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We generalize the two-channel (Edwards) fermion-boson model describing quantum transport in
a background medium to the more realistic case of dispersive bosons. Using the variational exact
diagonalization technique, we numerically solve the extended model in a one-dimensional setting, for
both downward and upward curved boson dispersion, and show that going away from the previous
Einstein-boson assumption has profound consequences for the particle transport. Specifically, we
analyze the ground-state and spectral properties and demonstrate the renormalization of the parti-
cle’s coherent band, effective mass, photoemission spectra and fermion-boson correlation functions
due to the interplay of fluctuations and correlations in a dispersive environment.

I. INTRODUCTION

As a particle moves through a system, it is con-
stantly interacting with some background medium. In
this way, the transport is strongly influenced by the
correlations and fluctuations present in the environ-
ment. The situation becomes more complicated in so-
called strongly correlated systems, where the proper-
ties of the background are determined by the motion
of the particle itself. Such systems have been of ma-
jor interest in condensed matter physics over the last
few decades. Perhaps the most prominent examples are
quasi-1D (one-dimensional) halogen-bridged transition
metal complexes1, quasi-2D (two-dimensional) high-Tc
superconducting cuprates2, and three-dimensional (3D)
colossal magnetoresistive manganites3. In all these cases,
the striking transport properties appear when doping the
insulating parent compounds exhibiting charge, spin, or
orbital order4–7. Interestingly, coherent transport can
evolve in such materials regardless of strong background
correlations, albeit on a reduced energy scale.

The complexity of the electron-electron interaction ef-
fects usually prevents the analytical or even numerical
solution of the quantum many-particle models commonly
used for the theoretical description of these systems. A
way out may be to consider instead simplified trans-
port models where the particle motion takes place in an
effective background medium with spin, orbital or lat-
tice degrees of freedom that are parametrized by bosons.
The Edwards fermion-boson constitutes a paradigmatic
model in this respect8. It describes a very general sit-
uation: As a particle moves along a 1D transport path,
it affects the adjusted background by creating a bosonic
excitation of a certain energy at the sites it leaves (or
annihilating an existing energy at the site it enters),
but of course any distortion of the background is al-
lowed to relax by quantum fluctuations. Thus a large
(small) boson energy and a small (large) boson relaxation
rate hinder (help) transport. In one dimension, the Ed-
wards model has been solved in the one-particle sector by
variational exact diagonalization, where different (quasi-

free, diffusive and boson-assisted) transport regimes have
been identified9. For the half-filled band case, a Lut-
tinger liquid charge-density-wave (metal-insulator) quan-
tum phase transition was proved to exist by density-
matrix renormalization group calculations10,11. The for-
mation of Edwards polarons has been discussed in 2D
and 3D12,13.

In deriving the Edwards fermion-boson model, it was
assumed that the background parametrizing bosons are
dispersionless8, as are the optical lattice phonons in the
Holstein small polaron model14. However, this simplifi-
cation must be questioned15. Recent studies of an ap-
propriately modified single-particle Holstein model have
provided evidence of this, since the polaron transport
changes significantly when the phonons become non-
local16,17. For the half-filled Holstein model, the impor-
tance of a finite phonon bandwidth and curvature on the
competition between pairing and charge order has been
worked out18. To what extent dispersive bosons will in-
fluence the transport behavior of the Edwards model is
a completely open question and will be the main topic of
this work.

We proceed as follows. In Sec. II we introduce the gen-
eralized Edwards fermion-boson model and briefly out-
line the scheme for its numerical solution. In Sec. III we
present and analyze the ground-state and spectral prop-
erties of the model and discuss in particular the effects
of the dispersive boson on quantum transport. Our con-
clusions are given in Sec. IV.

II. MODEL AND METHOD

We consider a single-particle coupled to bosons on an
infinite 1D lattice:

H =− tf
∑
⟨i,j⟩

f†j fi − tfb
∑
⟨i,j⟩

f†j fi(b
†
i + bj) (1)

+ tb
∑
⟨i,j⟩

b†jbi + ω0

∑
i

b†i bi . (2)
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The Hamiltonian Eq. (1) models the two transport chan-
nels realized in many condensed matter systems: coher-
ent particle transfer on an (often very reduced) energy
scale ∝ tf and boson-affected (or perhaps even boson-
controlled) hopping with amplitude tfb. Each time a

fermion f
(†)
i hops it creates (absorbs) a boson b

(†)
i at

the site it leaves (enters). The bosons are assumed to
be dispersive, forming a band with center ω0, i.e.,

ω(q) = ω0 + 2tb cos(q) . (3)

In this way, H mimics the correlations or fluctuations of
a spinful fermionic many-body system by spinless parti-
cles with boson-influenced hopping. Note that shifting
the boson operators bi → bi − λ

ω0
, where λ = ω0

2
tf
tfb

(cf.

Refs.[ 9 and 11]), will replace the first term of Eq. (1) by
a boson relaxation term that depends on λ and tb.
The pure Edwards model describes an extremely

complex transport behavior depending on the relative
strength of the model parameters; compare the schematic
phase diagram (Fig. 1) in Ref. [ 9]. For large tf/tfb trans-
port takes place through unrestricted hopping, where for
large ω0/tfb the number of bosons is small and the par-
ticle propagates almost coherently. In the case of small
ω0/tfb, on the other hand, the number of bosons is no-
ticeably larger and they appear as random scatterers,
which leads to loss of coherence. In contrast, for small
tf/tfb, the main transport process is boson-assisted hop-
ping, i.e., the particle motion relies on the existence of
bosons and a closely linked fermion-boson dynamics. In
this regime strong correlations develop in particular for
large ratios ω0/tfb. How a finite dispersion of bosons
influences this scenario is still unclear and must be ex-
amined in the entire parameter range.

In order to determine the ground-state (static) and
spectral (dynamic) properties of the modified Edwards
model Eq. (1) in the one-particle sector, we use a variant
of the variational exact diagonalization (VED) scheme,
which has been described in detail in Refs. [ 9, 13, 19–
21], and [ 22]. In a nutshell, the variational Hilbert space
is generated starting from the initial single-electron Bloch
state with a momentum k in the first Brillouin zone of an
infinite chain, |k⟩ ∝

∑
j exp(ikRj)f

†
j |vac⟩, where |vac⟩ is

the vacuum state with no bosons. Further basis states are
generated applying the first two off-diagonal (electron-
hopping) terms in Eq. (1) Ngen times. Furthermore all
the translations of these states on an infinite lattice are
taken into account, i.e., we can calculate quantities at
fixed momenta k. As a result of this procedure, the max-
imum boson number at the electron position is Ngen. At
the same time, the maximum distance of a boson from
the electron site is Ngen−1. The finite Ngen−1 leads to a
discrete boson dispersion ω(q)17. When calculating static
quantities, we make sure an accuracy of at least 10 dig-
its in the whole parameter regime. For this Ngen = 16
is usually sufficient. Calculating spectral quantities we
have used an artificial broadening η = 0.0123. In view
of the above discussion of the relevant model parameter

ratios, measuring all energies and frequencies in units of
tfb is a very natural choice10,11.

III. RESULTS AND DISCUSSION

A. Static properties

We begin by analyzing the ground-state properties of
the 1D Edwards model with dispersive bosons. With re-
gard to the physically most relevant applications, such as,
e.g., lattice and spin polaron formation in strongly corre-
lated electron systems, ratios of tf/tfb ≤ 1 are certainly
most interesting.
Figure 1 shows the energy E(0) in the ground state

|0⟩ with total momentum k = 0, as a function of the
boson transfer amplitude tb for characteristic values of
tf and ω0 discussed in previous studies of the pure Ed-
wards fermion-boson model. Considering the effect of
the finite boson dispersion, we should keep in mind that
tb > 0 (tb < 0) increases (decreases) ω(0) compared to ω0

in Eq. (3), and bends ω(q) downward (upward) moving
away from q = 0. This limits the meaningful param-
eter values to |tb| < ω0/2. Of course, the energy dif-
ference ∆E = E(0) − Etb=0(0) is always negative, and
symmetric with regard to tb ↔ −tb, if the coherent par-
ticle hopping channel disappears (tf = 0). At finite tf ,
the concave boson dispersion (tb < 0) is energetically
more favorable in the ground state than the convex one
(tb > 0), mainly due to the lower value of ω(0). Espe-
cially for quasi-free particle transport, i.e., large values
of tf , ∆E is even positive for tb > 0. The asymmetry ob-
served here and in the following figures with respect to
tb ↔ −tb at finite tf mainly results from the mixing be-
tween predominantly fermionic states stemming from an
always upward-bended band and predominantly bosonic
states coming from an upward- (tb < 0) or downward-
bended (tb > 0) bended dispersion, which, in the latter
case, is less (more) pronounced at small (large) momenta.

To further characterize the nature of the ground state,
we give in Figs. 2 and 3 the mean phonon number

Nb(0) =
∑

i⟨0|b
†
i bi|0⟩ and the (electronic) quasiparti-

cle weight Z(k = 0) = |⟨0|f†k=0|vac⟩|2, respectively, for
the same model parameters as in Fig. 1. Both figures
provide a very consistent picture of the physics of the
modified Edwards model. In the fluctuation-dominated
(correlation-dominated) region of low (high) frequencies
ω0 and large (small) tf , where bosonic excitations of the
background cost little (much) energy, the average num-
ber of bosons in the ground state is rather high (low).
The quasiparticle weight is relatively low (high) accord-
ingly. Dispersive bosons generally increase the possibility
of triggering excitations in the background medium that
affect the particle transport. These bosons act as ran-
dom (incoherent) scatters. In line with this, Nb(0) grows
and Z(0) becomes smaller. An exception is the case of
almost-free particles, i.e., large tf and positive tb, where
the number of bosons (the quasiparticle weight) decreases
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FIG. 1. Ground-state energy of the 1D Edwards model with
dispersive bosons centered around ω0. Shown is the difference
∆E = E(0) − Etb=0(0) as a function of the boson transfer
amplitude tb for ω0 = 0.5, 1.0, and 2 at various tf .
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FIG. 2. Mean boson number in the ground state of the 1D
Edwards model with dispersive bosons centered around ω0.
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FIG. 3. Quasiparticle weight in the ground state of the 1D
Edwards model with dispersive bosons centered around ω0.
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FIG. 4. Lowest-energy bands of the 1D Edwards model with
dispersive bosons centered around ω0 = 0.5. The black solid
lines give the corresponding data of the regular Edwards
model (tb = 0) for comparison. Take note of the different
ordinates scaling.
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FIG. 5. Lowest-energy bands of the 1D Edwards model with
dispersive bosons centered around ω0 = 1.0.

(increases) with increasing tb, since the bosons are ener-
getically more expensive. Here the number of bosons
only increases significantly when the boson dispersion is
bent far enough downwards due to the positive tb. Ob-
viously this effect is more pronounced the smaller the ω0

is. In the limit of small tf and large ω0, when transport
is boson-assisted, a finite tb acts in the opposite direc-
tion, i.e., Nb(0) is rather small and consequently Z(0) is
getting bigger (note the different scales of the ordinates).

In Figs. 4–6 we present the energy band E(k) that we
get from the lowest eigenvalue of H in each k sector at
different values of ω0, tf , and tb. Let us emphasize once
more that k refers to the total momentum of the coupled
fermion-boson system.

If we first look at the results of the pure Edwards model
(tb ≡ 0, black solid lines), we see that the band disper-
sion is only weakly renormalized for tf ’s in the order of
tfb or larger, with the exception of the band flattening at
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FIG. 6. Lowest-energy bands of the 1D Edwards model with
dispersive bosons centered around ω0 = 2.0.

larger momenta when the (dispersionless) boson crosses
the electronic cosine band, provided ω0 is not too large.
In contrast, the quasiparticle bandwidth becomes tiny
for small tf , especially if ω0 is large, i.e., when the back-
ground medium is stiff. Here, the particle transport is
fully boson assisted. This can be best understood in the
limit tf = 0, where the lowest-order vacuum-restoring
process comprises six steps and thereby propagates the
particle by two sites9. In this case, E(k) has the period
π, see the bottom panels of Figs. 4–6.
The inclusion of the boson dispersion significantly af-

fects the band structure of the lowest-energy band. In
the quasi-free transport regime of large tf and for pos-
itive values of tb, the dispersion initially largely follows
that of the pure Edwards model but then bends down for
large momenta where the (bare) phonon dispersion cuts
into the electronic one. This effect is enhanced when
tb grows and somewhat more pronounced for small ω0.
In contrast, for negative tb, the dispersion grows more
or less continuously. The difference between the convex
and concave boson-dispersion cases is less distinctive and
finally vanishes when strong correlations develop in the
system, i.e., for small values of tf and large values of ω0.
At the same time it turns out that the particle band be-
comes more dispersive in the boson-controlled transport
regime tf ≃ 0, ω0 > 1, again compared to the case tb = 0
(pure Edward model), see lower panels. This means that
dispersive bosons increase the mobility of the particles in
this regime, regardless of whether there is a positive or
negative curvature.

Figure 7 shows the effective particle mass in the mod-
ified Edwards model,

m∗ =

[
∂2E(k)

∂k2

∣∣∣∣
k=0

]−1

, (4)

more precisely the mass enhancement due to the coupling
to the background bosons compared to the bare band
mass m0 = 1/2tfb. Note that in the Edwards model, the
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FIG. 7. Mass enhancement in the 1D Edwards model with
dispersive bosons as a function of tb. Take note of the different
ordinates scaling.

Drude weight is related to the effective mass by Kohn’s
formula24,

D = 1/(2m∗) , (5)

where D serves as a measure of coherent transport9,25.
Again, the influence of the boson dispersion is very differ-
ent in the fluctuation and correlation dominated regimes.
At low boson frequencies, the larger number of bosons—
appearing in the fluctuating background for larger val-
ues of tb—causes a moderate increase of the quasiparti-
cle mass. In contrast, for high boson frequencies only a
few bosons exist in the background, which is stiff, i.e.,
strongly correlated, and consequently there is a huge
mass enhancement when tf is small. In this case, the
additional bosons showing up for |tb| > 0 lead to a sig-
nificant reduction of the particle’s effective mass because
they promote hopping processes. Of course, a distinct
quasi-free transport channel, as it appears also for large
values of ω0 provided that tf is large as well, shows a
rather weak dependence on tb, see bottom panel.
This analysis is corroborated by Figs. 8, 9 and 10,

which provide results for the effective mass, the quasipar-
ticle weight, and the mean boson number in the ground
state as a function of tf , respectively. Here, the top,
middle, and bottom panels characterize the respective
behavior in the fluctuation-dominated, crossover, and
correlation-dominated regimes. While in the first regime
the tb- dependence is significant, it is rather weak in the
latter. It is obvious that the strongest mass enhancement
takes place at large ω0, for small values of tf and tb. In-
terestingly, the quasiparticle weight exhibits a stronger
dependence on the width of the phonon dispersion than
the effective mass, in particular Z(0) is much stronger
reduced at small tf in the fluctuation-dominated region
where the bosons act as random scatters. The mean
boson number shows a corresponding behavior. As it
was to expected, the number of bosons is large in the
fluctuation-dominated regime, where the difference be-
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dispersive bosons as a function of tf .
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Take note of the different ordinates scaling.
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tween the upward tb > 0 and downward tb < 0 dispersion
becomes especially significant in the quasi-free transport
regime of large tf , see top panel in Fig. 10. Quite dif-
ferent, in the correlation-dominated regime, the number
of bosons is small and its dependence on tb is almost
negligible, see bottom panel in Fig. 10.
We complete our investigation of the ground-state

properties of the modified Edwards model by looking at
the particle-boson correlation function

χij = ⟨0|f†i fib
†
jbj |0⟩ . (6)

In Fig. 11 we present the spatial correlations between
a particle located at site i and a bosonic excitation of
the background located at site j. Starting from the left
bottom corner, the left column shows how the strong cor-
relations between the particle and the bosons at the adja-
cent sites—which is energetically advantageous because
the annihilation of an existing neighboring boson pro-
motes the boson-controlled hopping transport—weaken
when the bosons can be excited more easily, i.e., the
background increasingly fluctuates, see top left panel.
Obviously χij is enhanced by a finite tb in any case,
where the dependence on the sign of tb is not very pro-
nounced, however. This tendency increases as tf increas-
ing; follow the top row from left to right. The upper
right panel shows that in the quasi-free transport regime
the bosons of course form a cloud surrounding the par-
ticle but are otherwise weakly correlated. In this regime
the correlations are much more pronounced for bosons
with an upward- bended dispersion than for those with a
downward-bended one, which is understandable because
the broader electron band and the lowered phonon dis-
persion interfere more easily at zero momentum. If we
now increase the boson frequency at tf = 1, we can see
how the particle-boson correlations develop again; look
down the right column. This effect increases when we
decrease tf at fixed ω0 = 2, following the last row from
right to left. Thereby the dependence of χij on the sign



6

of tb largely disappears.

B. Spectral properties

We now turn to investigate the influence of boson dis-
persion on the single-particle spectral function,

A(k, ω) =
∑
n

|⟨n|f†k |vac⟩|
2 δ[ω − ωn] , (7)

which is directly accessible experimentally via (inverse)
photoemission. In Eq. (7), |vac⟩ means the particle vac-
uum, and |n⟩ labels the eigenstate of the one-fermion
system with excitation energy ωn = En − E(0).
Figures 12 and 13 present A(k, ω) in the low- and high-

boson-frequency regime, respectively, for representative
values of tf and tb. Here, the middle panels show the re-
sults for the pure Edwards model (tb = 0) only for com-
parison. In general, the lowest spectral signature in each
panel follows the dispersion of the lowest-energy band
from Figs. 4 and 6, respectively, but we are now able to
assign a predominantly electronic or bosonic nature to
the excitations at k and ω via the magnitude of A(k, ω),
more precisely by the wavefunction renormalization fac-
tor

Z(k) = |⟨ψk|f†k |vac⟩|
2 , (8)

where ψk denotes the single-particle state with momen-
tum k being lowest in energy. It is therefore important
to note that, as we move from k=0 to k=π in Figs. 12
and 13, we shift the y- coordinate associated with a given
k value by a fixed amount with respect to that of the pre-
vious k value (by −0.05 in the case of Fig. 12 and by −1
in the case of Fig. 13), so that the spectral function is
well resolved at each k- point.
Again we start the analysis in the fluctuation-

dominated regime of relatively small ω0 and large tf , see
Fig. 12 top panels. Obviously there is no well-developed
quasiparticle band in this case (see the very weak elec-
tronic signature along the “free” dispersion−2tf cos k be-
tween ω = −2 and 2), but a sequence of predominantly
bosonic bands separated by ω0. We furthermore find
that the quasiparticle weight is almost negligible away
from k = 0 (remember the amplification factor 10), what
means that the particle motion is rather incoherent (over-
damped by bosonic fluctuations). This is observed for
vanishing tb but retains its validity for (small) finite tb,
whereby the lower “bosonic” bands are weaker (stronger)
and are lowered more (less) for tb < 0 (tb > 0) compared
to the case tf = 0. This behavior is understandable if one
considers the shift of ω(0) and the curvature of ω(q) for
tb

>
<0 in the course of the crossing of electron and boson

bands for a weakly correlated fermion-boson system.
If tf is reduced (tf = 1 → 0.1), correlations begin

to develop in the coupled fermion-boson system, i.e., the
transport becomes more and more boson controlled, even
at a comparatively small ω0 = 0.5. This is illustrated in
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FIG. 12. Single-particle spectral function A(k, ω) in the
1D Edwards model computed at different boson dispersions
parametrized by ω0 = 0.5 and tb as denoted in the legends,
where tf = 1 (top panels) and tf = 0.1 (bottom panels). Note
that the values of A(k, ω) were multiplied by a factor of 10 to
increase the visibility.

the bottom panels of Fig. 12. While for tf = 0 a rela-
tively strong quasiparticle band is already formed, a finite
boson dispersion resulting from tb

>
<0 still causes rather

bosonic bands at very low energies, separated approxi-
mately by ω0. By contrast, a strong mixing of multi-
phonon and electronic excitations takes place at larger
energies ω, where the contributions to single-, two-, or
multi-bosons excitations can not be distinguished be-
tween each other just as for the Holstein model with
dispersive phonons17, but certain bands excitation are
still recognizable. Here, the differences between the cases
with positive and negative tb are less pronounced.

The situation changes completely if we consider a stiff
background, parametrized by large boson energies ω0,
see Fig. 13. Now transport is fully boson assisted and a
coherent quasiparticle band emerges, although on a re-
duced energy scale which is mainly determined by tf ;
compare the middle panels, where tb = 0, for tf = 1 and
tf = 0.1. Here again the higher excitation bands are po-
sitioned at multiples (m) of the boson energy ω0 above
the lowest-energy band, whereby their intensity is greatly
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FIG. 13. Single-particle spectral function A(k, ω) in the
1D Edwards model computed at different boson dispersions
parametrized by ω0 = 2.0 and tb as denoted in the legends,
where tf = 1 (top panels) and tf = 0.1 (bottom panels).

reduced with increasing m. For tb = 0.4 (> 0) there is
a non-monotonic downward bending of the lowest elec-
tron band due to the dispersive bosons, which is absent
for tb = −0.4 (< 0). In the very correlation-dominated
regime (ω0 = 2, tf = 0.1), interestingly, dispersive struc-
tures occur in A(k, ω) below the single-boson excitation,
which are due to two-boson excitations similar to those
observed in the (dispersive) Holstein model17. In the Ed-
wards model case, however, their spectral weight is not
only concentrated in a narrow interval around the center
of the Brillouin zone but also at its boundary.

IV. CONCLUSIONS

The paradigmatic two-channel Edwards transport
model has so far only been studied for dispersionless
bosons, just as the Holstein small polaron model until
recently16,17. In this work, we were able to show that
the inclusion of the dispersive bosons has a profound ef-
fect on both the static and dynamic properties of the

fermion-boson Edwards model in the single-particle sec-
tor.
We demonstrate that, as in the pure Edwards model,

the background parametrizing bosons act in two com-
peting ways: They limit transport when they fluctuate
strongly and are weakly correlated, or they assist trans-
port by boson-supported hopping in the regime of strong
correlations where the boson relaxation rate is low. Al-
though the principle regions of dominant quasi-free, dif-
fusive and boson-assisted transport of the Edwards model
continue to exist naturally, their boundaries shift because
the bosons at different sites are no longer independent of
each other. While a finite boson dispersion generally in-
creases the effective mass (decreases the Drude weight)
of the particle in the fluctuation-dominated regime, the
effective mass is reduced, i.e., the particle becomes more
mobile, in the correlation-dominated regime, where the
varying effect of concavely and convexly curved boson
dispersions is rather small.

The influence of a finite upward and downward curved
boson dispersion is best reflected in the single-particle
spectral function, which allows statements about the po-
sition, shape and strength of the quasiparticle band, as
well as the nature of the excitations. In the fluctuation-
dominated regime, around k = 0 and k = π, the
(over)damped character of the particle motion becomes
visible. The quasiparticle band is most pronounced in
the quasi-free and correlation-dominated regimes, where
the bandwidth is strongly reduced in the latter case. Per-
haps unexpected is the observation of dispersive spectral
weight between the lowest-energy band and the single-
boson excitation which can be attributed to multi-boson
excitations17.

This suggests that any quantitative modeling of the
transport properties of materials exhibiting lattice or
spin polaron physics using the Edwards fermion-boson
model must take into account the dispersion of the bosons
parametrizing the background medium. Especially the
multi-boson excitations found in the electronic spec-
tral function will also noticeably influence the nonequi-
librium and finite-temperature properties and should
be detectable experimentally already at small boson
dispersion17.

From a theoretical point of view, our results will
certainly stimulate further investigations, for example
with respect to the influence of the boson dispersion
on the Tomonaga-Luttinger-liquid charge-density-wave
quantum phase transition, which has been proved to exist
in the pure 1D Edwards model at half band filling10.
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19 J. Bonča, S. A. Trugman, and I. Batistić, Phys. Rev. B
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