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We characterize universal features of the sample-to-sample fluctuations of global geometrical ob-
servables, such as the area, width, length, and center-of-mass position, in random growing planar
clusters. Our examples are taken from simulations of both continuous and discrete models of ki-
netically rough interfaces, including several universality classes, such as Kardar-Parisi-Zhang. We
mostly focus on the scaling behavior with time of the sample-to-sample deviation for those global
magnitudes, but we have also characterized their histograms and correlations.

I. INTRODUCTION

Characterizing the statistical properties of rough in-
terfaces away from equilibrium is one of the main tasks
in a variety of scientific contexts, such as the growth of
solid phases in contact with a vapour [1], liquid-crystal
turbulence [2], the shapes of isochrone curves on rough
terrains [3, 4], the growth of bacterial colonies or cell ag-
gregates [5], or even the shape of a city skyline [6]. One
of the most relevant insights was provided by the Family-
Vicsek (FV) dynamic scaling Ansatz [7], which proposed
that the width, or roughness, of a rough interface grows
with time t as a power-law, W ∼ tβ , where β is called
the growth exponent, up to a saturation tsat ∼ Lz, where
z is called the dynamical exponent and L is the lateral
size of the system. The FV Ansatz suggests the exis-
tence of a well-defined correlation length, ξ ∼ t1/z, such
that the roughness at length-scales ℓ ≪ ξ will always be
saturated, w(ℓ) ∼ ℓα, where α is the roughness exponent,
the three exponents being related as α = βz within the
FV formalism [1, 8].

The values of the scaling exponents β and z are typi-
cal hallmarks of the kinetic roughening universality class.
For example, for one-dimensional (1D) interfaces, β =
1/3 and z = 3/2 in the Kardar-Parisi-Zhang (KPZ) uni-
versality class [1, 8, 9], which is associated with growth
along the local normal direction combined with surface
tension effects and time-dependent noise. Interestingly,
the KPZ universality class is able to fix also the one-point
and the two-point (correlation) statistics of the local in-
terface or front fluctuations, which are associated with
Airy processes of different types, depending on whether
the overall symmetry of the growth system is e.g. flat or
circular [2, 8, 10, 11]. Additionally, the statistical proper-
ties of global system quantities like the (squared) rough-
ness W 2 has been characterized in detail for globally flat
KPZ interfaces (the case for e.g. periodic boundary con-
ditions) [8, 12, 13]. Notably, an equivalent result seems
to be lacking for the case of growing two-dimensional
clusters, which in general remains somewhat less under-
stood, in spite of its large interest for diverse contexts
from epitaxial growth [14] to cellular aggregates [15]. For

instance, as clarified in Ref. [16], the additional degrees
of freedom implied by the dynamics of 2D clusters (like
the evolution of their center of mass) has sometimes even
led to incorrect identification of exponent values and uni-
versality classes for their corresponding 1D fronts. More
recently [17], suitable characterizations of the cluster dy-
namics has been shown to extract correct exponent values
and even the detailed time evolution for certain measures
of 2D clusters under growth or dissolution conditions.

The aim of the present article is to characterize global
properties defined in each case as a whole for 2D growing
clusters. Through a scaling analysis, non-trivial predic-
tions, like scaling exponent values, will be derived from
general considerations on the sample-to-sample fluctua-
tions of such properties. Specifically, we will consider the
average radius R, the total area A, the total widthW , the
(suitably regularized) length L, and the center-of-mass
displacement, Rcm. As we will show, the expected values
of these magnitudes and their deviations grow as power
laws of time, with exponents which depend on the values
of β and z. Previous attempts to predict the sample-to-
sample fluctuations of global variables have been made
in the past. For example, the center-of-mass displace-
ment was predicted to grow as t1/6 in KPZ clusters [17],
as we here confirm for some additional examples. More-
over, we will also describe the correlation between these
global magnitudes and their full histograms, which in
some cases is Gaussian, and for R2

cm we will show that it
corresponds to a χ2-distribution. The case of the squared
global roughness W 2, which has been extensively studied
for globally flat interfaces [8, 12, 13], is more involved, but
seems to share some similarities with its flat counterpart.

We will apply our scaling estimates to simulations
of growing planar clusters generated by different phys-
ical systems, whose interfaces (boundaries) are known to
follow FV scaling. We will start by discussing neigh-
borhoods (balls) in the first-passage percolation (FPP)
model, whose boundaries present 1D KPZ universality
in the asymptotic regime [4, 18] if discrete lattice effects
are suitably taken into account [20]. Typical FPP balls
are shown in Fig. 1 (a) and (b), depending on the level
of disorder. The continuous analogue of FPP is called
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the random metric problem, where we consider isochrone
curves on a two-dimensional manifold with a random
(disordered) metric field which is flat on average, with
only short-range correlations [3]. Typical isochrones are
shown in Fig. 1 (c). Interestingly, different types of one-
point and two-point correlation functions are obtained
depending on whether the underlying manifold is a plane,
a cone or a cylinder [21], although all these cases belong
to the 1D KPZ universality class.

Additional interesting examples of rough interfaces
with overall circular geometry are provided by the fronts
of growing bacterial colonies [22], for which the most rel-
evant physical parameters are the motility and the nutri-
ent concentration. For many values of these parameters
1D KPZ scaling can be observed, but other behaviors
are also possible. Specifically, for low motility and low
nutrient concentration, shadowing effects —whereby the
growth rate at each interface point depends on the angle
under which the exterior of the cluster can be seen [5]—
dominate the interfacial dynamics. In Fig. 1 (d) we show
a typical time evolution for an interface described by this
shadowing model.

This article is organized as follows. In Sec. II we dis-
cuss our theoretical framework in order to determine the
scaling exponents for global magnitudes of clusters fol-
lowing FV scaling. Our predictions are then tested on
FPP clusters, random metrics isochrones, and bacterial
colonies in Sec. III. Additional results for the histograms
and the correlations between magnitudes, are reported in
Sec. IV. The article ends with a summary of our conclu-
sions and some proposals for further work.

II. FLUCTUATIONS OF GLOBAL
GEOMETRICAL OBSERVABLES

Let us consider a growing planar cluster whose bound-
ary is described by a polar curve advancing in time,
r(θ, t), subject to a stochastic evolution law which we
may assume (along with the initial condition) to be
isotropic. Let us also consider a local observable u which
is a function of r, of r′ ≡ dr/dθ, and of θ itself, which
we will denote by u(r(θ), r′(θ), θ) or just u(θ) for short
when it is convenient. Its two-point correlation function
can be defined as

Cu(θ̂) ≡
〈
u(θ)u(θ + θ̂)

〉
− ⟨u(θ)⟩

〈
u(θ + θ̂)

〉
, (1)

where we will denote the angular distance between the

two points by θ̂. In the asymptotic regime, we assume
the following scaling form for the correlation function,

Cu(θ̂) ≈ Aut
2ϕug2(But

1−ζ θ̂), (2)

where ϕu is the corresponding scaling exponent, Au and
Bu are constants, ζ = 1/z is the inverse of the dynamical
exponent, and g2(x) is a continuous function such that

(a) (b)

(c) (d)

Figure 1. Typical profiles for the different physical exam-
ples considered in this article (see definitions in Sec. III).
In all cases, different colors represent different growth times.
(a) FPP ball with dc = 1; (b) FPP ball with dc = 20; (c)
isochrone curves in the random metrics problem; (d) consec-
utive snapshots of the time evolution of the interface in the
shadowing model of bacterial colony growth.

g(x) ∼ 1 for x ≪ 1, and g(x) → 0 sufficiently fast for
x → ∞.
The reason behind the form of Eq. (2) is as follows.

Assuming that the expected value of the radius grows as
⟨r⟩ ∼ t and that the correlation length grows as ξ ∼ tζ ,
as it is the case in the Family-Vicsek Ansatz [7], then
the angular aperture of each correlated patch along the
front will be δθ0 ∼ tζ−1. Then, the argument of the g2(x)
function should be δθ/δθ0, as shown in Eq. (2).

As a first example, let us consider a cluster family cor-
responding to the KPZ universality class [9] and the local
observable u = r. In that case, we have ϕu = β = 1/3,

and Cr(θ̂) ∼ t2βg2(Brt
1−ζ θ̂), where ζ = 1/z = 2/3. As-

suming that our cluster ensemble possesses a well-defined
correlation length, it seems appropriate to assume that
all scaling observables will present a similar structure in
their correlation functions.

Let us now consider the statistical distribution of the
values of a global measure of geometric origin, such as the
area or the length, which can be written as

U =

∫ 2π

0

dθ u(r, r′, θ), (3)

This work is devoted to evaluating the sample-to-sample
fluctuations of any global measure U , which will be quan-
tified through their deviation, ∆U , or their variance,
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Var(U) ≡ (∆U)2 ≡
〈
U2

〉
− ⟨U⟩2 . (4)

The first two moments can be written as

⟨U⟩ =
∫ 2π

0

dθ ⟨u(θ)⟩ ,

〈
U2

〉
=

∫ 2π

0

dθ

∫ 2π

0

dθ′ ⟨u(θ)u(θ′)⟩ , (5)

thus allowing us to use a more compact notation for the
variance of U ,

Var(U) =

∫
dθdθ′ ⟨u(θ)u(θ′)⟩ − ⟨u(θ)⟩ ⟨u(θ′)⟩

=

∫
dθdθ′ Cu(θ − θ′), (6)

where Cu(θ− θ′) is again the correlation function for the
observable u, defined in Eq. (1). Thus, we can compute
the variance of U :

Var(U) =

∫
dθdθ′ Cu(θ̂) = 2π

∫ 2π

0

dθ̂ Cu(θ̂)

= 2πAut
2ϕu

∫ 2π

0

dθ̂ g2(But
1−ζ θ̂)

≈ 2πAu

Bu
t2ϕu+ζ−1

∫ ∞

0

dx g2(x). (7)

Assuming that g2(x) decays fast enough for large values
of its argument, the last integral is finite and does not
affect the scaling behavior, thus leading to an estimate
for the sample-to-sample deviation of U ,

∆U ∼ tϕu+(ζ−1)/2. (8)

This expression can be motivated in a heuristic way as
follows. The variance of the average of N independent
identically distributed (i.i.d.) random variables {ui} is
Var(ū) = Var(u)/N . Yet, if these random variables are
strongly correlated among themselves, with NP inde-
pendent groups, then it is straightforward to prove that
Var(ū) = Var(u)/NP . If the system radius grows approx-
imately as t and the correlation length grows as tζ , then
each profile possesses nP ∼ t1−ζ independent patches.
Therefore, the variance of a global variable U must be
given by

∆U ∼ ∆u
√
nP

∼ tϕu+(ζ−1)/2, (9)

which coincides with the result shown in Eq. (8).

The rest of this section is devoted to the theoretical
analysis of the sample-to-sample fluctuations of several
global geometrical observables, such as the (average) ra-
dius, area, width, center of mass position, and interfacial
length.

A. Radius

As it has been discussed above, the sample-to-sample
fluctuations of the average radius of the cluster,

R =

∫ 2π

0

dθ
r

2π
, (10)

can be obtained by applying our formalism to the ob-
servable u(r, r′, θ) = r, which has the associated scaling
exponent ϕr = β, thus yielding the prediction ∆R ∼
tβ+(ζ−1)/2. For example, in the 1D KPZ case, ∆R ∼ t1/6,
which has been numerically verified for balls in random
metrics [3].

B. Area

Let us now consider the cluster area, which is given by

A =

∫ 2π

0

dθ
r2

2
. (11)

Within our formalism, its sample-to-sample fluctuations
can be obtained choosing u(r, r′, θ) = r2. The associated
scaling exponent can be found through classical uncer-
tainty propagation, ∆(r2) ∼ r∆r ∼ t1+β . Thus, ∆A ∼
tβ+(ζ+1)/2. For 1D KPZ, our prediction is ∆A ∼ t7/6.

C. Width

In our next example we will consider the sample-to-
sample fluctuations of the interface width, defined as

W 2 =

∫ 2π

0

dθ
(r −R)2

2π
, (12)

so that the fluctuations in W 2 can be obtained using our
rule. The integrand (r − R)2 has fluctuations of order
t2β . Thus, its variance scales as t4β , and we have

Var(W 2) ∼ t4β−1+ζ , (13)

which yields ∆(W 2) ∼ t2β−1/2+ζ/2. Yet, we have
∆(W 2) ∼ W∆W and W ∼ tβ , leading us to predict

∆W ∼ tβ−1/2+ζ/2. (14)

For example, in 1D KPZ, we have ∆W ∼ t1/6.
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D. Center-of-mass position

In absence of fluctuations, the center-of-mass (CM) of
a growing cluster starting out as a tiny circle must remain
at the origin. But, even though the statistical properties
of the cluster are isotropic, each sample presents unbal-
ances which will give rise to fluctuations in the CM po-
sition [16, 17],

Xcm =
1

A

∫ 2π

0

dθ
r3

2
cos(θ),

Ycm =
1

A

∫ 2π

0

dθ
r3

2
sin(θ). (15)

Each of them presents an expectation value of zero, and a
non-zero variance, which shows up in the expected value
of the squared displacement,

R2
cm = X2

cm + Y 2
cm ≥ 0. (16)

Let us evaluate the sample-to-sample fluctuations of the
following associated magnitude, which neglects the ex-
plicit angular dependence,

U =

∫ 2π

0

dθ
r3

2
, (17)

and analyzing the local fluctuations of u(r, r′, θ) = r3/2,
i.e. ∆u ∼ t2+β . Thus, we have Var(U) ∼ t4+2β+ζ−1.
Now, we may guess that the scaling behavior of U is the
same as that for XcmA or YcmA. Thus, employing the
usual uncertainty propagation techniques,

∆Xcm ≈ ∆U

A
+ U

∆A

A2
. (18)

Both terms scale in the same way, as tβ+(1−ζ)/2. Thus,

R2
cm ∼ t2β+ζ−1. (19)

Thus, the center of mass fluctuates with the same expo-
nent as the average radius. For 1D KPZ, this leads to
Rcm ∼ t1/6 [17].

E. Length

The length of a cluster, L, is a different type of ob-
servable. First of all, its measure may depend on the
UV-cutoff if the interface presents a non-trivial fractal
nature. Yet, we will assume that the interface is always
smooth at the microscopic level and that the total length
increases linearly in time, L ∼ t. If the (radial) slopes
are small, i.e. r′/r ≪ 1, we may write,

L =

∫ 2π

0

dθ
√
r2 + r′2 =

∫ 2π

0

dθ r

√
1 +

(
r′

r

)2

≈
∫ 2π

0

dθ

(
r +

1

2

r′2

r

)
, (20)

which forces us to consider the fluctuations of the local
derivative of the radius with respect to the angle, r′(θ).
In order to do that, let us consider a small angle differ-
ence, δθ, and evaluate

r′ ≈ r(θ + δθ)− r(θ)

δθ
, (21)

so we have

Var(r′) =
〈
r′2

〉
− ⟨r′⟩2 =

2

δθ2
[Var(r)− Cr(δθ)]

=
2t2β

δθ2
[
g2(0)− g2(t

1−ζδθ)
]

≈− 2g′2(0)
t2β+1−ζ

δθ
− g′′2 (0)t

2(β+1−ζ). (22)

The first term in Eq. (22) diverges as δθ → 0+ unless we
can ensure g′2(0) = 0, which seems a reasonable assump-
tion within our framework. In that case, the second term
provides the complete scaling,

∆(r′) ∼ tβ−ζ+1, (23)

which becomes ∆(r′) ∼ t2/3 in the 1D KPZ case. Indeed,
we have r′/r ∼ t−1/3, so this ratio becomes negliglibly
small for large times, as expected.

Let us provide an intuitive explanation for this scaling
form. Once we have ensured that the interface is smooth,
we may estimate the derivative r′ by assuming that the
radii will span the full range of W within each correlated
patch of size ξ. Thus, we expect ∆(r′) ∼ ∆r/δθ0 ∼
W/(ξ/R) ∼ tβ−ζ+1.
The scaling form for the slopes allows us to evaluate

the sample-to-sample fluctuations of the cluster length,
employing Eq. (8). Indeed,

Var(L) ∼ t2(β−ζ+1)tζ−1 = t2β−ζ+1, (24)

which for 1D KPZ is just ∆L ∼ t1/2.

As a curiosity, we may define the length-to-radius ratio
of any cluster family, or the generalized value of 2π̂. Of
course, this 2π̂ value may in general depend on the mea-
surement scale if the interface is fractal, but assuming a
smooth behavior below the UV-cutoff, we may describe
the sample-to-sample fluctuations of the π̂ value for the
1D KPZ case,
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∆(2π̂) ∼ ∆L

R
+ L

∆R

R2
, (25)

The first term scales as tβ−ζ/2−1/2, while the second one
scales as tβ+ζ/2−3/2. The first term will be dominant
whenever ζ ≤ 1, which is the case in all the considered
universality classes. Therefore, we may conjecture that

∆(2π̂) ∼ tβ−ζ/2−1/2, (26)

which for 1D KPZ leads to ∆(2π̂) ∼ t−1/2. Therefore,
we see that the length-to-radius ratio of different samples
will converge to a common value in the long run.

F. Summary of scaling predictions

The theoretical predictions from the scaling analysis
discussed in this section are summarized in Table I, which
shows the scaling exponent with time for the sample-
to-sample fluctuations of each observable; for the sake
of reference, the exponent values for the 1D KPZ are
collected in the last column.

Observable Average Fluctuations 1D KPZ
R 1 β + (ζ − 1)/2 1/6
A 2 β + (ζ + 1)/2 7/6
W β β + (ζ − 1)/2 1/6
Rcm β + (ζ − 1)/2 − 1/6
L 1 β − (ζ − 1)/2 1/2

Table I. Scaling behavior for the sample-to-sample average
and deviation of different global geometrical observables, and
expected numerical values of the new exponents for the 1D
KPZ universality class, β = 1/3 and ζ = 2/3.

Thus, the following predictions can be made:

• The scaling exponent values for the sample-to-
sample variation of the average radius, the width,
and the CM displacement coincide.

• The scaling exponent for the sample-to-sample
variation of the area equals the previous exponent
plus one.

• We may obtain both the growth and the dynam-
ical exponents using (e.g.) the fluctuations of the
average radius and the interface length.

III. NUMERICAL RESULTS

In this section we will compare our theoretical predic-
tions, collected in Table I, with numerical simulations of
different models which are known to follow FV scaling.
We will discuss first-passage percolation (FPP), random

102

103

104

105

106
(a) Slope 2

Slope 7/6

100

102 103

(b)
Slope 1/6

A
re

a

〈A〉
∆A

C
en

te
r

of
M

as
s

Time

Rcm

Figure 2. Deviation of some global magnitudes for FPP
isochrones with dc = 1: average radius, area, and center-
of-mass deviation. The straight lines in each panel represent
the corresponding theoretical expectation for 1D KPZ behav-
ior, see Table I.
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Figure 3. Deviation of some global magnitudes for FPP
isochrones with dc = 20: average radius, area, and center-
of-mass deviation. The straight lines in each panel represent
the corresponding theoretical expectation for 1D KPZ behav-
ior, see Table I.

metrics, and shadowing models. Besides these models,
we have also performed simulations on two flavors of the
random deposition model [1] for circular clusters, which
are shown in Appendix A.

A. First-passage percolation

Our first example will be first-passage percolation
(FPP) on a square L× L lattice, which is defined as fol-
lows. Each lattice link k has an associated crossing-time,
{tk}, which are independently identically distributed
(i.i.d.) random variables extracted from a certain proba-
bility distribution, with cumulative probability function
F (t) such that F (0) = 0. Employing Dijkstra’s algo-
rithm [23] we find the minimal arrival time at every ver-
tex i starting from the lattice center [4], {Ti}. Then
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we determine the ball of radius R as the set of vertices
for which Ti ≤ R. We have chosen uniform distribu-
tions for the crossing-times with mean µ and deviation σ.
The balls are then characterized by the crossover length
dc ≡ µ2/(3σ2). In Fig. 1 (a) and (b) we can see typical
profiles using dc ≈ 1 and dc = 20. Notice that the aver-
age shape is nearly circular in the first case, and similar
to a diamond in the second. Yet, the fluctuations are
known to correspond to KPZ for all values of dc [19, 20].

We have run 104 simulations on L = 2401 FPP lattices,
using uniform time distributions with µ = 5 and different
dc. The time evolution of the average and deviation of
the area and the CM displacement are shown in Fig. 2 for
dc = 1.04 and in Fig. 3 for dc = 20. Notice that for this
discrete model in particular, the aforementioned global
magnitudes are easier to obtain, because they are mea-
sured in the bulk. The boundaries of the balls, which are
called isochrone curves or isochrones, present some sub-
tle points [20] and have been left out from our present
numerical study. The solid black lines show the theoreti-
cal predictions, extracted from the last column of Table I
(1D KPZ behavior), and show good agreement with the
simulation data.

B. Random metrics

The FPP problem is a discrete analogue of the more
general random metrics problem [3]. In the latter, we
consider a random two-dimensional manifold, flat in av-
erage, whose metric tensor presents only short-distance
correlations, and obtain the isochrone curves by integrat-
ing Huygens’ equation,

∂tr⃗ = n⃗g(r⃗), (27)

where n⃗g(r⃗) denotes the local normal to the isochrone at
position r⃗, according to the metric tensor g. Both the
isochrones and the times-of-arrival present very accurate
1D KPZ scaling from the beginning [3].

We have performed 1280 simulations of Huygens’ equa-
tion, Eq. (27). Each simulation starts out with a very
small ball, with initial radius 0.05, and propagates it
through a random metric field with uniformly distributed
eigenvalues λ ∈ [1/20, 1], using a time-step ∆t = 5×10−3.
We have obtained the full set of global observables: av-
erage radius, area, width, CM displacement, and length,
whose time evolutions are shown in Fig. 4, along with
the theoretical predictions extracted from Table I. No-
tice that, in all the considered cases, the theoretical lines
accurately describe the simulation data.

Furthermore, we have checked the length-to-radius ra-
tio, i.e. the value of 2π̂, and the results are shown in
Fig. 5. Indeed, the theoretical predictions are once more
correct, with the ratio converging to a fixed value whose
fluctuations decay as t−1/2, as predicted by Eq. (26).
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Figure 4. Expected values and deviations for the global mag-
nitudes for random-metric isochrones: (a) Radius, (b) area,
(c) width, (d) center-of-mass displacement, and (e) length.
The straight lines in each panel represent the corresponding
theoretical expectation for 1D KPZ behavior, see Table I.

C. Shadowing model

Motivated by the morphological instabilities of the
fronts of growing planar bacterial colonies, shadowing ef-
fects may be introduced phenomenologically into the ra-
dial KPZ equation, such that each point at the interface
moves along the normal direction with a velocity which is
proportional to the local aperture angle, i.e. the fraction
of rays emanating from the point which do not intersect
the interface [5, 24]. The resulting continuum model is
given by the following equation,

∂tr⃗ = (A0 +A1K(r⃗) +AaΘa(r⃗) +Anη) n⃗, (28)

where r⃗ is any interface point, n⃗ is the local exterior
normal, K(r⃗) denotes the curvature of the interface at
that point, Θa(r⃗) is the local aperture angle, and η is a
zero-average and unit variance, Gaussian, uncorrelated
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Figure 5. Expected values and variances of the length-to-
radius ratio, or 2π̂, for random-metric isochrones, along with
the comparison to the theoretical prediction, Eq. (26), for 1D
KPZ behavior.
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nitudes for the shadowing model: (a) Radius; (b) Area; (c)
Width; (d) Center-of-mass displacement; (e) Length.

space-time noise. Furthermore, A0, A1, Aa, and An are
positive parameters which quantify, respectively, the rel-
ative strengths of the average growth velocity of a planar
front, surface tension, the dependence on the aperture
angle, and fluctuations. For a convex smooth shape, the
aperture angle is uniformly equal to π. The subsequent
dynamics tends to make peaks grow faster than valleys,
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Figure 7. Probability density for the standardized global mag-
nitudes, Eq. (29), considered for the random metrics system;
(a) Radius, area and length, along with the unit Gaussian;
(b) Squared width, along with an exponential decay, as pre-
dicted in other cases in the literature [8, 12]; (c) Squared CM
displacement, R2

cm, along with the χ2-distribution for k = 2
degrees of freedom (i.e. an exponential decay).

thus giving rise to morphological instabilities. Indeed, in
the long run the typical cluster is composed of a set of
correlated lobes separated by deep crevices whose angu-
lar distance is nearly constant in time. An example can
be seen in Fig. 1 (d).

We have performed 500 simulations of Eq. (28) using
the same numerical scheme as in Ref. [5], for initial ra-
dius 1, A0 = 0, A1 = 0.1, Aa = 1, An = 0.1, and
time-step ∆t = 10−4. We have measured the full set
of global magnitudes: average radius, area, width, CM
displacement, and length. The time evolution of their
average and deviation can be found in Fig. 6. Previous
work [5, 24] was able to unambiguously rule out KPZ
scaling for this model, even finding traces of nonuniver-
sality both in experiments and in simulations, and very
precise values of the critical exponents could not be as-
certained for the FV behavior that could nevertheless be
confirmed. Yet, our present global measurements agree
with the scaling behavior predicted in Sec. II, compatible
with (non-KPZ) values for the scaling exponents β ≈ 5/6
and ζ = 1/z ≈ 1/3, implying α = βz ≈ 5/2.
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IV. OTHER STATISTICAL PROPERTIES

A. Histograms

We may also provide some predictions for the full his-
tograms of some of the global observables considered. In-
deed, if the number of patches nP is large, the average
radius, the area, and the length can be considered to be
the sum or average of a series of i.i.d. random variables.
The central limit theorem then predicts that, under very
broad circumstances, the probability distribution for the
global observables must be Gaussian. In the random met-
rics case, we have considered the full set of values of the
average radius, area, and length, for a given time t, sub-
stracted their (time-dependent) average and divided by
their (time-dependent) deviation so that their average
becomes zero and their variance becomes one, i.e., we
have defined

ρi =
Ui − ⟨U(t)⟩

σU (t)
. (29)

Then we have plotted the histograms of the full set of
values ρi in Fig. 7 (a), along with the unit Gaussian,
showing their correspondence. The prediction is specially
good for the length, with some deviation for the radius
and area.

In Fig. 7 (b) we show the histogram for the ρi values
corresponding to the square of the global width, which
need not be Gaussian. In fact, results associated to the
KPZ class in band geometry after saturation show a very
skewed histogram with a large-devations exponential de-
cay [8], which can be accounted for by considering the
behavior of random walks [12, 13]. Our case, which cor-
responds to circular geometry and is not saturated, also
shows a large-deviation exponential decay, as we can see
in Fig. 7 (b).

Furthermore, Figure 7 (c) shows the histogram for the
squared CM displacements, R2

cm, merely normalized to
have variance one. In this case, the theoretical prediction
is not Gaussian. Indeed, R2

cm = X2
cm + Y 2

cm, where Xcm

and Ycm can be in turn considered to be Gaussian. There-
fore, the sum of squares must follow a χ2-distribution for
two degrees of freedom, which is an exponential distribu-
tion as we can indeed observe in the plot.

B. Correlations between global magnitudes

It is interesting to consider whether the sample-
to-sample fluctuations of different global magnitudes
present correlations. Indeed, it is natural to expect that
the fluctuations of the average radius and the area must
be strongly correlated, with a smaller (yet positive) cor-
relation between the CM displacement and the interface
width.
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Figure 8. Correlation coefficients, Eq. (30) between some pairs
global magnitudes as a function of time, for the random met-
rics system: width vs radius, area, length, and center-of-mass
displacement.

In order to obtain a theoretical prediction, we consider
any two global magnitudes U and V , and define their
correlation coefficient,

rUV ≡ ⟨UV ⟩ − ⟨U⟩ ⟨V ⟩
σUσV

. (30)

If we assume that the correlator between different mag-
nitudes behaves as [recall Eq. (2)]

Cuv(θ, θ
′) = Auvt

ϕa+ϕb g2(Buvt
1−ζ θ̂), (31)

then

⟨UV ⟩ − ⟨U⟩ ⟨V ⟩ =
∫

dθdθ′ Cuv(θ, θ
′)

∼2πAuv

Buv
tϕu+ϕv+ζ−1

∫ ∞

0

dx g2(x),

(32)

whose time dependence is the same as that for the prod-
uct σUσV , thus concluding that the correlation coeffi-
cients approach time-independent values. This is indeed
what we observe in Fig. 8, where we have considered the
correlation coefficients between the width and the other
four global observables in the random metrics simula-
tions. Notice that the curves for the average radius and
the area overlap almost perfectly, because the correlation
coefficient between them is close to one.

V. CONCLUSIONS

In this work we have presented a scaling approach to
the sample-to-sample fluctuations of global geometrical
observables measured on random planar clusters whose
fronts display statistical properties satisfying the Family-
Vicsek Ansatz. The chosen observables were the average
radius, the area, the width, the center-of-mass displace-
ment, and the length of the clusters. The sample-to-
sample deviations of these observables are thus predicted
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to present power-law dependences with time, with expo-
nents values that can be determined from the Family-
Vicsek exponents β (growth exponent) and z (dynamical
exponent).

We have tested our predictions against several differ-
ent growth systems: random deposition in two differ-
ent versions (see Appendix A), first-passage percolation
clusters and random metrics isochrones (both belonging
to the KPZ universality class), and shadowing dynamics
(which does not). In all the considered cases, the predic-
tions met the actual scaling found in the simulations.

We have also addressed the full histogram of the
sample-to-sample fluctuations of these global variables.
Some of them, such as the radius, area and length, are
seen to be Gaussian. However, and in analogy to the
case of KPZ growth in a band geometry [8, 12, 13],
the histogram of the width or roughness is not Gaus-
sian, and this remains beyond our present scaling argu-
ments. The center-of-mass displacement follows a χ2-
distribution with k = 2 degrees of freedom, as predicted.
Also, the sample-to-sample correlation coefficients be-
tween these magnitudes approach time-independent, lim-
iting values, also as predicted.

In principle, our work enables alternative characteri-
zations of the universality class in terms of exponent val-
ues, for rough interfaces with an overall, circular symme-
try, by employing sample-to-sample fluctuations of global
magnitudes associated to the clusters. Indeed, it is pos-
sible to obtain both the growth and the dynamical expo-
nents using the fluctuations in two complementary global
magnitudes, such as the average radius and the total
length. Methodologically, this may turn out to be ad-
vantageous in the analysis of e.g. experimental and/or
simulation data.
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Appendix A: Random deposition

The simplest growth model is, indeed, random depo-
sition (RD), which always yields β = 1/2 [1]. In a cir-

cular framework, we may consider two flavors of the RD
class (additional formulations are possible, see e.g. [25]
and related references), depending on the discretization
scheme and the treatment of the UV-cutoff. In what
we will call model RD-1, we set up a fixed angular dis-
cretization with an UV-cutoff ∆θ = 2π/N , where N is
the number of points. Now, the interface is described by

a set of N radial values, {ri}Ni=1, with ri = r(θi). At each
time-step, we allow each ri to grow independently of the
others. In practice, we are imposing that each wedge ∆θ
remains completely correlated. Therefore, ξ ∼ t, i.e. the
correlated patches grow as fast as the interface itself and
ζ = 1.

Model RD-2, on the other hand, includes a UV cutoff
for length instead of an angular one [3, 26, 27]. There-
fore, the length of the correlated patches remains time
independent, and ζ = 0. The differences between both
RD models can be seen in the profiles shown in Fig. 9.

The predictions for the sample-to-sample fluctuations
of global magnitudes vary for the two models. We dis-
card the cluster length, because our calculation assumed
that the interface was smooth enough at the cutoff scale,
which is not the case here. The remaining scaling ex-
ponents are shown in Table II, and have been measured
in the numerical simulations shown in Fig. 10. In our
simulations we have run 1000 samples with a growth ve-
locity v = 1, ∆t = 0.01, and unit adaptive UV-cutoff for
the RD-2 model. The largest discrepancy between the
theoretically expected exponents and those measured in
the simulations are found in model RD-2 for the devi-
ations of the average radius and for the CM deviation;
in both cases we expect a zero exponent value but we
measure 0.13 approximately, possibly due to limitations
in our longest simulation times. Other than this, the
predictions seem accurate.

(a) (b)

Figure 9. Profiles for the random deposition models discussed
in Appendix A: (a) Model RD-1 has a fixed angular cutoff;
(b) Model RD-2 has an adaptive cutoff, thus the number of
points along the interface grows witht time.
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Figure 10. Time evolution of the average and sample-to-sample deviation of global magnitudes from numerical simulations
of model RD-1 in panels (a1) to (d1), and of model RD-2 in panels (a2) to (d2). The straight lines in each panel represent
the corresponding theoretical expectation, see Table II. The largest deviations between the numerical data and our scaling
predictions are for the radial deviations [panel (a2)] and the CM displacement [panel (d2)] of the RD-2 model. In both cases
the expected exponent is zero, while the measured value is approximately 0.13.

Observable Scaling exponent RD-1 RD-2
∆R β + (ζ − 1)/2 1/2 0
∆A β + (ζ + 1)/2 3/2 1
∆W β + (ζ − 1)/2 1/2 0
Rcm β + (ζ − 1)/2 1/2 0

Table II. Scaling behavior of different geometric global observ-
ables for the RD-1 and RD-2 models. The growth exponent
β = 1/2 for both models, but ζ = 1 for RD-1 and ζ = 0 for
RD-2.
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R.K.P. Zia, Width distribution for random-walk inter-
faces, Phys. Rev. E 50, R639 (1994).

[13] T. Antal, M. Droz, G. Györgyi, and Z. Rácz, Roughness
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