
Thermodynamic Response and Neutral Excitations in Integer and Fractional Quantum Anomalous
Hall States Emerging from Correlated Flat Bands

Hongyu Lu,1 Bin-Bin Chen,1 Han-Qing Wu,2 Kai Sun,3, ∗ and Zi Yang Meng1, †

1Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics,
The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China

2Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices,
School of Physics, Sun Yat-sen University, Guangzhou 510275, China

3Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
(Dated: April 25, 2024)

Integer and fractional Chern insulators have been extensively explored in correlated flat band models. Re-
cently, the prediction and experimental observation of fractional quantum anomalous Hall (FQAH) states with
spontaneous time-reversal-symmetry breaking have garnered attention. While the thermodynamics of integer
quantum anomalous Hall (IQAH) states have been systematically studied, our theoretical knowledge on thermo-
dynamic properties of FQAH states has been severely limited. Here, we delve into the general thermodynamic
response and collective excitations of both IQAH and FQAH states within the paradigmatic flat Chern-band
model with remote band considered. Our key findings include: i) In both ν = 1 IQAH and ν = 1/3 FQAH
states, even without spin fluctuations, the charge-neutral collective excitations would lower the onset temper-
ature of these topological states, to a value significantly smaller than the charge gap, due to band-mixing and
multi-particle scattering; ii) By employing large-scale thermodynamic simulations in FQAH states in the pres-
ence of strong inter-band mixing between C = ±1 bands, we find that the lowest collective excitations manifest
as the zero-momentum excitons in the IQAH state, whereas in the FQAH state, they take the form of magneto-
rotons with finite momentum; iii) The unique charge oscillations in FQAH states are exhibited with distinct
experimental signatures, which we propose to detect in future experiments.

Introduction.— The intricate interplay between electronic in-
teraction and band topology can give rise to exotic quan-
tum states of matter. A well-known example is the quan-
tum anomalous Hall (QAH) effect, emerging at zero mag-
netic field due to intrinsic ferromagnetism [1–4]. Beyond
the integer case, fractional QAH (FQAH) states can be even
more intriguing, which have been theoretically predicted in
a class of topological flat band models without Landau lev-
els, known as fractional Chern insulators (FCI) [5–9]. The
ground-state phase diagrams of these models have been ex-
tensively studied [8–14], and the connections between FQH
and FCI (FQAH) states are discussed [15–19]. Besides, the
emergence of semiconductor moiré materials [20], supporting
tunable correlated topological flat bands [21–29], is expected
to offer ideal opportunities for realizing FQAH states [22, 30–
36].

Recent advancements provide substantial support for this
perspective. Firstly, the experimental demonstration of QAH
states in various systems at zero magnetic field has been
achieved [2, 3, 37–40]. Additionally, FCIs have been ob-
served in graphene-based systems under a finite magnetic
field [41, 42]. Most recently, experiments have reported ev-
idence of FQAH states with zero external magnetic field,
in twisted molybdenum ditelluride (MoTe2) bilayers [43–46]
and in rhombohedral pentalayer graphene/hBN moiré super-
lattices [47].

An intriguing aspect of these FCI experiments is the rela-
tively high onset temperature of Hall plateaus, compared to
some FQHl experiments. A key question for future investi-
gations revolves understanding the physics that dictates this
onset temperature and exploring the possibility of pushing it
to even higher values, potentially reaching room-temperature

scales [5]. Notably, in MoTe2 [43, 46], there exists intense
spin fluctuations above the onset temperature, which could po-
tentially affect the Hall transport at temperature much lower
than the charge gap. However, the charge fluctuations have
not been well considered and they should be the key factor of
whether the onset temperature could be largely enhanced up
to the charge-gap level if there exist no spin fluctuations.

For the IQAH state in twisted bilayer graphene at odd inte-
ger fillings [37, 42, 48], the charge-neutral exciton was found
to acquire a small gap that determined the transition tem-
perature of the IQAH, much lower (one magnitude) than the
charge gap of the insulator ground state [25–28]. However, for
FQAH states, it’s crucial to address a significant knowledge
gap between theoretical and experimental studies. While ex-
periments are inherently conducted at finite temperatures, the
majority of numerical and theoretical investigations of FQAH
states focus on zero temperature.

Although charge-neutral collective excitations such as
magneto-roton and chiral graviton have been intensively dis-
cussed in FQH systems [49–58], these are basically at zero
temperature, our understanding of thermodynamic properties,
especially those near or above the onset temperature is excep-
tionally limited. But since the understanding of finite tempera-
ture properties in both IQAH and FQAH is vital for unraveling
the factors to promote the FCI physics to higher temperatures,
there is an urgent need to address such fundamental problem.

In this letter, we study the general properties of both IQAH
and FQAH states from the thermodynamic perspective in
the paradigmatic correlated flat band model with spinless
fermions [6–8] in Fig. 1 (a-b). Employing the state-of-the-
art exponential tensor renormalization group (XTRG) [59],
complemented with density matrix renormalization group
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FIG. 1. Lattice model, correlated flat Chern bands, n̄ − µ
plateaus, and the separation of energy scales. (a) Checkerboard
lattice with different hoppings denoted by colors; and lattice prim-
itive vectors are a1 = (0, 1), a2 = (1, 0). The arrows represent
the directions of the loop current. (b) Band dispersion of the tight-
binding Hamiltonian, with the lower band being nearly flat. Average
density n̄ versus µ at different temperatures for the ν = 1 plateau
at V1 = 1 (c), and ν = 1/3 plateau at V1 = 4 (d). (e) Schematic
excitation spectra for ν = 1 IQAH. The lowest charge-neutral excita-
tions with zero momentum ∼ T ∗, is much lower than the charge gap
scale ∼ Tcg. (f) Schematic excitation spectra for ν = 1/3 FQAH.
A finite-momentum roton mode ∼ T ∗ is found to be the dominant,
at temperature scales below the charge gap. At T much higher than
the charge gap, another zero-momentum charge-neutral excitation is
observed.

(DMRG) and exact diagonalization (ED). We find that, i) in
both ν = 1 IQAH and ν = 1

3 FQAH states, even without
spin fluctuations, the charge-neutral collective excitations in
spinless fermions would lower the onset temperature (Hall
plateau) of these topological states, much lower than the
charge-gap scale; ii) the low-energy charge-neutral collective
excitations are excitons in the IQAH state, manifested as den-
sity fluctuations with zero momentum transfer; in contrast,
the corresponding excitations in FQAH states are magneto-
rotons, signified as finite-momentum peaks in the density fluc-
tuations. iii) These roton excitations lead to unique real-space
patterns in density-density correlations, which could be ob-
served in experiments using local probes in analogy to Friedel
oscillations.

Model and Method.— We study the on the checkerboard lat-

tice (Fig. 1 (a)),

H =− t
∑
⟨i,j⟩

eiϕij (c†i cj + h.c.)−
∑

⟨⟨i,j⟩⟩

t′ij(c
†
i cj + h.c.)

− t′′
∑

⟨⟨⟨i,j⟩⟩⟩

(c†i cj + h.c.) + V1

∑
⟨i,j⟩

(ni −
1

2
)(nj −

1

2
)

(1)
with nearest-neighbor (NN, t), next-nearest-neighbor (NNN,
t′), and next-next-nearest-neighbor (NNNN, t′′) hoppings,
and NN repulsive interaction (V1). We allow the NN hoppings
to carry nonzero complex phase. We are using dimensionless
parameters by setting t = 1 and other tight-binding param-
eters are: t′ij = ±1/(2 +

√
2), t′′ = −1/(2 + 2

√
2) and

ϕij = ±π
4 . At the noninteracting limit, the dispersions carry

Chern number, C = ±1 for the flat and the remote bands
and give rise to the QAH state [1]. We work in the parameter
regime that the flat-band width W , the gap between the flat
and remote band ∆ and the interacting strength V1 are chosen
such that W (= 0.08) ≪ ∆(= 2.34) ∼ V1. Therefore, the
band-mixing effect is well included.

We employ XTRG for finite-temperature simulations and
implement the charge U(1) symmetry based on the QSpace
framework [60] with up to D = 800 bond states kept, en-
suring the maximum truncation error below 10−4. For com-
plementary, we also utilized ED and DMRG to obtain ground
state properties [61].

For XTRG, we operate in the grand canonical ensemble by
introducing a chemical potential term Hµ = µ

∑
i(n̂i − 1

2 ) to
adjust the particle numbers Ne =

∑
i⟨n̂i⟩β (here, ⟨·⟩β denotes

the ensemble average at inverse temperature β ≡ 1
T ) and the

system is half-filled without Hµ. We denote the total number
of lattice sites as N = Ny×Nx×2, with Ny/Nx representing
the number of unit cells along the a1/a2 direction, and we
consider a 3× 12× 2 cylinder in thermodynamic simulations.
The filling of the flat band ν and the average density n̄ are
given by n̄ = Ne/N = ν/2.
ν = 1 IQAH.— Here we focus on flat Chern bands with
C = 1 at filling ν = 1. We set V1 = 1 and first examine
the ground state to validate its nontrivial topology, since large
V1 triggers a quantum phase transition toward a topologically
trivial nematic insulator [62–67]. The ED simulations of a
4 × 4 × 2 torus reveal a non-degenerate ground state with
C = 1 [61] and we utilize DMRG to compute the Hall con-
ductance in a Ny = 3 cylinder. As depicted in Fig. 2 (a), upon
inserting one flux quanta, θ from 0 to 2π, a quantized charge
∆Q = 1 is pumped across the cylinder, indicating a quantized
Hall conductance of σxy = e2

h [68].
We then implement thermodynamic simulations. In

Fig. 1 (c), at low temperature, as the chemical potential µ
varies, we observe a plateau at n̄ = ν/2 = 0.5, which hall-
marks a non-compressible state at low temperature, and the
estimated charge gap is ∆cg ≈ 1.1 from the change of Hµ on
the plateau. Subsequently, we fix µ and explore the temper-
ature dependence of n̄, compressibility ∂n̄

∂µ , and specific heat
∂E
∂T [Fig. 2 (b), (c), and (d)]. The specific heat reveals two dis-
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FIG. 2. Hall conductivity and thermodynamics of the IQAH
state. (a) Charge pumping. (b-d) Temperature dependence of (b)
average density, (c) compressibility, and (d) specific heat. The red
solid line in (d) depicts the low-T behavior fitted to e−0.16/T . The
green and purple dashed lines represent the onset temperature of the
QAH effect T ∗ ≈ 0.16 and the charge gap scale Tcg ≈ 1.1.

cernible temperature scales: the charge-gap scale Tcg ≈ 1.1,
indicated by the prominent peak, and a low-energy scale de-
noted by the specific heat shoulder near T ∗ ≈ 0.16. Impor-
tantly, below T ∗ ≈ 0.16, the average density swiftly con-
verges to n̄ = 0.5, while the compressibility undergoes a rapid
decline toward 0 and the specific heat begins to exhibit activa-
tion behavior ∼ e−T∗/T . These behaviors indicate the incom-
pressible nature of the QAH state, and thus T ∗ represents the
crossover temperature marking the onset of QAH state. The
existence of two distinct temperature scales here is reminis-
cent of the QAH state in TBG-related models [25–28].

The observation of T ∗ ≪ Tcg suggests the existence
of low-energy charge-neutral excitations, with a gap much
smaller than the charge gap ∆cg. To elucidate the nature of
these charge-neutral excitations, we examine particle-hole ex-
citations by computing density fluctuations and their Fourier
transform S(q) =

∑
j e

−iq(r0−rj)(⟨n0nj⟩ − ⟨n0⟩⟨nj⟩). As
illustrated in the inset of Fig. 3 (b), the fluctuations peak at the
Γ point, indicating that these charge-neutral excitations pre-
dominantly have zero (small) momentum. From the tempera-
ture dependence shown in Fig. 3 (b), these excitations at Γ in-
deed begin to develop at T < Tcg, below the charge-gap scale.
For comparison, we also plot S(Γ) in the non-interacting limit
(V1 = 0), where such charge-neutral excitations are absent at
T < Tcg, indicating that excitations observed here are a dis-
tinctive and interaction-driven feature of correlated flat band
systems.

Additionally, we compute the particle-hole correlations
gnh =

⟨n̂0ĥi⟩β
⟨n̂0⟩β⟨ĥi⟩β

between a fixed site 0 and other sites i,

where ĥi ≡ 1−n̂i represents the number of holes. In Fig. 3(a),
above T ∗, the NN particle-hole bunching effect rapidly es-

FIG. 3. Charge-neutral excitations in IQAH. (a) Pairs of particle-
hole correlations with the reference site chosen in the bulk. (b) The
temperature dependence of the structure factor at Γ, in comparison
to the non-interacting limit. The inset shows the momentum depen-
dence of the structure factor at T = 0.51324, which peaks at Γ. (c)
Density-density correlations ⟨n0nj⟩ − ⟨n0⟩⟨nj⟩, where the site 0 is
denoted by the black asterisk. The correlation is spatially confined.

tablishes (while the NNN and NNNN particle-hole correla-
tions exhibit repelling behavior), reaching a maximum around
T ∼ 0.51, suggesting the proliferation of zero-momentum ex-
citons in this temperature regime, and eventually smearing out
above the charge excitation scale Tcg.
ν = 1/3 FQAH.— We now extend our investigation to the
thermodynamics of the ν = 1

3 FQAH state, using V1 = 4 as
an example. The ground state of this model has been shown to
be a FQAH state [6, 8]. As a benchmark, we show ED results
in the SM [61], which confirm that the Chern number of each
of the three degenerate ground states is 1/3.

For thermodynamic properties, we observe a n̄− µ plateau
shown in Fig. 1 (d) as well, with the charge gap ∆cg ≃ 0.36
approximated from the low-temperature plateau. Setting µ =
9.281, we compute the temperature-dependence of n̄, thermal
entropy S, specific heat ∂E

∂T , and compressibility ∂n̄
∂T as shown

in Fig. 4 (a-d).
From the specific heat, we can identify three temperature

scales. The first (lowest) one is a crossover temperature
T ∗ ≈ 0.01, situated near the lowest shoulder of the spe-
cific heat. Below T ∗, the average density n̄ converges to 1/6
(ν = 1/3), and both thermal entropy ST and compressibil-
ity rapidly approach 0. In addition, for T < T ∗, we observe
activation behavior in specific heat ∂E

∂T ∼ e−T∗/T . Same as
the ν = 1 case discussed above, this T ∗ marks the on-set of
incompressibility of FQAH effect. As will be discussed be-
low, this T ∗ comes from the energy scale of roton excitations.
Above T ∗, the specific heat shows two more features: (1) a
hump at Tcg ≈ 0.36, which is the charge-gap energy scale,
and a peak at T ≈ 2.9, which will be linked to a high-energy
zero-momentum charge-neutral excitations.

Likewise, we also observe T ∗ ≪ Tcg here, signifying the
presence of low-energy charge-neutral excitations below the
charge gap, which lower the onset temperature of Hall trans-
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FIG. 4. Thermodynamics of the ν = 1/3 FQAH states with
V1 = 4. (a) Average density, (b) thermal entropy, (c) specific heat
with the low-T behavior fitted with e−0.01/T (the red solid line)
and (d) compressibility, versuse T . The three dashed lines repre-
sent the roton scale T ∗ ≈ 0.01 (green), the charge excitation gap
Tcg ≈ 0.36 (purple) and the high-T particle-hole excitation scale
T ≈ 2.9 (grey).

FIG. 5. Roton excitations in ν = 1/3 FQAH. (a) Structure factor
S(q) around T ∗. (b) Structure factor S(q) at T ≈ 2.9. (c) Tem-
perature dependence of S(q). The horizontal line marks the T = 0
value of S from DMRG. (d) Temperature dependence of particle-
hole correlations for NN, NNN, and NNNN pairs. (e) Real-space
density-density correlation function near T ∗, and the black asterisk
represents the reference site. The rotons are spatially extended and
exhibit real space oscillations.

port. Notably, in contrast to the integer case, these charge-
neutral excitations in the FQAH phase carry finite momen-
tum, and thus are identified as rotons. In Fig. 5 (a), we display
the density structure factor S(q) near T ∗, where the highest
values are prominently located at q = (π, 0). The absence of
four-fold rotational symmetry here is due to the geometry, as
details shown in the SM [61]. The structure factors at higher
T = 2.9033 are also presented in Fig. 5 (b), with the peak
observed at Γ. Furthermore, we illustrate S(q) versus T for
q = (π, 0) and Γ in Fig. 5 (c). We observe that the value of
S(π, 0) peaks around T ∗ and saturates to the DMRG result at
T = 0. In contrast, S(Γ) remains featureless until reaching
much higher temperature T ≈ 2.9, and thus might include
particle-hole excitations between the C = ±1 bands. These
observations clearly indicate that collective excitation in the
FQAH phase fundamentally differs from that in the IQAH
case. When the value of S(q) is too small, it is hard to nu-
merically obtain accurate and valid values, so we take those
extremely small values affected by numerical noise as 0.

Additionally, pairs of particle-hole correlations gnh are de-
picted in Fig. 5 (d). At T ∼ 2.9, similar to the IQAH case,
NN sites exhibit particle-hole correlations (gnh > 1), while
NNN and NNNN sites display particle-particle correlations
(gnh < 1). However, the zero-momentum exciton mode here
appears only at high temperatures above Tcg ≈ 0.36.

As shown in Fig. 5(e), near T ∗, density-density correlation
exhibits a clear periodic oscillation in real space. This pattern
is the direct manifestation of the finite-momentum charge-
neutral excitations discussed above. In analogy to the Friedel
oscillations in metals, near a quenched charge impurity in a
FQAH state, these roton excitations will generate real-space
oscillations in electron density, with the same pattern shown
in Fig. 5(e). Such real-space density oscillations can be di-
rectly imaged using STM and/or other local probes. In con-
trast, for IQAH states, although low-energy charge-neutral
excitations proliferate at T ∼ T ∗, due to their small (zero)
momentum, real-space oscillations (beyond the lattice peri-
odicity) will not arise around charge impurities, as shown in
Fig. 3 (c). The charge oscillation near impurity is similar to
early studies in fractional quantum Hall system (under mag-
netic field) [69, 70], and we note very recently, this feature in
FQAH system has also been theoretically proposed in accor-
dance with our work [71].

We emphasize here why the charge-neutral excitations can
affect the onset temperature of the Hall plateaus. There are
two key factors and the first key physical process here is the
multiple-particle scattering. Due to energy mismatch, if a
charged particle in the ground state absorb multiple charge-
neutral excitations, the total energy from these neutral excita-
tions would be enough to create charge excitations and thus
change the transport coefficient. The probability of absorbing
n excitations is proportional to ρn, where ρ is the density of
charge-neutral excitations. As we increase temperature T , ρ
increases exponentially. And this probability also increases
exponentially, making it easier to create charged excitations.
This is exactly why we see shrunken density plateau and fi-
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nite compressibility at T ∼ T ∗ ≪ Tcg as shown in Fig.1(c-d),
Fig.2(c) and Fig.4(d), which we believe is the main reason of
onset temperature T ∗ ≪ Tcg in the FQAH case. The second
factor could be the band-mixing, which is in contrast to the
Laudau level physics. In the IQAH state, the C = 1 band is
fully occupied at ground state, and thus the particle-hole exci-
tations between the two C = ±1 Chern bands naturally affect
the Hall conductance [25–28]
Discussions.— In conlusion, we numerically study the
generic thermodynamic properties of ν = 1 IQAH and ν =
1/3 FQAH states, and we note such study is rare, even in
the FQH literature. We find the zero-momentum exciton in
IQAH state and the finite-momentum roton in FQAH state,
as the low-energy excitations that could determine their on-
set temperature T ∗, much lower than their zero-temperature
charge gap scale Tcg . This could provide broader perspective
to recent experiments where the spin fluctuations are thought
to lower the onset temperature much below the charge gap,
while our results show that, even without magnon excitations,
the onset temperature is still much lower than charge gap in
the presence of lower-energy neutral excitations.

Although the neutral gap and charge gap are close in con-
ventional FQH states since the composite fermions are very
weakly coupled (while strongly coupled in FCI) [72], there
also exist FQH states with quite small neutral gap [73] or
even gapless neutral excitation in nematic FQH states [74–
78]. Since the study of thermodynamic response in such sys-
tems is limited, it would be interesting to numerically study
the interplay of thermal fluctuations and neutral excitations.

We also provide experimental signatures to directly probe
these finite momentum roton excitations, as an unique feature
in FQAH systems. Moreover, we notice quantum geometry
has been studied to be closely related to the critical tempera-
ture of superconductors [79–83], and it would be interesting
to study the interplay of thermal fluctuations and quantum ge-
ometry in FCIs.
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SUPPLEMENTAL MATERIALS FOR

THERMODYNAMIC RESPONSE AND NEUTRAL EXCITATIONS IN INTEGER AND FRACTIONAL QUANTUM
ANOMALOUS HALL STATES EMERGING FROM CORRELATED FLAT BANDS

In this Supplemental Materials, we introduce the ED calculations with more spectra data, Brillioun zone for different clusters
with torus geometry, and the structure factor of density correlations for ν = 1/3 FQAH state in section I. In section II, we
show the structure factor of density correlations for ν = 1/3 FQAH state from DMRG simulations. In section III, we briefly
summarize the XTRG method.

Section I: ED results of ν = 1/3 FQAH state

The exact diaognalization method is performed using charge U(1) and translational symmetries. Using the charge U(1)
symmetry, we can keep the number of electrons fit at certain filling. Using the translational symmetry, we can further reduce
the dimension of Hamiltonian matrix. For example, for ν = 1/3 and 6 × 4 × 2 system size, the largest block dimension of
Hamiltonian matrix is 15724214. It can be easy to get the ground state using Lanczos method with sparse matrix storage and
parallel computing. For calculating the low-energy excited states, we can let each new Lanczos vector is explicitly orthogonalized
with respect to all previous ground-state and excited state wavefunctions.

The spectra of different size at V1 = 4 are shown in Fig.S1(a), with spectra flow shown in Fig.S1(b). The 3-fold degenerate
ground state are at different momenta for N = 24, 30, 48 while they are at the same point for N = 36, which supports the
FQAH ground state.

FIG. S1. (a) The energy spectra at V1 = 4. (b) Energy spectra flow with twisted boundary conditions.

We have shown the ν = 1/3 energy spectra under different system sizes with V1 = 4, and here we show the spectra of
different system sizes changing with V1 in Fig.S2. It is in agreement with previous studies[8] that there is no phase transition in
the large-V1 region, and the unique feature of FQAH ground-state manifold is again exhibited that only in 3× 6× 2 torus do the
ground states appear in the same momentum sector. To characterized the topological ground state of FQAH, in ED calculation,
we also employ twisted boundary condition (TBC) to calculate the Chern number of (quasi)degenerate groundstates using the
following formula [84–86],

C =
i

2π

∫ ∫
dϕ1dϕ2

[
∂

∂ϕ1
⟨Ω(ϕ1, ϕ2)|

∂

∂ϕ2
|Ω(ϕ1, ϕ2)⟩ −

∂

∂ϕ2
⟨Ω(ϕ1, ϕ2)|

∂

∂ϕ1
|Ω(ϕ1, ϕ2)⟩

]
, (S1)

where ϕ1 ∈ [0, 2π) and ϕ2 ∈ [0, 2π) are the twisted phases along a1 and a2 directions, respectively. In order to use the
translational symmetry under TBC, These phases are evenly distributed across various bonds. The total Chern number of three
(quasi)degenerate groundstates is equal to 1 no matter what the system size is. Therefore, we have numerically confirm the
FQAH state at ν = 1/3 again.

Except for the energy spectrum, we also calculated the density-density correlation function in the reciprocal space. For the
ν = 1/3 FQAH state, there are some broad peaks at the edge of Brillouin zone as shown in Fig.S3. The result of Ns = 6×3×2
torus is similar to the XTRG and DMRG results with 3 × 12 × 2 cylinder. The lack of C4 symmetry in S(q) is due to the
geometry. When we change the torus to be 6× 4× 2, as shown in Fig.S3, it is C4-symmetric, while the locations of broad peak
shift along the boundary of Brillioun Zone. However, the common feature that the broad peaks are are the boundary with finite
momentum will not change.



9

FIG. S2. (a-c) The energy spectra with V1 changing for 4 × 3 × 2, 6 × 3 × 2, 6 × 4 × 2 torus respectively. (d-f) Corresponding momentum
points in the Brillioun zone of unit cells. The energy spectra with red momentum sectors are calculated using Lanczos method, while the black
ones can got by mirror or C4 rotation symmetry.

FIG. S3. Structure factors of (a) N = 6× 3× 2 and N = 6× 4× 2 respectively. The broad peaks are always at the boundary of the Brillioun
zone.

Section II: DMRG results of ν = 1/3 structure factor

In this section, we also show the ground-state structure factors simulated using DMRG. The structure factor of N = 3× 12×
cylinder with V1 = 4 is shown in Fig.S4(a), which is the same geometry as the XTRG results in the main text. Here, the lack of
C4 symmetry is due to the odd Ny , which is similar to the 6 × 3 × 2 ED result. We also show the Ny = 3 results with longer
Nx = 24 in Fig.S4(b), and we plot the change of S(π, 0) versus Nx in Fig.S4(c) and find it almost constant.

When we change the geometry to N = 4×18×2 as shown in Fig.S4(d), the structure factor is similar with the N = 6×4×2
ED result, and the broad peaks shift towards the corner of the Brillion zone along the boundary. Again, the common feature is
that the broad peaks are with finite momentum.

Section III: Exponential Tensor Renormalization Group Method

The main idea of exponential tensor renormalization group (XTRG) [59] method is, to first construct the initial high-
temperature density operator ρ̂0 ≡ ρ̂(τ) = e−τH with τ being an exponentially small inverse temperature, which can be
obtained with ease via Trotter-Suzuki decomposition or series-expansion methods. Subsequently, we evolve the thermal state
exponentially by squaring the density operator iteratively, i.e., ρ̂n · ρ̂n ≡ ρ̂(2nτ) · ρ̂(2nτ) → ρ̂n+1. Following this exponential
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FIG. S4. DMRG results of structure factors with ν = 1/3 filling and V1 = 4. (a) N = 3× 12× 2 cylinder. (b) N = 3× 24× 2 cylinder. (c)
S(π, 0) with Ny = 3 and changing Nx. (d) N = 4× 18× 2 cylinder.

evolution scheme, one can significantly reduce the imaginary-time evolution as well as truncation steps, and thus can obtain
highly accurate low-T data in greatly improved efficiencies.

In XTRG simulations, we measure an observable Ô:

⟨Ô⟩ (T ) =
Tr(ρ̂(β2 ) Ô ρ̂(β2 ))

Tr(ρ̂(β2 )ρ̂(
β
2 ))

(S2)

where we write the operator Ô as an MPO and inverse temperature β = 1/T .
When adapting XTRG to fermion systems, one should take care of the fermionic sign of exchanging two electrons. In this

work, we are working on the many-body basis |n1 n2 · · ·nN ⟩ ≡ (c†N )nN · · · (c†2)n2(c†1)
n1 |Ω⟩, where ni ∈ {0, 1} is the number of

electrons at the site i and |Ω⟩ is the vacuum state. Generically in this basis, the one-body operator c†i cj (assuming j < i) requires
an sign

∏i
l=j+1(−1)nl , in addition to transform the state |n1 · · · nj · · · ni · · · nN ⟩ to the state |n1 · · · nj−1 · · · ni+1 · · · nN ⟩.


	Thermodynamic Response and Neutral Excitations in Integer and Fractional Quantum Anomalous Hall States Emerging from Correlated Flat Bands
	Abstract
	Acknowledgments
	References
	Supplemental Materials for [0.5em] THERMODYNAMIC RESPONSE AND NEUTRAL EXCITATIONS IN INTEGER AND FRACTIONAL QUANTUM ANOMALOUS HALL STATES EMERGING FROM CORRELATED FLAT BANDS 
	Section I: ED results of =1/3 FQAH state
	Section II: DMRG results of =1/3 structure factor
	Section III: Exponential Tensor Renormalization Group Method



