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Quantum magnetometry uses quantum resources to measure magnetic fields with precision and
accuracy that cannot be achieved by its classical counterparts. In this paper, we propose a scheme for
quantum magnetometry using discrete-time quantum walk (DTQW) where multi-path interference
plays a central role. The dynamics of a spin-half particle implementing DTQW on a one-dimensional
lattice gets affected by magnetic fields, and the controlled dynamics of DTQW help in estimating
the fields’ strength. To gauge the effects of the field, we study the variance of the particle’s position
probability distribution (PD) and use it to determine the direction of the magnetic field maximally
affecting the quantum walk. We then employ statistical tools like quantum Fisher information (QFI)
and Fisher information (FI) of the particle’s position and spin measurements to assess the system’s
sensitivity to the magnetic fields. We find that one can use the position and spin measurements to
estimate the strengths of the magnetic fields. Calculations for an electron implementing quantum
walk of fifty time steps show that the estimate had a root-mean-square error of the order of 0.1
picoTesla. Moreover, the sensitivity of our system can be tuned to measure any desired magnetic
field. Our results indicate that the system can be used as a tool for optimal quantum magnetometry.

I. INTRODUCTION

To detect weak magnetic fields with ultra-high preci-
sion is an essential endeavor in diverse areas of science
and technology. The leading contender in this field is
quantum magnetometry [1–5]. Its applications stretch
from examining neural activities and cardiac signals for
diagnosing medical conditions [6–9], detecting magnetic
minerals and magnetic anomalies in the mining indus-
tries [10] to fundamental studies of magnetism [11] and
several other areas of physics research [12, 13]. Quan-
tum magnetometry employs quantum resources like su-
perposition, interference and entanglement to make high-
resolution measurements of magnetic fields in a wide
range of frequencies. Quantum magnetometers use quan-
tum systems called quantum probes that respond sensi-
tively to the changes in their environment. These probes
are usually microscopic, disturb the environment very
weakly, and are noninvasive and hence ideal for detection.
Quantum magnetometers exploit the inherent fragility of
these quantum systems, making them very sensitive to
magnetic fields and thus suitable for various applications.

On the other hand, we have yet another quantum tool-
a quantum analog of the classical random walk called
discrete-time quantum walk (DTQW) [14, 15]. DTQW
exhibits quantum mechanical properties such as super-
position and interference right from the very first step
of the walk. Furthermore, by tuning the parameters of
the operators evolving the quantum walk, one can con-
trol multi-path interference and engineer its dynamics.
Consequently, DTQW has been applied to a wide variety
of problems. Examples include modeling the dynamics
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of quantum systems like energy transport in photosyn-
thesis [16, 17]; simulating quantum phenomena like neu-
trino oscillation [18–20], localization [21–23] and topo-
logical phase [24, 25]. Variants of the quantum walk
have also been used to simulate Dirac equation [26–28];
modeling relativistic quantum dynamics [29, 30]; and
in designing quantum algorithms [31–33] and quantum
computation models [34, 35]. Apart from their uses
in theoretical modeling and simulation, quantum walks
have also been experimentally implemented in multiple
physical systems, including NMR [36], photonics [37–40],
cold atoms [41, 42], Bose-Einstein condensates [43], and
trapped ions [44–46].

A fairly recent work by Razzoli et al.[47] connected the
idea of quantum magnetometry with the continuous time
version of DTQW, known as continuous-time quantum
walk (CTQW)[14]. CTQW evolves a particle in a Hilbert
space exclusively defined by the position sites, depicting
its evolution as a continuous function of time. The study
focused on a charged spinless particle undergoing CTQW
on a finite 2D square lattice in the presence of a locally
transverse magnetic field. The paper revealed that po-
sition measurements on the ground state of the system
can be employed to realize nearly optimal magnetome-
try. Contrary to CTQW, DTQW evolves the particle in
discrete steps of time and in a Hilbert space composed
of the tensor product of the position space and the two-
dimensional coin space. The coin operator associated
with the coin space makes DTQW more controllable and
better suited for engineering the walk dynamics.

In this paper, we propose a quantum magnetometry
technique that uses DTQW to detect and estimate static
magnetic fields homogeneous in space. We assume that
their direction is known in advance, and our focus is on
detecting the strengths of these magnetic fields. To do
so, we implement DTQW on a spin-half particle over a
one-dimensional lattice and study the effects of the fields
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on this system. Our work revolves around two important
questions: First, which magnetic field direction affects
the DTQW by the largest amount? Second, can we use
the fact that magnetic fields affect DTQW (Fig.2) to de-
tect them and estimate their magnitudes? The second
question is naturally followed by finding out the magni-
tudes and directions which are the most estimatable.

To answer the first question, we use the variance of
the particle’s position and spin probability distributions
(PD). Our results indicate that based on the form of coin
operator used to evolve the quantum walk and the magni-
tude of field applied, there are some preferred directions
of magnetic fields that affect the DTQW of the particle
maximally. Moreover, by changing the coin parameter,
we can change the direction that has the maximum effect.

Next, to answer the second question, i.e., to quan-
titatively assess the sensitivity of our system, we use
quantum Fisher information (QFI)[48, 49] as a figure of
merit. In addition, we use Fisher information (FI) to find
whether measuring the position and spin of the particle
provides any information about the external field. The FI
we have calculated show that spin and position measure-
ments can indeed be used for optimum magnetometry.
The peak value of FI obtained in both cases turns out to
be proportional to the square of the total time steps of
the DTQW which is in agreement with the bound set by
QFI of DTQW [50]. Furthermore, by changing the pa-
rameters of operators evolving the walk, the peaks of the
QFI and FI plots can be desirably shifted. This implies
that one can tune the system to be maximally sensitive
around any desired magnetic field, making the overall
scheme flexible and resilient. Calculations done for an
electron undergoing DTQW of only 50 steps show that
the magnetometer can estimate the strengths of mag-
netic fields with the root-mean-square error (RMSE) in
the estimate of the order of 0.1 picoTesla.

The paper is structured as follows: In Sec. II, we intro-
duce the system and derive its Hamiltonian for a general
static homogeneous magnetic field. We also discuss the
evolution of spin-half particle in the DTQW framework.
In Sec. III, we discuss the effect of magnetic field over
DTQW. We study the variance distribution over mag-
netic fields of different magnitudes and in different di-
rections. We also analyze which directions of magnetic
fields affect the quantum walk maximally. Sec. IV dis-
cusses the theoretical framework of quantum estimation
theory (QET) used in this work and the main results.
Here, we assess the scheme using Fisher information and
show why this system has the potential to be a possi-
ble magnetometer. Section V closes the paper with some
concluding remarks and possible outlooks.

II. PROBING SYSTEM

The quantum system consists of a one-dimensional
(1D) lattice (see Fig.1) made up of 2N+1 discrete points
marked using integers from −N to N . Over this lattice,

FIG. 1: A possible way to design the quantum probe to
detect magnetic fields. The red dot is the point |x = 0⟩,
where a spin-half particle begins the DTQW. The 1D
lattice is wrapped in a zigzag manner inside a square to
increase the surface area prone to the magnetic field.

a spin-half fermion undergoes DTQW. To the whole sys-
tem, a static homogeneous magnetic field, B = B0n̂, is
applied; we intend to estimate its magnitude.
The Hamiltonian describing a spin-half particle in a

magnetic field [51] is given by

Ĥ = −γŜ ·B, (1)

where Ŝ = (Ŝx, Ŝy, Ŝz) is the spin angular momentum op-

erator of the particle and γŜ = µ is its intrinsic magnetic

moment. Since we use a static magnetic field, Ĥ is time-

independent. Using Ŝ = ℏσ̂/2 where σ̂ = (σ̂x, σ̂y, σ̂z)
and choosing

ω = γB0/2, (2)

the unitary operator evolving the state of the particle
under the influence of the static magnetic field [52] can
be expressed as

Û(t) = exp

(
−iĤt

ℏ

)
= cos (ωt)̂I+ i(σ̂ · n̂) sin (ωt).

(3)

The particle also undergoes DTQW over the 1D lattice,
which we will discuss next.
A general DTQW [14, 15] is defined on the Hilbert

space H = C ⊗ Hp where C = span of {|0⟩ , |1⟩} is
called the coin-space of the walker and Hp = span
of {|x⟩ : x ∈ Z} is called the position-space. In our
system, the coin-space is the spin-space of the parti-

cle spanned by the eigenvectors of Ŝz operator. The
position-space, Hp, is spanned by states {|x⟩} where
x = {−N,−N + 1, ..., N}. A DTQW is evolved and gov-
erned by the following two operators:
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FIG. 2: Probability distribution of the position eigenvalues of a spin-half particle after 50 time steps of a bounded
DTQW in one dimension. The quantum walk occurs in the presence of magnetic fields of different magnitudes (ω)
in the x, y, and z -directions from left to right, respectively. The initial spin states |0⟩, |1⟩, and |+⟩ = 1√

2
(|0⟩+ |1⟩)

respectively are used. In all cases, the coin parameter is set to 3π/8.

1. The coin operator acting on the coin-space C of the
walker given by

Ĉ(τ, ξ, ζ, θ) = eiτ
(

eiξ cos(θ) eiζ sin(θ)
−eiζ sin(θ) e−iξ cos(θ)

)
. (4)

Throughout our study, we use the coin operator of
the form

Ĉ(θ) =

(
cos(θ) −i sin(θ)

−i sin(θ) cos(θ)

)
. (5)

2. The conditional unitary shift operator acting on
complete Hilbert space (H = C ⊗ Hp) classifies
DTQW into two types. The first one is Unbounded
DTQW, where the walker moves on a position-
space of infinite size with the associated shift-
operator defined as

Λ̂∞
p =

∑
x

|0⟩ ⟨0| ⊗ |x− 1⟩ ⟨x|+ |1⟩ ⟨1| ⊗ |x+ 1⟩ ⟨x| .

(6)

The second type is Bounded DTQW (which we use
in this paper). It evolves on position-space, Hp,
with a finite number of sites. The associated po-
sition shift-operator bounds the evolution of walk
between [−a, a] (a ∈ Z) with boundary condition
|Ψa+1⟩ = |Ψ−a−1⟩ = 0. We define the shift opera-
tor as

Λ̂B
p = |1⟩ ⟨0| ⊗ |−a⟩ ⟨−a|+

a∑
x=−a+1

|0⟩ ⟨0| ⊗ |x− 1⟩ ⟨x|

+

a−1∑
x=−a

|1⟩ ⟨1| ⊗ |x+ 1⟩ ⟨x|+ |0⟩ ⟨1| ⊗ |a⟩ ⟨a| . (7)

The operator representing a single step of the DTQW is
given by

Ŵ = Λ̂p(Ĉ⊗ Ip). (8)

The quantum walker starts from the position site at the
center of the lattice with an initial state of the form
|Ψ(0)⟩ = |s⟩ ⊗ |x = 0⟩. The coin operator generally
evolves the coin-state |s⟩ to some superposition of two or
more states. The shift operator then shifts those states
to the next and/or previous position based on their re-
spective coin states. In the next section, we discuss the
effects of magnetic fields on DTQW.

III. EFFECT OF MAGNETIC FIELD ON DTQW

In the presence of a magnetic field, the DTQW can
be described in the following way. The particle begins
at time t = 0, with the initial state |Ψ(0)⟩. The oper-

ator Ŵ [Eq.(8)] acts on it after regular time-intervals of
τ seconds, acting on |Ψ(0)⟩ for the first time at t = τ
seconds. At any time t, the state |Ψ(t)⟩ of the particle is

also evolved by the unitary operator Û(t) [Eq.(3)] in the
presence of a magnetic field. Thus, before the step oper-

ator Ŵ acts for the first time, the particle is in the state

|Ψ′(τ)⟩ = (Û(τ)⊗ Ip) |Ψ(0)⟩. The state of the particle at

time t = τ (when Ŵ has acted) is thus given by

|Ψ(τ)⟩ = Ŵ(Û(τ)⊗ Ip) |Ψ(0)⟩ . (9)

Throughout our work, we take the time τ = 1s. However,
depending on the situation, one can change the time step
value (τ). The state of the particle after n time steps is
given by

|Ψ(n)⟩ = Ŵ(Û(1)⊗ Ip) |Ψ(n− 1)⟩ . (10)

Figure 2 shows the probability distribution (PD) of po-
sition measurements after 50 steps of a bounded DTQW.
The walks evolve in the presence of magnetic fields of
different magnitudes in the x,y, and z directions, respec-
tively. Magnetic fields in x and y directions (B̂i and B̂j)
can change the spread of the walk. For magnetic fields
in the z-direction, we observe that the spread of the walk
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FIG. 3: After 50 steps of the DTQW of a spin-half particle, the variance of the position probability distribution is
plotted against various magnitudes (ω) of magnetic fields. Magnetic fields in the x, y, and z -directions, from left to
right, are respectively used. Initial spin state |+⟩ is used in all plots.

is not much affected; however, the PD gets skewed. Fur-
thermore, the PD is positively (negatively) skewed when
the field direction is towards the positive (negative) z -
direction. We will discuss the changes to the spread and
the skewness of the walk in some detail now.

A. Effect of magnetic field on the position
probability distribution of DTQW

In this section, we aim to quantify the effect of a mag-
netic field on the position PD of the quantum walk. To
carry out this task, we use the variance of the position
PDs: Pick one direction and study how the variance is
distributed over different magnitudes of the field in that
direction. Additionally, we use the difference of the vari-
ance:

∆σ2(B) = |σ2(B)− σ2(B = 0)|, (11)

as a measure of how strongly a field affects the quantum
walk. This helps us identify the direction(s) of magnetic
field(s), which affects the quantum walk maximally. We
begin with magnetic field in an arbitrary direction.

For a static magnetic field, homogeneous in space, B =

B0n̂, the evolution operator, ÛB(1) [Eq.(3)], takes the
following form:

ÛB(1) =

(
cos(ω) + inz sin(ω) sin(ω)(ny + inx)
sin(ω)(−ny + inx) cos(ω)− inz sin(ω)

)
,

(12)
where n̂ = (nx, ny, nz) is an arbitrary direction. Let

ĈB = (Ĉ⊗ Ip)(ÛB(1)⊗ Ip), (13)

substituting Eq.(13) into Eq.(10) and using Eq.(8), we
can write the state of the walker after t steps of DTQW
in the presence of B as

|ΨB(t)⟩ = Λ̂pĈB |ΨB(t− 1)⟩ . (14)

Magnetic fields affect the coin operator of DTQW. Based

on the direction and magnitude of the field, ĈB takes
different forms and evolves the walk in different ways.

We call the direction along the spin |0⟩, satisfying

Ŝz |0⟩ = ℏ/2 |0⟩, the positive z -direction. The coin op-
erator C(θ) [Eq.(5)], undisturbed by the magnetic field,
is of the form exp (−iθσx). Hence, it rotates the spin by
angle 2θ about the positive x -direction, ascertaining the
x -direction for us. The positive y-direction is chosen per-
pendicular to both x and z, following the right-handed
coordinate system.

Figure 3 illustrates how variance is distributed over
different magnitudes (ω = γB0/2) of magnetic fields in
the x, y and the z direction, respectively. Rightmost
panels in Fig.2 and Fig.3 show that the magnetic field in
the z -direction, Bk̂, changes the skewness of the position
PD and minimally affects its variance. This behavior is

attributed to the resulting form of the coin operator ĈB

when B = B0k̂ is applied to the system, given by

ĈB0k̂
=

(
cos(θ) exp(iω) −i sin(θ) exp(−iω)

−i sin(θ) exp(iω) cos(θ) exp(−iω)

)
. (15)

Direct calculations with θ = π/2 starting from the
walker’s initial state |+⟩ ⊗ |x = 0⟩ reveal that the walker
lands in the state ‘− |+⟩ ⊗ |x = 0⟩’ after just two steps
of DTQW. This explains the flat ‘zero’ line for θ = π/2
in the rightmost panel of Fig.3. Notably, this nature re-
mains independent of ω, rendering it impossible to esti-

mate the value of ω using ĈB0k̂
with θ = π/2 (see the Hz

plots in Fig.5). The skewness of the position PD can also
be seen right from the first step of DTQW in presence
of Bk̂. Using Eq.(15), starting from initial spin state |+⟩
if we calculate the probability of measuring x = −1 and
x = 1 after the first step of the walk, we get

P (x = ±1) =
1± sin(2ω) sin(2θ)

2
, (16)

showing that Bk̂ (-Bk̂) skews the position PD towards
positive (negative) direction in the lattice right from the

first step of the walk. In contrast, using Ĉ(θ) [Eq.(5)], the
coin operator in the absence of B, results in a symmetric
PD with P (x = ±1) equal to half.
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The field along the x -direction, B̂i, is unique in the
sense that the variance plot, σ2

x(ω), can be shifted by any
desired amount (∆ω) by changing the coin parameter, θ,
by the same amount. In fact, from numerical results we
found the analytical expression governing the variance
distribution:

σ2
x = −T 2| sin(ω − θ)|+ T 2, (17)

where T corresponds to the total time steps the walker
takes in the DTQW. This equation holds true only when
the total time steps of the walker is less than or equal to
the boundary point of the 1D lattice (T ≤ a), and initial

spin state, |+⟩ = 1/
√
2(|0⟩+ |1⟩), is used. However, even

for cases when initial spin state |s⟩ ̸= |+⟩ and T ≥ a,
the variance (σ2

x) shows similar nature and shifts by an
amount equal to the change in coin parameter (∆θ). This

happens due to the nature of coin operator, ĈB, when
B = B0̂i. The operator takes the following form:

ĈB0 î
=

(
cos(θ − ω) −i sin(θ − ω)

−i sin(θ − ω) cos(θ − ω)

)
, (18)

explaining the shift observed exclusively for magnetic
fields in the x -direction.

Variance, σ2
x(ω), for cases when |s⟩ ̸= |+⟩ and T ≥ a,

must be solutions of the wave-like differential equation:

∂2u

∂ω2
+

∂2u

∂θ2
= 0, (19)

where u = σ2
x(ω, θ). We assert this because of the shift

observed in all the cases when fields in the x -direction
affect the DTQW.

In the presence B̂j, the variance distribution, σ2
y(ω),

can only be shifted by multiples of π/2. Whereas, σ2
z(ω),

due to Bk̂, cannot be shifted (see Fig.3). At θ = π/4,

the variance distribution, σ2
y due to B̂j, becomes constant

implying that when coin parameter is set to θ = π/4, B̂j
does not affect the position PD of the particle.

It is important to emphasize that static homoge-
neous magnetic fields alter the coin operator in DTQW
[Eq.(13)]. To gain a deeper understanding of the walk’s
dynamics in the presence of any magnetic field, we can
analyze the impact of the effective coin operator, similar
to our examination of Bk̂ [Eq. 15] and B̂i [Eq.(18)]. The
availability of no-shift, limited-shift, and complete-shift
options for Bk̂, B̂j, and B̂i respectively is attributed to

the nature of the obtained ĈB for these fields. Specifi-
cally, for Bk̂, ω only appears as a phase [Eq.(15)]; whereas

for B̂j and B̂i, ω appears in the form f(ω − θ) (allowing
the shift) within the effective coin operator.

To determine the direction of the field maximally af-
fecting the quantum walk, we use Eq.(11) and plot the
values on a sphere. Position vectors of the points on the
sphere are mapped to the vectors ωn̂. Hence, the radius
of the sphere reflects the magnetic field strength, its spa-
cial location depicts the direction of the field, and the
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FIG. 4: The variance difference, ∆σ2(B) [Eq.(11)], is
plotted for magnetic field vectors (ωn̂) mapped to
position vectors of the points on the spheres. In plots
(a), (b), and (d) coin parameter, θ = π/4 is used for the
field of magnitudes, ω = π/4, π/2, and 3π/4,
respectively. In plots (c) and (e), coin parameters
θ = ω = π/2 and θ = ω = 3π/4, respectively, are used.

color bar shows the value of ∆σ2 calculated at that field.
As the field strength is changed, the direction maximally
affecting the position PD also changes (see plots (a), (b),
and (d) in Fig.4). Due to the shift available for fields in
the x -direction, we can make the x -direction as the max-
imally affecting direction for any magnitude of the field
being used (depicted in plots (c) and (e) in Fig.4). It can
be done by simply putting ω = θ in Eq.(18). This turns

ĈB0 î
into an identity operator allowing the shift operator

to take the position state(s) of the walker to the end(s)
of the lattice maximizing the variance.

It is, however, important to note: To make a mag-
netic field have the maximum impact on the position PD,
the changes done to the coin operator may not allow the
field to become easily estimatable. In particular, turning
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the coin operator into identity reduces the estimatability
by inhibiting multi-path quantum interference otherwise
available in DTQW dynamics (see minima in Fig.5). In
the following, we delve into the tools and techniques em-
ployed to assess and increase the estimatability of mag-
netic fields within our proposed scheme.

IV. QUANTUM ESTIMATION IN
DISCRETE-TIME QUANTUM WALK

This section is divided into two parts. The first part
discusses the theoretical tools for estimating an unknown
parameter. We review concepts such as Fisher infor-
mation (FI), quantum Fisher information (QFI), and
Cramer-Rao bound and discuss how we have used them
in our work. In the second part, we state the main results
of this paper and assess the performance of our system
in estimating B0.

A. Statistical tools for parameter estimation

The problem of quantum parameter estimation [? ] is
described as follows: We have a quantum system that in-
teracts with some physical quantity with some unknown
parameter, say λ. Here, the unknown parameter λ = B0,
B0 being the magnitude of the static homogeneous mag-
netic field we aim to detect. The system’s state depends
on the unknown parameter and is defined by the den-
sity matrix ρλ. Our aim is to estimate the value of the
unknown parameter (λ).

One usually performs measurements on an ensem-
ble of copies of the system to estimate λ. The re-
sults form a random sample: {x1, x2, ..., xM}. The un-
known parameter, λ, is then estimated by some data-
processing of the sample using a function of the form:

λ̂ = f(x1, x2, ..., xM ), called the estimator of λ.
The simplest way to characterize the quality of the

estimate is by calculating the root-mean-square error

(RMSE) [49] of the estimated value (λ̂) from the true
value (λ) of the parameter. The RMSE is given by

δλ̂M =

√
⟨(λ̂− λ)2⟩ =

√
Var(λ̂) + [ b(λ̂)] 2, (20)

where M is the number of measurements made, Var(λ̂) =

⟨(λ̂ − ⟨λ̂⟩)2⟩ is the variance and b(λ̂) = ⟨λ̂⟩ − λ is the
bias of the estimator calculated over all possible random

samples. When the mean of the estimator, ⟨λ̂⟩, is equal to
the true value of the parameter, i.e., when the estimator
is unbiased, the RMSE becomes equal to the square root
of the estimator’s variance. Smaller the RMSE, better is
the estimation accuracy. Assuming that the estimator is
asymptotically locally unbiased, the lower bound on the
RMSE is given by the Cramer-Rao inequality:

δλ̂M =

√
Var(λ̂) ≥ 1√

MF (λ)
, (21)

where the quantity F (λ) is called the Fisher information.
It is defined as

F (λ) =

∫
dx p(x|λ)[∂λ ln p(x|λ)]2, (22)

where p(x|λ) is the conditional probability of getting an
outcome x when the value of parameter is λ.
In the quantum setting, the probability of getting xi

as the result of a measurement is given by: p(xi|λ) =
Tr[Πiρλ], where the set of operators {Πi} satisfying∫
dxi Πi = 1, form a positive operator-valued measure

(POVM). When ρλ is a pure state, Πi is the projection
operator (|xi⟩ ⟨xi|) corresponding to eigenvalue xi. When
the eigenspectrum of an observable is discrete, the Fisher
information takes the form:

F (λ) =
∑
i

(∂λp(xi|λ))2

p(xi|λ)
=
∑
i

(∂λ Tr[Πiρλ])
2

Tr[Πiρλ]
. (23)

The above formula gives the Fisher information provided
by measurements related to POVM {Πi} on a system de-
scribed by the density matrix ρλ. For different POVMs,
one gets different values of FI. This immediately demands
finding a POVM which maximizes Fisher information for
a given density matrix. We then get the so-called quan-
tum Fisher information (QFI) that theoretically gives the
maximum information a system can provide about an un-
known parameter. Note that the POVM corresponding
to QFI may not always translate to a physically measur-
able observable.
To calculate QFI, a quantity called symmetric loga-

rithmic derivative (SLD) can be introduced satisfying the
relation:

1

2
(Lλρλ + ρλLλ) =

∂ρλ
∂λ

. (24)

Using SLD, quantum Fisher information (H(λ)) can be
written in the following form:

F (λ) ≤ H(λ) = Tr[ρλL
2
λ], (25)

where F (λ) is the FI. The SLD can be written in a sim-
plified form when one works with pure states. For pure
states, we have ρ2λ = ρλ and hence, ∂λρλ = (∂λρλ)ρλ +
ρλ(∂λρλ). Using the last equation, SLD reduces to:

Lλ = 2(∂λρλ). (26)

The inequality in Eq.(25) indicates that to assess the per-
formance of measurements corresponding to a POVM in
estimating an unknown parameter, we can use the ratio:

R =
F (λ)

H(λ)
≤ 1. (27)

The closer the ratio is to one, the higher the efficiency
of the POVM. In addition, assuming an unbiased effi-
cient estimator saturating Cramer-Rao Bound [Eq.(21)]
is available, we can use Eq.(21) and employ the RMSE to
gauge the accuracy and the precision of our estimation
with respect to the true value of the unknown parameter.
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FIG. 5: Distribution of quantum Fisher information over field magnitudes (ω) after 50 steps of DTQW. Initial spin

state, |+⟩ = 1/
√
2(|0⟩+ |1⟩), is used for the DTQW in all three plots at the top. Whereas particle with initial spin

state, |0⟩ or |1⟩, is used for three plots at the bottom. From left to right, magnetic fields in the x, y, and z -direction
are used.

B. QFI of the system and FI of particle’s position
and spin measurements after DTQW in the presence

of a magnetic field

We begin by performing some calculations needed to
compute the QFI provided by our system. As mentioned
before, we assume that the direction (n̂) of the magnetic
field is already known, and the unknown parameter (λ)
we want to estimate is its magnitude, B0. The state of
the walker after t steps of DTQW in the presence of B
is given by Eq.(14). The partial derivative of the density
matrix, ρB = |ΨB⟩ ⟨ΨB|, is then given by:

∂B0ρB = |∂B0ΨB⟩ ⟨ΨB|+ |ΨB⟩ ⟨∂B0ΨB| , (28)

where |∂B0
ΨB⟩ at some time step (t) can be written using

Eq.(14) as

|∂B0
ΨB(t)⟩ = Λ̂pĈB |∂B0

ΨB(t− 1)⟩
+Λ̂p(∂B0 ĈB) |ΨB(t− 1)⟩ . (29)

Sequentially substituting Eq.(29) in Eq.(28), Eq.(28)
in Eq.(26), and Eq.(26) into Eq.(25), we can calculate
the QFI provided by our system after t time steps.

Similarly, to calculate FI provided by the position
(PFI) and spin (SFI) measurements, we use Eq.(23), re-
placing the trace operator with partial trace over spin
and position states, respectively. Let us first discuss how

the theoretical maximum sensitivity of our magnetome-
ter, provided by the QFI, is spread over the magnetic
field strengths.

QFI increases as total time steps (T) increases irre-
spective of what initial spin state (|s⟩) and direction (n̂)
of the magnetic field is chosen. QFI is a periodic function
with a period of π. The variables on which the evolution
of DTQW depends are the initial spin state |s⟩, the ratio
of total time steps to the boundary point of the lattice
(T/a), and the coin parameter (θ). We now examine the
effects of each variable on the QFI distributions, H(λ).

1. QFI of DTQW in presence of Bî (Hx(ω))

Similar to their variance counterparts (σ2
x), points

where QFI peaks can also be shifted when B̂i is affecting
the DTQW (see Fig.5). To shift Hx(ω) by an amount
(∆ω), change the coin parameter (θ) by the same value.
Moreover, the maximum value of Hx(ω) gets doubled
when |s⟩ is changed from |+⟩ to |0⟩ or |1⟩. Keeping the
total time steps (T) fixed and reducing the boundary
points of the lattice (a) less than a certain number, N0,
changes the nature of Hx(ω). This indicates that if we
do not reduce a less than N0, we can get the same infor-
mation about the unknown parameter, B0. Decreasing
a below N0 distorts Hx(ω) without raising its maximum
value; hence, it is of no potential use.
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2. QFI of DTQW in presence of Bĵ (Hy(ω))

When B̂j is present, QFI (Hy(ω)), similar to its vari-
ance cousin (σ2

y), can only be shifted in steps of π/2
(Fig.5). Apart from shifting Hy(ω) by a rigidly fixed
amount, a change in θ can reduce the height of its peak
but cannot increase it. At coin parameter, θ = π/4,
Hy(ω) becomes constant irrespective of whether |+⟩ or
|0⟩ or |1⟩ is used as the initial spin state. Again, decreas-
ing boundary point a up to a fixed number, N0, does
not change Hy(ω). When a < N0, Hy(ω) gets distorted
without increasing its maximum value.

3. QFI of DTQW in presence of Bk̂ (Hz(ω))

The peaks of Hz(ω) are fairly rigid. We cannot shift
them by changing the coin parameter θ (see Fig.5). A
change in the value of θ only changes the value of Hz(ω)
—shifts the entire plot in the vertical direction with mi-
nor changes in their forms. For |s⟩ = |+⟩ when T/a = 1
and θ = 0, we get a surprisingly high and constant value
of Hz(ω). For other values of θ, when the spin state
|+⟩ is used, Hz(ω) takes sinusoidal form similar to σ2

z .
When we use unsymmetrical spin state |0⟩ or |1⟩, Hz(ω)
becomes a constant function of ω for all values of θ. De-
creasing the boundary point, a, reduces the maximum
value of Hz(ω) and distorts its form.

The field magnitudes (ω = γB0/2) where QFI drops to
minimum values are tough to estimate. This is because
Fisher information obtained by any measurement will be
less than QFI (F (ω) ≤ H(ω)). However, for fields in the
x -direction, owing to their shift property, we can reliably
estimate any magnitude by suitably shifting the peaks.
For fields in y-direction, however, the magnitudes where
Hy(ω) drops to minima cannot be precisely estimated.

4. FI provided by the spin and the position measurements

Having discussed the maximum theoretical efficiency
of our system, we assess how well our system estimates
the unknown parameter, B0, by using the results of spin
and position measurements. We eliminated fields in the
y-direction as the minima cannot be shifted; magnetic
fields in the z-direction showed the highest QFI. How-
ever, neither the position FI nor the spin FI show peaks
higher than 1% of the peaks achieved by PFI and SFI
for B̂i. Hence, detecting Bk̂ is less fruitful than detect-
ing B̂i even though QFI provided by former is higher (in
one case) than the latter. As a result, we will exclusively
discuss the Fisher information provided by spin and po-
sition measurements when the magnetic field is in the
x -direction.
Figure 6 shows that PFI (Fpx(ω)), as expected, can

be shifted by any desired amount by changing the coin
parameter θ. Again it comes to us with no surprise
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FIG. 6: Fisher information provided by position
measurements (Fpx, left panel) and spin measurements
(Fsx, right panel) of the particle undergoing DTQW
with T = 50 is plotted against different field magnitudes
(ω). A ratio of total time steps to the boundary of 1D
lattice (T/a) equal to 1 is used for the two plots in the
top panels. While T/a = 2 and T/a = 50 are used for
the two plots in the middle and the two at the bottom,
respectively. In all cases, the particle begins with initial
spin state |1⟩, magnetic fields in the x -direction are
applied to the system.

that using the initial spin state |0⟩ or |1⟩ turns out to
give higher maximum value of Fx(ω) than when |+⟩ is
used (ConsideringHx(ω) attained higher maximum value
when |s⟩ = |0⟩ or |1⟩ was used). SFI, Fsx(ω), behaves in
a similiar fashion. Its peaks can be shifted, |0⟩ or |1⟩
gives higher maximum than |+⟩. However, the maxi-
mum value of Fsx(ω) is double of that of Fpx(ω). In
particular, Fmax

sx = 2Fmax
px = 2T 2, for DTQW of T time

steps. The peaks are sharper and further apart in Fsx(ω)
than Fpx(ω) (see Fig.6). Thus, if we already know the

possible magnitude of B̂i (say through some theoretical
calculation or prior measurements) and we need to verify
the results with higher precision, we measure the spin of
the walker at the end of the quantum walk. In contrast,
when we want our system to be sensitive to a broader
range of magnetic field strengths, position measurement
is a better option.

Notice that similar to Hx, the nature of Fpx(ω) and
Fsx(ω) do not change if we keep total time steps (T )
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constant and reduce the boundary points of our lattice
(a) upto a fixed amount N0 (N0 < T ). In Figure 6, we
show this by plotting Fpx and Fsx for T/a = 1 (in the
top panel) and T/a = 2 (in the middle panel). The two
sets of plots are identical even though the boundary of the
lattice is reduced from a = 50 to a = 25, keeping the total
time steps unchanged (T = 50 in both cases). Estimating
the parameter, B0, with the same precision but using a
smaller lattice size saves considerable space. We found
that when DTQW with T time steps is being used, it
is sufficient to use a lattice with boundaries at −T/2
and T/2 to estimate the magnitude of a magnetic field
without losing any precision. The reasons are discussed
in the Appendix.

Finally, in Fig.7, we show the ratio R = FI/QFI to
assess the performance of our scheme for both position
and spin measurements. For position measurements (top
panel, Fig.7), we get peaks close to one for the field mag-
nitudes where both Fpx and Hx dropped to the min-
imum. Therefore, although these magnitudes seem to
be optimally estimable, one should tune the peaks with
Rpx = 0.5 to be around those field magnitudes that need
to be precisely estimated. Because at ω values where
Rpx = 0.5, both Fpx and Hx are the highest. Contrarily,
for spin measurements (bottom panel, Fig.7), the field
magnitudes, where Fsx and Hx attain highest values, are
also the points where their ratio Rsx = 1. Consequently,
spin measurements provide optimum estimability of the
field magnitudes where Rsx peaks. Moreover, the free-
dom to shift the peaks to any desired field magnitude
makes the scheme robust and tunable.

C. The minimum RMSE in the estimation of
magnetic field

As discussed, assuming an efficient unbiased estimator
is available, the inequality in Eq.(21) saturates. Thus, we
can calculate the RMSE using FI. Using the peak values
of PFI (Fmax

px ) and SFI (Fmax
sx ) turning the inequality in

Eq.(21) into an equality, the RMSE in estimating ω using
position measurements takes the form:

δω =
1

T
√
M

. (30)

Note that δω = γ(δB)/2, and γ = gsµB/ℏ, where is
gs is the gyromagnetic ratio, µB is the Bohr magneton.
Say we use an electron with gs = −2.0023 undergoing
DTQW of total time steps 50 over a 1D lattice of size 51
(a = 25). We align the system such that the magnetic
field takes x-direction with respect to the system. Using
a single position measurement (M = 1) and an efficient
unbiased estimator, we can estimate the magnitude of
the field with the RMSE in the estimate of the order 0.1
picoTesla.
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FIG. 7: Ratio of the Fisher information provided by
position measurement of the particle to the quantum
Fisher information (QFI), Rpx, is plotted against
various magnitudes (ω) of the magnetic fields (top).
The ratio of spin Fisher information to QFI, Rsx, is
plotted (bottom). In all cases, magnetic fields in the
x -direction are used. All plots are plotted after fifty
steps of DTQW.

V. CONCLUSIONS

In this work, we have studied the effects of homoge-
neous magnetic fields on a spin-half particle undergoing
DTQW . The study supports the use of DTQW of the
spin-half particle as a magnetometer for detecting and
estimating magnetic fields. In our study we first showed
that magnetic fields affect the multi-path interference of
a particle undergoing DTQW. We used the variance of
the position probability distributions to examine the ef-
fects of the magnetic fields. We found that variance is
distributed periodically over the magnetic field’s magni-
tude and shows different natures for fields in different
directions. In particular, for magnetic fields in the x -
direction, the variance plots can be shifted by changing
the parameter of the coin operator evolving the walk. We
found that the direction of the magnetic field, maximally
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affecting the quantum walk, changes with the field magni-
tude. Furthermore, using the shift property of magnetic
fields in the x -direction, by suitably changing the coin
parameter, we can make the x -direction the maximally
affecting direction for all magnitudes. However, doing
that required turning the coin operator to the identity
operator which impedes the multi-path interference oth-
erwise provided by DTQW and reduces the estimatability
of the field magnitude.

Therefore, we turned our attention to assessing how
well our system can estimate the strengths of magnetic
fields. We used QFI to study the maximum sensitivity of
our system. We also examined whether position and spin
measurements of the particle can be used to estimate the
magnitude of the field. The plots of position and spin
Fisher information (PFI and SFI, respectively) showed
that this indeed is possible. The Fisher information plots
showed peaks around some specific field magnitudes, sug-
gesting that they are more efficiently estimatable than
the other magnitudes. In addition, we observed the shift
property of fields in x -direction for FI plots as well, which
allows us to shift the peaks of the PFI and SFI plots to
any desired magnitude of the magnetic field. This showed
that our system, as a magnetometer, can be tuned to de-
tect desired magnetic fields by simply changing the coin
parameter used in the DTQW. Furthermore, high values
of FI/QFI ratios indicated that carefully selecting the
coin parameter (θ) maximizes the information extraction
about the field’s magnitude from the DTQW of the par-
ticle. In particular, when calculations were done for an
electron undergoing DTQW of fifty time steps, i.e., using
the system for fifty seconds, the RMSE in the estimate
calculated using a single position measurement was of
order of 0.1 picoTesla. Two leading candidates for de-
tecting weak magnetic fields are magnetometers utilizing
nitrogen-vacancy (NV) centers in diamond, boasting sen-

sitivities of order of picoTeslas (15 pT/
√
Hz [13] for en-

semble DC magnetometry), and superconducting quan-
tum interference devices (SQUIDs), reaching sensitivities

in the femtoTesla range (1–7 fT/
√
Hz) [5] at the cost of

cryogenic cooling. The sensitivity of our scheme, con-
trastingly, depends on the time steps of DTQW and the
number of measurements and can hence be further im-
proved by using an ensemble of magnetometers (increas-
ing M) for higher time intervals (increasing T) [Eq.(30)]
without possibly needing cryogenic cooling.

Detection is limited to static homogeneous magnetic
fields. One way to overcome this shortcoming is that
when a unidirectional inhomogeneous magnetic field is
present, one can use several setups to detect the mag-
netic field strengths at different points. Reliable detec-
tion of the direction of magnetic fields is also a challenge.
Moreover, Eq.(30) clearly shows that using DTQW of a
single fermion, we can hit the so-called standard quantum
limit (SQL) having a 1/

√
M dependence on the number

of measurements. However, this limit is beaten by the ul-

timate quantum limit of precision – the Heisenberg limit
[53]. Contrary to SQL, the Heisenberg limit has 1/M
dependence and can be achieved by carefully choosing
entangled states that exhibit strong correlations among
the particles. Through this work, we achieved the SQL
of precision in estimating magnetic fields by using quan-
tum interference and entanglement of the spin and po-
sition of a fermion provided by DTQW dynamics. The
entanglement between position and spin allowed us to
effectively estimate magnetic fields’ magnitudes by mea-
suring the particle’s position or spin. Meanwhile, future
research ventures utilizing multi-fermion configurations,
meticulously crafted entangled states, and tailored mea-
surement protocols can be potentially explored to unlock
the Heisenberg limit within the DTQW framework. If we
can surmount the experimental challenges to make a suit-
ably small setup, this magnetometer has the potential to
be used in vast arenas wherever magnetic field strengths
are required to be estimated with ultra-high precision.

VI. APPENDIX

We observed that the nature of QFI and PFI remained
unchanged when we decreased the lattice boundaries, a,
upto a certain number N0. We will discuss the reasons
in this section. In a bounded DTQW, the walker’s su-
perposition terms hitting the bounds (±a) get reflected.
This occurs due to the structure of the shift-operator
[Eq.(7)] evolving the bounded walk. From Fig.8, we ob-
serve that the position PD histogram of the unbounded
walk folds inwardly from verticle lines at x = a + 0.5
and x = −a− 0.5 to give the bounded walk position PD.
Equivalently, the probability amplitudes of the bounded
walk (pB(x)) and the unbounded walk (pinf(x)) are re-
lated as pinf(x = a + k) = pB(x = a–(k − 1)) when
all parameters are kept identicle for both kinds of walk.
Figure 8 further illustrates this: showing the probability
values by putting a = 25 and k = 19 for both variants. In
an unbounded DTQW with even T , the probability am-
plitudes at odd position spaces are zero. When we keep a
an odd number, the unbounded walk folds in the follow-
ing manner: the probability values at even sites beyond
the bounds (±a) goes to the odd sites between them. For
DTQW with even T , the smallest safest bound that ac-
complishes this task is T/2. Consequently, the position
PD of the bounded walk formed in this manner contains
the same information present in that of the unbounded
version (See Fig.6).
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FIG. 8: Position PD histograms for unbounded (left
panels) and bounded (right panels) DTQW after 50
time steps. Initial spin state |+⟩ is used for both plots
in top panels while |1⟩ is used for the rest. Position PD
histograms of bounded DTQWs are obtained by folding
that of the unbounded DTQWs about a verticle line at
x = ±25.5 units along the x -axis.
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