of elements makes the upwind FD

methods less robust. The only exceptions are again the low-order methods with an interior order

of accuracy two and three (both resulting in an experimental order of convergence of two under

mesh refinement by increasing the number of elements).

Figure 7 shows the numerical solutions corresponding to the constant DOF setup of Table 17

at the time the simulations crashed. As usual, we plot the density of the numerical solutions to

allow a comparison with other publications. The white spots mark the points where the pressure

is negative (for the upwind SBP methods) or where the density is negative (for the DGSEM).
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(a) 16
2

elements with 16
2

nodes, crash at 𝑡 = 3.66. (b) 8
2

elements with 32
2

nodes, crash at 𝑡 = 4.37.

(c) 4
2

elements with 64
2

nodes, crash at 𝑡 = 5.18. (d) 2
2

elements with 128
2

nodes, crash at 𝑡 = 5.83.

(e) 1 element with 256
2

nodes, crash at 𝑡 = 5.83.

(f) DGSEM, 64
2

elements with 𝑝 = 3, crash at 𝑡 =

3.66.

Figure 7: Visualization of numerical solutions when the simulations of the Kelvin-Helmholtz instability

crashed. All simulations use the same number of DOFs — with varying numbers of ele-

ments/nodes for the upwind SBP methods with an interior order of accuracy 6 using the van

Leer-Hänel splitting [28, 38, 41]. For comparison, results obtained by entropy-stable flux differ-

encing DGSEM are also shown. The white spots mark points where the pressure (upwind SBP) or

the density (DGSEM) is negative.
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Clearly, the problematic nodes are always located at interfaces between elements. This appears to

be correlated with the earlier crash times of simulations with more elements and fewer nodes per

element. Note that the periodic boundary conditions are enforced weakly. Thus, even the setup

with a single element has internal interfaces — and the negative pressure occurs exactly at one of

these boundary points (top left quadrant).

Table 18: Final times of numerical simulations of the Kelvin-Helmholtz instability with a single element

using purely periodic upwind methods, i.e., only the interior stencils of the corresponding upwind

SBP operators. Final times less than 15 indicate that the simulation crashed.

(a) Van Leer-Hänel splitting [28, 38, 41].

#nodes interior order of accuracy

2 3 4 5 6 7

256 15.0 15.0 15.0 15.0 15.0 15.0

1024 15.0 15.0 15.0 15.0 15.0 15.0

4096 15.0 15.0 15.0 15.0 15.0 15.0

16 384 15.0 15.0 15.0 15.0 15.0 15.0

65 536 15.0 15.0 15.0 15.0 15.0 4.77

(b) Steger-Warming splitting [74].

#nodes interior order of accuracy

2 3 4 5 6 7

256 15.0 15.0 15.0 15.0 15.0 15.0

1024 15.0 15.0 15.0 15.0 15.0 15.0

4096 15.0 15.0 15.0 15.0 15.0 15.0

16 384 15.0 15.0 15.0 15.0 15.0 15.0

65 536 15.0 15.0 15.0 15.0 15.0 15.0

To investigate this claim, we considered purely periodic upwind methods using only the interior

coefficients of the upwind SBP operators. As shown in Table 18, this version is much more robust.

Indeed, all of the simulations ran successfully except the van Leer-Hänel splitting with an interior

order of accuracy 7 and 256
2

= 65 536 nodes in total.

5.8 Inviscid Taylor-Green vortex

Next, we consider the classical inviscid Taylor-Green vortex for the 3D compressible Euler equations

of an ideal gas following [25]. Specifically, we consider the initial conditions

𝜚 = 1, 𝑣
1
= sin(𝑥

1
) cos(𝑥

2
) cos(𝑥

3
), 𝑣

2
= − cos(𝑥

1
) sin(𝑥

2
) cos(𝑥

3
), 𝑣

3
= 0,

𝑝 =
𝜚0

Ma
2𝛾

+ 𝜚0
cos(2𝑥

1
) cos(2𝑥

3
) + 2 cos(2𝑥

2
) + 2 cos(2𝑥

1
) + cos(2𝑥

2
) cos(2𝑥

3
)

16

,
(5.16)

where Ma = 0.1 is the Mach number. We consider the domain [−𝜋,𝜋]3 with periodic boundary

conditions and a time interval [0, 20]. We integrate the semidiscretizations in time with the third-

order, four-stage SSP method of [35] with embedded method of [19] and error-based step size

controller developed in [58] with absolute and relative tolerance chosen as 10
−6

.

Table 19: Final times of numerical simulations of the inviscid Taylor-Green vortex with Ma = 0.1, 𝐾 elements,

and upwind SBP methods using the Steger-Warming splitting [74]. Final times less than 20 indicate

that the simulation crashed.

(a) Constant number of nodes per direction (= 16).

𝐾 interior order of accuracy

2 3 4 5 6 7

1 20.0 20.0 20.0 20.0 20.0 20.0

8 20.0 20.0 20.0 20.0 20.0 13.5

64 20.0 20.0 20.0 20.0 20.0 6.12

(b) Constant number of DOFs (= 262 144).

𝐾 interior order of accuracy

2 3 4 5 6 7

1 20.0 20.0 20.0 20.0 20.0 6.1

4 20.0 20.0 20.0 20.0 20.0 15.0

16 20.0 20.0 20.0 20.0 20.0 6.12
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The final times of simulations using upwind SBP operators are shown in Table 19. For 16 nodes

per coordinate direction, only the method with an interior order of accuracy 7 crashed — all

lower-order methods completed the full simulation.

Table 20: Final times of numerical simulations of the inviscid Taylor-Green vortex with Ma = 0.4, 𝐾 elements,

and upwind SBP methods using the Steger-Warming splitting [74] with a constant number of nodes

per direction (= 16). Final times less than 20 indicate that the simulation crashed.

𝐾 interior order of accuracy

2 3 4 5 6 7

1 20.0 20.0 20.0 20.0 5.79 5.31

8 20.0 20.0 20.0 4.79 4.00 3.89

64 20.0 20.0 8.40 5.70 4.42 4.18

Next, we repeat the numerical robustness experiments with an increased Mach number Ma = 0.4.

The results are shown in Table 20. The increased Mach number introduces more compressibility

effects, testing the robustness of the numerical methods in another regime. For the upwind

SBP methods considered here, this leads to a reduced numerical robustness. Indeed, only the

upwind SBP methods with an interior order of accuracy two and three complete all simulations.

The higher-order methods crash for increased resolution. These results are comparable to the

robustness results we observed for the Kelvin-Helmholtz instability in Section 5.7.

Table 21: Final times of numerical simulations of the inviscid Taylor-Green vortex with a single element and

periodic upwind SBP methods using the Steger-Warming splitting [74]. Final times less than 20

indicate that the simulation crashed.

(a) Mach number Ma = 0.1.

#nodes interior order of accuracy

2 3 4 5 6 7

4096 20.0 20.0 20.0 20.0 20.0 20.0

32 768 20.0 20.0 20.0 20.0 20.0 20.0

262 144 20.0 20.0 20.0 20.0 20.0 20.0

(b) Mach number Ma = 0.4.

#nodes interior order of accuracy

2 3 4 5 6 7

4096 20.0 20.0 20.0 20.0 20.0 20.0

32 768 20.0 20.0 20.0 20.0 20.0 20.0

262 144 20.0 20.0 20.0 20.0 20.0 20.0

Table 21 shows results obtained by fully periodic upwind SBP methods using only the interior

coefficients of the upwind SBP operators. As for the Kelvin-Helmholtz instability considered

before, this version is much more robust — all of the simulations run successfully to the final time.

Next, we follow the approach of [25] to compute the kinetic energy dissipation rate for the Mach

number Ma = 0.1. Specifically, we compute the discrete version of the total kinetic energy

𝐸
kin

(𝑡) =
∫

1

2

𝜚(𝑡 , 𝑥)𝑣(𝑡 , 𝑥)2 d𝑥 (5.17)

using the quadrature rule associated with the SBP mass matrix 𝑀 every 10 accepted time steps.

Then, we use central finite differences to compute the discrete kinetic energy dissipation rate

−Δ𝐸
kin

/Δ𝑡 approximating −d𝐸
kin

/d𝑡. The results are visualized in Figure 8. The qualitative

behavior of the kinetic energy and its dissipation rate are the same for the flux differencing DGSEM

method and the upwind SBP method. The upwind SBP method tends to begin dissipating the

kinetic energy earlier than the DGSEM and shows a dissipation rate that is a bit more oscillatory.

The results of the upwind SBP method do not change if we use half the number of elements

but double the number of nodes per element (not shown in the plots). The results of the flux

differencing DGSEM simulation match the results of [25] for the same polynomial degree and

resolution (up to the smaller final time 𝑇 = 14 used there).
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(a) Discrete kinetic energy. (b) Discrete kinetic energy dissipation rate.

Figure 8: Discrete kinetic energy and its dissipation rate for the inviscid Taylor-Green vortex. We compare

the results of flux differencing DGSEM with upwind SBP methods. The DGSEM scheme uses

16 elements per coordinate direction, the entropy-conservative flux of Ranocha [55, 56, 59] in

the volume, and the local Lax-Friedrichs (Rusanov) flux at interfaces. The upwind SBP method

uses 4 elements and 16 nodes per coordinate direction, the Steger-Warming splitting [74], and

the operators of Mattsson [46] with an interior order of accuracy 6. Thus, both simulations use

262 144 DOFs.

We also measured the execution time of the upwind SBP method and the flux differencing

DGSEM used in this example on a MacBook with an Apple M2 CPU. The total time spent in the

ODE right-hand side computation to simulate the Taylor-Green vortex in the time interval [0, 1] on

a single thread without any parallelism is roughly 12.34 ± 0.01 s for the flux differencing DGSEM

and 13.73±0.11 s for the upwind SBP method (results of five runs, average and standard deviation,

same setup as used in Section 5.8). Please note that this compares a highly tuned implementation

of the DGSEM using SIMD instructions as described in [62] with a first implementation of the

upwind SBP methods in a research code. Thus, we conclude that both methods are of comparable

efficiency.

6 Summary and conclusions

We have discussed high-order upwind SBP methods for nonlinear conservation laws. Introduced

by Mattsson in [46], these methods combine central-type classical SBP operators with artificial

dissipation and need a flux vector splitting for nonlinear conservation laws. Lax-Friedrichs type

splittings have been predominantly considered in the literature [43, 46, 48, 75, 77]. To combine

upwind SBP operators with multiple other flux vector splittings, we have described a general way

to design SATs as in discontinuous Galerkin methods using numerical fluxes resulting from the

chosen splitting in Section 3. Further, we discussed how to extend splittings other than those

of Lax-Friedrichs type into the high-order upwind SBP framework of Mattsson on unstructured

curvilinear meshes. Through this analysis we found an interplay between the dependency of said

splittings, like the van Leer-Hänel, on the metric terms and the boundary closure accuracy of the

upwind SBP operator. Only under specific conditions on the mapping, the metric terms, and

the boundary closure could the resulting method retain the important free-stream preservation

property in generalized coordinates. We have proven the local linear/energy stability of upwind

SBP methods for Burgers’ equation in Section 4. This kind of stability property is not the classical

stability property of a numerical method applied to a linearized problem, but a property of the

linearization thereof applied to a nonlinear problem. Since linearization and application of a

high-order method for conservation laws do not commute in general, it is nontrivial to satisfy

stability properties such as entropy stability for the nonlinear problem and local linear/energy

stability at the same time. In particular, we are not aware of any numerical method that has all
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three desirable properties i) nonlinear entropy stability, ii) local linear/energy stability, and iii)

high-order accuracy. Methods based on classical SBP operators can be designed to be high-order

accurate and entropy-stable but lack local linear/energy stability [23]. We have complemented

these results by proving that high-order upwind SBP methods satisfy local linear/energy stability.

We have also discussed the relation to a very special case of entropy stability. While this case is only

an academic example, we hope that it may lead the community in a way to solve the entropy/linear

stability issue.

We have applied upwind SBP methods with several flux vector splittings in Section 5. The ro-

bustness and computational efficiency of the upwind SBP methods for nonlinear conservation laws

are roughly comparable to highly tuned flux differencing discontinuous Galerkin spectral element

methods, as demonstrated for several examples of compressible fluid flows and under-resolved

simulations. The numerical tests demonstrated that the upwind SBP methods remained high-

order accurate on unstructured curvilinear domains and free-stream preservation was retained

provided any curved boundaries were approximated with an appropriate polynomial order dic-

tated by the boundary closure accuracy of a given SBP operator. These validation tests were

performed on well-resolved simulation setups. For under-resolved simulations, we have shown

that results for a classical inviscid Taylor-Green vortex are promising, but more challenging tests

such as a Kelvin-Helmholtz instability show that upwind SBP methods do not fix all high-order

robustness issues for shock-free flows. In particular, some robustness (positivity) issues manifest

mainly at interfaces and corners. Thus, upwind SBP methods are roughly comparable to other

modern stabilizations for high-order schemes.
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