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One-dimensional Mott insulators can be described using the sine-Gordon model, an integrable
quantum field theory that provides the low-energy effective description of several one-dimensional
gapped condensed matter systems, including recent realizations with trapped ultra-cold atoms.
Employing the theory of Generalized Hydrodynamics, we demonstrate that this model exhibits
separation of the transport of topological charge vs. energy. Analysis of the quasiparticle dynamics
reveals that the mechanism behind the separation is the reflective scattering between topologically
charged kinks/antikinks. The effect of these scattering events is most pronounced at strong coupling
and low temperatures, where the distribution of quasiparticles is narrow compared to the reflective
scattering amplitude. This effect results in a distinctively shaped “arrowhead” light cone for the
topological charge.

Introduction.— One-dimensional (1D) quantum sys-
tems are well-known to exhibit anomalous transport be-
haviour compared with their higher-dimensional coun-
terparts. In particular, transport in integrable quantum
many-body systems [1] is strongly influenced by ergodic-
ity breaking captured by the Mazur inequality [2, 3], and
it is primarily characterised by ballistic transport and fi-
nite Drude weights [4]. Another prominent anomaly is
spin-charge separation, where the respective degrees of
freedom in a one-dimensional quantum wire move with
different velocities [5], as observed experimentally [6–
11]. This phenomenon is best understood in terms of
bosonization leading to two Tomonaga-Luttinger liquids
[12, 13] with different speeds of sound. More recently, it
was also understood directly in terms of the interacting
Fermi gas [14–17].

In this Letter, we demonstrate a similar, yet, at
the same time, substantially different separation of en-
ergy and charge transport velocities by considering non-
equilibrium dynamics in one-dimensional Mott insula-
tors. Mott insulators are materials that are expected to
be conducting based on conventional band theory; how-
ever, they fail to do so due to a gap induced by electron-
electron interactions [18]. In the Tomonaga-Luttinger
description of the charge sector of 1D systems, the gap is
induced by Umklapp processes [19]. These 1D Mott insu-
lators include carbon nanotubes and organic conductors;
their charge sector is described by the sine-Gordon field
theory, which can be obtained via bosonization of the
Hubbard model [20].

Besides electronic systems, the sine-Gordon field the-
ory has numerous further applications ranging from spin
chain materials [21–24] through arrays of Josephson’s

junctions [25, 26] to trapped ultra-cold atoms [27–32],
and can also be realized via quantum circuits [33] and
coupled spin chains [31]. Recently, it was shown that the
topological charge Drude weight in this model exhibits a
fractal structure [34], similar to that found for the spin
Drude weight in the gapless XXZ spin chain [35–39].

To study transport phenomena, we exploit the break-
through of Ref. [34], which enabled applying Generalized
Hydrodynamics (GHD) [40, 41] to the sine-Gordon model
at generic values of the coupling. GHD gives access to
the exact large-scale dynamics of integrable systems and
has been immensely successful in numerous applications
(see reviews [42–46]), including the quantitative descrip-
tion of dynamics in several cold gas experiments [47–50].
Using GHD, we demonstrate that the dynamical separa-
tion of conserved quantities also occurs in the quantum
sine-Gordon model in the form of topological charge and
energy, as illustrated in Fig. 1. Similarly to the Fermi
gas, the phenomenon follows from separate excitations,
featuring different dispersion relations, being responsible
for carrying the relevant quantities. However, a key dif-
ference from spin-charge separation is that energy-charge
separation occurs in a gapped system. In addition, it also
has a fractal structure analogous to the Drude weight
when considered as a function of coupling. Lastly, reflec-
tive scattering events can influence the ballistic transport
of the topological charge in a peculiar fashion, which we
demonstrate by considering a bump release protocol.

Sine-Gordon hydrodynamics.— Sine-Gordon dynam-
ics is driven by the Hamiltonian

H =

∫
dx

[
1

2
(∂tϕ)
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2
(∂xϕ)

2 − λ cos(βϕ)

]
, (1)
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FIG. 1: Illustration of the mechanism behind charge-
energy separation and the three-staged “arrowhead”
light-cone propagation of the topological charge in the
bump release: (i) Outwards propagating solitons, whose
front follows the dashed line, push all background
magnons with them, following reflective kink/antikink
scattering. (ii) Magnons flow inwards to fill the depleted
central region. (iii) The remaining magnon depletion
propagates outwards. The duration of each stage de-
pends on the coupling strength and temperature.

where ϕ(x) is a real scalar field, β is the coupling
strength, and the parameter λ sets the mass scale. The
spectrum of the sine-Gordon model consists of topolog-
ically, and oppositely, charged kinks/antikinks that are
relativistic particles of mass mS interpolating between
the degenerate vacua of the cosine potential. In the re-
pulsive regime 4π < β2 < 8π, kinks and antikinks com-
prise the entire spectrum, while in the attractive regime
0 < β2 < 4π, kink-antikink pairs can form neutral bound
states dubbed breathers. Introducing the renormalized

coupling constant ξ = β2

8π−β2 , the breather masses are

mBk
= 2mS sin

(
kπξ
2

)
where k = 1, . . . , nB = ⌊1/ξ⌋. For

β2 > 8π, the cosine term of the Hamiltonian (1) becomes
irrelevant and the system reduces to the Luttinger liquid
model. We use units given by the kink mass mS , ℏ = 1
and the speed of light (the sound velocity in condensed
matter context) c = 1, as well as setting the Boltzmann
constant kB = 1. As a result, energies and temperatures
are measured in units of mS , while distances and times
are measured in units of 1/mS .

The root cause of the transport phenomenon lies in
the dual nature of kink-antikink scattering, which can be
both transmissive and reflective with respective ampli-

tudes

ST (θ) =
sinh (θ/ξ)

sinh ((iπ − θ)/ξ)
S0(θ, ξ) , (2)

SR(θ) =
i sin (π/ξ)

sinh ((iπ − θ)/ξ)
S0(θ, ξ) , (3)

where θ is the rapidity difference between the excita-
tions and S0(θ, ξ) is a phase factor. All other scatter-
ing processes are purely transmissive, with explicit ex-
pressions of their amplitudes given in the Supplemental
Material [51] (see also references [52–54] therein). For
integer values of 1/ξ, the kink-antikink reflection am-
plitude (3) vanishes; at the aptly named reflection-less
points of the coupling all topologically charged particles
propagate at the same velocities, whereby any separation
in transported quantities vanishes.
Thermodynamic states of the system can be described

using the Bethe Ansatz [55, 56] and formulated in terms
of quasiparticle excitations consisting of the breathers
Bk, a single solitonic excitation S accounting for the en-
ergy and momentum of the kinks, and also partly for
the charge, and additional massless auxiliary excitations,
dubbed magnons, which account for the internal degen-
eracies related to the charge degrees of freedom of the
kinks. Whilst solitons carry a positive topological charge,
magnons are negatively charged (see [51]). The magnons
can be classified by writing the coupling ξ as a continued
fraction

ξ =
1

nB +
1

ν1 +
1

ν2 + . . .

, (4)

with nB breathers and νk magnon species at level k. The
generic description of thermodynamic states was derived
in [34]. It contains a set of equations of the overall form

ρtota = ηasa +
∑
b

ηbΦab ∗ ρb , (5)

where the star denotes convolution, ρtota (θ) is the to-
tal density of states for excitations of type a in rapid-
ity space, ρa(θ) are the densities of occupied states, Φab

are kernels describing quasiparticle interactions, and ηa
are sign factors ensuring the positivity of the densities.
The source terms sa = ma cosh θ/2π contain the mass
ma of the corresponding excitations, which is mS for
solitons, mBk

for the kth breather and ma = 0 for
magnons. The above equations only fix the relation be-
tween the total and occupied densities of states; in ther-
modynamic equilibrium, at temperature T and chemi-
cal potential µ for the topological charge, all of them
are fixed uniquely by the thermodynamic Bethe Ansatz
(TBA) equations in terms of the pseudo-energy functions
ϵa = log (ρtota /ρa − 1)

ϵa = wa −
∑
b

ηbΦab ∗ log
(
1 + e−ϵb

)
, (6)
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FIG. 2: Half-width of the support of charge-charge
(blue) and energy-energy (red) correlators in a biparti-
tion protocol as function of the coupling strength β2/8π.
The correlators are computed for dynamics at different
temperatures and values of ξ with at most two magnonic
levels in the TBA system. The results are computed at
discrete points, joined by a line in the plot to emphasise
the discontinuous nature of the charge-charge case. The
vertical dotted lines indicate the reflectionless points. Di-
mensionful quantities are given in units defined by setting
mS = 1, ℏ = 1 and c = 1 as specified in the main text.
Note the logarithmic scale of the horizontal axis.

where the source terms are wa = ma cosh θ/T − µqa/T
with qa giving the topological charge carried by the exci-
tation of species a. More details, including the system’s
partially decoupled form and a graphical representation,
can be found in [34, 51].

The large-scale dynamics of an inhomogeneous system
can be expressed in terms of the evolution of the quasi-
particle densities ρa(z, t, θ) via the theory of Generalized
Hydrodynamics (GHD). In the absence of inhomogeneous
couplings, the GHD equation reads [40, 41]

∂tρa(z, t, θ) + ∂z
(
veffa (z, t, θ) ρa(z, t, θ)

)
= 0 . (7)

We omit the (z, t)-dependence for a lighter notation in
the following. The effective velocity veffa (θ) represents the
ballistic propagation velocity of a quasiparticle of type a
with rapidity θ and is given by

veffa (θ) =
(∂θea)

dr
(θ)

(∂θpa)
dr
(θ)

, (8)

where ea(θ) = ma cosh θ is the bare energy of the quasi-
particle type a and pa(θ) = ma sinh θ is their bare mo-
mentum. The superscript ‘dr’ indicates that the quantity

has been dressed, that is, it has been modified through
interactions with other quasiparticles. As a result, the
effective velocity carries an implicit dependence on the
quasiparticle densities ρa at the point z and time t.
The exact definition of the dressing operation and the
TBA scattering kernels can be found in the Supplemen-
tal Material [51]. Physically, the effective velocity orig-
inates from the propagation of the quasiparticle exci-
tations through the finite density medium [57]; in the
semi-classical picture, this modification can be under-
stood as the accumulated effect of Wigner time delays
associated with the phase shifts occurring under elastic
collisions [58, 59].
Finally, thermodynamic expectation values of local op-

erators can be computed from the quasiparticle densities.
Thus, expectation values of densities of conserved quan-
tities h (such as topological charge and energy) are

⟨h(z, t)⟩ ≡ h(z, t) =
∑
a

∫ ∞

−∞
dθ ρa(z, t, θ) ha(θ) , (9)

where ha(θ) is the single-particle, bare eigenvalue of the
corresponding conserved quantity, such as ea(θ) for the
energy [51].
Charge-energy separation.— In the limit of weak in-

homogeneities, the separation of topological charge and
energy follows from the different effective velocities of
magnons and solitons. To quantify the separation, we
compute the charge-charge and energy-energy correlators
at the hydrodynamic scale in thermal states, which in-
dicate the maximal velocity of an energy or charge dis-
turbance spreading on the thermal background, follow-
ing [60, 61]

Ch1,h2(z, t) = ⟨h1(z, t)h2(0, 0)⟩c

= t−1
∑
a

∑
θ∈θ∗

a(ζ)

ρa(θ)[1− ϑa(θ)]

|(∂θveffa ) (θ)| hdr
1,a(θ)h

dr
2,a(θ) ,

(10)

where ζ = z/t, and θ∗a(ζ) are the set of rapidities for
which the effective velocity takes the value ζ, i.e., the so-
lution of the equation veffa (θ) = ζ. The separation (and
its absence) on the full range of the coupling β2/8π and
for four different temperatures is shown in Fig. 2. The
figure depicts the half-width (in ζ) of the correlators (see
[51]). It indicates that the separation strongly depends
on the temperature in the attractive regime (where it is
only visible at low temperatures), whilst it is more robust
in the repulsive regime. These dependencies follow from
the relative rapidity width of the quasiparticle density to
the reflective scattering amplitude; the former increasing
with temperature, while the latter increases with cou-
pling β. Thus, in the repulsive regime, the amplitude
SR(θ) is generally wide compared to ρ(θ) up to high tem-
peratures, whilst in the attractive regime, the width of
ρ(θ) is comparable to SR(θ) even at low temperatures.
In contrast, the kink-antikink scattering at reflectionless
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FIG. 3: Evolution of topological charge density q and
energy density e following a bump release in the repulsive
ξ = 3 sine-Gordon model at three different temperatures
T . Dashed and dotted lines indicate the position of the
fastest travelling soliton and magnon for the background
state, respectively. The densities are scaled with the fac-
tor (1 + t) to emphasize features at later times. Dimen-
sionful quantities are given in units defined by setting
mS = 1, ℏ = 1 and c = 1 as specified in the main text.

points is purely transmissive, whereby charge and energy
propagate at the same velocity. Notice the characteristic
fractal structure in the dependence of the charge correla-
tor half-width on the coupling, which is parallel to that
found for the charge Drude weight in [34]. Calculations of
the half-width of topological charge- and energy-current
profiles in a bipartition protocol with infinitesimal chem-
ical potential and temperature differences of the two sys-
tem halves reveal similar structures. For more details on
the calculations for the bipartition protocol, see [51].

“Arrowhead” light-cone.— In the presence of strong
inhomogeneities, reflective scattering events can lead to
peculiar dynamics, which we demonstrate in a repulsive
system with coupling ξ = 3, with one solitonic and ν1 = 3
magnonic excitation species. The system is initialized in
a local thermodynamic equilibrium at a given temper-
ature T and an inhomogeneous chemical potential pro-
file µ(z), such that the initial topological charge den-

sity follows q(z) = qmax exp
(
− z2

2σ2

)
, where qmax = 0.4

and σ = 0.5. This realizes a central region containing
an excess of positively charged solitons and depletion of
negatively charged magnons; in the charge-neutral back-
ground, their contribution is equal and opposite. The
dynamics is initiated by quenching the potential to zero

at time t = 0. Below we use veffa (θ) to denote the effec-
tive velocity of quasiparticle species a evaluated in the
background state. To simulate the GHD dynamics, we
employ the backwards semi-Lagrangian method with a
fourth-order scheme [62, 63].

Fig. 3 depicts the simulated charge and energy den-
sity evolution for temperatures T = 0.3, 0.5, 1. For
the energy density, a clear light cone is visible for all
three temperatures, with higher temperatures featuring
a sharper expansion profile. The front of the light cone
propagates with the velocity of the fastest solitons in the
initial charge bump, indicated by the dashed line, which
is obtained by first finding the endpoint of the rapidity
interval containing 98% of the soliton quasiparticles in
the bump θmax, then evaluating veffS (θmax). The match
between energy transport and soliton propagation is ex-
pected since only the solitonic excitations contribute to
the energy.

In contrast, the evolution of the topological charge
density exhibits a three-staged (“arrowhead”) light cone.
The mechanism behind this dynamics is illustrated in
Fig. 1, while the underlying quasiparticle distribution is
plotted at select times in Fig. 4 [64]: In the first stage, dy-
namics is dominated by the reflective scattering between
kinks and antikinks; the energy-carrying solitons push
all the background magnons with them, and the charge
propagation matches the energy light cone. The soliton
propagation is hardly affected by interactions with the
magnons. This is evident from the soliton distribution
of the initial bump dispersing according to their effec-
tive velocity in the background state veffS , which is indi-
cated by a dashed line in Fig. 4. Meanwhile, for lower
temperatures, the magnon propagation deviates strongly
from their background velocity veffM (θ) (plotted as a dot-
ted line in Fig. 4), due to the magnons being pushed
outwards by the expanding soliton bump. The first stage
lasts roughly until the charge contribution of the accu-
mulated magnons cancels out that of the solitons; at this
point, the outwards propagating charge front vanishes
and magnons can propagate past the soliton front and
start filling up the central depletion, thus shrinking the
positively charged region. In the final stage, as the in-
wards propagating magnons cross the center (z = 0), a
second outgoing light cone appears, effectively caused by
the magnon depletion propagating outwards with veloc-
ity veffM .

We find that the duration of the first and second
stages exhibits a strong dependence on the temperature
T . For increasing temperature, the density of solitons
and magnons in the background state grows, as seen in
Fig. 4. Thus, the point where the topological charge of
the soliton front is cancelled by the accumulated magnon
charge (marking the end of the first stage) is reached
much sooner. In turn, this leads to the magnon depletion
region being much narrower, thereby reducing the dura-
tion of the second stage. Indeed, the charge propagation
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FIG. 4: Soliton ρS and (last) magnon ρM distributions at different times t following a bump release in the repulsive
ξ = 3 sine-Gordon model for three temperatures: (a) T = 0.3, (b) T = 0.5, and (c) T = 1.0. The dashed and
dotted lines indicate the positions z = veffS (θ)t and z = veffM (θ)t, respectively. Dimensionful quantities are given in
units defined by setting mS = 1, ℏ = 1 and c = 1 as specified in the main text.

of the higher temperature realizations in Fig. 3 follows
almost solely stage three. In the third stage, the initial,
large perturbation has somewhat dispersed, whereby the
system is only weakly inhomogeneous. Thus, the charge-
energy separation follows from the different effective ve-
locities of magnons and solitons in thermal states; this
difference decreases as T increases, as the results shown
in Fig. 2 demonstrate.

Additionally, we have simulated the bump release in
the attractive regime; see [51] for figures depicting the
results. Here, we find no clear “arrowhead” structure
in the charge propagation, as the different stages over-
lap. Similarly to the repulsive case, the dispersing soliton
bump pushes magnons of the background state with it.
However, as the rapidity width of the reflective scatter-
ing amplitude is much narrower in the attractive regime,
the accumulated magnons can propagate past the soli-
tons and fill the central magnon depletion immediately.
Thus, the charge front of the propagating solitons is never
(or at most only very slowly) cancelled by the magnon
accumulation, whereby the first stage charge light cone
(which follows the energy light cone) persists.

Summary.— We uncovered a new effect of charge-
energy separation in 1D Mott insulators, which manifests
across a wide range of coupling strengths and tempera-
tures using the framework of Generalized Hydrodynamics
for the quantum sine-Gordon model. In the partition-
ing protocol, we have found that the separation exhibits
a fractal structure similar to the Drude weight; at low
temperatures, a clear separation is present at all cou-
pling strengths except for the reflectionless points, while
at higher temperatures and lower coupling strengths, the
separation is suppressed. The bump release protocol
sheds light on the underlying mechanism, which origi-

nates from the reflective part of the kink-antikink scat-
tering. This mechanism implies that the effect is of a
purely quantum origin and cannot be accounted for by
the recent semiclassical approach to sine-Gordon GHD
[65, 66] since the classical scattering is purely transmis-
sive. The role of reflective scattering is enhanced at low
temperatures, especially in the repulsive regime, leading
to a striking three-stage “arrowhead” light cone effect in
the evolution of the topological charge.

The bump release, and similar protocols, can be ex-
perimentally realised by polarising the 1D Mott insulator
via a locally applied voltage. Besides electronic systems,
it can also be implemented in other realizations of sine-
Gordon theory: for 1D magnets, the topological charge
corresponds to spin, whereas the bump release can be re-
alised using a locally applied magnetic field, while in cold
atom systems, it can be achieved via a local shaping of
the condensate as recently reported in [67].
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SUPPLEMENTAL MATERIAL

Dynamical separation of charge and energy transport in one-dimensional Mott insulators

Frederik Møller, Botond C. Nagy, Márton Kormos, and Gábor Takács

The sine-Gordon TBA system

In this section, we discuss the partially decoupled forms of the TBA equations (5,6), which makes the numerical
calculation of the system possible by significantly reducing its computational complexity.

For brevity, here we only summarise the results for one magnonic level, i.e. when the coupling can be written as

ξ =
1

nB + 1
ν1

. (S.1)

This case includes the repulsive regime ξ = ν1 ∈ Z≥2 as well, by setting nB = 0, which was considered in [52]. For
a full treatment valid for general values of the couplings, including both attractive and repulsive regimes, we refer to
[53].

The TBA system consists of nB breathers, a soliton and ν1 magnons. The decoupled pseudo-energy system is

ϵa = wa +
∑
b

Kab ∗
(
σ
(1)
b ϵb − σ

(2)
b wb + Lb

)
, (S.2)

where La = log(1 + e−ϵa). The key advantage of this form is that the kernel Kab is a sparse matrix, as opposed to
Φab in Eq.(6). Note that the decoupling procedure modifies the source terms wa to wa. The modified source terms
and the other constants appearing in Eqs.(S.2, 6) are summarised in Table I.

The kernel Kab is most conveniently described in a graphical way, whereby the graphs encoding Kab consist of the
building blocks summarised in Table II.

The kernels can be written down analytically in Fourier space as

Φ̃pi
(t) =

1

2 cosh
(
pi

α
π
2 ξt

) , Φ̃
(i)
self(t) =

cosh
(

pi−pi+1

α
π
2 ξt

)
2 cosh

(
pi

α
π
2 ξt

)
cosh

(pi+1

α
π
2 ξt

) , (S.3)

where

α = ν1 , p0 = ν1 , p1 = 1 . (S.4)

With the above definitions, the Kab kernel in Eq.(S.2) is encoded for one magnonic level as shown in Fig. S.1.
For example, we spell out the kernel corresponding to Fig. S.1a.

Kab =



. . .
. . .

...
...

...
...

. . . 0 Φp0 0 0 0

. . . Φp0 Φ
(0)
self Φp1 0 0

. . . 0 Φp1
0 −Φp1

−Φp1

. . . 0 0 Φp1
0 0

. . . 0 0 −Φp1
0 0


, basis:



...

BnB−1

BnB

S

m1

m2


. (S.5)

Excitations Labels w q q η σ(1) σ(2)

Breathers Bi, i = 1, ..., nB mBi cosh θ/T 0 0 +1 +1 +1

Soliton S mS cosh θ/T +1 0 +1 0 0

Intermediate magnons Mj , j = 1, ..., ν1 − 2 0 −2 · j 0 −1 +1 0

Next-to-last magnon Mν1−1, (j = ν1 − 1) ν1 · µ/T −2 · (ν1 − 1) −ν1 −1 +1 0

Last magnon Mν1 ν1 · µ/T −2 −ν1 +1 0 0

TABLE I: The constants characterizing each species for a one magnon level TBA.
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. . .
−

−BnB
S

M1

M2

(a) ν1 = 2.

. . . . . .

BnB
S M1

M2

M3

(b) ν1 ≥ 3.

FIG. S.1: Graphical representation of the kernel Kab in Eq.(S.2) for couplings corresponding to one magnonic level.

With the help of the pseudo-energies, one can calculate the ratio of occupied and all possible states, usually called
the filling function

ϑa(θ) =
ρa(θ)

ρtota (θ)
=

1

1 + eϵa(θ)
. (S.6)

Elementary excitations modify the charges of finite density states by a different amount than their bare charges
because the interactions with other particles dress up the bare charges. The dressed charges are given by

ηa h
dr
a = ha +

∑
b

Kab ∗
[(

σ
(1)
b − ϑb

)
ηb h

dr
b − σ

(2)
b hb

]
. (S.7)

In the dressing equation, the bare charges hi are again modified to ha by the decoupling, at least for the topological
charges qa, which are listed in Table I. For the one-particle energy and momentum, the source terms aren’t modified,
i.e. ea = ea = ma cosh θ and pa = pa = ma sinh θ. For the total densities of states, one can also show

2πρtota = (∂θpa)
dr

. (S.8)

The bare velocities of each particle species are modified due to the scattering events with the sea of the other particles.
For the resulting net propagation velocity, called the effective velocity, it can be shown

veffa (θ) =
(∂θea)

dr

(∂θpa)
dr

. (S.9)

k k′

i+ 1 lines

k k′

i+ 1 lines

k k′

i+ 1 lines

−

−

k k′

i+ 1 lines

Kkk′ = Kk′k = Φpi −Kkk′ = Kk′k = Φpi Kkk′ = −Kk′k = Φpi Kkk′ = Kk′k = −Φpi

k

i+ 1 lines k

i+ 1 lines

Kkk = Φ
(i)
self Kkk = −Φ

(i)
self

TABLE II: Building blocks of diagrams encoding the sine-Gordon TBA systems at different couplings.
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FIG. S.2: Reflective scattering probability |SR|2 in the (a) repulsive and (b) attractive regime as a function of
scattering rapidity. The transmissive scattering probability is |ST (θ)|2 = 1− |SR(θ)|2.

Kink-antikink scattering amplitudes

Soliton scattering is described by the following two-particle amplitudes

S++
++(θ) = S−−

−−(θ) = S0(θ) ,

S+−
+−(θ) = S−+

−+(θ) = ST (θ)S0(θ) ,

S−+
+−(θ) = S+−

−+(θ) = SR(θ)S0(θ) .

(S.10)

Here, +/- denotes kinks/antikinks, while θ is the difference in scattering rapidities. Above, ST is the transmissive
amplitude, SR is the reflective amplitude, and S0 is the two-body scattering phase-shift, respectively defined as

ST (θ) =
sinh

(
θ
ξ

)
sinh

(
iπ−θ

ξ

) ,

SR(θ) =
i sin

(
π
ξ

)
sinh

(
iπ−θ

ξ

) ,

S0(θ) = − exp

i

∞∫
−∞

dt

t

sinh
(
tπ
2 (ξ − 1)

)
2 sinh

(
πξt
2

)
cosh

(
πt
2

)eiθt
 .

(S.11)

In figure S.2, the reflective scattering probability |SR|2 is plotted as a function of rapidity for select coupling strengths
ξ in both the repulsive and attractive regimes. For increasing coupling strength, the width of |SR|2(θ) increases;
thus, in the repulsive regime, it is much wider than in the attractive one. Note that for integer values of 1/ξ, the
kink-antikink reflection amplitude SR vanishes, corresponding to reflectionless (purely transmissive) scattering.

Charge-energy separation in the bipartition protocol and from dynamical correlators

The bipartition protocol is a very common protocol to study transport phenomena, where a system is cut in two
halves, and the two sides are prepared in different states defined by the source terms

wi =


wi,L =

∑
h

β
(h)
L hi , z < 0 ,

wi,R =
∑
h

β
(h)
R hi , z > 0 ,

(S.12)

where h are the conserved charges, i.e. the topological charge q, the momentum p and the energy e, and possibly higher
charges, and h are their values modified by the partial decoupling, while β(h) is the thermodynamically conjugate
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FIG. S.3: Energy (blue) and topological charge (red) current profiles in the bipartition protocol with infinitesimal
chemical potential and temperature imbalance. Dimensionful quantities are given in units defined by setting mS = 1,
ℏ = 1 and c = 1 as specified in the main text.

variable corresponding to h, e.g. β(q) = µ/T , β(e) = 1/T . After the system is let to evolve for an asymptotically long
time, the state of the system is described by a filling function at each ray ζ = z/t [40, 41]

ϑi(ζ, θ) = Θ
(
veffi (ζ, θ)− ζ

)
ϑi,L(θ) + Θ

(
ζ − veffi (ζ, θ)

)
ϑi,R(θ) . (S.13)

Although this is an implicit equation for the fillings, as the effective velocities on the RHS depend on the filling, the
usual recursive numerical scheme [52, 54] quickly converges to the stable solution. The filling can then be used to
calculate the total and the occupied densities of states through the dressing equations (S.8) for each ray ζ. Expectation
values of charges and currents are then computed for each ray as

h(ζ) =
∑
i

∫
dθρi(ζ, θ)hi(θ) , jh(ζ) =

∑
i

∫
dθρi(ζ, θ)hi(θ)v

eff(ζ, θ) . (S.14)

Example current profiles obtained with the above prescription from the bipartition protocol for ξ = 3, T = 1 and
µ = 0 are shown in Fig. S.3. Note the half width depicted in the figures, which can be used to quantify the spreading
velocity of energy and charge for the given temperature and coupling in Fig. 2.

Dynamical correlators describe how disturbances at one point in the system spread to distant points. It is possible
to calculate the correlators of conserved charges in equilibrium states on the Euler scale in the TBA formalism as

Ch1,h2(z, t) = ⟨h1(z, t)h2(0, 0)⟩c = t−1
∑
a

∑
θ∈θ∗

a(ζ)

ρa(θ)[1− ϑa(θ)]

|(∂θveffa ) (θ)| hdr
1,a(θ)h

dr
2,a(θ) , (S.15)

where ζ = z/t, and θ∗a(ζ) are the set of rapidities for which the effective velocity takes the value ζ, i.e. the solution
of the equation veffa (θ) = ζ. Examples of energy-energy and charge-charge correlators for ξ = 3, T = 1 and µ = 0
are shown in Fig. S.4. Note the half-width indicated in the figures, which are used to quantify the separation of the
spreading of energy and charge in Fig. 2.

Additional figures from bump-release protocol

In the following, we present several additional figures from the bump-release protocol discussed in the main text.
For the sake of convenience, we both summarize the contents of the figures and provide an analysis below:

Fig. S.5: Profiles of topological charge density q and energy density e at select evolution times for ξ = 3 (repulsive
interaction, same setup as discussed in main text). For T = 0.3, the charge dynamics follow stages 1 and 2
of the ”arrowhead” light cone: At early times t, the charge-bump develops two peaks travelling outwards at
the same velocity as the energy. Magnons accumulating at the soliton front eventually cancel out the charge
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FIG. S.4: Dynamical energy-energy (blue) and charge-charge (red) correlators in equilibrium states. Dimensionful
quantities are given in units defined by setting mS = 1, ℏ = 1 and c = 1 as specified in the main text.

contribution of the solitons, and a plateau in the charge density develops. During the second stage, the width of
the plateau shrinks as the accumulated magnons fill the central depletion. At the very end of the second stage,
the charge density profiles become peaked, as seen for the T = 0.5 realisation around t = 4.8. Finally, a second
outgoing light cone appears in stage three, following the magnon propagation velocity.

Fig. S.6: Effective velocity evaluated at the right-moving soliton front at select evolution times for ξ = 3. Due to the
excess of right-moving solitons, the magnon velocity is shifted to positive values following reflective kink/antikink
scattering. As the soliton bump disperses and the local density of solitons and magnons becomes comparable,
the shift in the magnon velocity decreases, and it tends towards its value in the background state (plotted in
the top row).

Fig. S.7: Bump-release at ξ = 3 for temperature T = 0.4, clearly exhibiting all three stages of the ”arrowhead” light-cone
propagation. The figure shows (a) the (scaled) light cones of topological charge and energy density, (b) profiles
(not scaled) of the charge and energy density at select evolution times, and (c) the quasiparticle distribution of
solitons and (last) magnons at select times.

Fig. S.8: Light-cones of topological charge density and energy density following bump release for ξ = 2/3 (attractive
regime). Unlike the repulsive case, no clear ”arrowhead” structure is visible in the light cones; at all temper-
atures, the charge and energy propagations are very similar. As the main text explains, this follows from the
much narrower reflective scattering amplitude in the attractive regime (see Fig. S.2), which enables magnons
to penetrate past the soliton front. Thus, a mixing of the first and second stages of the ”arrowhead” dynamics
occurs, whereby the dispersing soliton bump dominates both charge and energy transport.

Fig. S.9: quasiparticle distributions at select times for the ξ = 2/3 bump release. Comparing the soliton and magnon
distributions, it is clear that the magnons are still experiencing significant ”pushing” from the solitons. However,
the effect is limited to rapidities around those of the solitons; indeed, for z > 0, the right-moving solitons (at
positive rapidity) mainly push magnons also at positive rapidities. Meanwhile, magnons at negative rapidities
continue to propagate inwards, filling up the initial depletion of magnons around z = 0.

Fig. S.10: Effective velocity evaluated at the right-moving soliton front at select evolution times for the ξ = 2/3 bump
release. Similarly to the repulsive case, an excess of right-moving solitons causes a positive shift of the magnon
velocity following reflective kink/antikink scattering. However, unlike the repulsive case, the effect is limited to
mainly positive rapidities, while left-moving magnons at negative rapidities still exist (seen by the negative value
of their effective velocity). As the soliton bump disperses and the local density of solitons and magnons becomes
comparable, the shift in the magnon velocity decreases, and it tends towards its value in the background state
(plotted in the top row). For temperatures around the soliton mass and greater, the velocity of solitons and
magnons is practically identical.
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FIG. S.5: Topological charge density q and energy density e following a bump release in the repulsive ξ = 3 sine-
Gordon model at three different temperatures T and at different evolution times t. Dimensionful quantities are given
in units defined by setting mS = 1, ℏ = 1 and c = 1 as specified in the main text.

Fig. S.11: Light-cones of topological charge density and energy density following bump release for ξ = 1/3 (reflectionless
point). Following the absence of reflective scattering, no ”arrowhead” structure is visible, and the charge and
energy spread at the same rate throughout the system.

Fig. S.12: quasiparticle distributions at select times for the ξ = 1/3 bump release. In the absence of reflective scattering,
the soliton distribution and the initial depletion of anti-solitons propagate in exactly the same manner.



8

FIG. S.6: Effective velocity veffa for the four quasiparticle species found in the repulsive ξ = 3 sine-Gordon model,
namely the soliton S and three magnons Mi. Top row depicts the effective velocities evaluated for the background
state in the bump release protocol for the three different temperatures T (see main text). In the remaining rows,
the effective velocity is evaluated at the position of soliton front z̄ = veffS t (see main text for definition) following
different evolution times t of the bump release. The presence of excess right-moving solitons, and thus an increase in
reflective scattering events, manifests in the magnon effective velocity as a shift towards positive values. Dimensionful
quantities are given in units defined by setting mS = 1, ℏ = 1 and c = 1 as specified in the main text.
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FIG. S.7: Dynamics following a bump release in the repulsive ξ = 3 sine-Gordon model at temperature T = 0.4.
(a) Evolution of topological charge density q and energy density e. Dashed and dotted lines indicate the position of
the fastest travelling soliton and magnon for the background state, respectively. The densities are scaled with the
factor (1+ t) to emphasize features at later times. (b) Profiles of the topological charge density q and energy density
e at select evolution times t. (c) Soliton and (last) magnon distribution at select evolution times. The dashed and
dotted lines indicate the positions z = veffS (θ)t and z = veffM (θ)t, respectively. Dimensionful quantities are given in
units defined by setting mS = 1, ℏ = 1 and c = 1 as specified in the main text.
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FIG. S.8: The evolution of topological charge density q and energy density e following a bump release in the attractive
ξ = 2/3 sine-Gordon model at three different temperatures T . Dashed and dotted lines indicate the position of the
fastest travelling soliton and magnon for the background state, respectively. The densities are scaled with the factor
(1 + t) to emphasize features at later times. Dimensionful quantities are given in units defined by setting mS = 1,
ℏ = 1 and c = 1 as specified in the main text.

FIG. S.9: Breather ρB , soliton ρS , and magnon ρν distributions at different times t following a bump release in
the attractive ξ = 2/3 sine-Gordon model for two temperatures: (a) T = 0.3 and (b) T = 0.5. The dashed and
dotted lines indicate the positions z = veffS (θ)t and z = veffM (θ)t, respectively, where veffa (θ) is the effective velocity of
quasiparticle species a evaluated with respect to the background state. Note that only the distribution of the first
magnon species is plotted, as the dynamics of the other species is very similar. Dimensionful quantities are given in
units defined by setting mS = 1, ℏ = 1 and c = 1 as specified in the main text.
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FIG. S.10: Effective velocity veffa for the four quasiparticle species found in the attractive ξ = 2/3 sine-Gordon model,
namely the breather B, soliton S and two magnons Mi. The top row depicts the effective velocities evaluated for
the background state in the bump release protocol for the three different temperatures T (see main text). In the
remaining rows, the effective velocity is evaluated at the position of soliton front z̄ = veffS t (see main text for definition)
following different evolution times t of the bump release. The presence of excess right-moving solitons, and thus an
increase in reflective scattering events, manifests in the magnon effective velocity as a shift towards positive values.
Dimensionful quantities are given in units defined by setting mS = 1, ℏ = 1 and c = 1 as specified in the main text.

FIG. S.11: Evolution of topological charge density q and energy density e following a bump release in the reflectionless
ξ = 1/3 sine-Gordon model at three different temperatures T . Dashed and dotted lines indicate the position of the
fastest travelling breather and soliton for the background state, respectively. The densities are scaled with the factor
(1 + t) to emphasize features at later times. Dimensionful quantities are given in units defined by setting mS = 1,
ℏ = 1 and c = 1 as specified in the main text.
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FIG. S.12: Breather ρB , soliton ρS , and anti-soliton ρS̄ distributions at different times t following a bump release
in the reflectionless ξ = 1/3 sine-Gordon model for two temperatures: (a) T = 0.3 and (b) T = 1.0. The dashed
lines indicate the positions z = veffS (θ)t, where veffa (θ) is the effective velocity of quasiparticle species a evaluated for
the background state. Note that only the distribution of the first breather species is plotted, as the dynamics of the
other species is very similar. Dimensionful quantities are given in units defined by setting mS = 1, ℏ = 1 and c = 1
as specified in the main text.
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