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We perform a diagrammatic analysis of the energy of a mobile impurity immersed in a strongly
interacting two component Fermi gas to second order in the impurity-bath interaction. These
corrections demonstrate divergent behavior in the limit of large impurity momentum. We show the
fundamental processes responsible for these logarithmically divergent terms. We study the problem
in the general case without any assumptions regarding the fermion-fermion interactions in the bath.
We show that the divergent term can be summed up to all orders in the Fermi-Fermi interaction
and that the resulting expression is equivalent to the one obtained in the few body calculation.
Finally, we provide a perturbative calculation to the second order in the Fermi-Fermi interaction in
the annex, and we show the diagrams responsible for these terms.

PACS numbers:

I. INTRODUCTION

The physics of an impurity in a many-body ensemble
is an intriguing problem, and constitutes a rich field of
research in condensed matter physics. The study of the
quantum impurity problem was initiated by Landau and
Pekar who proposed that the properties of conduction
electrons in a dielectric medium could be understood in
terms of so-called polarons, i.e. quasi-particles resulting
from the dressing of the electrons by a cloud of optical
phonons of the surrounding crystal [1].

More recently, the realization of spin and atomic mix-
tures of ultracold atoms have paved the way to the
study of impurity problems in ultracold gases [2, 3]. In
these systems, the impurity can be immersed in either a
bosonic or a fermionic medium which leads to strikingly
different behaviors and phenomena. On the one hand,
since the low-lying excitation modes of a Bose-Einstein
condensate are phonons, the Bose-polaron (an impurity
immersed in a Bose-Einstein condensate) is quite similar
to Landau-Pekar’s polaron [4]. By contrast, in the Fermi
polaron case (an impurity immersed in a spin polarized
gas of fermions [5, 6]) the impurity is dressed by a cloud
of particle hole-pairs.

The case of an impurity immersed in a spin 1/2 su-
perfluid was brought into the limelight following exper-
imental works on Bose-Fermi superfluids [7–9]. As the
fermion-fermion interaction is varied in the BCS-BEC
crossover, the fermionic background medium evolves
from a weakly attractive interaction condensate of loosely
bound Cooper pairs on the BCS (Bardeen-Cooper-
Schrieffer) side of the crossover to a strongly attractive in-
teraction on the BEC side where the Fermi gas condenses
in a BEC of tightly-bound dimers. Thus, the polaronic
state smoothly turn from a Fermi polaron on the BCS
side to a Bose polaron on the BEC side of the crossover.

In the case of a zero-range coupling between the impu-

rity and the fermions, a peculiar UV-divergent term ap-
pears when calculating the polaron energy perturbatively
with respect to the impurity-fermion interaction [10, 11].
This divergence is typical in three-body problems with
contact interactions and was revealed first in the study
of beyond mean-field corrections in dilute Bose-Einstein
condensates [12]. Indeed, three-body bound states, the
Efimov trimer states, have been studied in the case of
the Bose polaron [13–15]. This work is accomplished in
the regime of the Born approximation with respect to
the impurity-bath interaction, and therefore far from the
universal regime where Efimov physics can form. How-
ever, the divergence has its origins in three-body physics
and can be remedied using an effective field theory ap-
proach [16, 17]. It originates in three-body physics and
can be remedied using an effective field theory approach
[16, 17].

In this scheme, the divergences are suppressed by in-
troducing counter terms corresponding to effective three-
body interactions [11]. However, this renormalization
process only works if the density-density response of the
fermionic superfluid obeys a specific scaling that was
found to be incompatible with a mean-field description
of the fermionic background. This inconsistency is due
to the omission of the collective mode sector in the de-
scription of the excitation spectrum of the system in the
mean-field approach [11, 18]. As a consequence, a proper
regularization could be only be carried out within the
framework of Random Phase Approximation (RPA) [18].

In this work, we compute these divergent terms rigor-
ously in the case of an imbalanced spin 1/2 Fermi gas us-
ing Feynman diagrams from the density-density response
function and we prove its behavior and relation to Tan’s
contact. Furthermore, we underpin the processes respon-
sible for these divergent terms in the many-body problem
without any assumptions regarding the fermion-fermion
interactions in the bath. This is an important step in
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identifying diagrams which have signatures of the few-
body physics in the problem and a step forward in under-
standing the polaron energy in the many-body problem.

We start by introducing the Hamiltonian of the sys-
tem and a summary of the problem. Then we lay out the
methodology used in identifying the dominant terms in
the problem. We show that the processes responsible for
the divergent behavior can be categorized in three fami-
lies of diagrams which we provide concrete arguments for
their expressions in the large impurity momentum limit.

II. SYSTEM DESCRIPTION

We consider the case of an impurity immersed in a par-
tially spin-polarized double Fermi sea at zero tempera-
ture. The imbalance between the two spin populations is
chosen beyond the threshold for Clogston-Chandrasekhar
transition [3, 19, 20], allowing us to disregard diagrams
where anamolous propagators play a role. Furthermore,
we assume that the impurity-fermion interaction is weak
and attractive, thus we can treat it perturbatively.

Introducing a quantization volume V, the Hamiltonian
of the system is written as:

Ĥ =
∑
k,σ

εkâ
†
k,σâk,σ +

∑
q

ε(i)q ĉ†qĉq

+
g′0
V

∑
k,q,k′,q′,σ

δk+q,k′+q′ ĉ†q’â
†
k’,σ ĉqâk,σ

+
g0
V

∑
k,q,k′,q′

δk+q,k′+q′ â†k’,↑â
†
q’,↓âq,↓âk,↑,

(1)

where âk,σ is the annihilation operator of a fermion with
momentum k and spin σ, ĉq is the annihilation operator
of an impurity with momentum q. Noting mi and m the
respective masses of the impurity and of the fermions re-
spectively, εk = (ℏ2k2)/(2m) is the kinetic energy of a

fermion with wavevector k and ε
(i)
q = (ℏ2q2)/(2mi) is the

kinetic of the impurity with wavevector q. g′0 and g0 are
the bare coupling constants of the fermion-impurity and
the fermion-fermion interactions respectively.
The coupling constant g′0 is related to the scattering
length and the cut-off Λ through the following equation:

1

g′0
=

1

g′
− 1

V
∑
k<Λ

2mr

ℏ2k2
, (2)

where g′ is the physical coupling constant between the
impurity and background fermions. It is related to the
scattering length a using the relation: g′ = 2πℏ2a′/mr,
with mr = (mmi)/(m + mi) the impurity-fermion re-
duced mass.
By using perturbation theory we can obtain an expres-
sion for the polaron energy up to second order [11, 18]:

Epol = g′n+
g′

2
n

V
∑
q<Λ

[
2mr

ℏ2q2
− χ1(q, ϵ

(i)
q )], (3)

where

χ1(q, E) =
1

N

∑
α

|⟨α|n̂q|0⟩|2

(E + Eα − E0)
. (4)

Here n̂q =
∑

k,σ a
†
k,σak+q,σ. |0⟩ is the ground state of the

interacting bath and {|α⟩} denotes a basis of eigenvectors
the Hamiltonian of the fermionic bath alone.
It was conjectured in [11] that in the large momentum

limit

χ1(q, ε
(i)
q )− 1

ε
(r)
q

= O
(

1

q3

)
, (5)

thus leading to a logarithmically divergent value of the
sum appearing in Eq. (4). This divergence can be healed
by introducing a three-body interaction [11] but only un-
der the assumption thet χ obeys the following asymptotic
behavior

χ1(q, ε
(i)
q ) =

q→∞

1

ε
(r)
q

[
1− π2κ(η)

m

mr

C2
Nq

+ ...

]
, (6)

where C2 is Tan’s contact parameter of the many-body
background [21], η = mi/m and

κ(η) = κI(η) + κII(η) + κIII(η)

=

√
η3(η + 2)

2π3(η + 1)2
− η

2π3
arctan

(
1√

η(η + 2)

)

− 4

π3

√
η

η + 2
arctan

(√
η

η + 2

)2

,

(7)

The addition of a diverging term was initially done as a
conjecture with the goal of regularizing the expression in
the large impurity momentum limit. This conjecture is
supported by an RPA analysis of the excitation modes of
the fermionic background [18] and the purpose of the
present article is to prove rigorously this behavior by
solving the full many-body problem and studying the
processes responsible for the divergence. After a first
introduction of the methodology in Part III, we will re-
cover Eqs. (6) and (7) in Part IV using scaling arguments
to generalize the results to an arbitrary order of the in-
teraction parameter. This is supported by a perturbative
analysis in the bare fermion-fermion coupling constant to
identify the elementary processes by calculating exactly
all diagrams contributions to second order in Appendix
A.

III. METHODOLOGY

The chemical potential of the impurity or equivalently
the binding energy Epol of the polaron is given by the
self-energy of the impurity at zero momentum [22]

Epol = Σi(0, Epol). (8)

We compute Σi perturbatively in Ĥint up to second or-
der, i.e. up to order (g′0)

2. Note that we do not treat
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perturbatively the fermion-fermion interaction. The two
diagrams up to order (g′0)

2 are shown in Figs.(1) and (2).
In time and momentum representation, the impurity self-

p, i p, i

k, σ

t1 = t2

FIG. 1: The lowest order diagram for the impurity self-energy
in momentum-time representation. The empty circle repre-
sents the bare impurity-fermion coupling constant g′0. The
double line represents the exact fermion Green’s function Gσ.
The single lines represents the impurity’s Green’s function Gi.

energy at first order reads

Σ
(1)
i (p, t2 − t1) =

g′0
V
∑
k,σ

(−i)Gσ(k, 0
−)δ(t2 − t1), (9)

where Gσ(k, t) is the exact fermion Green’s function. Us-
ing
∑

k,σ(−i)Gσ(k, 0
−)/V = n, the total density, we find,

after taking the time Fourier transform

Σ
(1)
i (p, E) = g′0 n. (10)

The self-energy at second order is written in a dia-
grammatic form in Fig. (2), therefore it can be written
as follows

Σ
(2)
i (p, t2 − t1) =

(
g′0
V

)2∑
q

(−i)e−iε(i)q (t2−t1) ×

⟨n̂p−q(t2)n̂q−p(t1)⟩Θ(t2 − t1),(11)

where we have used that the free Green’s function of the
impurity is G

(0)
i (q, t) = (−i)Θ(t) exp(−iε

(i)
q t). Taking

the time Fourier transform of Eq.(11), we obtain

Σ
(2)
i (p, E) =

(
g′0
V

)2∑
q,α

|⟨α|n̂q−p|0⟩|2

E − ε
(i)
q − Eα + E0 + i 0+

= −g′0
2
n

V
∑
q<Λ

χ1(q, ϵ
(i)
q ),

(12)

At order (g′0)
2, we must solve, using Eq.(8), Epol =

Σ
(1)
i (0, Epol) + Σ

(2)
i (0, Epol). At lowest order, we can re-

place Epol by 0 in Σ
(2)
i (0, Epol). We express g′0 in terms

of g′ by expanding Eq.(2):

g′0 = g′ +
g′

2

V

( ′∑
q

2m∗

q2
+ · · ·

)
.

p, i q, i p, i

k + p− q, σ

k, σ

k′ + q − p, σ′

k′, σ′

χ

t1 t2

FIG. 2: The diagram for the impurity self-energy in
momentum-time representation at second order in g′0. The
rectangle represents the exact density-density response func-
tion of the fermionic many-body background.

In this way, we find that Σ
(1)
i gives the first term in

Eq.(3), and the first term in the sum. At same order, g′0
can be simply replaced by g′ in Σ

(2)
i and this term pro-

vides the contribution associated with the function χ1 in
the sum appearing in Eq. (3). Our analysis shows that
with the two diagrams of Figs.(1, 2), we recover Eq.(3).

The response function χ1 is directly related to
the time-ordered density-density response function χ
through

χ1(q, ε
(i)
q ) =

−1

N

∫ +∞

0

e−iε(i)q tχ(−q, t)dt, (13)

where

χ(q, t) = −i⟨T [nq(t)n−q]⟩. (14)

here, T is the time ordering operator.

The goal is to prove the asymptotic behavior Eq.(6),
and in order to do so, we will classify the Feynman di-
agrams contributing to the diagram in χ(q, t), hence,

lim|q|→∞ χ1(q, ε
(i)
q ).

These results hold for the case of an imbalanced Fermi
gas at zero temperature. We work on expanding the di-
agram in Fig. 2 using the bold diagrams formalism [23–
25], in order to find the contributions that scale as 1/q3

in the q → ∞ limit, i.e. the ones responsible for remedy-
ing the divergent term found in χ1(q, E).
This is achieved by taking into account the cases where:
a) no interaction vertices are involved, b) one fermionic
interaction vertex is present, c) two fermionic interaction
vertices are present in the fermionic bubble. We take
inspiration for this procedure from generalizing the per-
turbative diagrams we have studied extensively, see Ap-
pendix A. In general, as is explained in Appendix C, we
do not expect any other diagrams to contribute to the
diverging term. Furthermore, since no restrictions are
made on the interaction nature between the fermionic
particles in the bath, these results hold beyond the BCS
regime.
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IV. COMPUTING THE DOMINANT
DIAGRAMS

In the weakly interacting limit between fermions, we
study in Appendix A the perturbative diagrams contribu-
tions to the divergent terms and we show the calculation
for one of these contributions fully.

Here, we focus on the more general case, where no
assumptions are made about the fermion-fermion inter-
action strength, we make qualitative arguments to dis-
tinguish the contributions to the diverging term. We

can classify the diagrams contributing χ1(q, ε
(i)
q ) in three

families for the diagrams of χ(q, t > 0) using the bold di-
agrams formalism [23–25]. The bold diagrams formalism
is a diagrammatic approach to the many-body problem
where non-interacting propagators are replaced by the
fully dressed Green’s functions G lines resulting from the
resummation series, and the two-body interaction ver-
tices are replaced by the fully dressed two-body vertices
Γ. The bold diagrams are then classified in three fam-
ilies depending on the number of bold vertices Γ they
contain. The first family contains diagrams with no bold
vertices, the second family contains diagrams with one
bold vertex and the third family contains diagrams with
two bold vertices. We detail the contributions of each
family in the following.

We define a ”typical” energy scale Etyp =
k2typ/(2m) with the wave vector amplitude ktyp =

max(
∣∣a−1

∣∣ , |mµ|1/2). In the q ≫ ktyp limit, we also de-

fine a cut-off ϵ in time: ϵ ≪ 1/Etyp and q2/m ϵ ≫ 1 and
a cut-off Λ in momentum: Λ ≫ ktyp and Λ ≪ q.
We will use the following properties of exact Green’s

function Gσ(k, t) and exact two-particle vertices Γ(P, t)
of interacting fermions of the bath (see [26] for these
properties in imaginary time):

Property 1: If |p| ≫ ktyp, Gσ(p, t) is small, except in a
small interval 0 ≤ t ≲ (2m)/p2, where it tends to the
Green’s function of a particle in vacuum: Gσ(p, t) ≃
−iΘ(t)e−i p2

2m t.
Property 2: If 0 < t ≪ ttyp, Gσ(p,−t) → inp,σ, where
np,σ =

〈
c†p,σcp,σ

〉
is the occupation number of the mode

p, σ.
Property 3: if k ≫ ktyp and t ≲ m/k2 , we can write to

leading order Gσ(k,−t) ≃ iC2

k4 e
−i k2

2m t where C2 is Tan’s
contact per unit volume.
Property 4: If |P| ≫ ktyp,Γ(P, t) is small, except in a
small time interval 0 ≤ t ≲ (4m)/P 2 where it tends to the
vertex of two particles in vacuum: Γ(P, t) ≃ Γvac(P, t) =

−4
√

π
m3te

iπ
4 e−i P2

4m tΘ(t).

Property 5: If 0 ≤ t ≪ ttyp,
∫

d3P
(2π)3Γ(P,−t) ≃ −i C2/m2.

A. No interaction vertices

The bold diagram for χ(q, t) with no two-particle ver-
tex Γ is simply a bubble diagram with the exact Green’s

functions. In momentum and time variables, this dia-

k + q, σ

k, σ

FIG. 3: The bold diagram with no vertex Γ that contributes
to the density-density response function.

gram is given by (Fig. 3):

χT
a (q, t) = −i

∑
k,σ

Gσ(k+ q, t)Gσ(k,−t) (15)

From Eq.(13), we find the corresponding contribution to
χ1:

χ1 a

(
q, ε(i)q

)
=
∑
σ

i

n

∫ +∞

0

dt

∫
d3k

(2π)3
e−iε(i)q tGσ(k− q, t)

Gσ(k,−t).

(16)

Gσ(k, t) is the Green’s function of a fermion with momen-
tum k and spin σ. We have used

∑
k → V

∫
d3k/(2π)3

and n = N/V the total density (V is the volume).
First, in Eq. (16) consider the contribution t < ϵ

and k < Λ in the integrals. Since q ≫ Λ ≥ k,
we can replace Gσ(k + q, t) by Gσ(q, t) at lowest or-
der. If we use the first property from above, we can

write Gσ(q, t) ≃ −iΘ(t)e−i q2

2m t at lowest order. Since
t < ϵ ≪ ttyp, we can use the second property and replace
at lowest order Gσ(k,−t) by ink. Here, the integral on∫
|k|<Λ

d3k
(2π)3nk,σ tends to nσ in the limit Λ/ktyp → ∞.

We can perform the time integral on
∫ ϵ

0
dte−i q2

2mr
t =

(−i)

(
1− e−i q2

2mr
ϵ

)
(2mr) /q

2. The phase q2

2mr
ϵ ≫ 1

gives a fast oscillating term that we can neglect.
As a conclusion, the small time, small wave vector con-

tribution to Eq. (16) gives 2mr

q2 , in the |q| → ∞ limit .

Second, we subtract the term of order q−2 in Eq. (16)

χ1 a

(
q, ε(i)q

)
− 2mr

q2

=
1

n

∑
σ

∫ +∞

0

dt e
−i q2

2mi
t 1

i

∫
d3k

(2π)3

(
Gσ(k− q, t)Gσ(k,−t)

− 1

i
e−i q2

2m tGσ

(
k, 0−

) )
(17)

In the integral on the RHS of Eq.(17), we evaluate
the contribution of the domain {t ∈ [0, ϵ], |k| > Λ}.
In this domain, we can use property 1 and replace
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Gσ(k+q, t) with −ie−i
(k+q)2

2m t. We use property 3 and re-

place Gσ(k,−t) with iC2

k4 e
−i k2

2m t and Gσ (k, 0
−)with iC2

k4 .
We find

−i

∫
|k|>Λ

d3k

(2π)3
C2
k4

∫ ϵ

0

dt

[
e
−i

(
q2

2mi
+

(k+q)2

2m + k2

2m

)
t
− e−i q2

2mr
t

]
.

Neglecting fast oscillating terms, we find for the time

integral : (−i)

(
1

q2

2mi
+

(k+q)2

2m + k2

2m

− 2mr

q2

)
.

Finally, the wave vector integral can be performed after
the change of variable k → qk. The lower bound for the
norm of k is Λ/q, that we set to zero at lowest order. The
volume element scales like q3 and the integrand like q−6.
This gives the q−3 dependence. As a conclusion, in the
|q| → ∞ limit, the integral on the rhs of Eq. (17) gives
the contribution

− (4m C2 Ja(η))
n

1

q3

where (q̂ is a unit vector )

Ja(η) =

∫
d3k

(2π)3
1

k4

(
η

η + 1
− 1

1
η + (k+ q̂)2 + k2

)

=
1

4π

√
η3(η + 2)

(η + 1)2

This is the dominant contribution in the |q| → ∞ limit
as is explained below and we find

χ1 a

(
q,

q2

2mi

)
=

2mr

q2

(
1− m

mr

C2
n

1

2π

√
η3(η + 2)

(η + 1)2
1

q
+ · · ·

)
Since C2/n = C2/N , we recover in the second term the
κI(η) contribution of Eqs. (6) and (7).

B. One interaction vertex

The only diagram with one bold Γ is the diagram show

in Fig. 4. The analytic expression for χ1 b(q, ε
(i)
q ) is

P − p+ q, σ

P − p, σ

p− q,−σ

p,−σ

Γ

FIG. 4: The diagram with one interaction vertex and bold
propagators for the fermions.

χ1 b(q, ε
(i)
q ) =

1

n

∑
σ

∫ +∞

0

dt

∫
d3p

(2π)3

∫
d3P

(2π)3

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

e
−i q2

2mi
t
Gσ (P− p− q, t1)Gσ (P− p,−t2)

Γ (P, t2 − t1)G−σ (p, t− t2)G−σ (p+ q, t1 − t)

(18)

In case |P| > Λ, from property 4 we see that the domi-
nant contribution to Γ is for t2 − t1 > 0, which contra-
dicts the time-ordering from the dominant contributions
for Green’s functions where t1 > 0 and t2 < 0. So we
can neglect the contribution of the domain |P| > Λ in
the integral on P.
In case |P| < Λ, and all fermionic wave vectors larger
than Λ, due to property 1, we can replace the Green’s
functions by their vacuum values. In the |q| → ∞ limit,
since the momenta are large compared to |P|, we can set
P = 0 in the Green’s functions. Due to the retarded na-
ture of the fermionic Green’s functions, we have the time
ordering: t1 > 0,−t2 > 0, t− t2 > 0 and t1 − t > 0. For
t > 0, the integration domain is {(t1, t2) , t1 > t, t2 < 0}.
Since all fermionic wave-vectors are large, the dominant
contributions in the time integrals come from small time
differences smaller than ϵ. The time argument t2 − t1
in Γ is negative and much smaller than ttyp . At lowest
order, we can replace Γ (P, t2 − t1) by Γ (P, 0−). We de-
fine time differences t′2 = −t2 and t′1 = t1 − t which vary
between 0 and ϵ. In the |q| → ∞ limit, the time t also

lies between 0 and ϵ, due to the e
−i q2

2mi
t
in the Fourier

transform of χT
b (q, t). We have the exponential term

e
−i

(
q2

2mi
+ p2

2m+
(p+q)2

2m

)
t
e
−i

(
(p+q)2

m

)
t′1
e
−i

(
(p)2

m

)
t′2

In Eq. (18), the integrals on times give

(−i)3
1

q2

2mi
+ p2

2m + (p+q)2

2m

1
(p+q)2

m

1
(p)2

m

Due to property 5, the integral on P gives a factor
−i C2/m2. Finally, after rescaling of p by q, we also find a

q−3 scaling and the asymptotic behavior for χ1 b

(
q, q2

2mi

)
− (4mC2 Jb(η))

n

1

q3
,

where

Jb(η) = −
∫

d3p

(2π)3
1

1
η + p2 + (p+ q̂)2

1

(p+ q̂)2
1

p2

= − 1

4π
η arctan

(
1√

η(η + 2)

)

This is also the dominant contribution in the |q| → ∞
limit and we obtain the result

χ1 b

(
q,

q2

2mi

)
=

2mr

q2
m

mr

C2
n

1

q

η

2π
arctan

(
1√

η(η + 2)

)
+· · ·

This is equal to the κII(η) contribution in Eqs. (6) and
(7).
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C. Two interaction vertices

The diagrams with two bold vertices have the form
in Fig. 5 with different permutations of the fermionic
lines. All permutations do not contribute except for the

k + q, σ

k, σ

P − k′,−σ’P − k,−σ

k′ + q, σ’

k′, σ’

Γ

Γ

FIG. 5: The diagram with two bold interaction vertices and
bold propagators for the fermions.

previous diagram and the one where the two fermions
connecting the interaction vertices have different spins,
which has the same exact contribution resulting in a fac-
tor 2 in the final result. To this order, there exists an-
other possible diagram that we argue in Appendix B that
it doesn’t contribute to the divergent term. The analytic
expression for this diagram is

χT
c (q, t) = −i

∑
σ,σ′

∫
R4

4∏
i=1

dti

∫
d3kd3k′d3P

(2π)9
Gσ (k+ q, t1)

Gσ (k,−t4)G−σ (P− k, t1 − t4) Γ (P+ q, t2 − t1)

Gσ′ (k′ + q, t− t2)Gσ′ (k′, t3 − t)

G−σ′ (P− k′, t3 − t2) Γ (P, t4 − t3) (19)

and χ1 c(q, ε
(i)
q ) as its time domain Fourier transform.

In the |q| → ∞ limit, we assume the dominant contri-
bution to the integral comes from the high wave-vectors
regions. In these regions, due to property 1 from the pre-
vious calculation, the time arguments are restricted to
small positive values and the Green’s functions can be
replaced by vacuum values. This implies that we have
the time-ordering: t1 > 0 > t4 and t3 > t > t2.
Next, we assume that one the two momenta of the inter-
action vertices are smaller than Λ. This means that we
have two possibilities: either case a), |P − q| < Λ and
|P| → ∞, or case b) |P| < Λ and |P − q| → ∞. In case
a), due to property 4, we have t4− t3 > 0. This is in con-
tradiction with the time-ordering t4 < 0 and t3 > t > 0,
and therefore we must exclude this case.
In case b), since |P| is bounded and all fermionic wave
vectors tend to infinity, we can set P = 0 in all of
the Green’s functions at lowest order. This means that
|P − q| → ∞ and we can replace Γ (P− q, t2 − t1) by
Γvac (P− q, t2 − t1) ≃ Γvac (−q, t2 − t1) due to property
4 and the fact that |P| is bounded.
We define time differences which are all positive: τ1 = t1,
τ2 = t2 − t1, τ3 = t3 − t, τ4 = −t4 and τ5 = t − t2.
These time differences must be of the order of the in-
verse of typical kinetic energies, which are of the or-

der m/q2 ≪ ttyp. As a consequence, we can replace
the time difference t4 − t3 by 0− in Γ(P, t4 − t3). The

integral on P gives
∫
|P|<Λ

d3P
(2π)3Γ (P, t4 − t3 → 0−) =

Γ (r = 0, t = 0−) = i C2

m2 , where we have used the fact
that Λ ≫ ktyp and extend the wave-vector integral to
all space. Neglecting fast oscillating terms as before, the
integrals on time differences {τi} gives

1
k′2

m

1
(k′+q)2

2m + (k′)2

2m + q2

2mi

∫ +∞

0

dτ2e
−i q2

2mi
τ2Γvac (−q, τ2)

1
k2

m

1
(k+q)2

2m + (k)2

2m + q2

2mi

The upper bound on τ2 is ϵ, but since ϵq2/ (2mi) ≫ 1,
we have extended it to infinity. The integral on τ2 can be

performed analytically and is equal to − 8π
m

√
η

η+2
1
q ∝ 1

q .

The integrals on k′ and k are performed after the
change of variables k′ → qk′ and k → qk. After this
change of variables, we can set the lower bound Λ/q to
zero at lowest order. For each integral, a factor q3 comes
from the volume element and a factor q−4 comes from
the integrand, which makes the integral scales like q−1.
Together with the q−1 scaling of the intermediate Γvac,
we recover the q−3 dependence.
Putting together all the factors, we find for the

|q| → ∞ limit of the diagram in B1 the contribution

to χ1 c

(
q, q2

2mi

)
128πm C2

n

√
η

η + 2
(Jc(η))

2 1

q3

where

Jc(η) =

∫
d3k

(2π)3
1

k2
1

1
η + k2 + (k+ q̂)2

=
1

4π
arctan

√
η

η + 2

We recover the κIII(η) contribution in Eqs. (6) and (7).
In the Appendix C, we give arguments which justify

that diagrams with more than 3 interaction vertices give

subleading contributions to χ1

(
q, q2

2mi

)
in the q → ∞

limit.

V. CONCLUSION

We have calculated the leading order contribution to
the static density response function χ(q, t) in the limit
of large momentum transfer |q| → ∞ for an impurity
immersed in a two-component Fermi gas with contact
interaction.
We have shown that the leading order contribution is
given by the sum of three bold diagrams. The first dia-
gram is a bubble diagram with the exact Green’s func-
tions. The second diagram contains one interaction ver-
tex and the third diagram contains two interaction ver-
tices. The leading order contribution to χ(q, t) in the
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|q| → ∞ limit is given by the sum of the three bold dia-
grams.
This helps shed light on the origin of such logarithmic
divergences and provides a motivation to calculate these
contribution in other cases such as the Bose polaron to
see if the same behavior is present. This systematic ap-
proach has been done at zero temperature, but can also
be performed at finite temperature using the same meth-
ods where similar results are expected.
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Appendix A: Perturbative limit

For this approach, we will compute the response func-
tion χ(q, ω) in wave vector and frequency. We will use
the formula

χ1(q, ε
(i)
q ) =

i

N

∫ +∞

−∞

dω

2π

χ(−q, ω)

ω + ε
(i)
q − i 0+

(A1)

In the perturbative limit, we consider the case where the
fermion-fermion interaction is weak, i.e. g0 → 0−. In
this perturbative limit, Tan’s contact per unit volume
is given by C2 = m2 g20 n↓ n↑. In the zeroth order, the
only diagram that contributes to the polaron energy is a
bubble diagram that scales as 1/q2 to the leading order
with no q−3 term. To first order, the contribution of the
dumbell and tadpole diagrams in the large momentum
limit are of 1/q4 order. This is expected since the diverg-
ing term is second order in the Fermi-Fermi interaction
g0. To second order in g0, the diagrams that contribute
to the polaron energy consist of different families which
we detail in the following:

1. Diagrams where the two resulting fermions from the
interaction with the impurity in diagram 2 don’t interact
with each other. These are called the self-energy insertion
diagrams since in one of the fermionic lines, we introduce
two first order diagrams or one second order diagram
from the self energy of the impurity. By computing all
these contributions, we find that the only contributing
diagram is the one in Fig 6. In this Appendix, we show
the expression for this diagram and we prove that it gives
the contribution κI(η) in Eq. (7). The diagram in Fig.
6 can be computed using the following equation:

g20
∑

k,p1,p2,σ

G0,σ(k)
2G0,−σ(p1)G0,σ(p1 − p2)

G0,−σ(k + p2)G0,σ(k + q)

(A2)

Remembering that all diagrams should be advanced with
respect to the frequency ω we write the Green’s functions

k + q, σ

k, σ k, σ

p1,−σ

k + p2,−σ

p1 − p2, σ

FIG. 6: A contribution to density-density response function
to second order in the fermion-fermion interaction. This is the
only diagram from the self-energy insertion diagrams which
includes a divergent term that has a 1/q3 scaling.

product in the following manner:∑
k,p1,p2

1

(ω1 − Ek + iη1)2
1

ν1 − Ep1
− iη

1

ν1 − ν2 − Ep1−p2
+ iη

1

ω1 + ν2 − Ek+p2
+ iη

θ(|k + q| > kF )

ω1 + ω − Ek+q + i0+

(A3)

where the sign of η and η1 determines the boundaries for
the amplitudes of the wave-vectors p1, p2 and k. We can
first perform the integration over the frequencies ν1 and
ν2:∑
k,p1,p2

θ(|k + q| > kF )

(ω1 − Ek + iη1)2(ω1 + Ep1
− Ep1−p2

− Ek+p2
+ iη)

1

(ω1 + ω − Ek+q + i0+)
+

1

2ϵp2

(A4)

We found out two contributions that give the 1/q3 be-
havior:

η1 = 0+, η = 0− ⇒ |k| > kF , |p1| > kF , |p1 − p2| < kF ,

|k + p2| < kF (A5)

η1 = 0−, η = 0+ ⇒ |k| < kF , |p1| < kF , |p1 − p2| > kF ,

|k + p2| > kF (A6)

We make the following change of variables:

p′
1 = p1−p2, p

′
2 = k+p2 ⇒ p1 = p′

1+p′
2−k, p2 = −k+p′

2

1. First we treat the case in A5 where p′
1 and p′

2 are both
bounded and therefore we get the following inequalities:

|k| > kF , |p′
1 + p′

2 − k| > kF , |p′
1| < kF , |p′

2| < kF

We observe from the second inequality that since |k| can
go to infinity and |p′

1| and |p′
2| are bounded then the

latter two are negligible for |q| → ∞, so we set p′
1 =
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p′
2 = 0 in the following and we replace ω = −q2/2mi, we

notice that the Heaviside function θ(|k + q| > kF ) = 1
for all values of k here:∑

k,p1,p2

1

(ω1 − k2/2m+ i0+)2(ω1 + k2/2m− i0+)

1

(ω1 − q2/2mi − (k + q)2/2m+ i0+)
+

1

2ϵp2

(A7)

The function has 3 poles with respect to ω1 and we inte-
grate over the upper half side of the complex plane:∑
k,p1,p2

1

(−q2/2mi − k2/2m− (k + q)2/2m+ i0+)

1

(−k2/m+ i0+)2
+

1

2ϵp2

(A8)

The two integrals over p1 and p2 give each a factor equal
to the density of the Fermi gas n = k3F /6π

2. Then we
perform a variable change k = qp:

1

q3

∫ ∞

0

dk

(2π)3
−i

(−k2/m)2(q2/2mi + k2/2m+ (k + q)2/2m)
(A9)

2. Second, we treat the case in A6 where p′
1 and p′

2 are
both bounded and therefore we get the following inequal-
ities:

|k| < kF , |p1| < kF , |p1 − p2| > kF , |k + p2| > kF

We see that k and p1 are bounded so they go to 0 and
we get:∑
k,p1,p2

θ(|k + q| > kF )

(ω1 − Ek + iη1)2(ω1 + Ep1 − Ep1−p2 − Ek+p2 + iη)

1

(ω1 + ω − Ek+q + i0+)
+

1

2ϵp2

(A10)

The function has 4 poles with respect to ω1 and we inte-
grate over the upper half side of the complex plane:

i
d

dω1

1

(ω1 − q2/2mi + i0+)(ω1 − p22/2mi + i0+)
|ω1=i0+

=
−i

(q2/2mi)2(p22/m)
+

−i

(q2/2mi)(p22/m)2
1

(−k2/m+ i0+)2

(A11)

By integrating this expression and in addition to the re-
sult of the first case we get for this diagram:

ig20(
kF
6π2

)2mκI(η)
1

q3

with η = mi/m. This is the first contribution that ap-
pears in Eq. 6.

Other diagrams where the two interactions happen be-
tween the fermions resulting from the interaction with

P − p, σ p+ q,−σ

P − k, σP − p− q, σ

P + k,−σ

p,−σ

FIG. 7: Another contribution to density-density response
function to second order in the fermion-fermion interaction
that shows a 1/q3 divergent term.

the impurity. These diagrams do not contribute except
for the two diagrams shown in Figs. 7 and 8, the first
one is the ladder diagram to second order while the other
is the crossed ladder diagram to second order. The di-
agram in Fig. 7 gives the contribution in κII(η). The
total momentum of the interaction vertices diverges so
we have to plug in the full interaction vertex and this
leads to calculating the diagram in Fig. 4 which we do
in the following. Thus, the diagram has the following
contribution

2i

V

∑
P,p

θ(|p| > kF )

ω1 − Ep + iη

θ(|P − p− q| > kF )

Ω− ω1 − ω − EP−p−q + iη

θ(|p+ q| > kF )

ω + ω1 − Ep+q + iη

θ(|P − p| > kF )

Ω− ω1 − EP−p + iη
Γ(P )

(A12)

where P = (P ,Ω), p = (p, ω1) are internal four momenta
and q = (q, ω) is the four momentum of the impurity.
We can write an expression for the Bethe-Salpeter equa-
tion for Γ, recalling that at T = 0, Feynman rules add a
factor i in front of the recursive part, as follows:

Γ−1(P ,Ω) = g−1
0 −

∑
|p1|>kF

θ(|P − p1| > kF )

Ω− Ep1 − EP−p1 + iη

+
∑

|p1|<kF

θ(|P − p1| < kF )

Ω− Ep1 − EP−p1 − iη

(A13)

with g−1
0 = g−1 −

∑
p1

2m∗

p2
1
. We need to evaluate the

expression at the frequency value ω = −ϵq which corre-
sponds to the impurity’s kinetic energy. Then we take
the |q| → ∞ limit. For that we can write Eq. (A12) as:∫

d3P

(2π)3

∫ ∞

−∞

dΩ

2π
Γ(P ,Ω) F (Ω,P , q, kF ,m,mi) (A14)

where the function F is given by:

F =

∫
d3p

(2π)3
θ(|p+ q| > kF )θ(|P − p| > kF )

(Ω− ϵq − EP−p − Ep+q + iη)

θ(|p| > kF )θ(|P − p− q| > kF )

(Ω− EP−p − Ep + iη)(Ω− Ep+q − EP−p−q + iη)

(A15)

We note that F is holomorphic in the upper half of the
complex plane with respect to Ω. We split the complex
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function Γ(P ) into a sum of an advanced and a retarded
function: Γ(P ) = ΓR(P ) + ΓA(P ).
The function ΓR(P ) is holomorphic in the upper-half of
the complex plane and ΓA(P ) is holomorphic in the lower
half of the complex plane. With that we find that only
ΓA(P ) will contribute in Eq. (A14) in order for the inte-
grand to not be holomorphic in the lower-half plane and
integrate to zero with respect to Ω. Now, we rescale |p|
by |q|:

(2m)3

q3
F (

Ω

q2/(2m)
,
|P |
|q|

, 1,
kF
q
, 1,

m

mi
)

By studying the behavior of the function Γ(P ,Ω) at
|P |,Ω → ∞ we find that its limit is zero. We prove
that by noticing that the second sum in Eq. (A13) is
zero when |P | → ∞, we write the Heaviside function in
the first sum as 1−θ(|P −p1| < kF ) and the second term
subsequently goes to zero for |P | → ∞. We can calcu-
late the remaining sum to find that Γ−1(P ,Ω) diverges
for |P |,Ω → ∞.
As a result, in F we can replace the first two arguments
in the last expression by zero at lowest order and we find
the diagram to be ∝

|q|→∞
A
q3 with A given by:

A =

∫
d3P

(2π)3

∫ ∞

−∞

dΩ

2π
γA
↑,↓(P ,Ω) (2m)3F (0, 0, 1, 0,m,mi)

By definition we have∫ ∞

−∞

dΩ

2π
ΓA(P ,Ω) = Γ(P , t = 0−)

and equivalently:∫
d3P

(2π)3
Γ(P , t = 0−) = Γ(r = 0, t = 0−)

The last expression can be related to the two-body con-
tact as shown in [25, 27] (the factor i comes from the zero
temperature formalism):

C2 = im2 Γ(r = 0, t = 0−)

In this context the contact C2 will help us identify diverg-
ing terms as it appears as a prefactor for these terms.
With that the coefficient of the divergent term becomes:

A = −8m C2F (0, 0, 1, 0,m,mi)

This gives one of the contributions to the divergent term
in Eq. (3). With the notations used in [11] we calculate
the function F (0, 0, 1, 0,m,mi) and we find:

F (0, 0, 1, 0,m,mi) =
m3

π2
κII(η)

where η = mi/m and κII(η) = −π
2 η arctan

(
1√

η(η+2)

)
.

The final diagram contributes to the κIII(η) term. For

k + q, σ p, σ′

P − k,−σk, σ

P − p, σ

p+ q, σ′

FIG. 8: Another contribution to density-density response
function to second order in the fermion-fermion interaction
that shows a 1/q3 divergent term.

the diagram in Fig. 8, the calculation takes the same
steps but we have to pay attention that the Fermi-Fermi
vertex on the right side of the diagram cannot be summed
perturbatively but should be replaced by the dressed ver-
tex Γ as in the previous diagram. The relevant momen-
tum of this vertex diverges and therefore we replace Γ(P )

by −4π/(m
√
−m(Ω−P2/(4m) + i 0+)). We write the

following expression, dominant in the q → ∞ limit∑
P,k,p,σ,σ′

G0,σ(k)G0,σ(k + q)G0,−σ(P − k)

G0,−σ′(P − p)G0,σ′(p)G0,σ′(p+ q)Γ(P + q)Γ(P )

≃ −4
∑
P,k,p

4π Γ(P )θ(|k| > kF )

m
√

−m(Ω− q2/2mi − Ek+q + i0+)

θ(|k + q| > kF )θ(|P − k| > kF )θ(|P − p| > kF )

Ω− EP−k − q2/2mi − Ek+q + i0+

θ(|p| > kF )θ(|p+ q| > kF )

Ω− EP−k − Ek + i0+
(A16)

Following the same steps as the other two calculations
detailed above we get the following result:

128πm C2
n

√
η

η + 2
(Jc(η))

2 1

q3

Appendix B: Two interaction vertices subdominant
diagram

A second diagram with two bold two-particles vertices
Γ is shown in Fig. 9. The analytic expression is (global
sign is irrelevant, since we argue that it gives a subdom-
inant contribution in the q → ∞ limit):

k + q, σ

k, σ

P − k − q,−σ

P − k,−σ

k′, σ

k′ + q,σ

Γ

Γ

FIG. 9: The diagram with two bold interaction vertices and
bold propagators for the fermions.
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χ1 d(q, ε
(i)
q ) =

±i

n

∑
σ,σ′

∫ +∞

0

dt

∫
R4

4∏
i=1

dti

∫
d3kd3k′d3P

(2π)9

e
−i q2

2mi
t
Gσ (k− q, t1)Gσ (k,−t2)

Γ (P, t2 − t1)G−σ (P− k+ q, t1 − t4)

G−σ (P− k, t3 − t2) Γ (P+ k′ − k, t4 − t3)

Gσ (k
′, t3 − t)Gσ (k

′ − q, t− t4) (B1)

If we assume that all G’s are retarded with momenta
which are large i.e. of the order q, this gives seven con-
ditions for the different times: t1 > 0, t2 < 0, t3 > t2,
t1 > t4, t > t4, t3 > t and t > 0. The first, sixth and sev-
enth conditions imply the third condition, so we have six
conditions. If we assume that |P| > Λ is large, this means
that the dominant contribution is for t2 > t1, which is
inconsistent with the conditions. Therefore we assume
|P| < Λ. We find that |P + k′ − k| ≫ Λ, and the dom-
inant contribution is for t4 > t3, which is inconsistent
with previous conditions. As a conclusion, we find that
this diagram is not dominant, compared to the diagram
for χ1 c.

We can recover this result in another manner. We
assume that all the fermionic wavevectors of G’s are of
order q and are large compared to ktyp. This means that
at lowest order all the G’s are retarded. Consider the
time loop : 0 → t1 → t2 → 0. Due to the retarded
nature of the two G’s in this loop, the time difference in Γ
in this loop must be negative. This means that at lowest
order, the wavevector of the Γ in the loop cannot be large.
We come to the same conclusion for the wave vector of
the second Γ, by considering the time loop t → t4 →
t3 → t. Following the same procedure as before, we see
that there is only one independent wavevector which is
large. The integral on this large wavevector gives a factor
q3, while the integrals on the five time differences give a
factor (q−2)5 = q−10. This gives finally a subdominant
contribution of order q−7.

Appendix C: Subdominant diagrams with more than
three vertices

In this section, we give arguments which justify that
bold diagrams for the density-density response function
with three or more two-particles vertices give a subdom-
inant contribution in the q → ∞ limit. We assume
that dominant contributions in integrals come from high
wavectors (i.e. larger than ktyp) of Green’s functions.
The Green’s functions are then replaced by free particle
Green’s functions (indeed for negative time differences,
due to Property 3, the Green’s function tends to zero
like the wavevector to the power −4). Consider a dia-
gram with M two-particles vertices Γ. For M = 0 the
diagram is shown in Fig. 3, for M = 1 it is shown in
Fig. 4. The two diagrams for M = 2 are shown in Figs.

5 and 9. The q dependence comes from three contribu-
tions. The first contribution is a ”phase space” contribu-
tion: one integrates on internal wavevectors which tend
to infinity and scale like q. Each three dimensional in-
tegration gives a factor q3. We denote N1 the number
of such independent wavevectors. The integrations give
a factor q3N1 . The second contribution comes from in-
tegration on ”small” positive (i.e smaller than ttyp) time
differences entering Green’s functions. According to our
hypothesis, the wavevectors are of order q and each time
integration gives a factor of order q−2. We denote N2 the
number of independent time differences entering Green’s
functions. Theses integrations give an factor q−2N2 . The
third contribution comes from integration on small pos-
itive time differences of Γ’s, if the wavevector is ”large”.
The time integration gives a factor q−1 (see section IVC).
We denote N3 the number of such time differences and
wavevectors. These time integrations give a factor q−N3 .
In total, the contribution of a diagram with numbers N1,
N2 and N3 scales like qα, with

α = 3N1 − 2N2 −N3 (C1)

As an example, for the diagram in Fig.3, we have M = 0,
N1 = 0, N2 = 1 and N3 = 0, and α = −2. For the
diagram in Fig.4, we have M = 1, N1 = 1, N2 = 3 and
N3 = 0, and α = −3. For the diagram in Fig.5, we have
M = 2, N1 = 2, N2 = 4 and N3 = 1, and α = −3. The
diagram in Fig. 9 is subdominant. Indeed, we have seen
in section B that N1 = 1, N2 = 5, N3 = 1 and α = −7.

We now consider the general case, with M ≥ 3 ver-
tices Γ. There are M + 1 independent wave vectors.
N3 wavevectors of Γ’s are high and therefore there are
N ′

3 = M −N3 low wave vectors for Γ’s. The total num-
ber of independent wavevectors which are high is there-
fore N1 = M + 1 − N ′

3 = N3 + 1. There are 2M + 1
independent time differences. Among these time differ-
ences, N3 are assigned to Γ’s with high momenta. We
assume that all the remaining ones are assigned to G’s
which have high momenta and are retarded. This gives
N2 = 2M + 1−N3. We find

α = 4N3 − 4M + 1. (C2)

Using this formula, we recover the results we obtained for
M = 1 and M = 2. Indeed, in these cases, N3 = M − 1
and α = −3. If N3 ≤ M − 2, we find α ≤ −7.

For M ≥ 3, we argue that N3 ≤ M − 2, or equiv-
alently that N ′

3, the number of advanced Γ’s, is larger
than 2. Indeed, for M = 3, by inspection of all the
possible bold diagrams, we found that at least 2 Γ’s are
advanced. This is due to time loops that involve one or
two Γ’s and Green’s functions that are retarded, and we
expect this will occur in general. N3 ≤ M −2 means, us-
ing Eq. (C2), that α ≤ −7, and we conclude that these
diagrams give subdominant contributions.
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[18] A. Bigué, F. Chevy, and X. Leyronas. Mean field versus
random-phase approximation calculation of the energy

of an impurity immersed in a spin-1/2 superfluid. Phys.
Rev. A, 105:033314, 2022.

[19] A M Clogston. Upper limit for the critical field in hard
superconductors. Phys. Rev. Lett., 9(6):266–267, 1962.

[20] B S Chandrasekhar. A note on the maximum critical field
of high-field superconductors. App. Phys. Lett., 1(1):7–8,
1962.

[21] S Tan. Large momentum part of a strongly correlated
Fermi gas. Ann. Phys., 323(12):2971–2986, 2008.

[22] R. Combescot, A. Recati, C. Lobo, and F. Chevy. Normal
state of highly polarized fermi gases: Simple many-body
approaches. Physical Review Letters, 98(18), 2007.

[23] N V Prokof’ev and B V Svistunov. Bold diagrammatic
Monte Carlo: A generic sign-problem tolerant technique
for polaron models and possibly interacting many-body
problems. Phys. Rev. B, 77:125101, 2008.

[24] K. Van Houcke, F. Werner, E. Kozik, N. Prokof’ev,
B. Svistunov, M. J. H. Ku, A. T. Sommer, L. W. Cheuk,
A. Schirotzek, and M. W. Zwierlein. Feynman diagrams
versus fermi-gas feynman emulator. Nature Physics,
8(5):366–370, 2012.

[25] R. Rossi, T. Ohgoe, E. Kozik, N. Prokof’ev, B. Svistunov,
K. Van Houcke, and F. Werner. Contact and momentum
distribution of the unitary fermi gas. Phys. Rev. Lett.,
121:130406, Sep 2018.

[26] K. Van Houcke, F. Werner, T. Ohgoe, N. V. Prokof’ev,
and B. V. Svistunov. Diagrammatic monte carlo algo-
rithm for the resonant fermi gas. Phys. Rev. B, 99:035140,
Jan 2019.

[27] K. Van Houcke, F. Werner, T. Ohgoe, N. V. Prokof’ev,
and B. V. Svistunov. Diagrammatic monte carlo algo-
rithm for the resonant fermi gas. Phys. Rev. B, 99:035140,
Jan 2019.

mailto:ragheed.alhyder@ist.ac.at

	Introduction
	System description
	Methodology
	Computing the dominant diagrams
	 No interaction vertices 
	 One interaction vertex 
	Two interaction vertices

	Conclusion
	Acknowledgments
	Perturbative limit
	Two interaction vertices subdominant diagram
	Subdominant diagrams with more than three vertices
	References

