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A finite spin life-time of conduction electrons may dominate Gilbert damping of two-dimensional
metallic anti-ferromagnets or anti-ferromagnet/metal heterostructures. We investigate the Gilbert
damping tensor for a typical low-energy model of a metallic anti-ferromagnet system with honeycomb
magnetic lattice and Rashba spin-orbit coupling for conduction electrons. We distinguish three
regimes of spin relaxation: exchange-dominated relaxation for weak spin-orbit coupling strength,
Elliot-Yafet relaxation for moderate spin-orbit coupling, and Dyakonov-Perel relaxation for strong
spin-orbit coupling. We show, however, that the latter regime takes place only for the in-plane
Gilbert damping component. We also show that anisotropy of Gilbert damping persists for any
finite spin-orbit interaction strength provided we consider no spatial variation of the Néel vector.
Isotropic Gilbert damping is restored only if the electron spin-orbit length is larger than the magnon
wavelength. Our theory applies to MnPS3 monolayer on Pt or to similar systems.

I. INTRODUCTION

Magnetization dynamics in anti-ferromagnets con-
tinue to attract a lot of attention in the context
of possible applications1–4. Various proposals utilize
the possibility of THz frequency switching of anti-
ferromagnetic domains for ultrafast information storage
and computation5,6. The rise of van der Waals magnets
has had a further impact on the field due to the pos-
sibility of creating tunable heterostructures that involve
anti-ferromagnet and semiconducting layers7.
Understanding relaxation of both the Néel vector and

non-equilibrium magnetization in anti-ferromagnets is
recognized to be of great importance for the function-
ality of spintronic devices8–13. On one hand, low Gilbert
damping must generally lead to better electric control of
magnetic order via domain wall motion or ultrafast do-
main switching14–16. On the other hand, an efficient con-
trol of magnetic domains must generally require a strong
coupling between charge and spin degrees of freedom due
to a strong spin-orbit interaction, that is widely thought
to be equivalent to strong Gilbert damping.

In this paper, we focus on a microscopic analysis of
Gilbert damping due to Dyakonov-Perel and Elliot-Yafet
mechanisms. We apply the theory to a model of a two-
dimensional Néel anti-ferromagnet with a honeycomb
magnetic lattice.

Two-dimensional magnets typically exhibit either
easy-plane or easy-axis anisotropy, and play crucial
roles in stabilizing magnetism at finite temperatures17,18.
Easy-axis anisotropy selects a specific direction for mag-
netization, thereby defining an axis for the magnetic or-
der. In contrast, easy-plane anisotropy does not select a
particular in-plane direction for the Néel vector, allowing
it to freely rotate within the plane. This situation is anal-
ogous to the XY model, where the system’s continuous
symmetry leads to the suppression of out-of-plane fluc-
tuations rather than fixing the magnetization in a spe-
cific in-plane direction19,20. Without this anisotropy, the

magnonic fluctuations in a two-dimensional crystal can
grow uncontrollably large to destroy any long-range mag-
netic order, according to the Mermin-Wagner theorem21.

Recent density-functional-theory calculations for
single-layer transition metal trichalgenides22, predict the
existence of a large number of metallic anti-ferromagnets
with honeycomb lattice and different types of magnetic
order as shown in Fig. 1. Many of these crystals may
have the Néel magnetic order as shown in Fig. 1a and are
metallic: FeSiSe3, FeSiTe3, VGeTe3, MnGeS3, FeGeSe3,
FeGeTe3, NiGeSe3, MnSnS3, MnSnS3, MnSnSe3,
FeSnSe3, NiSnS3. Apart from that it has been predicted
that anti-ferromagnetism can be induced in graphene by
bringing it in proximity to MnPSe3

23 or by bringing it
in double proximity between a layer of Cr2Ge2Te6 and
WS2

24.

Partly inspired by these predictions and recent
technological advances in producing single-layer anti-
ferromagnet crystals, we propose an effective model to
study spin relaxation in 2D honeycomb anti-ferromagnet
with Néel magnetic order. The same system was studied
by us in Ref. 25, where we found that spin-orbit cou-
pling introduces a weak anisotropy in spin-orbit torque
and electric conductivity. Strong spin-orbit coupling was
shown to lead to a giant anisotropy of Gilbert damping.

Our analysis below is built upon the results of Ref. 25,
and we investigate and identify three separate regimes
of spin-orbit strength. Each regime is characterized by
qualitatively different dependence of Gilbert damping on
spin-orbit interaction and conduction electron transport
time. The regime of weak spin-orbit interaction is dom-
inated by exchange field relaxation of electron spin, and
the regime of moderate spin-orbit strength is dominated
by Elliot-Yafet spin relaxation. These two regimes are
characterized also by a universal factor of 2 anisotropy
of Gilbert damping. The regime of strong spin-orbit
strength, which leads to substantial splitting of electron
Fermi surfaces, is characterized by Dyakonov-Perel relax-
ation of the in-plane spin component and Elliot-Yafet re-
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FIG. 1. Three anti-ferromagnetic phases commonly found
among van-der-Waals magnets. Left-to-right: Néel, zig-zag,
and stripy.

laxation of the perpendicular-to-the-plane Gilbert damp-
ing which leads to a giant damping anisotropy. Isotropic
Gilbert damping is restored only for finite magnon wave
vectors such that the magnon wavelength is smaller than
the spin-orbit length.

Gilbert damping in a metallic anti-ferromagnet can be
qualitatively understood in terms of the Fermi surface
breathing26. A change in the magnetization direction
gives rise to a change in the Fermi surface to which the
conduction electrons have to adjust. This electronic re-
configuration is achieved through the scattering of elec-
trons off impurities, during which angular momentum is
transferred to the lattice. Gilbert damping, then, should
be proportional to both (i) the ratio of the spin life-time
and momentum life-time of conduction electrons, and (ii)
the electric conductivity. Keeping in mind that the con-
ductivity itself is proportional to momentum life-time,
one may conclude that the Gilbert damping is linearly
proportional to the spin life-time of conduction electrons.
At the same time, the spin life-time of localized spins is
inversely proportional to the spin life-time of conduc-
tion electrons. A similar relation between the spin life-
times of conduction and localized electrons also holds
for relaxation mechanisms that involve electron-magnon
scattering27.

Our approach formally decomposes the magnetic sys-
tem into a classical sub-system of localized magnetic mo-
ments and a quasi-classical subsystem of conduction elec-
trons. A local magnetic exchange couples these sub-
systems. Localized magnetic moments in transition-
metal chalcogenides and halides form a hexagonal lat-
tice. Here we focus on the Néel type anti-ferromagnet
that is illustrated in Fig. 1a. In this case, one can de-
fine two sub-lattices A and B that host local magnetic
moments SA and SB, respectively. For the discussion of
Gilbert damping, we ignore the weak dependence of both
fields on atomic positions and assume that the modulus
S = |SA(B)| is time-independent.

Under these assumptions, the magnetization dynamics
of localized moments may be described in terms of two
fields

m =
1

2S

(
SA + SB

)
, n =

1

2S

(
SA − SB

)
, (1)

which are referred to as the magnetization and staggered

magnetization (or Néel vector), respectively. Within the
mean-field approach, the vector fields yield the equations
of motion

ṅ = − J n×m+ n× δs+ +m× δs−, (2a)

ṁ =m× δs+ + n× δs−, (2b)

where dot stands for the time derivative, while δs+ and
δs− stand for the mean staggered and non-staggered non-
equilibrium fields that are proportional to the variation of
the corresponding spin-densities of conduction electrons
caused by the time dynamics of n and m fields. The en-
ergy J is proportional to the anti-ferromagnet exchange
energy for localized momenta.
In Eqs. (2) we have omitted terms that are propor-

tional to easy axis anisotropy for the sake of compact-
ness. These terms are, however, important and will be
introduced later in the text.
In the framework of Eqs. (2) the Gilbert damping can

be computed as the linear response of the electron spin-
density variation to a time change in both the magneti-
zation and the Néel vector (see e. g. Refs.25,28,29).
In this definition, Gilbert damping describes the re-

laxation of localized spins by transferring both total and
staggered angular momenta to the lattice by means of
conduction electron scattering off impurities. Such a
transfer is facilitated by spin-orbit interaction.
The structure of the full Gilbert damping tensor can be

rather complicated as discussed in Ref. 25. However, by
taking into account easy axis or easy plane anisotropy we
may reduce the complexity of relevant spin configurations
to parameterize

δs+ = α∥
mṁ∥ + α⊥

mṁ⊥ + αmn∥ × (n∥ × ṁ∥), (3a)

δs− = α∥
nṅ∥ + α⊥

n ṅ⊥ + αnn∥ × (n∥ × ṅ∥), (3b)

where the superscripts ∥ and ⊥ refer to the in-plane
and perpendicular-to-the-plane projections of the corre-

sponding vectors, respectively. The six coefficients α
∥
m,

α⊥
m, αm, α

∥
n, α⊥

n , and αn parameterize the Gilbert damp-
ing.

Inserting Eqs. (3) into the equations of motion of
Eqs. (2) produces familiar Gilbert damping terms. The
damping proportional to time-derivatives of the Néel vec-
tor n is in general many orders of magnitude smaller than
that proportional to the time-derivatives of the magneti-
zation vector m25,30. Due to the same reason, the higher
harmonics term αmn∥ × (n∥ × ∂tm∥) can often be ne-
glected.

Thus, in the discussion below we may focus mostly on

the coefficients α
∥
m and α⊥

m that play the most important
role in the magnetization dynamics of our system. The
terms proportional to the time-derivative of n correspond
to the transfer of angular momentum between the sub-
lattices and are usually less relevant. We refer to the
results of Ref. 25 when discussing these terms.

All Gilbert damping coefficients are intimately related
to the electron spin relaxation time. The latter is rel-
atively well understood in non-magnetic semiconductors
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with spin-orbital coupling. When a conducting electron
moves in a steep potential it feels an effective magnetic
field caused by relativistic effects. Thus, in a disordered
system, the electron spin is subject to a random magnetic
field each time it scatters off an impurity. At the same
time, an electron also experiences precession around an
effective spin-orbit field when it moves in between the
collisions. Changes in spin direction between collisions
are referred to as Dyakonov-Perel relaxation31,32, while
changes in spin-direction during collisions are referred to
as Elliot-Yafet relaxation33,34.

The spin-orbit field in semiconductors induces a char-
acteristic frequency of spin precession Ωs, while scalar
disorder leads to a finite transport time τ of the con-
ducting electrons. One may, then, distinguish two limits:
(i) Ωsτ ≪ 1 in which case the electron does not have
sufficient time to change its direction between consec-
utive scattering events (Elliot-Yafet relaxation), and (ii)
Ωsτ ≫ 1 in which case the electron spin has multiple pre-
cession cycles in between the collisions (Dyakonov-Perel
relaxation).

The corresponding processes define the so-called spin
relaxation time, τs. In a 2D system the spin life-time

τ
∥
s , for the in-plane spin components, appears to be dou-
ble the size of the life-time of the spin component that
is perpendicular to the plane, τ⊥s

32. This geometric ef-
fect has largely been overlooked. For non-magnetic 2D
semiconductor one can estimate35,36

1

τ
∥
s

∼

{
Ω2

sτ, Ωsτ ≪ 1

1/τ, Ωsτ ≫ 1
, τ∥s = 2τ⊥s . (4)

A pedagogical derivation and discussion of Eq. 4 can
be found in Refs. 35 and 36. Because electrons are con-
fined in two dimensions the random spin-orbit field is
always directed in-plane, which leads to a decrease in the
in-plane spin-relaxation rate by a factor of two compared
to the out-of-plane spin-relaxation rate as demonstrated
first in Ref. 32 (see Refs. 36–40 as well). The reason is
that the perpendicular-to-the-plane component of spin is
influenced by two components of the randomly changing
magnetic field, i. e. x and y, whereas the parallel-to-the-
plane spin components are only influenced by a single
component of the fluctuating fields, i. e. the x spin pro-
jection is influenced only by the y component of the field
and vice-versa. The argument has been further general-
ized in Ref. 25 to the case of strongly separated spin-orbit
split Fermi surfaces. In this limit, the perpendicular-to-
the-plane spin-flip processes on scalar disorder potential
become fully suppressed. As a result, the perpendicular-
to-the-plane spin component becomes nearly conserved,
which results in a giant anisotropy of Gilbert damping in
this regime.

In magnetic systems that are, at the same time, con-
ducting there appears to be at least one additional energy
scale, ∆sd, that characterizes exchange coupling of con-
duction electron spin to the average magnetic moment of
localized electrons. (In the case of s-d model description

it is the magnetic exchange between the spin of conduc-
tion s electron and the localized magnetic moment of d
or f electron on an atom.) This additional energy scale
complicates the simple picture of Eq. (4) especially in the
case of an anti-ferromagnet. The electron spin precession
is now defined not only by spin-orbit field but also by
∆sd. As the result the conditions Ωsτ ≪ 1 and ∆sdτ ≫ 1
may easily coexist. This dissolves the distinction between
Elliot-Yafet and Dyakonov-Perel mechanisms of spin re-
laxation. One may, therefore, say that both Elliot-Yafet
and Dyakonov-Perel mechanisms may act simultaneously
in a typical 2D metallic magnet with spin-orbit coupling.
The Gilbert damping computed from the microscopic
model that we formulate below will always contain both
contributions to spin-relaxation.

II. MICROSCOPIC MODEL AND RESULTS

The microscopic model that we employ to calculate
Gilbert damping is the so-called s–d model that couples
localized magnetic momenta SA and SB and conducting
electron spins via the local magnetic exchange ∆sd. Our
effective low-energy Hamiltonian for conduction electrons
reads

H = vf p ·Σ+
λ

2

[
σ×Σ

]
z
−∆sd n ·σΣzΛz +V (r), (5)

where the vectors Σ, σ and Λ denote the vectors of Pauli
matrices acting on sub-lattice, spin and valley space,
respectively. We also introduce the Fermi velocity vf ,
Rashba-type spin-orbit interaction λ, and a random im-
purity potential V (r).
The Hamiltonian of Eq. (5) can be viewed as the

graphene electronic model where conduction electrons
have 2D Rashba spin-orbit coupling and are also cou-
pled to anti-ferromagnetically ordered classical spins on
the honeycomb lattice.

The coefficients α
∥
m and α⊥

m are obtained using linear
response theory for the response of spin-density δs+ to
the time-derivative of magnetization vector ∂tm. Impu-
rity potential V (r) is important for describing momen-
tum relaxation to the lattice. This is related to the an-
gular momentum relaxation due to spin-orbit coupling.
The effect of random impurity potential is treated pertur-
batively in the (diffusive) ladder approximation that in-
volves a summation over diffusion ladder diagrams. The
details of the microscopic calculation can be found in the
Appendices.
Before presenting the disorder-averaged quantities

α
∥,⊥
m , it is instructive to consider first the contribution

to Gilbert damping originating from a small number of
electron-impurity collisions. This clarifies how the num-
ber of impurity scattering effects will affect the final re-
sult.
Let us annotate the Gilbert damping coefficients with

an additional superscript (l) that denotes the number
of scattering events that are taken into account. This
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FIG. 2. Gilbert damping in the limit ∆sd = 0. Dotted (green)
lines correspond to the results of the numerical evaluation of

ᾱ
(l)

m,⊥,∥ for l = 0, 1, 2 as a function of the parameter λτ . The

dashed (orange) line corresponds to the diffusive (fully vertex

corrected) results for ᾱ
⊥,∥.
m .

means, in the diagrammatic language, that the corre-
sponding quantity is obtained by summing up the ladder
diagrams with ≤ l disorder lines. Each disorder line cor-
responds to a quasi-classical scattering event from a sin-
gle impurity. The corresponding Gilbert damping coeffi-
cient is, therefore, obtained in the approximation where
conduction electrons have scattered at most l number
of times before releasing their non-equilibrium magnetic
moment into a lattice.

To make final expressions compact we define the di-

mensionless Gilbert damping coefficients ᾱ
∥,⊥
m by extract-

ing the scaling factor

α∥,⊥
m =

A∆2
sd

πℏ2v2fS
ᾱ∥,⊥
m , (6)

where A is the area of the unit cell, vf is the Fermi ve-
locity of the conducting electrons and ℏ = h/2π is the
Planck’s constant. We also express the momentum scat-
tering time τ in inverse energy units, τ → ℏτ .
Let us start by computing the coefficients ᾱ

∥,⊥(l)
m in the

formal limit ∆sd → 0. We can start with the “bare bub-
ble” contribution which describes spin relaxation without
a single scattering event. The corresponding results read

ᾱ
(0)
m,⊥ = ετ

1− λ2/4ε2

1 + λ2τ2
, (7a)

ᾱ
(0)
m,∥ = ετ

(
1 + λ2τ2/2

1 + λ2τ2
− λ2

8ε2

)
, (7b)

where ε denotes the Fermi energy which we consider pos-
itive (electron-doped system).

In all realistic cases, we have to consider λ/ε ≪ 1,
while the parameter λτ may in principle be arbitrary. For
λτ ≪ 1 the disorder-induced broadening of the electron
Fermi surfaces exceeds the spin-orbit induced splitting.
In this case one basically finds no anisotropy of “bare”

damping: ᾱ
(0)
m,⊥ = ᾱ

(0)
m,∥. In the opposite limit of substan-

tial spin-orbit splitting one gets an ultimately anisotropic

damping ᾱ
(0)
m,⊥ ≪ ᾱ

(0)
m,∥. This asymptotic behavior can be

summarized as

ᾱ
(0)
m,⊥ = ετ

{
1 λτ ≪ 1,

(λτ)−2 λτ ≫ 1,
(8a)

ᾱ
(0)
m,∥ = ετ

{
1 λτ ≪ 1,
1
2

(
1 + (λτ)−2

)
λτ ≫ 1,

(8b)

where we have used that ε ≫ λ.
The results of Eq. (8) modify by electron diffusion. By

taking into account up to l scattering events we obtain

ᾱ
(l)
m,⊥ = ετ

{
l +O(λ2τ2) λτ ≪ 1,

(1 + δl0)/(λτ)
2 λτ ≫ 1,

(9a)

ᾱ
(l)
m,∥ = ετ

{
l +O(λ2τ2) λτ ≪ 1,

1− (1/2)l+1 +O((λτ)
−2

) λτ ≫ 1,
(9b)

where we have used ε ≫ λ again.
From Eqs. (9) we see that the Gilbert damping for

λτ ≪ 1 gets an additional contribution of ετ from each
scattering event as illustrated numerically in Fig. 2. This
leads to a formal divergence of Gilbert damping in the
limit λτ ≪ 1. While, at first glance, the divergence looks
like a strong sensitivity of damping to impurity scatter-
ing, in reality, it simply reflects a diverging spin life-time.
Once a non-equilibrium magnetization m is created it
becomes almost impossible to relax it to the lattice in
the limit of weak spin-orbit coupling. The formal diver-

gence of α⊥
m = α

∥
m simply reflects the conservation law

for electron spin polarization in the absence of spin-orbit
coupling such that the corresponding spin life-time be-
comes arbitrarily large as compared to the momentum
scattering time τ .
By taking the limit l → ∞ (i. e. by summing up the

entire diffusion ladder) we obtain compact expressions

ᾱ⊥
m ≡ ᾱ

(∞)
m,⊥ = ετ

1

2λ2τ2
, (10a)

ᾱ∥
m ≡ ᾱ

(∞)
m,∥ = ετ

1 + λ2τ2

λ2τ2
, (10b)

which assume ᾱ⊥
m ≪ ᾱ

∥
m for λτ ≫ 1 and ᾱ⊥

m = ᾱ
∥
m/2

for λτ ≪ 1. The factor of 2 difference that we observe
when λτ ≪ 1, corresponds to a difference in the elec-

tron spin life-times τ⊥s = τ
∥
s /2 that was discussed in the

introduction32.
Strong spin-orbit coupling causes a strong out-of-plane

anisotropy of damping, ᾱ⊥
m ≪ ᾱ

∥
m which corresponds to
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a suppression of the perpendicular-to-the-plane damping
component. As a result, the spin-orbit interaction makes
it much easier to relax the magnitude of the mz compo-
nent of magnetization than that of in-plane components.

Let us now turn to the dependence of ᾱm coefficients on
∆sd that is illustrated numerically in Fig. 3. We consider
first the case of absent spin-orbit coupling λ = 0. In
this case, the combination of spin-rotational and sub-
lattice symmetry (the equivalence of A and B sub-lattice)
must make Gilbert damping isotropic (see e. g.25,41). The
direct calculation for λ = 0 does, indeed, give rise to the

isotropic result ᾱ⊥
m = ᾱ

∥
m = ετ(ε2+∆2

sd)/2∆
2
sd, which is,

however, in contradiction to the limit λ → 0 in Eq. (10).
At first glance, this contradiction suggests the exis-

tence of a certain energy scale for λ over which the
anisotropy emerges. The numerical analysis illustrated
in Fig. 4 reveals that this scale does not depend on the
values of 1/τ , ∆sd, or ε. Instead, it is defined solely by
numerical precision. In other words, an isotropic Gilbert
damping is obtained only when the spin-orbit strength
λ is set below the numerical precision in our model.
We should, therefore, conclude that the transition from
isotropic to anisotropic (factor of 2) damping occurs ex-
actly at λ = 0. Interestingly, the factor of 2 anisotropy is
absent in Eqs. (8) and emerges only in the diffusive limit.

We will see below that this paradox can only be re-
solved by analyzing the Gilbert damping beyond the in-
finite wave-length limit.

One can see from Fig. 3 that the main effect of finite
∆sd is the regularization of the Gilbert damping diver-
gency (λτ)−2 in the limit λτ ≪ 1. Indeed, the limit of
weak spin-orbit coupling is non-perturbative for ∆sd/ε ≪
λτ ≪ 1, while, in the opposite limit, λτ ≪ ∆sd/ε ≪ 1,
the results of Eqs. (10) are no longer valid. Assuming
∆sd/ε ≪ 1 we obtain the asymptotic expressions for the
results presented in Fig. 3 as

ᾱ⊥
m =

1

2
ετ

{
2
3
ε2+∆2

sd

∆2
sd

λτ ≪ ∆sd/ε,

1
λ2τ2 λτ ≫ ∆sd/ε,

(11a)

ᾱ∥
m = ετ

{
2
3
ε2+∆2

sd

∆2
sd

λτ ≪ ∆sd/ε,

1 + 1
λ2τ2 λτ ≫ ∆sd/ε,

(11b)

which suggest that ᾱ⊥
m/ᾱ

∥
m = 2 for λτ ≪ 1. In the op-

posite limit, λτ ≫ 1, the anisotropy of Gilbert damping

grows as ᾱ
∥
m/ᾱ⊥

m = 2λ2τ2.
The results of Eqs. (11) can also be discussed in terms

of the electron spin life-time, τ
⊥(∥)
s = ᾱ

⊥(∥)
m /ε. For the

inverse in-plane spin life-time we find

1

τ
∥
s

=


3∆2

sd/2ε
2τ λτ ≪ ∆sd/ε,

λ2τ ∆sd/ε ≪ λτ ≪ 1,

1/τ 1 ≪ λτ,

(12)

that, for ∆sd = 0, is equivalent to the known result of
Eq. (4). Indeed, for ∆sd = 0, the magnetic exchange

10−3 10−2 10−1 100 101

λτ

10−1

101

103

105

ᾱ
m
,‖,
⊥

[ε
τ
]

∆sd/ε = 0.1

∆sd/ε = 0
ᾱm,‖
ᾱm,⊥

FIG. 3. Numerical results for the Gilbert damping compo-
nents in the diffusive limit (vertex corrected)as the function
of the spin-orbit coupling strength λ. The results correspond
to ετ = 50 and ∆sdτ = 0.1 and agree with the asymptotic
expressions of Eq. (11). Three different regimes can be dis-

tinguished for ᾱ
∥
m: i) spin-orbit independent damping ᾱ

∥
m ∝

ε3τ/∆2
sd for the exchange dominated regime, λτ ≪ ∆sd/ε, ii)

the damping ᾱ
∥
m ∝ ε/λ2τ for Elliot-Yafet relaxation regime,

∆sd/ε ≪ λτ ≪ 1, and iii) the damping ᾱ
∥
m ∝ ετ for the

Dyakonov-Perel relaxation regime, λτ ≫ 1. The latter regime
is manifestly absent for ᾱ⊥

m in accordance with Eqs. (12,13).

plays no role and one observes the cross-over from Elliot-
Yafet (λτ ≪ 1) to Dyakonov-Perel (λτ ≫ 1) spin relax-
ation.
This cross-over is, however, absent in the relaxation of

the perpendicular spin component

1

τ⊥s
= 2

{
3∆2

sd/2ε
2τ λτ ≪ ∆sd/ε,

λ2τ ∆sd/ε ≪ λτ,
(13)

where Elliot-Yafet-like relaxation extends to the regime
λτ ≫ 1.
As mentioned above, the factor of two anisotropy in

spin-relaxation of 2D systems, τ
∥
s = 2τ⊥s , is known in the

literature32 (see Refs.36–38 as well). Unlimited growth of

spin life-time anisotropy, τ
∥
s /τ⊥s = 2λ2τ2, in the regime

λτ ≪ 1 has been described first in Ref. 25. It can be qual-
itatively explained by a strong suppression of spin-flip
processes for z spin component due to spin-orbit induced
splitting of Fermi surfaces. The mechanism is effective
only for scalar (non-magnetic) disorder. Even though
such a mechanism is general for any magnetic or non-
magnetic 2D material with Rashba-type spin-orbit cou-
pling, the effect of the spin life-time anisotropy on Gilbert
damping is much more relevant for anti-ferromagnets. In-
deed, in an anti-ferromagnetic system the modulus of m
is, by no means, conserved, hence the variations of per-
pendicular and parallel components of the magnetization
vector are no longer related.
In the regime, λτ ≪ ∆sd/ε the spin life-time is de-

fined by exchange interaction and the distinction between
Dyakonov-Perel and Elliot-Yafet mechanisms of spin re-
laxation is no longer relevant. In this regime, the spin-
relaxation time is by a factor (ε/∆sd)

2 larger than the
momentum relaxation time.
Let us now return to the problem of emergency of the
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10−64 10−54 10−44 10−34 10−24 10−14

λτ

1

2

ᾱ
‖/
ᾱ
⊥

n = 32

n = 64

n = 96

n = 128

FIG. 4. Numerical evaluation of Gilbert damping anisotropy
in the limit λ → 0. Isotropic damping tensor is restored only
if λ = 0 with ultimate numerical precision. The factor of 2
anisotropy emerges at any finite λ, no matter how small it
is, and only depends on the numerical precision n, i.e. the
number of digits contained in each variable during computa-
tion. The crossover from isotropic to anisotropic damping can
be understood only by considering finite, though vanishingly
small, magnon q vectors.

factor of 2 anisotropy of Gilbert damping at λ = 0. We
have seen above (see Fig. 4) that, surprisingly, there ex-
ists no energy scale for the anisotropy to emerge. The
transition from the isotropic limit (λ = 0) to a finite
anisotropy appeared to take place exactly at λ = 0. We
can, however, generalize the concept of Gilbert damping
by considering the spin density response function at a
finite wave vector q.

To generalize the Gilbert damping, we are seeking a
response of spin density at a point r, δs+(r) to a time
derivative of magnetization vectors ṁ∥ and ṁ⊥ at the
point r′. The Fourier transform with respect to r − r′

gives the Gilbert damping for a magnon with the wave-
vector q.

The generalization to a finite q-vector shows that the
limits λ → 0 and q → 0 cannot be interchanged. When
the limit λ → 0 is taken before the limit q → 0 one
finds an isotropic Gilbert damping, while for the oppo-
site order of limits, it becomes a factor of 2 anisotropic.
In a realistic situation, the value of q is limited from
below by an inverse size of a typical magnetic domain
1/Lm, while the spin-orbit coupling is effective on the
length scale Lλ = 2πℏvf/λ. In this picture, the isotropic
Gilbert damping is characteristic for the case of suffi-
ciently small domain size Lm ≪ Lλ, while the anisotropic
Gilbert damping corresponds to the case Lλ ≪ Lm.

In the limit qℓ ≪ 1, where ℓ = vfτ is the electron mean

−2 0 2

k [a.u.]

−2.5

0.0

2.5

en
er

gy
[a

.u
.]

λ/∆sd = 4

−2 0 2

k [a.u.]

λ/∆sd = 2

−2 0 2

k [a.u.]

λ/∆sd = 1

FIG. 5. Band-structure for the effective model of Eq. (5)
in a vicinity of K valley assuming nz = 1. Electron bands
touch for λ = 2∆sd. The regime λ ≤ 2∆sd corresponds to
spin-orbit band inversion. The band structure in the valley
K′ is inverted. Our microscopic analysis is performed in the
electron-doped regime for the Fermi energy above the gap as
illustrated by the top dashed line. The bottom dashed line
denotes zero energy (half-filling).

free path, we can summarize our results as

ᾱ⊥
m = ετ


ε2+∆2

sd

2∆2
sd

λτ ≪ qℓ ≪ ∆sd/ε,

1
3
ε2+∆2

sd

∆2
sd

qℓ ≪ λτ ≪ ∆sd/ε,
1

2λ2τ2 λτ ≫ ∆sd/ε,

, (14a)

ᾱ∥
m = ετ


ε2+∆2

sd

2∆2
sd

λτ ≪ qℓ ≪ ∆sd/ε,

2
3
ε2+∆2

sd

∆2
sd

qℓ ≪ λτ ≪ ∆sd/ε,

1 + 1
λ2τ2 λτ ≫ ∆sd/ε,

(14b)

which represent a simple generalization of Eqs. (11).
The results of Eqs. (14) correspond to a simple behav-

ior of Gilbert damping anisotropy,

ᾱ∥
m/ᾱ⊥

m =

{
1 λτ ≪ qℓ,

2
(
1 + λ2τ2

)
qℓ ≪ λτ,

(15)

where we still assume qℓ ≪ 1.

III. ANTI-FERROMAGNETIC RESONANCE

The broadening of the anti-ferromagnet resonance
peak is one obvious quantity that is sensitive to Gilbert
damping. The broadening is however not solely defined
by a particular Gilbert damping component but depends
also on both magnetic anisotropy and anti-ferromagnetic
exchange.
To be more consistent we can use the model of Eq. (5)

to analyze the contribution of conduction electrons to an
easy axis anisotropy. The latter is obtained by expanding
the free energy for electrons in the value of nz, which has
a form E = −Kn2

z/2. With the conditions ε/λ ≫ 1 and
ε/∆sd ≫ 1 we obtain the anisotropy constant as

K =
A

2πℏ2v2

{
∆2

sdλ 2∆sd/λ ≤ 1,

∆sdλ
2/2 2∆sd/λ ≥ 1,

(16)
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where A is the area of the unit cell. Here we assume
both λ and ∆sd positive, therefore, the model natu-
rally gives rise to an easy axis anisotropy with K > 0.
In real materials, there exist other sources of easy axis
or easy plane anisotropy. In-plane magneto-crystalline
anisotropy also plays an important role. For example,
Néel-type anti-ferromagnets with easy-axis anisotropy
are FePS3, FePSe3 or MnPS3, whereas those with easy
plane and in-plane magneto-crystalline anisotropy are
NiPS3 and MnPSe3. Many of those materials are, how-
ever, Mott insulators. Our qualitative theory may still
apply to materials like MnPS3 monolayers at strong elec-
tron doping.

The transition from 2∆sd/λ ≥ 1 to 2∆sd/λ ≤ 1 in
Eq. (16) corresponds to the touching of two bands in the
model of Eq. (5) as illustrated in Fig. 5.

Anti-ferromagnetic magnon frequency and life-time in
the limit q → 0 are readily obtained by linearizing the
equations of motion

ṅ = − J n×m+Km×n⊥ + n×(α̂mṁ) , (17a)

ṁ =K n×n⊥ + n× (α̂nṅ) , (17b)

where we took into account easy axis anisotropy K and
disregarded irrelevant terms m×(α̂nṅ) and m× (α̂mṁ).
We have also defined Gilbert damping tensors such as

α̂mṁ = α
∥
mṁ∥ + α⊥

mṁ⊥, α̂nṅ = α
∥
nṅ∥ + α⊥

n ṅ⊥.
In the case of easy axis anisotropy we can use the lin-

earized modes n = ẑ+ δn∥ e
iωt, m = δm∥ e

iωt, hence we
get the energy of q = 0 magnon as

ω = ω0 − iΓ/2, (18)

ω0 =
√
JK, Γ = Jα∥

n +Kα∥
m (19)

where we took into account that K ≪ J . The expression
for ω0 is well known due to Kittel and Keffer42,43.

Using Ref. 25 we find out that α
∥
n ≃ α⊥

m(λ/ε)2 and

α⊥
n ≃ α

∥
m(λ/ε)2, hence

Γ ≃ α∥
m

(
K +

J/2

ε2/λ2 + ε2τ2

)
, (20)

where we have simply used Eqs. (10). Thus, one may

often ignore the contribution Jα
∥
n as compared to Kα

∥
m

despite the fact that K ≪ J .
In the context of anti-ferromagnets, spin-pumping

terms are usually associated with the coefficients α
∥
n in

Eq. (3b) that are not in the focus of the present study.
Those coefficients have been analyzed for example in Ref.
25. In this manuscript we simply use the known results
for αn in Eqs. (17-19), where we illustrate the effect of
both spin-pumping coefficient αn and the direct Gilbert
damping αm on the magnon life time. One can see from
Eqs. (19,20) that the spin-pumping contributions do also
contribute, though indirectly, to the magnon decay. The
spin pumping contributions become more important in
magnetic materials with small magnetic anisotropy. The
processes characterized by the coefficients αn may also be

10−3 10−2 10−1 100 101

λτ

0.00

0.01

0.02

1/
ᾱ
‖ m

λ/ε = 0.04
λ/ε = 0.02
λ/ε = 0.01

FIG. 6. Numerical evaluation of the inverse Gilbert damping

1/ᾱ
∥
m as a function of the momentum relaxation time τ . The

inverse damping is peaked at τ ∝ 1/λ which also corresponds
to the maximum of the anti-ferromagnetic resonance quality
factor in accordance with Eq. (21).

interpreted in terms of angular momentum transfer from
one AFM sub-lattice to another. In that respect, the spin
pumping is specific to AFM, and is qualitatively differ-
ent from the direct Gilbert damping processes (αm) that
describe the direct momentum relaxation to the lattice.
As illustrated in Fig. 6 the quality factor of the anti-

ferromagnetic resonance (for a metallic anti-ferromagnet
with easy-axis anisotropy) is given by

Q =
ω0

Γ
≃ 1

α
∥
m

√
J

K
. (21)

Interestingly, the quality factor defined by Eq. (21) is
maximized for λτ ≃ 1, i. e. for the electron spin-orbit
length being of the order of the scattering mean free path.

The quantities 1/
√
K and 1/ᾱ

∥
m are illustrated in

Fig. 6 from the numerical analysis. As one would ex-
pect, the quality factor vanishes in both limits λ → 0
and λ → ∞. The former limit corresponds to an over-
damped regime hence no resonance can be observed. The

latter limit corresponds to a constant α
∥
m, but the reso-

nance width Γ grows faster with λ than ω0 does, hence
the vanishing quality factor.
It is straightforward to check that the results of

Eqs. (20,21) remain consistent when considering systems
with either easy-plane or in-plane magneto-crystalline
anisotropy. Thus, the coefficient α⊥

m normally does not
enter the magnon damping, unless the system is brought
into a vicinity of spin-flop transition by a strong external
field.

IV. CONCLUSION

In conclusion, we have analyzed the Gilbert damping
tensor in a model of a two-dimensional anti-ferromagnet
on a honeycomb lattice. We consider the damping mech-
anism that is dominated by a finite electron spin life-time
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due to a combination of spin-orbit coupling and impu-
rity scattering of conduction electrons. In the case of a
2D electron system with Rashba spin-orbit coupling λ,
the Gilbert damping tensor is characterized by two com-

ponents α
∥
m and α⊥

m. We show that the anisotropy of
Gilbert damping depends crucially on the parameter λτ ,
where τ is the transport scattering time for conduction
electrons. For λτ ≪ 1 the anisotropy is set by a geo-

metric factor of 2, α
∥
m = 2α⊥

m, while it becomes infinitely

large in the opposite limit, α
∥
m = (λτ)2α⊥

m for λτ ≫ 1.
Gilbert damping becomes isotropic exactly for λ = 0, or,
strictly speaking, for the case λ ≪ ℏvfq, where q is the
magnon wave vector.

This factor of 2 is essentially universal, and is a geomet-
ric effect: the z-component relaxation results from fluctu-
ations in two in-plane spin components, whereas in-plane
relaxation stems from fluctuations of the z-component
alone. This reflects the subtleties of our microscopic
model, where the mechanism for damping is activated
by the decay of conduction electron momenta, linked to
spin-relaxation through spin-orbit interactions.

We find that Gilbert damping is insensitive to mag-
netic order for λ ≫ ∆sd/ετ , where ∆sd is an effective
exchange coupling between spins of conduction and local-
ized electrons. In this case, the electron spin relaxation
can be either dominated by scattering (Dyakonov-Perel
relaxation) or by spin-orbit precession (Elliot-Yafet re-
laxation). We find that the Gilbert damping component
α⊥
m ≃ ε/λ2τ is dominated by Elliot-Yafet relaxation irre-

spective of the value of the parameter λτ , while the other

component crosses over from α
∥
m ≃ ε/λ2τ (Elliot-Yafet

relaxation) for λτ ≪ 1, to α
∥
m ≃ ετ (Dyakonov-Perel re-

laxation) for λτ ≫ 1. For the case λ ≪ ∆sd/ετ the spin
relaxation is dominated by interaction with the exchange
field.

Crucially, our results are not confined solely to the Néel
order on the honeycomb lattice: we anticipate a broader
applicability across various magnetic orders, including
the zigzag order. This universality stems from our focus
on the large magnon wavelength limit. The choice of the
honeycomb lattice arises from its unique ability to main-
tain isotropic electronic spectra within the plane, coupled
with the ability to suppress anisotropy concerning in-
plane spin rotations. Strong anisotropic electronic spec-
tra would naturally induce strong anisotropic in-plane
Gilbert damping, which are absent in our results.

Finally, we show that the anti-ferromagnetic resonance

width is mostly defined by α
∥
m and demonstrate that the

resonance quality factor is maximized for λτ ≈ 1. Our
microscopic theory predictions may be tested for systems
such as MnPS3 monolayer on Pt and similar heterostruc-
tures.
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Appendix A: Microscopic framework

The microscopic model that we employ to calculate
Gilbert damping belongs to a class of so-called s–d mod-
els that describe the physical system in the form of a
Heisenberg model for localized spins and a tight-binding
model for conduction electrons that are weakly coupled
by a local magnetic exchange interaction of the strength
∆sd.
Our effective electron Hamiltonian for a metallic

hexagonal anti-ferromagnet is given by25

H0 = vfp ·Σ+
λ

2
[σ ×Σ]z −∆sdn · σΣzΛz, (A1)

where the vectorsΣ, σ andΛ denote the vectors of Pauli-
matrices acting on sub-lattice, spin and valley space re-
spectively. We also introduce the Fermi velocity vf ,
Rashba-type spin-orbit interaction λ.
To describe Gilbert damping of the localized field n

we have to add the relaxation mechanism. This is pro-
vided in our model by adding a weak impurity potential
H = H0 + V (r). The momentum relaxation due to scat-
tering on impurities leads indirectly to the relaxation of
Heisenberg spins due to the presence of spin-orbit cou-
pling and exchange couplings.
For modeling the impurity potential, we adopt a delta-

correlated random potential that corresponds to the
point scatter approximation, where the range of the im-
purity potential is much shorter than that of the mean
free path (see e.g. section 3.8 of Ref. 44), i.e.

⟨V (r)V (r′)⟩ = 2πα(ℏvf )2δ(r− r′), (A2)

where the dimensionless coefficient α ≪ 1 characterizes
the disorder strength. The corresponding scattering time
for electrons is obtained as τ = ℏ/παϵ, which is again
similar to the case of graphene.
The response of symmetric spin-polarization δs+ to the

time-derivative of non-staggered magnetization, ∂tm, is
defined by the linear relation

δs+α =
∑
β

Rαβ |ω=0 ṁβ , (A3)

where the response tensor is taken at zero frequency25,45.
The linear response is defined generally by the tensor

Rαβ =
A∆2

sd

2πS

∫
dp

(2πℏ)2
〈
Tr

[
GR

ε,pσαG
A
ε+ℏω,pσβ

]〉
, (A4)
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where G
R(A)
ε,p are standing for retarded(advanced) Green

functions and the angular brackets denote averaging over
disorder fluctuations.

The standard recipe for disorder averaging is the diffu-
sive approximation46,47 that is realized by replacing the
bare Green functions in Eq. (A4) with disorder-averaged
Green functions and by replacing one of the vertex op-
erators σx or σy with the corresponding vertex-corrected
operator that is formally obtained by summing up ladder
impurity diagrams (diffusons).

In models with spin-orbit coupling, the controllable dif-
fusive approximation for non-dissipative quantities may
become, however, more involved as was noted first in
Ref. 48. For Gilbert damping it is, however, sufficient to
consider the ladder diagram contributions only.

The disorder-averaged Green function is obtained by
including an imaginary part of the self-energy ΣR (not
to be confused here with the Pauli matrix Σ0,x,y,z) that
is evaluated in the first Born approximation

ImΣR = 2παv2f

∫
dp

(2π)2
Im

1

ε−H0 + i0
. (A5)

The real part of the self-energy leads to the renormaliza-
tion of the energy scales ε, λ and ∆sd.
In the first Born approximation, the disorder-averaged

Green function is given by

GR
ε,p =

1

ε−H0 − i ImΣR
. (A6)

The vertex corrections are computed in the diffusive
approximation. The latter involves replacing the vertex
σα with the vertex-corrected operator,

σvc
α =

∞∑
l=0

σ(l)
α , (A7)

where the index l corresponds to the number of disorder
lines in the ladder.

The operators σ
(l)
α can be defined recursively as

σ(l)
α =

2ℏv2f
ετ

∫
dp

(2π)2
GR

ε,pσ
(l−1)
α GA

ε+ℏω,p, (A8)

where σ
(0)
α = σα.

The summation in Eq. (A7) can be computed in the
full operator basis, Bi={α,β,γ} = σαΣβΛγ , where each
index α, β and γ takes on 4 possible values (with zero
standing for the unity matrix). We may always normalize
TrBiBj = 2δij in an analogy to the Pauli matrices. The
operators Bi are, then, forming a finite-dimensional space
for the recursion of Eq. (A8).

The vertex-corrected operators Bvc
i are obtained by

summing up the matrix geometric series

Bvc
i =

∑
j

(
1

1−F

)
ij

Bj , (A9)

where the entities of the matrix F are given by

Fij =
ℏv2f
ετ

∫
dp

(2π)2
Tr

[
GR

ε,pBiG
A
ε+ℏω,pBj

]
. (A10)

Our operators of interest σx and σy can always be de-
composed in the operator basis as

σα =
1

2

∑
i

Bi Tr (σαBi) , (A11)

hence the vertex-corrected spin operator is given by

σvc
α =

1

2

∑
ij

Bvc
i Tr(σαBi). (A12)

Moreover, the computation of the entire response tensor
of Eq. (A4) in the diffusive approximation can also be
expressed via the matrix F as

Rαβ=
α0ετ

8ℏ
∑
ij

[TrσαBi]

[
F

1−F

]
ij

[TrσβBj ] , (A13)

where α0 = A∆2
sd/πℏ2v2fS is the coefficient used in

Eq. (6) to define the unit of the Gilbert damping.
It appears that one can always choose the basis of

Bi operators such that the computation of Eq. (A13)
is closed in a subspace of just three Bi operators with
i = 1, 2, 3. This enables us to make analytical computa-
tions of Eq. (A13).

Appendix B: Magnetization dynamics

The representation of the results can be made some-
what simpler by choosing x axis in the direction of the
in-plane projection n∥ of the Néel vector, hence ny = 0.
In this case, one can represent the result as

δs+ = c1n∥ × (n∥ × ∂tm∥) + c2∂tm∥ + c3∂tm⊥ + c4n,

where n dependence of the coefficients ci may be param-
eterized as

c1 =
r11 − r22 − r31(1− n2

z)/(nxnz)

1− n2
z

, (B1a)

c2 = r11 − r31(1− n2
z)/(nxnz), (B1b)

c3 = r33, (B1c)

c4 = (r31/nz) ∂tmz + ζ(∂tm) · n. (B1d)

The analytical results in the paper correspond to the
evaluation of δs± up to the second order in ∆sd using
perturbative analysis. Thus, zero approximation corre-
sponds to setting ∆sd = 0 in Eqs. (A1,A5).
The equations of motion on n and m are given by

Eqs. (2),

∂tn = − J n×m+ n× δs+ +m× δs−, (B2a)

∂tm =m× δs+ + n× δs−, (B2b)
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It is easy to see that the following transformation leaves
the above equations invariant,

δs+ → δs+ − ξ n, δs− → δs− − ξm, (B3)

for an arbitrary value of ξ.
Such a gauge transformation can be used to prove that

the coefficient c4 is irrelevant in Eqs. (B2).
In this paper, we compute δs± to the zeroth order in

|m| – the approximation which is justified by the sub-
lattice symmetry in the anti-ferromagnet. A somewhat
more general model has been analyzed also in Ref. 25 to
which we refer the interested reader for more technical
details.

Appendix C: Anisotropy constant

The anisotropy constant is obtained from the grand po-
tential energy Ω for conducting electrons. For the model
of Eq. (A1) the latter can be expressed as

Ω = −
∑
ς=±

1

β

∫
dε g(ε)νς(ε), (C1)

where β = 1/kBT is the inverse temperature, ς = ± is
the valley index (for the valleys K and K ′), GR

ς,p is the
bare retarded Green function with momentum p and in
the valley ς. We have also defined the function

g(ε) = ln (1 + exp[β(µ− ε)]) , (C2)

where µ is the electron potential, and the electron density
of states in each of the valleys is given by,

νς(ε) =
1

π

∫
dp

(2πℏ)2
ImTrGR

ς,p, (C3)

where the trace is taken only over spin and sub-lattice
space,

In the metal regime considered, the chemical potential
is assumed to be placed in the upper electronic band.
In this case, the energy integration can be taken only for
positive energies. The two valence bands are always filled
and can only add a constant shift to the grand potential
Ω that we disregard.

The evaluation of Eq. (C1) yields the following density
of states

ντ (ε) =
1

2πℏ2v2f


0 0 < ε < ε2
ε/2 + λ/4 ε2 < ε < ε1,

ε ε > ε1,

(C4)

where the energies ε1,2 correspond to the extremum
points (zero velocity) for the electronic bands. These
energies, for each of the valleys, are given by

ε1,ς =
1

2

(
+ λ+

√
4∆2 + λ2 − 4ς∆λnz

)
, (C5a)

ε2,ς =
1

2

(
− λ+

√
4∆2 + λ2 + 4ς∆λnz

)
(C5b)

where ς = ± is the valley index.

In the limit of zero temperature we can approximate
Eq. (C1) as

Ω = −
∑
ς=±

1

β

∫ ∞

0

dε (µ− ε)νς(ε). (C6)

Then, with the help of Eq. (C1) we find,

Ω = − 1

24πℏ2v2f

∑
ς=±

[
(ε1,ς − µ)2(4ε1,ς − 3λ+ 2µ)

+(ε2,ς − µ)2(4ε2,ς + 3λ+ 2µ)
]
. (C7)

By substituting the results of Eqs. (C5) into the above
equation we obtain

Ω = − 1

24πℏ2v2f

[
(4∆2 − 4nz∆λ+ λ2)2/3

+(4∆2 + 4nz∆λ+ λ2)2/3 − 24∆µ+ 8µ3
]
. (C8)

A careful analysis shows that the minimal energy cor-
responds to nz = ±1 so that the conducting electrons
prefer an easy-axis magnetic anisotropy. By expanding
in powers of n2

z around nz = ±1 we obtain Ω = −Kn2
z/2,

where

K =
1

2πℏ2v2

{
|∆2λ| |λ/2∆| ≥ 1,

|∆λ2|/2 |λ/2∆| ≤ 1.
(C9)

This provides us with the easy axis anisotropy of Eq. (16).
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G. Jakob, and M. Kläui, Journal of Physics D: Applied
Physics 52, 325001 (2019), publisher: IOP Publishing.

17 V. Y. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys.
Rev. B 60, 1082 (1999).

18 D. V. Spirin, Journal of Magnetism and Magnetic Materi-
als 264, 121 (2003).

19 J. Kosterlitz, Journal of Physics C: Solid State Physics 7,
1046 (1974).

20 J. M. Kosterlitz and D. J. Thouless, in Basic Notions Of
Condensed Matter Physics (CRC Press, 2018) pp. 493–515.

21 N. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133
(1966).

22 B. L. Chittari, D. Lee, N. Banerjee, A. H. MacDonald,
E. Hwang, and J. Jung, Phys. Rev. B 101, 085415 (2020).
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