arXiv:2311.16214v3 [quant-ph] 22 Apr 2024

DGR: Tackling Drifted and Correlated Noise in
Quantum Error Correction via Decoding Graph
Re-weighting

Hanrui Wang*!, Pengyu Liu*?, Yilian Liu®, Jiaqi Gu*, Jonathan Baker®, Frederic T. Chong®, Song Han

1

Massachusetts Institute of Technology 2Carnegie Mellon University *Cornell University
4Arizona State University, University of Texas at Austin, $University of Chicago

Abstract—Quantum hardware suffers from high error rates
and noise, which makes directly running applications on them
ineffective. Quantum Error Correction (QEC) is a critical
technique towards fault tolerance which encodes the quantum
information distributively in multiple data qubits and uses
syndrome qubits to check parity. A classical decoder is needed to
repeatedly process the syndrome qubit information and identify
the errors. Minimum-Weight-Perfect-Matching (MWPM) is a
popular QEC decoder that takes the syndromes as input and finds
the matchings between syndromes that infer the errors. However,
there are two paramount challenges for MWPM decoders. First,
as noise in real quantum systems can drift over time, there is a
potential misalignment with the decoding graph’s initial weights,
leading to a severe performance degradation in the logical error
rates. Second, while the MWPM decoder addresses independent
errors, it falls short when encountering correlated errors typical
on real hardware, such as those in the 2Q depolarizing channel.
Overlooking such correlations can adversely impact the perfor-
mance of the decoder.

To tackle these two challenges, we propose DGR, an efficient
decoding graph edge re-weighting strategy with no quantum
overhead. It leverages the insight that the statistics of matchings
across decoding iterations offer rich information about errors on
real quantum hardware. By counting the occurrences of edges
and edge pairs in decoded matchings, we can statistically estimate
the up-to-date probabilities of each edge and the correlations
between them. The reweighting process includes two vital steps:
alignment re-weighting and correlation re-weighting. The former
updates the MWPM weights based on statistics to align with
actual noise, and the latter adjusts the weight considering edge
correlations. These adaptations pave the way for a more accurate
and resilient quantum error correction pipeline.

Extensive evaluations on surface code and honeycomb code
under various settings show that DGR reduces the logical error
rate by 3.6x on average-case noise mismatch with exceeding
5000x improvement under worst-case mismatch.

I. INTRODUCTION

Quantum Computing (QC) has garnered substantial research
interest as an emergent computational model designed to ad-
dress problems previously deemed unsolvable with enhanced
efficiency. A multitude of sectors and academic disciplines
stand to gain from the potentialities of QC, notably cryp-

tography [70], database search [37], combinatorial optimiza-
tion [26], [53], molecular dynamics [63], and machine learn-
ing [10], [52], [54], [55], [791-[82], [85], [90] applications,
etc.
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Fig. 1. Compare traditional decoding method with our proposed decoding
graph re-weighting (DGR). DGR leverages decoding statistics to dynamically
re-weight the decoding graph for high-fidelity quantum error correction.

Despite the exciting advancements, the qubits and quantum
gates on current quantum machines suffer from high error rates
of 1073 to 1072, preventing us from executing applications
that demand significantly lower error rates (below 10~10) [33],
[48], [51]. Therefore, reducing quantum error is a pressing
demand to close the gap. Quantum Error Correction (QEC),
an essential solution to this challenge, lowers the error rate by
integrating redundancy, a process where the information from
a single logical qubit is distributed across multiple physical
qubits (data qubits). Syndrome qubits then perform iterative
checks of the data qubits and provide the parity of them in
classical bits, which are then decoded by a classical decoder
to infer the error that occurs on data qubits. By increasing the
redundancy, the logical error rate plummets exponentially.

An effective decoder is critical for QEC to lower the
error rate. Minimum-Weight-Perfect-Matching (MWPM) is a
promising candidate with high accuracy and almost-linear
complexity [30], [43]. In MWPM, a decoding graph is con-
structed based on the selected code and noise model. Each
node in the graph represents a syndrome qubit, and each
edge represents an error that can cause a syndrome flip event
on its connected nodes. The weight on each edge (w) is
computed from the error rate of the corresponding error (p)
as w = —logﬁ ~ —logp. To deal with the degeneracy
between syndrome and errors, i.e., the same syndrome pattern



can be caused by different errors, the MWPM finds the
most likely error, which corresponds to the overall minimum
weights of the selected error edges. Therefore, a precise noise
model is crucial for the high accuracy of the decoder.

However, MWPM decoders suffer from the inaccurate
modeling of the real hardware noises that ignores the
temporal drift of the noise and correlation between noises.

O Noise Drift-Unaware — First, the noise on real quantum
hardware can suffer significant drifts overtime [66] due to
various causes such as thermal fluctuations in Josephson Junc-
tions [38], laser detuning in neutral atom and trapped-ion [15],
unwanted coupling to two-level-systems (TLS) [58] defects
in Transmon qubits [7], [69], magnetic fluctuation caused
by the sun [57], etc. The drifted noise creates a mismatch
between the actual noise characteristics on quantum hardware
and the noise model inside the classical MWPM decoder.
Though there exist traditional methods for identifying noise
in quantum systems, e.g., quantum process tomography [11],
[64], randomized benchmarking [23], [50], [56], they are time-
consuming and cannot be performed simultaneously with QEC
in progress.

@ Noise Correlation-Unaware — Another issue is the lack
of correlation modeling between noises (represented as edges
in the decoding graph). Typically, edges within this graph are
treated as independent. Yet, in many cases, these edges exhibit
nontrivial correlations. As an illustrative example, consider
the widely-referenced X-Z surface code. Here, a Y error in
the 1Q depolarizing channel decomposes into two ostensibly
independent edges: one X and one Z. However, when a Y error
occurs in practice, both edges should be co-selected. There-
fore, the upper-bound accuracy of MWPM is unfortunately
compromised due to its neglect of edge correlations.

To overcome the above two issues and augment the ex-
isting MWPM pipeline with more accurate noise modeling,
we propose an efficient, non-intrusive, and scalable approach
— Decoding-Graph Re-weighting (DGR) (Fig. 1). DGR op-
erates based on two pivotal insights. The first recognizes
that quantum error correction inherently possesses the ability
to detect errors, thus allowing the reconstruction of noise
characteristics from multiple rounds of QEC. The second
insight acknowledges that the method can discern not only
independent noise but also the correlations between noises.
This correlation information can be harnessed to fine-tune the
weights on the graph edges, thereby offering a more robust
solution.

To address the noise drift issue, we propose an alignment re-
weighting strategy. In QEC, the syndrome extraction process
is performed iteratively until the whole quantum program is
completed. That provides massive information about the errors
on quantum hardware. Take the common standard for real-time
decoding [2], 1 us per round, 1 million rounds of matchings
can be obtained every second. The occurrence of an edge in the
matching indicated a predicted error on that edge. Therefore,
we first leverage an occurrence tracer to trace the frequency
of each edge that occurred in the matchings. Given enough
rounds, we can accurately estimate the correct weight for every

Surface Code

Z-Type X-Type
Ot @ syndrome © Syndrome _z N
Qubit Qubit Edge Edge

Decoding Graph

Fig. 2. Surface code and its decoding graph.

edge. Then, the MWPM can leverage the updated weights
in the later rounds to improve accuracy. This re-weighting
is non-intrusive, running in parallel on the classical sides,
with low overhead. For instance, with a distance of 5 and a
physical error rate of 0.05, 10,000 rounds are enough to have
an accurate estimation.

To further consider noise correlation, we propose correla-
tion re-weighting. A correlation tracer is used to count the
frequency of co-occurrence of every edge pair and construct
a correlation matrix. Then, we adopt a two-iteration MWPM
in this strategy. In the first iteration, we perform a normal
MWPM, and then, according to the edges in the initial
matching, we slightly adjust the weights of each edge based
on the correlation matrix. We will increase the prob of an edge
if its correlated edges are selected in the initial mapping. To
give a simple example, if a 1Q X edge is selected, then we
will increase the correlated Z edge because the X error may
be due to a Y error. Then, we will use the re-weighted graph
to perform the second iteration MWPM and obtain the final
matchings. We provide two re-weighter options, one heuristic-
based and one neural network (NN)-based, to determine the
new weights of the edges according to correlations. To reduce
the overhead, we only perform this re-weighting for difficult
syndrome patterns, such as the ones with a relatively large
number of syndromes.

DGR is a plug-and-play scheme that can be combined
with a variety of existing optimizations on MWPM. More
importantly, it incurs zero quantum overhead since there is
no additional operation on quantum hardware.

We extensively evaluate DGR on over 40 benchmarks with
Surface Code and Honeycomb Code under different code dis-
tances, error rates, and noise models (phenomenological and
circuit-level). DGR brings more logical error rate reduction
with a larger code distance and a lower physical error rate, with
3.6x and 1.7x average-case reduction for surface code and
honeycomb code. For the worst-case mismatch, the reduction
for surface code is 695x on average, up to 7,360x. The
correlation re-weighting further reduces the error rate by an
average of 1.2x and up to 1.4x. We also perform sensitivity



analysis on the effectiveness of DGR and observe its superior
capability to recover correct weights even under a 500 error
rate drift. The key insight we derive is that, even if the
mismatch causes a much higher logical error rate, its absolute
value remains much smaller than 1, such that most of the
matchings, especially for simple cases, are still correct and
can be used to recover the correct weights.
Our contributions are summarized as follows:

e We show that the mismatch between the noise model in
MWPM and real hardware noise results in a drastic degra-
dation of logical error rates by several orders of magnitude.

o To augment the current MWPM flow with more accurate
noise modeling, we propose an efficient, non-intrusive, and
scalable approach, DGR, with zero quantum overhead.

« We propose alignment re-weighting to trace the frequency of
edges from matchings and update edge weights. The process
can fully recover the logical error rates to reach similar rates
to a weight oracle.

o We propose a correlation re-weighting scheme that first
traces the correlations between edge pairs based on match-
ings and then adjusts the edge weights with a simple
heuristic or an NN-based re-weighter.

o We evaluate DGR on surface code and honeycomb code
under various settings and achieve 3.6x and 1.7x average-
case improvement. The worst-case improvement can exceed
5000x for surface code.

II. BACKGROUND AND RELATED WORK
A. Surface Code and Honeycomb Code

The Surface code is a prominent QEC scheme that encodes a
logical qubit into a two-dimensional lattice of alternating data
and syndrome (parity) qubits. It has a high error threshold
and requires only nearest-neighbor connectivity, making it
practical for real quantum systems. Errors on data qubits are
categorized into a discrete set of Pauli errors - bit-flip (Pauli-
X), phase-flip (Pauli-Z), or both [61]. They can be detected by
adjacent parity qubits using a stabilizer circuit, which measures
a four-qubit operator, leading to the detection of X, Z, or Y
(combination of X and Z) errors. The surface code can correct
error chains up to length Ldglj. A simpler variant of the
original Toric code [47], the ‘rotated’ surface code as in 2 left
is often preferred due to its more compact layout, reducing the
physical qubits and gate overheads. The [[d?,1,d]] stabilizer
code has become a prime candidate for near-term fault-tolerant
quantum computation.

Though the surface code has many merits, it requires
connectivity of 4. It could be directly mapped to some su-
perconducting hardware [|] and neutral atom devices [84],
[86] which means each qubit needs to connect with 4 other
qubits, but may be difficult for some others. For example,
IBM’s newest quantum computer employs a heavy-hexagon
lattice, which provides connectivity of only 2.4 [9]. Such
sparse connectivity challenges the design of quantum er-
ror correction code. Recently, Honeycomb code [40], [41],
a dynamically generated quantum error correction code, is

proposed to perform error correction on quantum computers
with heavy-hexagon topology. As a instantaneous stabilizer
code, it shares many similar features to conventional stabilizer
code: in each step, the code can be viewed as stabilizer code,
but the stabilizer group changes over time. An advantage of
honeycomb code is that its decoding can also be handled with
MWPM [34], [35]. It is worth noticing that the measurement
error, single qubit error, and two qubits error will all be
correlated edges in the decoding graph. Thus, decoding with
an MWPM decoder is not optimal for honeycomb.

B. Minimum-Weight-Perfect-Matching

To decode errors from syndromes, researchers have pro-
posed multiple families of decoders such as Lookup Ta-
ble (LUT) based [13], [68], [73], Neural Network (NN)
based [6], [8], [74], [83] and Union-Find (UF) based [14],
[16], [18], [88]. Among various decoders, Minimum-Weight-
Perfect-Matching decoders [20], [22], [28], [44] are consid-
ered to have a good balance between the decoding accuracy
and speed. It has almost linear time complexity [30], [43],
[89], is practical for hardware implementation for real-time
decoding [75] and is more accurate than LUT and Union Find
decoders.

MWPM constructs a decoding graph from the code as in
Fig. 2. Each node corresponds to a syndrome qubit. Each
edge represents an error that can cause the syndrome to
flip on its connected nodes. Most edges have two nodes,
and some connect one node to the boundary. In reality, the
syndrome extraction circuit and the syndrome measurements
also have errors, so the decoder combines multiple rounds
of the syndrome (typically d). This is referred to as the
circuit-level noise model, where the decoding graph is a more
complicated 3D graph with edges connecting nodes between
adjacent rounds.

Each edge also has a weight w = —log ;£-. The error
probability is obtained from a noise model. In MWPM as-
sumption, all errors happen independently, and each error will
only cause one or two detection events corresponding to one
edge in the matching graph. Thus, the highest probability
error event can be found as the minimum weight matching
of the decoding graph. However, on real quantum devices, not
all errors happen independently, and in many realistic QEC
codes, each error may cause more than two detection events.
For example, for surface code, a Y error on the data qubit
will flip the four syndrome qubits around it, creating four
detection events. Besides, since the same syndrome can be
caused by different error events, a precise alignment between
the decoder’s input noise model and real hardware’s noise
characteristics is crucial for accurate QEC decoding.

C. Decoders Tackling Noise Drift and Correlated Noise

Several existing works address the issue of noise drift, as
detailed in sources like [24], [25], [31], [42], [46], [62], [67],
[711, [721, [761-78]. Specifically, [29], [31], [45] suggest
extracting the noise model directly from decoded surface
code errors. [46], [67], [71] propose improving gate control



parameters using the error detection rate of repetition code.
[76]-[78] demonstrate that the Pauli channel error rate can be
accurately estimated from error correction syndromes. How-
ever, none of these works address tracking complex correlated
errors of multiple qubits using a correlation matrix in DGR.
[62] investigates recovering the error channel of measurement-
based quantum computation from measurement results.

Q3DE [72] proposes enhancing tolerance to multi-bit burst
errors (MBBEs) caused by cosmic rays with minimal changes
and overhead. DGR focuses on noise drifting, while Q3DE
addresses instant transient errors. Q3DE adjusts weights only
after detecting an anomalous event, whereas DGR continu-
ously updates edge weights. When Q3DE detects higher error
rates due to cosmic rays, it changes the code distance through
temporal code expansion, unlike DGR which maintains the
same code distance. Additionally, Q3DE does not address
correlated errors.

[24], [25] recommend using time-varying quantum chan-
nels (TVQCs) that model fluctuations in relaxation (T1) and
dephasing times (T2), rather than static error models, to
enhance QEC performance.

Other studies, such as [12], [17], [21], [27], [59], [87],
address noise correlation issues by altering decoding graph
weights. However, these only consider correlations between
X/Z errors. Our method handles more complex correlations,
like simultaneous X errors on two qubits. Another study [59]
modifies graph weights based on syndromes without decoding,
effectively addressing only local correlations due to the local
error diffusive process.

III. MOTIVATION
A. Noise Drift

The effectiveness of the decoder is inherently linked to
the underlying noise model of the quantum device. Noise
models characterize the physical processes that can cause
errors, such as bit flips and phase flips, and they provide
essential information to compute the probability of particular
error patterns.

Unfortunately, noise in quantum systems is known to un-
dergo significant drift over time [66], which can arise from
various sources. For superconducting quantum devices, ther-
mal fluctuations can be caused by instantaneous heat released
by a quantum phase slip [38] in Josephson Junction, leading
to noise drift. Unwanted coupling between the two-level-
systems (TLS) [58] defects and Transmon qubits [7], [69]
can cause the fluctuation of T1 and T2 coherence times. The
population of unpaired electrons can also lead to decoherence
time changes [39]. In neutral atom and trapped-ion systems,
photons can be excited from electric-field noise, varying the
gate fidelity [3]. Laser instabilities such as detuning [15] can
also drift the fidelity of gates. Besides, the magnetic field of the
Earth is subject to fluctuations influenced by solar phenomena,
including the incremental changes that follow the Sun’s daily
patterns and the more abrupt alterations stemming from events
like coronal mass ejections. The variations in the magnetic
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Fig. 3. Noise drift with in short-term and long-term.
field can cause fluctuations in qubit frequencies [57]. Cross-

talk between qubits, quasi-particles [49], and seismic noise
from human activities are also responsible for noise drift.

Fig. 3 shows our observations on noise fluctuation in IBM
and Regetti superconducting devices. Subfig (a) shows the
drift of 1Q and 2Q gate error rates within a short period —
100 seconds. The y-axis is the error rate ratio normalized by
the smallest error rate. The drift can exceed 15x within only
100 seconds. Subfig (b) shows the historical error rate data
extracted from IBM devices. We show the distribution of the
max drift of the error rate of a gate in the past year. The 1Q
and 2Q gate drifts can easily exceed 10x. 1Q gate drift is
larger than 2Q gate, and can be over 1000x.

To accurately measure and characterize the noise pro-
file, techniques such as quantum process tomography [I1],
[64], gate set tomography [36], [60], randomized benchmark-
ing [23], [50], [56], and cross-entropy benchmarking [5] can
be employed. The accuracy comes at the cost of inefficiency.
These techniques are simply not scalable as the quantum
systems grow in complexity. The scalability issue prevents
them from being used for noise models that update in real-
time. Besides, the techniques above are also impractical to be
performed together with the QEC. Although some prior work
proposed to capture the Pauli error [78] from syndromes, we
pursue to cover arbitrary type of errors (Pauli, measurement,
etc.) and capture the correlations between different errors.

B. Noise Correlation

The MWPM decoder has the assumption of independence
between all the edges in the decoding graph. However, in
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Fig. 4. Re-decoding with correlation re-weighting to identify the correct
errors.

reality, the edges are correlated. The edge correlations can
come from two sources. In the one-to-many type of correla-
tion, one single error can impact multiple edges due to the
code construction. For instance, the Y error causes errors on
one X and Z edge in surface code; an error on the X-basis
measurement of a syndrome qubit causes errors on one Y
edge and one Z edge in honeycomb. The second is the many-
to-many type of correlation, in which multiple errors happen
together and cause correlation in their edges. For example, the
2Q depolarizing channel can cause two Pauli errors on two
qubits. Besides, for neutral atom QEC [4], one laser controls
a whole row or column of qubits, whose error can also be
correlated.

The correlation information can be leveraged to augment the
MWPM decoder. For example, in Fig. 4, the actual errors in (a)
contain one X and one Y, which cause three syndromes in (b).
With the initial decoding round, the X error matching (blue)
will match the syndrome with the bottom boundary because
of the lower weight. There are two syndromes for Z error
matching (yellow), and the results indicate a Z error. If we
know a Y error is causing that Z, we can lower the weight
of the corresponding X error edge. The re-decoding process
runs MWPM again and can match the syndrome with the top
boundary, which is the correct decoding. In reality, the edge
correlations can be obtained from decoding history. Some rule-
based or data-driven strategies can be developed to perform the
re-weighting based on initial matching and correlations.

IV. METHODOLOGY

An overview of DGR workflow is shown in Fig. 5. It
augments the conventional decoding pipeline by perform—
ing alignment re-weighting and correlation re-weighting. The
process of alignment re-weighting within the quantum error
correction system may be executed either periodically or as
necessitated by the drift of noise. It will look back to extract
a specific number of immediate preceding decoding trials and
leverage the decoded matching from those trials to compute
updated weights. These recalculated weights, being in align-
ment with the existing real noise on the quantum hardware, are
then implemented in subsequent MWPM decoding processes.
Moreover, an additional re-weighting step, correlation re-
weighting, is strategically employed on what is characterized
as “difficult cases” to find a more probable error path when

taking into consideration the correlation of edges within the
system.

A. Alignment Re-weighting

The alignment re-weighting is shown in Fig. 6 (a). It
contains an occurrence tracer and a re-weighter. The occur-
rence tracer keeps track of the previous decoding results.
When alignment re-weighting is needed, the occurrence tracer
estimates the occurrence frequency of each edge in previous
rounds and uses this frequency as the probability to update
the weight in the MWPM decoding graph. In the figure, we
show specific examples. The red circles mark the syndrome
locations. Thick edges are the matched edges generated by
the MWPM decoder. The tracer looks back at a set number of
decoding trials and keeps a counter for each edge. The counter
goes up by one every time that edge appears in the matching.

It is clear that the accuracy of the estimated weight is
bounded by the decoder’s performance. A poor decoder cannot
provide reliable decoder matchings. However, our sensitivity
analysis in Section V proves that the re-weighting still works
even if the actual error rate drifts by 100x. Our key insight
here is that most syndromes are isolated when the physical
error rate is below a certain threshold. For those simple
isolated syndromes, the decoding accuracy is robust to the
changes in edge weights. Let’s consider two syndromes caused
by a single, isolated error, as shown in Fig. 6 (b). The
most straightforward matching is directly matching those two
syndromes with one single edge es. The second shortest path
between the syndromes has three edges (another three edges
of a square eg,eg,e1g). Since the weight w is the negative
logarithm of the probability p (expressed as w =~ —log(p)),
the error rate p would have to drift roughly three orders of
magnitude to cause a mistake in matching. Therefore, our
method can handle a wide range of noise drift. If the error
is not isolated, the chance of one error in a fixed area is
O(pphys) and more than two errors is O(p3,, ). As long as
pphys < Pphys, We can estimate the error with high accuracy
and robustness.

The number of trials required to statistically estimate the
weight is influenced by the physical error rate; it increases as
the error rate decreases but remains independent of the code
distance. As illustrated in Fig. 7, the mean squared error of
estimation tends to converge after 10° trials for both surface
code with distance d = 5 and error rate p = 0.001, and
honeycomb code with distance d = 3 and error rate p = 0.001.

B. Correlation Re-weighting

The second part of DGR is called correlation re-weighting.
It is comprised of two components: a correlation tracer and a
correlation re-weighter. The tracer’s function is to construct a
correlation matrix by counting the occurrence of edge pairs
in previous trials. Though actual correlations may involve
multiple edges, here, we restrict our count to correlations
solely between two edges for two principal reasons. First, the
memory consumption of tracking correlations among multiple
edges escalates exponentially. Second, estimating multi-edge
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correlation is challenging and sometimes impossible. Take the
surface code as an example. Suppose the X-check X1 Xo X3.Xy
forms a stabilizer. Then, the error X; and error X5X3X,
will generate exactly the same syndromes and can never be
distinguished through the measurement data. The ground truth
correlation matrices and the estimated ones for surface code
and honeycomb code are shown in Fig. 8. Most entries in
the matrices are accurately estimated, with some discrepancies
stemming from the complexities of multi-edge correlations.
The MWPM decoder operates by performing certain ap-
proximations and views all the edges independently, an ap-
proach that can impair its performance. To enhance the
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Fig. 8. Heat map of the correlation strength for surface code with distance
3 under phenomenlogical and circuit level noise and honeycomb code with
distance 3 under circuit level noise. The lighter the point is, the higher the
correlation is.

decoding process by leveraging correlation information, we
introduce a two-iteration decoding methodology. In the first
iteration, standard MWPM decoding is executed. In the sec-
ond, we adjust the weights based on both the correlation
matrix and the initial matching and re-decode the syndromes.
The key insight here is that the known occurrence of one
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edge increases the probability of occurrence for its correlated
edges. To limit the overhead for two-iteration decoding, this
technique is selectively applied to challenging syndrome pat-
terns (characterized by the number of syndromes), which is
inspired by the two-level decoding approach in Clique [65].
The comprehensive illustration of the entire pipeline is shown
in Fig. 10.

1) Heuristic-Based Correlation Re-weighter

The core intuition behind correlation re-weighting lies in the
relationship between physical errors and their corresponding
edges within the matching graph. Specifically, if a single
physical error leads to two or more edges in this graph, a
positive correlation emerges among these edges. Consequently,
if one edge is chosen in the predicted matching, the probability
of the other edges occurring should be increased, resulting
in a decrease in their weights. Conversely, if one edge is
not selected, the probability of the occurrence of the other
correlated edges should be diminished, leading to an increase
in weights.

With regard to the correlation re-weighter, one straightfor-
ward heuristic is to re-weight according to the conditional
probability of edge matching in the initial matching [19].
Unfortunately, this approach is viable only when an edge
has one single correlated edge. However, as in Fig. 9, after
evaluating the number of related edges on surface code with
distance 5 and honeycomb code with distance 3, it’s apparent
that the majority of edges have more than one correlated
edge, so the application of a simple conditional probability
becomes impossible. This complexity necessitates a more
nuanced approach to accurately capture the correlations and
their effects on the decoding process. As a result, we propose
a heuristic re-weighting algorithm that is able to process
multiple correlated edges, increasing or decreasing the edges’
weight according to the strength of correlation.

After the first decoding round, we get the initially selected
edge set M; then, we update all the edges’ weights according
to the following rule.

T = ws — Z p(eivej) + Z p(eiaej)
T Gy ple) g ple)

(D

where w; and p(e;) represent the weight and occurrence

Algorithm 1 Hybrid training for NN reweighing predictor

Initialize: Decoding graph G, NN predictor Wg(-), Dataset
D, Steps T', Learning rate 7, initial weight w
1: for each training iteration ¢t <~ 1---7 do

2:  Sample a mini-batch (x,m’) from D

3:  Forward the MLP predictor

4 w=w+ Vot (z)

5:  Forward the MWPM decoder and calculate the loss

6: L(w)=LMWPM(G(w)), m')

7. Estimate the gradient through the combinatorial
MWPM decoder

8 Vil = 5gor Yoy (L(0+ Aw;) — L@ — Aw;)) Aw;

9:  Use the estimated gradient for backpropagation
10: Vet =VgL - Vetw

11:  Update the NN predictor weights

122 Ol Ot — Vel

13: end for

14: return Trained NN predictor Ug-(+)

probability of edge e;, e;, respectively, as estimated by the
occurrence tracer, and p(e;, ;) denotes the probability of edge
e; and e; co-occuring. Subsequently, we proceed with a second
decoding round, utilizing these newly calculated weights to
refine the results.

2) NN-based Correlation Re-weighter

If the edge is associated with a multitude of related edges
with complex relationships, the heuristic-based re-weighting
may not provide effective results. To fully leverage the corre-
lation matrix derived from the matching history, we introduce a
neural network-based re-weighter. This re-weighter is designed
to predict weights changes, denoted as Aw(e;) = Yeo(x(e;)),
where x(e;) symbolizes the extracted feature for edge e;, as
shown in Fig. 10 and Fig. 11, and ¥g(-) is the NN-based
predictor. The weight for the second iteration of decoding is
calculated as w(e;) = w(e;) + Aw(e;). The extracted feature
contains information on the edge type, which is encoded as
a one-hot vector. The edge type is determined by the spatial
location of an edge in the decoder graph. The edges of the
same type will have the same number of correlated edges.
Furthermore, the feature vector incorporates information on
correlated edges, including whether the related edge has been
matched in the initial iteration matching M, and the co-
occurrence probability p(e;, e;). We make sure that the order
of the correlated edges in the vector consistently follows the
same related location order for one edge type, such as from
front to back, from top to bottom, etc. This uniform ordering
is necessary to maintain the spatial invariance of the code. To
accommodate varying numbers of related edges, the feature
vector is zero-padded to the maximum number of related
edges, ensuring a consistent input for training and inference.

The complexity of model training represents the most de-
manding part of this process, and it can be mathematically
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Fig. 11. The proposed neural network-based correlation re-weighter trained
with SPSA algorithm.

formulated as

min Z £<MWPM(G(U}+\I/@(:E(ei)))),m'), ()

where the objective is to minimize the error between the
ground-truth matching solution m’ and the solution on the
re-weighted decoding graph with the predicted edge changes
of the weights Aw.

The gradients w.r.t. the NN weights are expressed asVo L =
VL -Vew. A significant challenge arises from the combina-
torial nature of the solver, MWPM(-), which is not differentiable,
i.e.,, the first term VzL cannot be obtained directly. To
navigate around this limitation and incorporate the black-box
combinatorial solver into the backpropagation procedure, we
adopt a symmetric zeroth-order gradient estimator to obtain
the directional derivative, as described in Alg. 1 Lines 7-
10. To achieve this, we randomly generate a perturbation of
the weights from a multi-variate Gaussian distribution Aw ~
N(0,0?%), and use the directional derivative as an estimate of
the first-order gradient of the smoothed MWPM oracle. To
reduce the sampling variance, we average the gradients over
@ samples. Subsequently, the estimated gradients of the solver
are used to calculate the gradients of the weights of the NN

model.
During the inference phase, the model can process all edges
in a batch, thereby predicting the Aw(e;) to minimize latency.

V. EVALUATION
A. Evaluation Methodology

Benchmarks. We evaluate two quantum error correction
codes, the surface and honeycomb codes. For surface code
with code distance d, we use stim’s [32] built-in functions
surface_code:rotated_memory_z to generate a sur-
face code with d rounds and test with logical Z observable. For
honeycomb code, we use the package provided by Ref. [35] to
generate a planar honeycomb code. For a code distance with
d, we use d+ 1 width, 3 x [(2d+2)/3] height and 3d rounds,
and test with a V-type observable. We use PyMatching [43]
to sample the errors and decode them. We select distances 3,
5,7, and 9 for the surface code with physical error rates from
2E-4 to 3E-2. We select distances 3 and 5 for the honeycomb
code with a physical error rate from 3E-5 to 1E-3.

Noise Model. We implement two types of noise model,
the phenomenological noise model [20], which contains data
qubit depolarization and measurement error, and the circuit-
level noise model, which includes data qubit depolarization,
depolarization after Clifford gates, and measurement error. For
surface code, the errors are generated using stim’s built-in
functions, and for honeycomb code, we used the SD6 circuit
level noise model introduced in [35].

Mismatch. We evaluate two mismatch models. The first one
is random (average-case mismatch). We first generate an error
correction circuit with a given physical error rate in the random
mismatch model. Then, we mutate each operation’s error
probability with a factor, sampled log-uniformly from % to
N. This is called N x mismatch. The circuit and the matching
are sampled independently. The second one is the worst-case
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mismatch, in which the difference between the logical error
rate using the matched decoder and the mismatched one is
maximized. We found that for surface code with logical Z
observable, the logical error rate will be maximized, if the
first % rows of the data qubits have a larger physical error
rate and the last d—;l rows have a lower physical error rate.
NN Decoder Settings The NN we adopt is an MLP with two
hidden layers with dimension 64. The last layer is a tanh
output layer scaled by 3x, outputting [—3,3]. We leverage
the Adam optimizer with a learning rate of 1E-3 and weight
decay of 1E-4. The models are trained with batch size 128 for
100 epochs on datasets with 100000 generated samples.

B. Main Results

Logical error rates reduction with alignment re-weighting.
Fig. 12 shows the performance of surface code under phe-

TABLE 1
PHYSICAL ERROR RATE THRESHOLD FOR SURFACE CODE.

Mismatch Strength Oracle Mismatched Ours
10x 0.0301 0.0194 0.0300
5x 0.0272 0.0234 0.0271

nomenological noise. The y-axis is the relative logical er-
ror rate of decoder with mismatch weights and our aligned
weights, over the decoder with matched weight provided by
an oracle. Our aligned weights is obtained from matching of 1
million trials. The mismatch strength is 10x. Subfig. (a) shows
the average performance over 10 random sampled noise model.
The mismatched weights degrade the decoder by 3.6x on
average, while our alignment re-weighter can fully recover the
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logical error rate. Generally, we observe the improvements of
our re-weighter is more significant for large distances and low
physical error rates. Subfig. (b) shows the performance in the
worst case mismatch where the mismatched weights can cause
logical error rate to degrade by up to 1582x, with 77.5x on
average. Fig. 13 further compares the mismatched weight with
our aligned weight under the circuit-level noise model. For
random benchmarks, DGR provides 1.7x improvements and
under worst case mismatch, DGR provides 695 x reduction on
average (764.3/1.1), up to 7360x. Our aligned weights cannot
fully recover performance, leading to a 1.1x higher logical
error rate. Fig. 14 provides more results on the honeycomb
code. Again, DGR reduces logical error rate by 1.6x and
1.8 for two noise models and fully recovers them to the level
of using weight oracles. From these results, we demonstrate
the detrimental effect of mismatched weights, and prove the
effectiveness of our DGR on various code types, distances and
error rates.
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Logical error curve. Fig. 15 shows the logical error rate
on surface code with distance 5 on the phenomenological
noise model. As the physical error rate increases, the ratio
between the mismatched logical error rate and the matched
one decreases. This is because both of them will converge
to 0.5 when the physical error rate is large enough. The
trend on the worst case mismatch is more significant. When
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TABLE 11
REQUIRED MEMORY SIZE FOR STORING 10000 ROUNDS OF MATCHING
TRIALS ON CLASSICAL MACHINE.

Memory (KB) p=1E-3 =p2E-3 p=5E-3 p=1E-2 p=2E-2 p=3E-2
d=3 0.39 0.78 1.95 39 7.8 11.7
d=5 2.51 5.02 12.55 25.1 50.2 75.3
d=7 7.79 15.58 38.95 779 155.8 233.7
d=9 17.67 35.34 88.35 176.7 3534 530.1

the physical error rate increases, our method’s performance
slightly decreases because more errors happen in the decoding
procedure, thus making the estimation of weights inaccurate.
Physical error threshold. Tab. I shows the physical error
threshold for surface code. In both 10x and 5x mismatch
strength, the threshold of the mismatched decoder is signif-
icantly lower, and the predicted weights have a performance
comparable to the ideal weight oracle.

Logical error rates reduction with correlation re-
weighting. Fig. 16 (a) and (b) show the logical error rate
reduction for surface code with heuristic and NN correlation
re-weighter on two different noise models. The heuristic re-
weighter reduces the logical error by 1.01x and 1.05x on
average for surface code and 10x Y-biased surface code,
while the NN re-weighter manages to reduce by 1.11x and
1.17x. Fig. 16 (c) shows the logical error rate reduction for
honeycomb code with heuristic and NN re-weighter on the
phenomenological and circuit level noise models. The heuristic
re-weighter reduces the logical error by 1.15x on average,
while the NN re-weighter reduces the logical error by 1.12x.
Although the heuristic-based re-weighter sometimes works
better than the NN-based re-weighter. The NN-based one has
a more stable performance and is capable of handling different
types of QEC codes under diverse settings.

C. Analysis

How severe mismatch can our method recover? Fig. 17
shows the performance of alignment re-weighter when increas-
ing the mismatch level. For the random case, the alignment
re-weighter can always recover the correct weight, up to 500x

11

TABLE III
NUMBER OF EDGES, FEATURE DIMENSION AND LATENCY OF NN
RE-WEIGHTER FOR DIFFERENT QEC.

Code surface surface surface surface honeycomb honeycomb
Distance 3 5 3 5 3 5
Error Model pheno pheno circ circ circ circ
N_edges 59 313 86 518 441 2499
N_features 15 18 80 139 148 221
Latency (ms) 0.14 023 0.15 0.31 0.28 0.77

mismatch. In the worst case, the alignment re-weighter can
recover the weight almost perfectly when the mismatch is
smaller than 50x. After that, the logical error rate degrades
when the mismatch is more severe, but it is still better than the
mismatched decoder. As analyzed in Section IV-A, we expect
the weight estimation will be less accurate when a direct edge
between two syndrome nodes could be mis-decoded to a three-
edge detour. That will happen when the mismatch strength is
1000, which is close to our observations here for the average-
case mismatch.

Required trials for accurate estimation vs. physical error
rate. Fig. 18 shows the convergence of logical error rates
under different noise levels. The smaller the noise is, the more
trials are required. This is because whether an edge is selected
forms a Poisson distribution with expectation p. Estimating the
expectation value up to a constant relative error requires trials
inversely proportional to p.

Required trials for accurate estimation vs. code distance.
Fig. 19 shows the convergence of logical error rate with the
increasing of trials. For different code distances, the required
trial is similar, around 10® to 10%. This is because, under
the same error rate, the error occurrence of an edge is not
influenced by the size of the decoding graph.

Memory Requirements. Table I shows the additional mem-
ory requirement for the occurrence and correlation tracers
to work. We use a sparse matrix with INT16 data type to
store previous decoding results up to N trials. Thus, whenever
needed, the two tracers can estimate the weights and corre-
lations from the data. For the most resource-consuming case,
d = 9 and pypys = 0.03, the memory requirement is only
0.5MB. The memory requirement can be further decreased by
storing more coarse-grained data.

Overhead of NN-reweighter. Table III shows the overhead
of the NN re-weighter. The latency ranges from 0.14ms to
0.77ms according to the scale of the problem. We can further
reduce the average latency by only choosing the difficult cases
with more syndromes to go through the NN re-weighter. In
our experiments above, only 15% of trials need correlation
re-weighting. The easy cases with fewer syndromes can be
correctly decoded in the first iteration with high probability.

VI. CONCLUSION AND OUTLOOK

We propose DGR, an efficient decoding graph edge re-
weighting strategy to solve the noise drift-unawareness and
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