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We formulate a Majorana mean-field theory for the extended JKΓ Kitaev model in a magnetic
Zeeman field of arbitrary direction, and apply it for studying spatially inhomogeneous states har-
boring vortices. This mean-field theory is exact in the pure Kitaev limit and captures the essential
physics throughout the Kitaev spin liquid phase. We determine the charge profile around vortices
and the corresponding quadrupole tensor. The quadrupole-quadrupole interaction between distant
vortices is shown to be either repulsive or attractive, depending on parameters. We predict that
electrically biased scanning probe tips enable the creation of vortices at preselected positions. Our
results open new perspectives for the electric manipulation of Ising anyons in Kitaev spin liquids.

INTRODUCTION

A hallmark of Kitaev spin liquids is the fractionaliza-
tion of spin-1/2 local moments into Majorana fermions
and a Z2 gauge field [1–9]. When time reversal symmetry
is broken by an external magnetic field, both types of ex-
citations become gapped, and vortices of the Z2 gauge
field bind Majorana zero modes that behave as non-
Abelian anyons. These properties can be demonstrated
in the exactly solvable Kitaev honeycomb model [1].
Since the observation that the bond-directional exchange
interactions of the pure Kitaev model are realized in
quasi-two-dimensional Mott insulators with strong spin-
orbit coupling [10], identifying signatures of fractional
excitations in Kitaev materials has become a major goal
of condensed matter physics [11–14]. Most notably, there
is evidence for a half-quantized thermal Hall conductance
in the candidate material α-RuCl3 at intermediate tem-
peratures and magnetic fields, but its interpretation in
terms of chiral Majorana edge modes remains controver-
sial [15–18]. This ambiguity calls for alternative exper-
imental probes that may help distinguish a Kitaev spin
liquid from a more conventional partially polarized phase
with topological magnons [19, 20].

A promising route to detect and manipulate the frac-
tional excitations of Kitaev spin liquids is to exploit their
nontrivial responses to electrical probes. Theoretical pro-
posals in this direction include electric dipole contribu-
tions to the subgap optical conductivity [21, 22], scan-
ning tunneling spectroscopy [23–27], interferometry in
electrical conductance [28, 29], and electric polarization
and orbital currents associated with localized excitations
[30, 31]. In fact, the charge polarization in Mott insu-
lators can be captured by an effective density operator
written in terms of spin correlations in the low-energy
sector [32, 33]. The effective density operator for Kitaev
materials was derived in Ref. [30] starting from the multi-
orbital Hubbard-Kanamori model in the ideal limit where
the dominant exchange path only generates the pure Ki-
taev interaction [10]. The electric field effects then work
both ways. On the one hand, the inhomogeneous spin
correlations around a Z2 vortex imply that vortices pro-

duce an intrinsic electric charge distribution. On the
other hand, vortices are attracted by electrostatic po-
tentials that locally modify exchange couplings, and this
effect can be used to trap and move anyons adiabatically
[30, 34].

In this work we generalize the theory of the electric
charge response in Ref. [30] to consider the generic spin
model for Kitaev materials [35, 36]. Our starting point is
the three-orbital Hubbard-Kanamori model which takes
into account sub-dominant hopping processes that, in ad-
dition to Kitaev (K) interactions, also generate Heisen-
berg (J) and off-diagonal (Γ) exchange interactions. Us-
ing perturbation theory to leading order in the hop-
ping parameters, we derive an expression for the effective
charge density operator in the Mott insulating phase that
contains all two-spin terms allowed by symmetry. Since
the additional interactions spoil the integrability of the
pure Kitaev model, we compute spin correlations using
a Majorana mean-field theory. This type of approxima-
tion has been applied to map out the ground state phase
diagram and to compute response functions of the ex-
tended Kitaev model [37–46]. Here we generalize the
mean-field approach to treat position-dependent order
parameters in the case where translation symmetry is
broken by the presence of vortices in the Z2 flux con-
figuration. Including a Zeeman coupling, we show that
the spatial anisotropy of the charge distribution around
a vortex varies with the direction of the magnetic field
and can be quantified by the components of the elec-
tric quadrupole moment. We also discuss how a local
electrostatic potential renormalizes the couplings in the
extended Kitaev model and gives rise to an effective at-
tractive potential for vortices. Remarkably, the effect is
stronger in the presence of non-Kitaev interactions, and
we find that it is possible to close the vortex gap by means
of electric modulation of the local spin interactions.
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RESULTS

Mean-field theory for the extended Kitaev model

The local degrees of freedom of Kitaev materials are
transition metal ions with 4d5 or 5d5 electronic configura-
tion and strong spin-orbit coupling [4, 5]. In the presence
of the crystal field of an octahedral ligand cage, this con-
figuration is equivalent to a single hole in a t2g orbital.
Starting from a three-orbital Hubbard-Kanamori Hamil-
tonian on the honeycomb lattice, in the presence of a
Zeeman coupling to an external magnetic field h, we find
from a projection scheme that the low-energy effective
spin Hamiltonian is given by the extended Kitaev (aka
JKΓ) model [35],

H =
1

2

∑
ij

∑
αβ

σα
i J

αβ
ij σβ

j −
∑
i

h · σi, (1)

where σi denotes the vector of the pseudospin-1/2 Pauli
operators at site i. Moreover, i and j are nearest neigh-
bors, Jij is the bond-dependent exchange matrix, and the
indices α, β, γ ∈ {x, y, z} = {1, 2, 3} label both spin com-
ponents and bonds on the honeycomb lattice. We denote
by ⟨ij⟩γ a nearest-neighbor bond of type γ with site i be-
longing to sublattice A and j to sublattice B. For bond

⟨ij⟩z, we have J⟨ij⟩z =

 J Γ 0
Γ J 0
0 0 J +K

 . The exchange

matrices for x and y bonds follow by cyclic permutation
of the spin and bond indices. The ideal Kitaev case with
J = Γ = 0 corresponds to a single hopping path me-
diated by ligands on edge-sharing octahedra with ideal
90◦ bonds [10]. Numerical studies show that the Kitaev
spin liquid phase is stable in the regime |Γ|, |J | ≪ |K|
[35, 47–49]. For estimates of the hopping and exchange
parameters for α-RuCl3, see for instance Refs. [5, 50]. In
this material, one finds a ferromagnetic Kitaev coupling
(K < 0) and the leading perturbation to the idealized
Kitaev model is given by 0 < Γ < |K|.

We employ a mean-field approximation for calculat-
ing spin correlations in the extended Kitaev model and
to verify the stability of the spin liquid phase against
integrability-breaking perturbations. For J = Γ = h = 0,
the model can be solved exactly [1] using the Kitaev
representation σγ

i = ic0i c
γ
i in terms of four Majorana

fermions which obey (cµi )
† = cµi and {cµi , cνj } = 2δijδµν .

Throughout, we use indices µ, ν, ρ ∈ {0, 1, 2, 3} to de-
note all four fermion flavors, in contrast with α, β, γ ∈
{1, 2, 3}. Physical states must respect the local constraint
Di = c0i c

1
i c

2
i c

3
i = +1. The algebra of the spin operators

can be satisfied using different representations [51]. It is
convenient to write the Kitaev representation in terms
of the vector ci = (c0i , c

1
i , c

2
i , c

3
i )

T and the antisymmetric
matrices Nγ defined by

σγ
i =

i

2
cTi N

γci ≡
i

2

(
c0i c

γ
i − cγi c

0
i

)
. (2)

Instead of imposing Di = +1, we use the equivalent con-
straint [52]

cTi G
γci ≡ c0i c

γ
i − cγi c

0
i +

∑
αβ

ϵαβγcαi c
β
i = 0. (3)

Note that the constraints cTi G
γci = 0 for γ = x, y, z are

redundant. If the constraint is implemented exactly, it
suffices to impose it for a single value of γ. However,
when treating the constraints (3) numerically through
the corresponding Lagrange multipliers λγ

i [42, 44], it is
advantageous to enforce them in a symmetric manner
for all three values of γ. We thereby rewrite the spin
Hamiltonian as

H =
1

8

∑
ij

∑
αβ

icTi N
αci J

αβ
ij icTj N

βcj

−1

4

∑
iγ

(
2hγ icTi N

γci − λγ
i ic

T
i G

γci
)
. (4)

We decouple the quartic terms using two types of real-
valued mean-field parameters,

Uµν
ij = ⟨icµi c

ν
j ⟩ , Vµν

i = ⟨icµi c
ν
i ⟩ , (5)

which obey Uµν
ij = −Uνµ

ji and Vµν
i = 2iδµν−Vνµ

i . For the
exactly solvable Kitaev model, one finds that Uµν

ij is di-
agonal in the indices µ, ν. In particular, the components
Uγγ

ij are related to the static Z2 gauge field and take val-
ues Uγγ

ij = ±1 when i, j form a nearest-neighbor γ bond,
and Uγγ

ij = 0 otherwise. Thus, Uγγ
ij can be viewed as

an “order parameter” for the Kitaev spin liquid phase.
For comparison with the exact solution, we also define
Wp =

∏
⟨ij⟩γ∈p U

γγ
ij , where p is a hexagonal plaquette. In

the pure Kitaev model, Wp is identified with the gauge-
invariant Z2 flux, and the ground state lies in the sector
with Wp = +1 for all plaquettes. States with Wp = −1
at isolated plaquettes are associated with vortex excita-
tions [1]. Besides the link variables Uµν

ij , in the mean-
field approach we also consider the on-site fermion bilin-
ears Vµν

i . It follows from the Kitaev representation that
V0γ

i = ⟨σγ
i ⟩. Moreover, the constraint in Eq. (3) implies

Vαβ
i = −V0γ

i for (αβγ) a cyclic permutation of (xyz).
Thus, there are only three independent components of
Vµν

i at each site, and they are related to the local mag-
netization induced by the external magnetic field. In the
limit |h| ≫ |K|, |J |, |Γ|, we expect to encounter a par-
tially polarized phase characterized by Vµν

i ̸= 0 while
Uµν

ij = 0 for all bonds. For further detail, see the Meth-
ods section.

Homogeneous case

We first describe the mean-field solution for the homo-
geneous case, i.e., in the absence of vortices. If the ground
state does not break spin rotation or lattice symmetries,
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Figure 1. Dispersion relation of Majorana fermions calculated
within the mean-field approach for the homogeneous system
with K = −1, J = 0, Γ = 0.2, and h = 0.4ĉ, along the
indicated BZ path. For comparison, the dashed lines show
the dispersion in the pure Kitaev limit (Γ = J = h = 0).

as in the Kitaev spin liquid phase, the matrices Uµν
ij de-

pend only on the bond type γ, and we set Uµν
ij = Uµν

γ

for bonds ⟨ij⟩γ . Moreover, Vµν
i = Vµν becomes a con-

stant matrix. More generally, we can allow these param-
eters to vary with the sublattice within larger unit cells
to describe magnetically ordered phases. We then solve
the mean field self-consistency equations using a Fourier
transform of the Majorana modes in the thermodynamic
limit. As a first step, we have verified that our mean-field
approach recovers the exact results for the Kitaev model
[1] when we set Γ = J = h = 0. The resulting disper-
sion relation of Majorana fermions is depicted by dashed
lines in Fig. 1. In this case, the only dispersive band is
associated with the fermion c0. This band is gapless with
a Dirac spectrum near the K point in the Brillouin zone
(BZ). In addition, there are three degenerate flat bands
associated with the fermions cγ , which are related to the
static gauge variables Uγγ

γ (whose value is independent
of γ).

Moving away from the exactly solvable point, we find
that all bands become dispersive. For h = 0 and
K,J,Γ ̸= 0, our results are in quantitative agreement
with a previous mean-field calculation [37]. Our approach
also allows us to take into account the magnetic field non-
perturbatively. Figure 1 shows the dispersion for a mag-
netic field pointing along the crystallographic c direction
(perpendicular to the honeycomb plane), with unit vec-
tor ĉ = 1√

3
(1, 1, 1). Here the coordinates are specified

in terms of the crystallographic axes x̂, ŷ and ẑ of the
ligand octahedra. For later reference, the in-plane unit
vectors are â = 1√

6
(1, 1,−2) and b̂ = 1√

2
(−1, 1, 0). As

shown in Fig. 2, the magnetic field opens up a gap in
the fermion spectrum, as expected for the non-Abelian
Kitaev spin liquid phase. As we increase the magnetic
field, the gap at the K point increases, but the gap at the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.005 0.010 0.050 0.100
10-7

10-6

10-5

10-4

0.001

0.010

Figure 2. Fermion gap as a function of magnetic field for
h = hĉ along the ĉ axis, with K = −1, J = 0, and for three
values of Γ: Γ = −0.1 (green circles), Γ = 0 (blue triangles)
and Γ = 0.1 (red diamonds). The inset shows that for weak
fields the fermion gap agrees with the perturbative result to
leading order in h, ∆f ∝ h3.

Γ point decreases. The fermion gap ∆f is given by the
minimum between the energies at the K and Γ points in
the BZ. If these energies cross, ∆f exhibits a kink at the
corresponding value of h (e.g., for Γ = 0 in Fig. 2). As we
increase the magnetic field, we encounter a critical value
hc at which the gap either changes discontinuously, as in
a first-order transition (e.g., for Γ = −0.1|K| in Fig. 2),
or it vanishes and varies continuously across the phase
transition (e.g., for Γ = 0.1|K| in Fig. 2). For h = hĉ
and h ≪ hc, the fermion gap increases with the magnetic
field as ∆f ∝ h3, as expected from perturbation theory
[1]; see the inset in Fig. 2. For general field directions,
the fermion gap behaves as ∆f ∝ hxhyhz, closing when
one component of h vanishes.

We further assess the stability of the Kitaev spin liquid
phase by evaluating the Z2 flux parameter. In a homo-
geneous ground state, we have Wp = (Uγγ

γ )6. The result
for the extended Kitaev model with J = 0 and Γ, h ̸= 0 is
shown in Fig. 3 for a magnetic field along the ĉ direction
and for an in-plane field along the â direction (perpendic-
ular to the z bonds). As expected, Uγγ

γ decreases as we
increase h or Γ. The dots in this figure mark the transi-
tion where the gap ∆f vanishes continuously. Note that
Uγγ

γ varies smoothly across the continuous transition for
h ∥ ĉ and Γ > 0.

The results in Figs. 2 and 3 allow us to determine the
parameter regime where both Uγγ

γ and ∆f vary smoothly
and take values comparable to those at the exactly solv-
able point. In this regime, we expect the mean-field ap-
proach to yield qualitatively correct results for the charge
response of the Kitaev spin liquid phase. By contrast,
the regime of strong magnetic fields should be identified
with the partially polarized phase, whereas the regime
of large |Γ| or |J | harbors magnetically ordered phases
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Figure 3. Mean-field parameter Uγγ
γ for fixed K = −1 and

J = 0 as a function of the Γ interaction and the strength of the
magnetic field along two directions: (a) h ∥ ĉ, perpendicular
to the honeycomb plane; (b) an in-plane field h ∥ â. White
circles represent critical points where the fermion gap closes at
the Γ point in the BZ. The region labeled as KSL is identified
with the Kitaev spin liquid phase.

[35, 44, 48, 53]. Here we do not explore the various
phases of the extended Kitaev model, whose nature is
not completely settled [36]. Nevertheless, our mean-field
results reproduce qualitative features of phase diagrams
reported in the literature. For instance, we find that
adding Γ > 0 increases the critical magnetic field along
the ĉ direction, but the Kitaev spin liquid phase shrinks
as we tilt the field towards the plane, in agreement with
exact diagonalization results [48]. However, in general
the mean-field approach overestimates the value of the
critical magnetic field for a ferromagnetic Kitaev cou-
pling in comparison with more accurate numerical meth-
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-0.0050

-0.0025
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0.0025

0.0050

0.0075

Figure 4. Charge imbalance ⟨δnl⟩ in a state with a vortex lo-
cated in the central hexagon. As parameters of the Hubbard-
Kanamori model, we use t1 = 13 meV, t2 = 160 meV,
t3 = −33 meV, t′2 = −60 meV, U = 2.6 eV, and JH = 300
meV. The values of δnl are in units of |t22t′2/U3| ≈ 8.739×10−5.
The ratio between the exchange couplings calculated using
Eq. (22) are Γ/|K| = 0.20 and J/|K| = −0.02. We set the
magnetic field h/|K| = 0.2ĉ. The solid line marks the zigzag
path considered in Fig. 5.

ods [48, 54–56].

Vortex charge density profile

Inhomogeneous spin correlations can bring on a charge
redistribution in Mott insulators [32, 33]. We here dis-
cuss the charge density profile induced by the presence of
Z2 vortices in a Kitaev spin liquid. In the Methods sec-
tion, we derive the effective charge imbalance operator
in terms of two-spin operators and show how to com-
pute its expectation value ⟨δnl⟩ at lattice site l using the
Majorana mean-field approach.

We consider an inhomogeneous state in which trans-
lation symmetry is broken by the presence of vortices.
In this case, we analyze the mean-field Hamiltonian on
a finite system with linear size L along the directions
of the primitive lattice vectors ê1 = 1

2 â +
√
3
2 b̂ and

ê2 = − 1
2 â +

√
3
2 b̂, imposing periodic boundary condi-

tions. To create vortices, we initialize the mean-field pa-
rameters in a configuration where we flip the sign of Uµν

ij
on bonds crossed by open strings. In the pure Kitaev
model, this procedure generates exact eigenstates with
two localized vortices at the ends of the string. In the ex-
tended Kitaev model, vortices become mobile excitations
with effective bandwidths governed by the integrability-
breaking perturbations [57, 58]. In fact, for sufficiently
large values of these perturbations, near the border of the
Kitaev spin liquid phase in Fig. 3, we observe that the
vortex positions vary as we iterate the self-consistency
equations. When this happens, the string length de-
creases and the vortices move closer to each other un-
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Figure 5. Magnitude of the charge imbalance as a function of the position R1 along the zigzag path represented by the black line
in Fig. 4. The dots (connected by solid lines to guide the eye) correspond to the extended Kitaev model with exchange couplings
Γ/|K| = 0.2 and J/|K| = −0.02. Blue and red represent positive and negative charges, respectively. We set |h| = 0.3|K| and
consider two field directions: (a) h ∥ ĉ, and (b) h ∥ ẑ. For comparison, dashed lines represent the corresponding mean-field
results for Γ = 0 and otherwise identical parameters. The inset in (a) shows the corresponding case with Γ/|K| = 0.35 and
J/|K| = −0.05 for h ∥ ĉ (filled circles), comparing with the results for Γ/|K| = 0.2 and J/|K| = −0.02 in the main plot (empty
circles). The values of δnl are in units of |t22t′2/U3|. The inset in (b) shows the geometry with four equally spaced vortices on
the torus with a smaller system size.

til they annihilate, and the mean-field solution converges
to the vortex-free ground-state configuration. However,
for |Γ|, |J |, |h| ≪ |K| and well separated vortices, we find
a self-consistent solution with (metastable) localized vor-
tices which corresponds to a local energy minimum in this
sector of the Hilbert space. These results seem consistent
with the real-time dynamics described by time-dependent
mean-field theory, which show that only when the pertur-
bations are strong enough do vortices become mobile as
signaled by the time decay of the fermion Green’s func-
tion [46]. In reality, the lifetime of a vortex is limited by
processes in which two vortices meet and annihilate [58],
and can become arbitrarily long at low temperatures due
to the low vortex density, see the Supplemental Material
(SM) [59]. Focusing on the regime of small perturba-
tions, we can then compute static spin correlations near
vortices using position-dependent mean-field parameters
Uµν

ij and Vµν
i . We consider a configuration with four

equally spaced vortices, see inset of Fig. 5(b), which pre-
serves rotational symmetries and minimizes finite-size ef-
fects as compared to a two-vortex configuration. Unless
stated otherwise, we use L = 40, so the distance between
vortices is 20 unit cells. The charge imbalance near a
vortex is then effectively the property of a single vortex
and finite-size effects only appear in long-distance tails
[59].

In Ref. [30], the charge imbalance profile in the vicinity
of a vortex was investigated within the exactly solvable

Kitaev model [1]

HK =
∑
⟨ij⟩γ

Kγσ
γ
i σ

γ
j −

∑
⟨ij⟩α⟨jk⟩β

κσα
i σ

γ
j σ

β
k , (6)

setting Kγ = K for isotropic Kitaev interactions. The
three-spin interaction breaks time-reversal symmetry
while preserving integrability. The coupling constant de-
rived from perturbation theory in the magnetic field is
[1]

κ = 0.338
hxhyhz

∆2
2v

, (7)

where ∆2v ≈ 0.263|K| [60] is the energy gap for creat-
ing two adjacent vortices at zero magnetic field. The
prefactor in Eq. (7) was obtained by fitting the fermion
gap ∆f = 6

√
3κ at low fields; see the inset of Fig. 2.

Our mean-field results for the extended Kitaev model
confirm the qualitative behavior obtained for the exactly
solvable model; see Fig. 4. The charge imbalance oscil-
lates between positive and negative values as we vary the
distance from the center of the vortex, identified with the
plaquette where Wp < 0. Moreover, as shown in Fig. 5,
the magnitude of ⟨δnl⟩ decays exponentially with the dis-
tance from the vortex. The comparison with the result
for Γ = 0 (dashed lines in Fig. 5) reveals that weak Γ
and/or J interactions have an only minor effect on the
ideal charge imbalance profile found in the pure Kitaev
limit [30]. However, changing the magnetic field direction
away from the ĉ direction can induce more pronounced
charge oscillations, cf. Fig. 5(b), and thus has a more
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substantial effect. The value of |δnl| on sites around the
vortex is of the order of 10−6, producing local electric
fields near the detection limit of state-of-the-art atomic
force microscopy [30, 61–63]. Importantly, here we use
estimates for the hopping and interaction parameters for
bulk α-RuCl3, but the charge fluctuations can be greatly
enhanced if the on-site repulsion U is screened in a mono-
layer by the interaction with a substrate.

Since the mean-field approach allows us to treat the
Zeeman term nonperturbatively, we can go beyond the
results of Ref. [30] and analyze the dependence of the
charge redistribution on the field direction. For a field
along the ĉ direction, the charge imbalance profile is
isotropic around the position of the vortex, up to small
variations due to the finite distance between vortices in
the finite-size system. As we tilt the magnetic field on
the ac plane (perpendicular to the z bonds), a small
anisotropy develops in a way that the charge imbalance is
enhanced in the direction perpendicular to the field. This
effect can be seen in Fig. 5(b) as the difference between
⟨δnl⟩ for the sites that belong to the hexagon that con-
tains the vortex (three blue dots in the center, cf. Fig. 4).

We next quantify the anisotropy in the charge distri-
bution by computing the electric multipole moments. We
note that the electric quadrupole moment has also been
studied in the context of the spin nematic transition in
the vortex-free ground state of a perturbed Kitaev model
[64]. In the limit of very large distance between vortices,
the electric dipole moment vanishes because the system
is invariant under spatial inversion about the vortex cen-
ter. The first nontrivial multipole moment is the traceless
quadrupole tensor, with components

Qαβ =
∑
l

⟨δnl⟩(3RlαRlβ − |Rl|2δαβ). (8)

Here α, β ∈ {1, 2, 3} and Rl = Rl1â+Rl2b̂ (with Rl3 = 0)
is the position of site l, setting the lattice spacing to unity.
Due to the finite system size, we calculate the quadrupole
moment by summing over all sites within a finite radius
around the vortex. This radius is taken to be slightly
smaller than half the distance between vortices, but due
to the exponential decay of ⟨δnl⟩ with the distance from
the vortex center, changing this radius causes only expo-
nentially small changes in the quadrupole tensor. For a
magnetic field along the ĉ direction, the rotational sym-
metry implies that the quadrupole tensor is diagonal and
Q11 = Q22 = −Q33/2. As we vary the field direction, the
anisotropy is manifested in the difference between Q11

and Q22 and in the off-diagonal element Q12. Note that
Q13 vanishes identically because Rl3 = 0.

In a first approximation, let us discuss the dependence
of the quadrupole tensor on the magnetic field direction
by treating the field perturbatively in the pure Kitaev
model. For magnetic field directions not perpendicu-
lar to the lattice plane, the (often discarded) contribu-
tion from second-order perturbation theory generates an
anisotropic renormalization of the Kitaev couplings. This

effect is captured by the Hamiltonian in Eq. (6) with

Kγ = K − (hγ)
2

∆2v
. (9)

In Fig. 6, we show the angular dependence of the
quadrupole components Q33, Q11 − Q22 and Q12 calcu-
lated from the spin correlations for the model in Eq. (6).
The component Q33 does not change sign, but varies
slightly around an average value with an angular depen-
dence qualitatively similar to |hxhyhz|. In particular,
Q33 is maximum for a field along the ĉ direction, which
may be interesting to maximize the intrinsic electric field
produced at positions right above the vortex. On the
other hand, the difference Q11 −Q22 vanishes for h ∥ ĉ,
but is maximum when the field points along the ẑ axis;
this is the direction in which the anisotropy in the effec-
tive Kitaev couplings is maximized, with Kz < Kx = Ky.
Finally, Q12 vanishes if we tilt the field along the high-
symmetry ac plane, but becomes nonzero for more gen-
eral field directions.

The spin correlations calculated within the mean-field
approach for the extended Kitaev model lead to the same
qualitative dependence on the field direction as in Fig. 6.
To maximize the anisotropy in the quadrupole tensor,
we focus on the direction h = hẑ, in which case all off-
diagonal components vanish, and analyze how the diag-
onal components vary with the strength of the magnetic
field. Here it is convenient to introduce the dimension-
less anisotropy parameter ∆Q = (Q11 −Q22)/|Q33|. As
shown in Fig. 7, ∆Q increases with h, and the effect is
more pronounced in the presence of the Γ interaction. We
have also studied the case Γ < 0 and find qualitatively
similar results [59].

The spatial anisotropy of the charge density profile af-
fects the electric quadrupole interaction between vortices.
Suppose the first vortex is located at the origin and the
second one at r = x1â + x2b̂, with r = |r| much larger
than the length scale in the decay of δnl. The interaction
is given by the energy E of the quadrupole tensor Q(2)

of the second vortex in the electrostatic potential V (1)

generated by the first vortex,

E =
1

6

∑
αβ

Q
(2)
αβ ∂α∂βV

(1)(r), (10)

where V (1)(r) = 1
2r5

∑
αβ xαxβQ

(1)
αβ . Since well-

separated vortices generate the same charge distribution,
we now assume Q(1) = Q(2) = Q. As a result, the
quadrupolar interaction can be written as

E =
1

12

[35
r9

(r ·Q· r)2− 20

r7
(
r ·Q2 · r

)
+

2

r5
tr
(
Q2

)]
. (11)

When the magnetic field varies along the ac plane,
the quadrupole tensor is diagonal and we obtain E =
Q2

33

r5 F (∆Q, θ). Here θ is the angle between r and â, and
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Figure 6. Quadrupole components as a function of magnetic field direction, calculated using the exactly solvable Hamiltonian
in Eq. (6), i.e., for J = Γ = 0. The coupling constants Kγ and κ were calculated using Eqs. (7) and (9) with |h| = 0.2|K| and
∆2v = 0.263|K|. The scale is in units of t22t′2/U3 and we set the lattice spacing to unity. Here we use L = 42.
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Figure 7. Dependence of the quadrupole anisotropy ∆Q =
(Q11 −Q22)/|Q33| on the magnetic field strength for h = hẑ.
Dashed lines follow from the solvable Hamiltonian in Eq. (6)
with K = −1. Symbols represent the corresponding mean-
field results for the extended Kitaev model with Γ/|K| = 0.3
and J = 0. Inset: quadrupole components Q33 and Q11−Q22

(in units of |t22t′2/U3| and setting the lattice spacing to unity).

we use

F (∆Q, θ) =
9

8
+

5

4
cos(2θ)∆Q

+

[
35

24
cos2(2θ)− 2

3

]
∆Q2, (12)

with the property F (−∆Q, θ) = F (∆Q, π/2−θ). In par-
ticular, ∆Q = 0 for a magnetic field along the ĉ direction;
in this case, the quadrupolar interaction becomes strictly
repulsive and independent of θ. However, as illustrated
in Fig. 8, the interaction can change sign for some par-
ticular directions of r if the anisotropy is strong enough.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

-10

0

10

20

Figure 8. Function F (∆Q, θ) that governs the sign of the
quadrupolar interaction for ∆Q > 0. For ∆Q < 0, see the
relation below Eq. (12). The dashed line marks the critical
value |∆Q| =

√
9/7, below which the interaction is always

repulsive. The black solid line corresponds to F (∆Q, θ) = 0.

The attractive regime appears for |∆Q| >
√
9/7 ≈ 1.13.

According to the result in Fig. 7, this regime becomes
accessible for sufficiently large h and Γ with h along
the ẑ direction. We note that already in the pure Ki-
taev model, vortices have an effective interaction that
depends on the vortex separation [65]. The charge redis-
tribution discussed here provides a mechanism to make
this interaction spatially anisotropic. In the extended
Kitaev model, where vortices acquire a small mobility
[58], the charge density profile must be carried along with
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Figure 9. Energy of the four-vortex state vs applied elec-
trostatic potential V0, with the dimensionless quantity ξ1 =
eV0/(U − 3JH), for different values of Γ and of the DM cou-
pling D1; see Eq. (14). Symbols represent mean-field results
for the extended Kitaev model with K = −1, J = 0 and the
magnetic field h = 0.2 ĉ. The linear system size is L = 28,
and solid lines are a guide to the eye only. They were obtained
by a fit to the function a+ b tanh[c(ξ1 − d)].

the slow vortex motion, and the anisotropic interaction
may cause some nontrivial dynamics in a system of di-
lute vortices. Importantly, the quadrupole interaction
decays algebraically with the distance between vortices;
thus, at large distances it dominates over other sources
of vortex-vortex interactions that are expected to decay
exponentially [65].

Electrical manipulation of vortices

We now consider the effect of a local electrostatic
potential on vortices. Going back to the Hubbard-
Kanamori model, we couple the hole density to a po-
tential V0 on the six sites surrounding a hexagonal pla-
quette p where a vortex is located. This local potential
can be generated by the electric field of a scanning tun-
neling microscope (STM) tip. Redoing the derivation of
the effective spin Hamiltonian by second-order perturba-
tion theory, we find that the local potential modifies the
couplings on bonds between sites in p and their nearest
neighbors outside p; see Eq. (23). In addition, the local
electric potential breaks inversion symmetry and gener-
ates a Dzyaloshinskii-Moriya (DM) interaction [34]. Mi-
croscopically, the DM interaction stems from crystal field
splittings in the atomic Hamiltonian and asymmetries in
the hopping matrix due to lattice distortions [5]. We in-
vestigate this effect phenomenologically by adding to the
effective spin Hamiltonian (1) the term

HDM =
∑
γ

∑
⟨ij⟩γ

Dij

(
σα
i σ

β
j − σβ

i σ
α
j

)
, (13)

where (αβγ) is a cyclic permutation of (xyz). The cou-
pling Dij = D(V0) is taken to be independent of the bond
type γ but restricted to the bonds exterior to the plaque-
tte with the local potential. For the DM coupling, we
assume [59]

D(V0) = ξ1D1|K(0)|, ξ1 =
eV0

U − 3JH
, (14)

such that D(V0) ∝ V0 with a dimensionless free param-
eter D1. In fact, for V0 = 0, the DM coupling is absent
since it will be generated by the tip potential.

In the solvable Kitaev model, the local electric poten-
tial lowers the energy of an isolated vortex with respect
to the vortex-free configuration, but never closes the vor-
tex gap in the absence of the DM interaction [30]. In that
case, this effect can be used to attract and bind vortices
that have been created by some other mechanism, such
as thermal fluctuations, but it does not induce vortices
in the ground state of the system. Using the mean-field
approach, we can now analyze how the vortex gap varies
with the electric potential in the extended Kitaev model.
We consider again the configuration with four equally
spaced vortices, see the inset in Fig. 5(b), and apply the
electric potential on the four corresponding plaquettes.
The difference between the energy E4v of this four-vortex
configuration and the energy E0v of the vortex-free state
is equal to four times the vison gap. As shown in Fig. 9,
the vison gap monotonically decreases with the applied
electric potential, and it is further reduced for nonzero
Γ and finite DM coupling D1. When the gap becomes
too small, we encounter difficulties in the convergence of
the mean-field equations. However, the extrapolation of
the results indicates that the gap vanishes for sufficiently
large V0. As a consequence, we predict that it is possible
to create (or remove) vortices by modulating the local in-
teractions, in agreement with the results of Ref. [34]. We
emphasize that this remarkable functionality arises due
to the interplay between Γ interactions and the local DM
terms induced by an STM tip. From Fig. 9, we observe
that ξ1 ∼ 0.5 is sufficient to create vortices. Using the
parameters listed in Fig. 4, we find that this corresponds
to realistic tip voltages of the order of V0 < 1 V.

METHODS

Extended Kitaev model

The JKΓ model in Eq. (1) follows by projecting
the three-orbital Hubbard-Kanamori Hamiltonian on the
honeycomb lattice, HHK = V +Hso+T , to the low-energy
sector spanned by a single hole per site. On-site interac-
tions are encoded by

V =
∑
i

[
U − 3JH

2
(N̄i − 1)2−2JHS2

i −
JH
2

L2
i

]
, (15)

where U is the repulsive interaction strength, JH is
Hund’s coupling, and the operators N̄i, Si and Li are
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the total number, spin and orbital angular momentum
of holes at site i. The operator h†

iασ creates a hole at
site i with spin σ ∈ {↑, ↓} and orbital α ∈ {x, y, z} for
yz, xz, and xy orbitals, respectively. Defining the spinor
h†
i = (h†

ix↑, h
†
iy↑, h

†
iz↑, h

†
ix↓, h

†
iy↓, h

†
iz↓), we write

N̄i = h†
ihi , Si =

1

2
h†
i (σ ⊗ 13)hi , Li = h†

i (12 ⊗ l)hi ,

(16)
where σ is the vector of Pauli matrices acting in spin
space and l = (lx, ly, lz) is a vector of 3 × 3 matri-
ces that represent the effective l = 1 angular momen-
tum of the t2g states [30]. The spin-orbit coupling term
Hso = λ

∑
iα h†

i (σ
α ⊗ lα)hi splits the degeneracy of the

t2g manifold. At each site, the low-energy subspace is
spanned by the states

|+⟩ =
1√
3
(− |z, ↑⟩ − i |y, ↓⟩ − |x, ↓⟩) ,

|−⟩ =
1√
3
(|z, ↓⟩+ i |y, ↑⟩ − |x, ↑⟩) , (17)

which are associated with total angular momentum jeff =
1
2 . Finally, the hopping term in HK has the form
T = −

∑
ij h

†
i (12 ⊗Tij)hj . The hopping matrix Tij in

orbital space depends on the orientation of the bond
between sites i and j. We label the bonds on the
honeycomb lattice by γ ∈ {x, y, z} ≡ {1, 2, 3} corre-
sponding to nearest-neighbor vectors δx = 1

2 â + 1
2
√
3
b̂,

δy = − 1
2 â + 1

2
√
3
b̂, and δz = − 1√

3
b̂, respectively. We

parametrize the hopping matrix for a nearest-neighbor z

bond as [35] T⟨ij⟩z =

 t1 t2 t4
t2 t1 t4
t4 t4 t3

 . The hopping matrix

for x and y bonds follows by cyclic permutation of the
orbital indices. Microscopically, the hopping parameters
are associated with direct hopping between d orbitals or
hoppings mediated by the ligand ions. Neglecting trig-
onal distortions for simplicity, hereafter we set t4 = 0
[5, 35].

The effective spin Hamiltonian for the Mott insulat-
ing phase can now be derived by applying perturbation
theory in the regime U, JH ≫ λ ≫ t1, t2, t3. We use the
canonical transformation

H̃HK = eSHHKe
−S

= HHK + [S,HHK] +
1

2
[S, [S,HHK]] + · · · .(18)

The anti-Hermitian operator S =
∑∞

k=1 Sk is chosen so
that Sk eliminates the terms that change the hole occupa-
tion numbers N̄i at k-th order in the hopping parameters.
We can write Sk = S+

k − S−
k , where S+

k creates excita-
tions with N̄i ̸= 1 and S−

k = (S+
k )†. For the calculation

of the effective spin Hamiltonian, it suffices to consider
the first-order term S1 = S+

1 − S−
1 , with

S+
1 =

∑
ij

2∑
ℓ=0

1

∆Eℓ
P(2)
i,ℓ h†

i (1 ⊗Tij)hj P
(1)
j . (19)

Here P(1)
j is a projector onto the subspace of a single hole

at site j and P(2)
j,ℓ projects onto the subspace of two holes

with total angular momentum ℓ ∈ {0, 1, 2}. The excited
states have energies ∆Eℓ given by

∆E0 = U + 2JH , ∆E1 = U − 3JH , ∆E2 = U − JH ,
(20)

with JH < U/3 in the Mott insulating phase.
We then take H = PlowH̃HKPlow, where Plow =∏

i (|+i⟩ ⟨+i|+ |−i⟩ ⟨−i|) is the projector onto the low-
energy subspace restricted to jeff = 1

2 states at every
site. We thereby arrive at the JKΓ model [35],

H=
∑
⟨ij⟩γ

[
Jσi · σj +Kσγ

i σ
γ
j + Γ

(
σα
i σ

β
j + σβ

i σ
α
j

)]
, (21)

with an implicit sum over bond type γ, and α, β cho-
sen so that (αβγ) is a cyclic permutation of (xyz). The
couplings are

J =
1

27

[
(2t1 + t3)

2

∆E0
+

6t1(t1 + 2t3)

∆E1
+

2(t1 − t3)
2

∆E2

]
,

K =
2JH
9

(t1 − t3)
2 − 3t22

∆E1∆E2
, Γ =

4JH
9

t2(t1 − t3)

∆E1∆E2
.(22)

In the limit t1, t3 → 0 and t2 ̸= 0, Eq. (21) reduces to the
exactly solvable Kitaev model [1] with a ferromagnetic
Kitaev interaction (K < 0). Finally, in the presence of
a potential V0, the respective couplings are renormalized
according to

J(V0) =
1

27

[
(2t1 + t3)

2

(1− ξ20)∆E0
+

6t1(t1 + 2t3)

(1− ξ21)∆E1

+
2(t1 − t3)

2

(1− ξ22)∆E2

]
, (23)

K(V0)

K(0)
=

Γ(V0)

Γ(0)
=

1 + ξ1ξ2
(1− ξ21)(1− ξ22)

,

where ξℓ = eV0/∆Eℓ.

Mean-field Hamiltonian

Using the mean-field parameters in Eq. (5), the Majo-
rana mean-field Hamiltonian for Eq. (4) is given by

HMF =
∑
ij

i

4
cTi Aijcj +

∑
i

i

4
cTi Bici − C. (24)

The first term on the right-hand side couples Majorana
fermions on nearest-neighbor bonds ⟨ij⟩γ via the 4 × 4
bond-dependent matrix

Aij = 2
∑
αβ

Jαβ
ij NαUijN

β . (25)
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The on-site term involves the matrix

Bi =
∑
j∈Vi

∑
αβ

Jαβ
ij Nαtr

(
VT

j N
β
)
+
∑
γ

(λγ
i G

γ − 2hγNγ),

(26)
where Vi denotes the set of nearest neighbors of site i.
Finally, the constant term is

C =
1

8

∑
ij

∑
αβ

Jαβ
ij

[
tr
(
VT

i N
α
)
tr
(
VT

j N
β
)

+2 tr
(
UT

ijN
αUijN

β
) ]

.

(27)

We diagonalize Eq. (24) for N unit cells of the honeycomb
lattice with periodic boundary conditions by using

c =
√
2U

(
d
d†

)
, U =

(
U< U>

)
, (28)

where c is a vector defined from 8N Majorana fermions,
U is a unitary transformation, and d is a 4N -component
vector of annihilation operators of complex fermions.
The columns of U<(>) correspond to the eigenvectors
of the mean-field Hamiltonian with negative (positive)
energy. The mean-field ground state is the state annihi-
lated by all d operators, from which we obtain the self-
consistency conditions

⟨ icI cJ ⟩ = i
(
U<U†

<

)
IJ
, (29)

where I = (i, µ) and J = (j, ν) combine site and fermion
flavor indices. We obtain the mean-field parameters in
Eq. (5) by setting i and j to be either nearest neighbors or
the same site. Together with the mean-field Hamiltonian,
Eq. (29) defines a set of self-consistent equations which
we then solve numerically.

In our approach, we require that the constraint in
Eq. (3) is satisfied by the mean-field solution as accu-
rately as possible. Since icTi Gγci are linear combinations
of operators with eigenvalues ±1, we define the quanti-
ties Gγ

i ≡ 1
4 | ⟨c

T
i G

γci ⟩ | for the mean-field ground state
average, with 0 ≤ Gγ

i ≤ 1. For zero magnetic field and
in the absence of magnetic order, the constraints are au-
tomatically satisfied, Gγ

i = 0, since V0γ
i = Vαβ

i = 0. To
describe the Kitaev spin liquid phase at finite magnetic
field, we tune the Lagrange multipliers λγ

i contained in
Bi in order to minimize the violation of the constraint
measured by Gγ

i . For all results shown below, we guaran-
tee Gγ

i < 0.05 for all values of (γ, i). In the homogeneous
case (cf. Figs. 1, 2 and 3), the largest violations occur in
the vicinity of phase transitions. Away from transitions,
we instead find Gγ

i < 10−3. Similarly, in the presence of
vortices, the largest violations occur near a vortex but
they are always bounded as specified.

Charge density coefficients

Consider the hole density operator N̄l at site l in the
Hubbard-Kanamori model. Using the canonical trans-
formation in Eq. (18), we can write the effective charge
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Figure 10. Honeycomb lattice with nearest- and next-nearest-
neighbor hopping. (a) Red, green and blue lines correspond
to γ = x, y, z bonds, respectively. The hopping matrix on
nearest-neighbor bonds (solid lines) is written in terms of hop-
ping parameters t1, t2, t3, and t4. On second-neighbor bonds
(dashed lines), we consider a single hopping parameter t′2. (b)
Examples of triangles that contribute to the effective charge
density operator at site l.

imbalance operator in the low-energy sector as

δnl = Plowe
S(N̄l − 1)e−SPlow. (30)

We calculate δnl using perturbation theory to leading
order in the hopping matrix Tij . In systems with bond-
inversion symmetry like the Hubbard-Kanamori model,
the first non-vanishing contribution appears at third or-
der and is associated with virtual processes in which an
electron or hole moves around a triangle [30, 32, 33].
To obtain this leading contribution, we generalize the
hopping matrix to include hopping between next-nearest-
neighbor sites on the honeycomb lattice. We denote by
⟨⟨ij⟩⟩γ a second-neighbor bond perpendicular to nearest-
neighbor γ bonds, see Fig. 10(a). Sizeable second- and
third-neighbor hopping parameters have been calculated
for Kitaev materials using ab initio methods [5, 50].
For simplicity, we consider only the dominant second-
neighbor hopping, which on z bonds is described by the

matrix T⟨⟨ij⟩⟩z =

 0 t′2 0
t′2 0 0
0 0 0

. The corresponding ma-

trices for x and y bonds follow by cyclic permutation
of the indices. Assuming |t′2| ≪ |t1|, |t2|, |t3|, we calcu-
late the charge density response to first order in t′2. In
this approximation, we neglect the second-neighbor ex-
change interaction generated by perturbation theory at
order (t′2)

2, keeping only the nearest-neighbor exchange
couplings as in Eq. (21).

Following Ref. [30], we write the effective charge imbal-
ance operator as δnl =

∑
(jk) δnl,(jk), where the sum over

(jk) runs over pairs of sites such that jkl forms a triangle,
and each triangle is counted once. These triangles con-
tain two nearest-neighbor bonds and one next-nearest-
neighbor bond, see the examples in Fig. 10(b). The cal-
culation of δnl requires the generator of the canonical
transformation up to second order in the hopping matri-
ces, S ≈ S1 + S2. After the projection onto the jeff = 1

2



11

subspace, we write the end result in the form

δnl,(jk) =
∑
αβ

(
Cα0β
jkl σ

α
j σ

β
l+C0αβ

jkl σ
α
k σ

β
l+Cαβ0

jkl σ
α
j σ

β
k

)
. (31)

Note that the effective density operator involves only two-
spin operators because it must be invariant under time
reversal. The coefficients Cµνρ

jkl can be calculated as ex-
plained below. We find closed-form but lengthy expres-
sions for general values of the hopping parameters. For
t1 = t3 = 0 and t2, t

′
2 ̸= 0, we recover the result of

Ref. [30], in which the nonzero coefficients are diagonal
in spin indices, e.g., Cαβ0

jkl ∼ δαβt
2
2t

′
2/U

3. Similarly to the
derivation of the effective Hamiltonian, the addition of
the subleading hopping parameters t1 and t3 generates
off-diagonal terms in δnl,(jk) which are reminiscent of
the Γ interaction. Equation (31) implies that the charge
density profile of a given state is determined by its spin
correlations. Charge neutrality of the Mott insulator,∑

l⟨δnl⟩ = 0, implies that there is no charge polarization
in a homogeneous state where ⟨δnl⟩ is uniform. This con-
dition is indeed satisfied when we impose that the spin
correlations on different bonds respect translation and
rotation symmetries, which provides a nontrivial check
for the coefficients Cµνρ

jkl .
Let us outline some steps in the calculation of the co-

efficients Cµνρ
jkl in Eq. (31). At third order in the hop-

ping term, the canonical transformation in Eq. (30) gives
δn

(3)
l = −S−

2 [N̄l, S
+
1 ] + h.c., where we organize the con-

tributions in terms of triangles with site l at one ver-
tex. In this notation, the contribution from each trian-
gle with two other sites (jk) ≡ (kj) contains two terms,

δn
(3)
l,(jk) = δn

(3)
l,jk+δn

(3)
l,kj . Explicit expressions for the ma-

trix elements of δn(3)
l,(jk) can be found in Ref. [30]. The

last step is to project these matrices onto the low-energy
subspace spanned by the states in Eq. (17). The coeffi-
cients in Eq. (31) are given by

Cµνρ
jkl =

1

8
Tr

(
Plowδn

(3)
l,(jk)Plowσ

µ
j σ

ν
kσ

ρ
l

)
, (32)

where σ0 = 1. Since the charge density operator is even
under time reversal, terms that act nontrivially on an
odd number of spins vanish identically,

Cαβγ
jkl = Cα00

jkl = C0α0
jkl = C00α

jkl = 0, (33)

with α, β, γ ∈ {1, 2, 3}. The nonzero terms can be written
as in Eq. (31) and depend on the specific triangle. The
simplest coefficients are the ones that are already present
in the solvable Kitaev model [30]. For instance, for the
top triangle in Fig. 10(b), we obtain

C110
jkl = C220

jkl =
t22t

′
2

U3

η2(1− 2η)

9(1− η)3(1− 3η)3
, (34)

where η = JH/U < 1/3. Note that this term is sensi-
tive to the sign of the second-neighbor hopping t′2. In
Ref. [30], the charge imbalance was calculated assuming
a positive value of t′2, but in this work we use t′2 < 0
as obtained in Ref. [50] for α-RuCl3. As an example for
a coefficient associated with off-diagonal terms in δnl,
which are generated by the hoppings t1 and t3, we have

C120
jkl = − t′2

U3

η(t1 − t3)
[(
276η4 − 94η2 − 6η + 22

)
t1 +

(
26η4 − 20η3 − 7η2 − 4η + 5

)
t3
]

54(1− η)3(1 + 2η)2(1− 3η)3
. (35)

DISCUSSION

We have studied how vortices in Kitaev spin liquids
generate and respond to nonuniform electric fields. While
Kitaev materials are Mott insulators, charge fluctuations
can be generated at low energies by inhomogeneous spin
correlations that carry signatures of localized excitations.
To describe this effect, we started from the three-orbital
Hubbard-Kanamori model for Kitaev materials. Using a
canonical transformation, we obtain effective operators in
the low-energy sector in terms of spin operators that act
on the pseudospin-1/2 states. The effective spin Hamil-
tonian is the extended Kitaev model in a magnetic field,
in which the exact solvability is broken by the Heisenberg
and Γ interactions as well as by a Zeeman coupling to a
magnetic field. The effective density operator is gener-
ated at the level of third-order perturbation theory in the
hopping terms. Generalizing the results of Ref. [30], we

found that the effective density operator associated with
the extended Kitaev model contains all two-spin opera-
tors allowed by symmetry, including off-diagonal terms
that are absent in the pure Kitaev model.

We have developed and applied a Majorana mean-
field approach which allows to consider inhomogeneous
parameters. While this approach is exact for the pure
Kitaev model, we have demonstrated that it captures
qualitative features of the Kitaev spin liquid phase in the
extended JKΓ model, where additional spin interactions
are present. This model is believed to describe the candi-
date material α-RuCl3. The electric charge distribution
follows by computing the spin correlations around vor-
tices in the mean-field approach. Importantly, vortices
remain localized on sufficiently long time scales even in
the presence of small perturbations around the Kitaev
limit, as long as the system remains deep in the Kitaev
spin liquid phase. We find that the charge profile de-
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cays with the distance from the vortex in an oscillatory
fashion.

Our results allow us to calculate the intrinsic electric
quadrupole tensor of a vortex which is far away from all
other vortices. The anisotropy of the quadrupole ten-
sor can here be controlled by the magnetic field, and
depending on the parameter regime, the interaction be-
tween different vortices is either repulsive or attractive.
The interaction is generally enhanced by the Γ interac-
tion.

Finally, in the presence of local STM tips near vortices,
we find that one can close the vortex gap by applying a
local electric potential to the tips. We thus predict that
one can create vortices in a Kitaev spin liquid by means
of STM tips in a controlled way. Given the recent ad-
vances in STM technology [61–63], our work paves the
way for the electrical detection and manipulation in Ki-
taev materials. In particular, the successful control of
Ising anyons in such materials would constitute a key step
toward implementing a platform for topological quantum
computation.
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Appendix A: Finite-size effects

In Fig. 11 we show how finite-size effects impact the
charge distribution around vortices in the extended Ki-
taev model. The coordinate R1 corresponds to the zigzag
path represented in Fig. 4 of the main text. In the ther-
modynamic limit and for infinitely separated vortices, the
charge imbalance δnl must be symmetric with respect to
the vortex center, i.e., with respect to R1 7→ −R1. How-
ever, in a finite-size L × L geometry (periodic bound-
ary conditions) with vortices located at maximal distance
from each other, we see deviations from the symmetric
distribution when the distance |R1| becomes comparable
to the separation between two vortices. The asymmetry
in the charge distribution is substantially smaller for a
configuration with four equally spaced vortices than for
two vortices. To see this, compare the data for smaller
values of L in Figs. 11(a) and Fig. 11(b). This fact can

be rationalized by noting that for periodic boundary con-
ditions, the four-vortex configuration preserves a C3 lat-
tice rotation symmetry about the center of a given vortex,
which helps to minimize finite-size effects. As we increase
L, the results for both four-vortex and two-vortex con-
figurations converge to the same values, especially close
to the vortex, where the charge imbalance is larger. We
have verified that all results reported in the main text
for the components of the quadrupole tensor, in particu-
lar the anisotropy parameter ∆Q, are fully converged for
L ≥ 40.

Appendix B: Vortex quadrupole moment for
negative values of Γ

When discussing the vortex charge density profile in
the main text, we have focused on the parameter regime
Γ > 0, which is relevant for α-RuCl3. In Fig. 12, we show
the anisotropy parameter ∆Q and other components of
the quadrupole tensor for a negative value of Γ. Com-
paring with Fig. 7 of the main text, we observe that the
result is qualitatively similar to that for Γ > 0.

Appendix C: On the vortex lifetime

In our setup, vortices could be created by different
mechanisms. Once they have been trapped by a local
potential, they can decay if they meet another vortex
that has been created far away in the bulk but then has
propagated to the position of our designated vortex. As
shown in Ref. [58], the time scale for two vortices to meet
is given by τV V ∼ 1/(DnV ). Here D is the diffusion
constant, which is related to the vortex mobility µ by
the Einstein relation, D = µT , and nV is the density of
vortices (we set the Boltzmann constant kB = 1). At
temperatures T ≪ ∆2v, where ∆2v is the vison gap for
creating a pair of vortices [2, 58], the diffusion constant
becomes independent of the vison dispersion and is given
by D ≈ 6v2m/T , where vm is the characteristic velocity of
Majorana fermion excitations. Since in this regime the
diffusion constant does not depend explicitly on the effec-
tive hopping parameter of the visons, there is no strong
dependence on the magnetic field, of arbitrary direction.
On the other hand, the vortex density becomes small at
temperatures far below the vison gap, T ≪ ∆2v. For
this reason, we expect the trapped vortex to have a very
long lifetime at low temperatures. In the main text, we
therefore assume that vortices are effectively stable and
spatially localized entities.

Appendix D: Discussion of Eq. (14)

Unlike the other spin interactions included in our
model, the DM interaction requires breaking bond inver-
sion symmetries. Starting from the Hubbard-Kanamori
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Figure 11. Charge distribution near a vortex for different system sizes for gauge configurations with (a) four, and (b) two
maximally spaced vortices, along the path variable R1 shown in Fig. 4 of the main text. Here we fix the parameters of the
Hubbard-Kanamori model so that Γ/|K| = 0.3, J/|K| = −0.04, and the magnetic field is h = 0.2|K|ẑ. The curve for L = 40
is shown using the same scale as in Fig. 5 of the main text. To aid visualization, the curves for other values of L have been
shifted down by rescaling the data by a factor C40−L with C = 1/
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Figure 12. Same as Fig. 7 of the main text but for Γ =
−0.3|K|, i.e., opposite sign of Γ.

model, the DM interaction can be generated, for instance,
by generalizing the hopping matrix to be asymmetric,
which introduces three new hopping parameters; see e.g.
the derivation in Ref. [5]. In addition, the locally applied
potential V0 induces lattice distortions and introduces
an anisotropic crystal field term of the form δCF(Li ·n)2,
where n is a unit vector in the direction of the local elec-
tric field and δCF ∼ V0 is the energy scale associated with

the crystal field splitting. This term enters in the atomic
Hamiltonian and modifies the expressions for the low-
energy states in Eq. (17) of the main text, which would
now depend on the ratio between δCF and the spin-orbit
coupling λ. Instead of introducing a large number of
new parameters in our model, we here prefer to follow
a more phenomenological approach and include a single
DM term which is allowed by symmetry, with a coupling
constant that increases linearly with the local potential
V0. This dependence is plausible because the DM vector
for nearest-neighbor bonds vanishes in the absence of the
electric potential. We also fixed the dependence on the
Hubbard interaction and Hund’s coupling to be in terms
of ∆E1 = U − 3JH because this is the lowest among the
three energy scales in Eq. (20) of the main text, and it
sets an upper bound for the electric potential that can be
applied before the perturbative expressions break down.
We note that this dependence on ∆E1 does show up in
some of the several interaction terms generated by an
asymmetric hopping matrix (see Ref. [5]).

In summary, we propose Eq. (14) in the main text as
the simplest expression that captures the main proper-
ties of the DM interaction and allows one to probe its
effects on the vortex gap. A more detailed study, in-
cluding all possible DM-type terms, should be guided by
material-specific parameters as determined by ab initio
calculations.
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