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Abstract

We propose GS-IR, a novel inverse rendering approach
based on 3D Gaussian Splatting (3DGS) that leverages for-
ward mapping volume rendering to achieve photorealistic
novel view synthesis and relighting results. Unlike previ-
ous works that use implicit neural representations and vol-
ume rendering (e.g. NeRF), which suffer from low expres-
sive power and high computational complexity, we extend
3DGS, a top-performance representation for novel view
synthesis, to estimate scene geometry, surface material, and
environment illumination from multi-view images captured
under unknown lighting conditions. There are two main
problems when introducing 3DGS to inverse rendering: 1)
3DGS does not support producing plausible normal na-
tively; 2) forward mapping (e.g. rasterization and splatting)
cannot trace the occlusion like backward mapping (e.g. ray
tracing). To address these challenges, our GS-IR proposes
an efficient optimization scheme incorporating a depth-
derivation-based regularization for normal estimation and
a baking-based occlusion to model indirect lighting. The
flexible and expressive 3DGS representation allows us to
achieve fast and compact geometry reconstruction, photore-
alistic novel view synthesis, and effective physically-based
rendering. We demonstrate the superiority of our method
over baseline methods through qualitative and quantitative
evaluations of various challenging scenes. The source code
is available at https://github.com/lzhnb/GS-
IR.

1. Introduction

Inverse rendering is a long-standing task, seeking to answer
the question: “How can we deduce physical attributes (e.g.
geometry, material, and lighting) of a 3D scene from multi-
view images?”. This problem is inherently challenging and
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Figure 1. Given multi-view captured images of a complex scene,
we propose GS-IR (3D Gaussian Splatting for Inverse Rendering),
which utilizes 3D Gaussian and forward mapping splatting to re-
cover high-quality physical properties (e.g., normal, material, il-
lumination). This enables us to perform relighting and material
editing, resulting in outstanding inverse rendering results. Better
viewed on screen with zoom in, especially the remarkable mate-
rial decomposition and normal reconstruction of bicycle axle.

ill-posed, particularly when input images are captured in
uncontrolled environments with unknown illumination. Re-
cent research [9, 10, 37, 48] has sought to address this issue
by employing implicit neural representations akin to NeRF
[31] that utilizes multi-layer perceptrons (MLPs). How-
ever, current methods incorporating MLP face challenges
in terms of their low expressive capacity and high computa-
tional demands, which significantly limits the effectiveness
and efficiency of inverse rendering, especially when it can-
not be rendered at interactive rates.

3D Gaussian Splatting (3DGS) [24] has recently
emerged as a promising technique to model 3D static scenes
and significantly boost the rendering speed to a real-time
level. It makes the scene representation more compact and
achieves fast and top performance for novel view synthesis.
Introducing it to the inverse rendering pipeline is natural and
essential, including geometry reconstruction, materials de-
composition, and illumination estimation. Unlike ray trac-
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ing in NeRF, 3DGS produces a set of 3D Gaussians around
sparse points. During the 3DGS optimization, the adaptive
control of the Gaussian density may lead to loose geome-
try, making it difficult to estimate accurate scene’s normal.
Consequently, it is necessary to introduce a well-designed
strategy to regularize 3DGS’s normal estimation.

Our goal is to use 3D Gaussians as the scene representa-
tion for inverse rendering from multi-view images captured
under unknown lighting conditions. However, capturing ob-
servations under natural illumination often shows complex
effects such as soft shadows and interreflections. TensoIR
[22] leverages the ray tracing of NeRF to directly model
occlusion and indirect illumination. In contrast, 3DGS re-
places the ray tracing in the NeRF with differentiable for-
ward mapping volume rendering, which directly projects
3D Gaussians onto the 2D plane. This strategy improves
the rendering efficiency but makes it difficult to calculate
occlusion. Inspired by the “Indirect Lighting Cache” used
in real-time rendering [4], we attempt to bake the occlusion
into volumes for caching.

In this paper, we present a novel 3D Gaussian-based
inverse rendering framework called GS-IR (3D Gaussian
Splatting for Inverse Rendering) that leverages forward
mapping splatting to deduce the physical attributes of a
complex scene. To the best of our knowledge, our method is
the first work to introduce the 3DGS technique for inverse
rendering, which can simultaneously estimate scene geom-
etry, materials, and illumination from multi-view images.
Our GS-IR addresses two main issues when using 3DGS
for inverse rendering. Firstly, we develop an intuitive and
well-designed regularization to estimate the scene’s nor-
mal. Secondly, we use a baking-based method embedded
in GS-IR to cache occlusions, obtaining an efficient indi-
rect illumination model. As shown in Fig. 1, our approach
can reconstruct high-fidelity geometry and materials of a
complex real scene under unknown natural illumination, en-
abling state-of-the-art rendering of novel view synthesis and
additional applications like relighting. Our technical contri-
butions are summarized as follows:

* We present GS-IR that models a scene as a set of 3D Gaus-
sians to achieve physically-based rendering and state-of-
the-art decomposition results for both objects and scenes;

* We propose an efficient optimization scheme with regu-
larization to concentrate depth gradient around 3DGS and
produce reliable normals for GS-IR;

* We develop a baking-based method embedded in GS-IR
to handle the occlusion in modeling indirect lighting;

We demonstrate the superiority of our method to baseline
methods qualitatively and quantitatively on various chal-
lenging scenes, including the TensolR synthesis dataset [22]
and Mip-NeRF 360 real dataset [5].

2. Related Works

Neural Representation Recently, neural rendering tech-
niques, exemplified by Neural Radiance Field (NeRF) [31],
have achieved impressive success in addressing visual com-
puting problems, giving rise to numerous neural represen-
tations [14, 21, 32, 38, 41, 42] tailored for different tasks
[11-13, 18, 28, 29, 35, 45]. The vanilla NeRF models a con-
tinuous radiance field implicitly in MLPs, which requires
massive repeated queries during training and inference. To
address the computational inefficiencies, many neural scene
representations are proposed with more discretized geome-
try proxies such as voxel grids [17, 20, 38], hash grids [32],
tri-planes [14] or points [41]. Neural features are stored in
a structured manner, allowing for efficient storage and re-
trieval. The computational cost can thus be significantly
reduced by introducing interpolation techniques, however,
with an inevitable loss in image quality. 3D Guassians are
introduced as an unstructured scene representation to strike
a balance between efficiency and quality [24]. With the spe-
cially designed tile-based rasterizer for Guassian splats, this
method achieves real-time rendering with high quality for
novel-view synthesis. In this work, 3D Gaussian represen-
tation is combined with the physical-based rendering (PBR)
model for inverse rendering.

Inverse Rendering Inverse rendering aims to decompose
the image’s appearance into the geometry, material, and
lighting conditions. Considering the inherent ambiguity be-
tween observed images and underlying properties, many
methods are proposed with different constrained settings,
such as capturing images with fixed lighting and rotating
object [16, 40], capturing with moving camera and co-
located lighting [7, 8, 30, 34]. Combined with neural rep-
resentations, inverse rendering models the scene simulating
how the light interacts with the neural volume with various
material properties, and estimates the lighting and material
parameters during optimization [6, 9, 10, 19, 22, 37, 44, 46,
48, 49]. Neural Reflectance Fields [6] assumes a known
point light source and represents the scene as a field of vol-
ume density, surface normals, and bi-directional reflectance
distribution functions(BRDFs) with one bounce direct illu-
mination. NeRV [37] and InvRender [49] extend to arbi-
trary known lighting conditions and train an additional MLP
to model the light visibility. PhySG [44] assumes full light
source visibility without shadow simulation, and represents
the lighting and scene BRDFs with spherical Guassians for
acceleration. TensoIR [22] adopts the efficient TensoRF
[14] representation which enables the computation of vis-
ibility and indirect lighting by raytracing, while limited to
object-level. For modeling surface geometry using point
clouds, Fuzzy Metaballs (FMs) [25, 26] offers a great way
to render depth from 3D Gaussian using Order Independent
Transparency (OIT) and approximate intersection. How-
ever, it requires silhouettes as input and struggles to handle



intricate geometry (e.g. Lego and Ficus) let alone complex
scenes. In this work, we propose a 3DGS-based pipeline to
recover the geometry, material, and lighting that is available
for both objects and unbounded scenes.

3. Preliminary

In this section, we give the technical backgrounds and math
symbols that are necessary for the presentation of our pro-
posed method in subsequent sections.

3D Gaussian Splatting (3DGS) [24] is an explicit 3D scene
representation in the form of point clouds. Each point is
represented as a Gaussian function ¢ that approximates the
shape of a bell curve, which is defined as,

)T (o
g(z|p,B) = e 2@ H T F @), (1

where 1 € R? is its mean vector, and 3 € R3*3 is an
anisotropic covariance matrix. The mean vector p of a 3D
Gaussian is parameterized as pt = (fi, 11y, 1t-), and the co-
variance matrix 3 is factorized into a scaling matrix .S and
a rotation matrix Ras ¥ = RSSTRT. S and R refer to a
diagonal matrix diag(s, sy, s.) and a rotation matrix con-
structed from a unit quaternion g. Given a viewing transfor-
mation with extrinsic matrix 7" and intrinsic matrix K, the
mean vector g and covariance matrix ¥’ from the 3D point
x to 2D pixel w is defined as,
w=KT[p 1", ©=JrsT"J", %))
where J is the Jacobian matrix of the affine approximation
of the perspective projection. Besides, each Gaussian rep-
resents the view-dependent color ¢; via a set of coefficients
of spherical harmonics (SH), which is then multiplied by
opacity « for volume rendering. We finally obtain the color
Cat pixel u based on Eq. (1) and Eq. (2),
i—1
C =) Tigi(ulp' X aouci, T =[]0 - g;(ulp,=)ay),
ieN j=1
. . 3)
where accumulated transmittance 7; quantifies the proba-

bility density of ¢-th Gaussian at pixel u.

The Rendering Equation In GS-IR, we leverage the clas-
sic rendering equation to formulate the outgoing radiance of
a surface point « with normal n:

Lo(z,v) = /sz Li(z,l) fr(1,v)(1 - n)dl, 4)

Q) denotes the upper hemisphere centered at «, I and v de-
note incident and view directions respectively. L;(x,1) de-
notes the radiance received at  from [. Notably, we follow
Cook-Torrance microfacet model [15, 39] and formulate the
bidirectional reflectance distribution function (BRDF) f. as
a function of albedo a € [0, 1], metallic m € [0, 1], and
roughness p € [0,1]:

frlto) = (1—m) &+ D0 ®

7 4(n-)(n-v)’

diffuse specular

where microfacet distribution function D, Fresnel reflection
F, and geometric shadowing factor GG are related to the sur-
face roughness p. We use 3D Gaussians to store these ma-
terial properties in GS-IR.

4. Method

Given a set of calibrated RGB images {I,,,}}/_, of a tar-
get scene captured from multiple views under static, yet un-
known illumination, inverse rendering aims to decompose
the scene’s intrinsic properties, including normal, materi-
als, and illumination. This decomposition facilitates the re-
covery and subsequent edition of the target scene. Moti-
vated by the remarkable performance in quality and speed
of 3DGS [24], we present a novel framework GS-IR con-
sisting of three well-designed stage strategies, as shown in
Fig. 2. In the initial stage, we leverage differentiable splat-
ting to optimize 3D Gaussians. Concurrently, we utilize the
gradient derived from the rendered depth map to supervise
the normal stored in 3D Gaussians (cf. Sec. 4.1). In the
second stage, we precompute the occlusion based on the
learned geometric information (i.e. depth and normal) and
store it in an efficient spherical harmonics-based architec-
ture to model indirect illumination (¢f. Sec. 4.2). In the
final stage, we combine a differentiable splatting with the
physical-based rendering (PBR) pipeline to optimize illu-
mination and material-aware 3D Gaussians (cf. Sec. 4.3).

4.1. Normal Reconstruction

During the initial stage, we optimize 3D Gaussians for ge-
ometry reconstruction from observed images, denoted as G.
The optimized G functions as a geometric proxy for sur-
face points and their corresponding normals 7, which are
crucial for successful inverse rendering. As highlighted in
Sec. 1, generating reasonable normals within the 3DGS-
based framework poses a significant challenge. To address
this obstacle, we introduce an intuitive strategy that im-
proves depth D and leverages the depth gradient to derive
pseudo normals 71 5, = VuVD. These pseudo normals then
guide the optimization of normals within the 3D Gaussians.
Depth Generation Given a pretrained 3D Gaussians G and
a view designated for rendering, the pixel’s shading results
in that view can be obtained by Eq. (3). Consequently, it
is reasonable to utilize the same volumetric accumulation
to compute the depth D = Zf\il T;o;d;, where d; de-
notes the distance from the corresponding 3D Gaussian to
the image plane. However, we observed the floating prob-
lem during volumetric accumulation, unlike the backward
mapping volume rendering used in NeRF. During the 3DGS
optimization, the adaptive control of the Gaussian density
may result in the depth falling in front of the 3D Gaus-
sians, thereby posing challenges in accurately predicting the
depth. Specifically, the backward mapping methods can ob-
tain an accurate depth by considering only peak samples,
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Figure 2. GS-IR Pipeline. We propose a novel GS-based inverse rendering framework, called GS-IR, to reconstruct scene geometry,
materials, and unknown natural illumination from multi-view captured images. Our GS-IR consists of three well-designed stage strategies
using 3D Gaussian and differentiable forward mapping splatting to achieve physical-based rendering. In our approach, the Gaussian stores
not only the basic 3DGS information but also the normal and material properties, enhancing its capabilities for inverse rendering tasks.
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Figure 3. Depth Illustration. By considering the depth as a lin-
ear interpolation of the distances from 3D Gaussians to the image
plane, and ensuring it lies between the minimum and maximum
distance, our method could produce accurate depth.

thatis D = d;~, where ©* = arg max; T;c;. However, for
3DGS, a typical forward mapping method, the peak selec-
tion results in disc aliasing within 3DGS. To overcome this
limitation, we consider that depth D must be between the
minimum and maximum distance of 3D Gaussians to the
image plane, as illustrated in Fig. 3. We then treat the depth
as a linear interpolation of the distances from 3D Gaussians
to the image plane:

N
~ . . Tia;
D= widi, W = ———-
2 >¥, T
i=1 =1 Tt

Normal Derivation While the accurate prediction of depth
within Gaussians provides better guidance for the normal
reconstruction, directly using depth gradient to produce nor-
mals has two limitations that still cannot meet the require-

(6)

ment for effective inverse rendering. First, the depth gradi-
ent estimation is highly sensitive to noise, making the pre-
dicted normal often extremely noisy; Second, the normals
derived individually from each view’s depth map do not sat-
isfy multi-view consistency. To address these issues, we
use Gaussian G as a proxy for normal estimation instead of
directly from the depth gradient. Benefiting from the effi-
ciency of 3DGS, we obtain the depth D and normals # of
the observed view after performing a single rendering pass.
We then tie these predicted pseudo normal to the underlying
depth gradient normal 72 5, using a simple penalty:

Lnp=|R—np|, )

where n = vazl T;a;n;, and n; is the normal stored in
the 3D Gaussian. Secondly, unlike the MLP-based normal
estimation [22] acting MLP as a low-pass filter, the pre-
dicted normal of Gaussian G is rough, so smoothness reg-
ularization should be included. We introduce the TV term
TV normal to smooth the predicted normal 7. For more de-
tails, please refer to the supplement.

In optimization of the first stage, we optimize 3D Gaus-
sians G (storing SH coefficients for view-dependent color c,
opacity «, and normal 7) by using the color reconstruction
loss L., which is the same as 3DGS [24], and the proposed
normal loss £,,,

Ln = En—p + An-TV Tvnormal- (8)
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Figure 4. Baking. We employ the spherical harmonics (SH) ar-
chitecture to bake occlusion volumes for modeling indirect illumi-
nation. For each grid of occlusion volumes, we initially use 3D
Gaussians to compute the depth cubemap by performing six for-
ward mapping splatting passes. Next, we convert the depth cube-
map into a binary occlusion cubemap based on a distance thresh-
old. Finally, the occlusion cubemap is baked as SH coefficients,
enabling efficient interpolation of the occlusion cubemap at any
point within the scene.

4.2. Indirect Illumination Modeling

Drawing inspiration from the successful implementation of
precomputation techniques in the video game industry (e.g.
Irradiance Volume in Blender [3], Lightmass Volume in Un-
real [1], and Light Probes in Unity [2]), we introduce spher-
ical harmonics (SH) architectures to store occlusion infor-
mation and model indirect illumination.

Given the optimized 3D Gaussians G from one stage (cf .
Sec. 4.1), we freeze G and regularly place occlusion vol-
umes V°! in the 3D space. For each volume vl C Ve,
we then cache the occlusion in the form of SH coefficients
f?. Consequently, the formula of the occlusion O(+) of v§*!
with respect to the direction (6, ¢) is expressed as:

deg

(9 ¢ Z Z fz(l'm)}/l’m(e ¢) (9)

1=0 m=—1

where deg denotes the degree of SH, and {Y},,,()} is a set
of real basis of SH.

As discussed in Sec. 4.1, the 3DGS technique employs
a forward mapping approach that projects 3D points to the
2D plane, in contrast to the backward mapping volume ren-
dering utilized in NeRF, which means it cannot use ray
marching to calculate occlusions. To precompute the SH
coefficients f; of occlusion volume v‘?“l, we obtain the
depth cubemap {Dz —, by performing six times render-
ing passes, once for each face of the cubemap. We then
convert it into a binary occlusion cubemap {O }p | based
on a manually set distance threshold.

Finally, we convolve the the occlusion cubemap

{Oz _, using SH bases and get the SH coefficients f?:

Py = |, O@)Yiun(e)des

27 i R (10)

= [ [ sin6 60, )Yin (6. ¢)d0e,
0 0

where S? denotes the unit sphere, and 0(9 ¢) denotes
the occlusion query from the occlusion cubemap {OZ p=1-
Note that we numerically calculate the convolution in
Eq. (10) in parallel. The caching process is shown in Fig. 4.
To handle the indirect illumination in occlusion regions,
we also maintain illumination volumes V' to cache the
indirect illumination. Similar to the caching process of
occlusion volumes, the caching target of illumination vol-
umes changes from the occlusion cubemap { Ol 6 _; to the

captured environment cubemap {f; 6_,. These cubemaps
can be obtained simultaneously by conducting six rendering
passes. For more details, please refer to the supplement.

4.3. Intrinsic Decomposition

In the final stage, we employ differentiable splatting in con-
junction with a PBR pipeline to accomplish the intrinsic de-
composition. According to Eq. (5), the rendering equation
Eq. (4) is rewritten as diffuse Ly and specular L, compo-
nents:

Lo(z,v) :/SZ [(1 _m)% . _ DFc

W L;(z,l)(1-n)dl

Lo=(1— m)% /Q Li(z, (1 - n)dl an
DFG
L =/S-2 mLi(m,l)(l -m)dl.

In GS-IR, we adopt an image-based lighting (IBL) model
and split-sum approximation [23] to tackle the intractable
integral. To calculate the diffuse component Ly, the illumi-
nation I is defined as:

Iu(=) :/Q Li(a, (1 - n)dL

:/ L‘;"(w,l)(l.n)dl+/ LM (@, (1 -n)dl (12
Qvig Q0ccl

~ (1= 0(x)) Ij"(x) + O(x) [ (x),

where the first component indicates direct illumination and
the second is indirect illumination. Notably, our baking-
based indirect illumination model enables us to calculate the
occlusion and illumination online. This means that our GS-
IR achieves intrinsic decomposition while maintaining real-
time rendering performance. For the specular component
Ly, we follow split-sum approximation and treat the integral
as two separate integrals:

DFG
LS:/Q T gy MO @

N/Q4<n.z><n.v><’ )dl/QDLz(l)@ ) dl,

Environment BRDF - R Pre-Filtered Environment Map - I
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Figure 5. Qualitative comparison on TensoIR Synthetic. We visualize the estimated normal, albedo, and rendering results of our GS-
IR and baseline methods on two scenes. By utilizing the efficient 3D Gaussian representation and a robust tile-based rasterizer, GS-IR
achieves rapid convergence and supports real-time rendering. This performance advantage underscores the effectiveness of our method in
addressing complex inverse rendering tasks, thereby surpassing existing state-of-the-art approaches. (For albedo reconstruction results, we

follow NeRFactor [48] and scale each RGB channel by a global scalar.)

where both R and I can be precomputed in advance and
stored in look-up tables. With Eq. (12) and Eq. (13), the
rendering results of Eq. (11) can be represented as:

Lo(x,v)=Lg + Ls
~(1— m)% [(1 — O(e)) I9 () +O () I3 () [+ R
(14)
A For intrinsic decomposition, we optimize the material
M (i.e. albedo a, metallic value m, and {oughness p) stored

in 3D Gaussians G, environment map F, and illumination
volumes V" by minimizing the decomposition loss £:

Lq= HI _ j—shade(M E Villu)

+AM TVmat +AE TViign,
S——— ——

Lopade L material Liight

15)
where Lage indicate the shade loss. Thde(NT B, Vi) s
the recovered image that uses the PBR pipeline defined by
Eq. (14).Please refer to the supplment for more details about
the material TV loss Liaterial and lighting TV loss Liigh.

5. Experiments

Dataset & Metrics We conduct expermients using bench-
mark datasets of TensoIR Synthetic [22] and Mip-NeRF
360 [5] for decompositing both objects and scenes. They
contain 4 objects with reference materials and 7 publicly
available scenes, respectively. To verify the efficacy of our
normal reconstruction, we evaluate the normal quality on
the TensoIR Synthetic [22] dataset using mean angular error
(MAE). We further assess our reconstructed albedo quality
on this synthetic dataset. More generally, we evaluate the

Figure 6. Novel view synthesis results on Mip-NeRF 360.
GS-IR can reconstruct scene details including geometric normals
and high-frequency appearance, rendering high-fidelity appear-
ance and recovering fine geometric details such as those on leaves
and bicycle axles. Better viewed on screen with zoom in.

synthesized novel view on both datasets in terms of Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [47]. Note that albedo quality assessment
uses the same metrics as novel view synthesis.

5.1. Comparisons

We conduct a comprehensive comparison against state-of-
the-art neural field-based inverse rendering methods on the
public TensoIR Synthetic dataset [22]. All the methods
utilize multi-view images captured under unknown light-
ing conditions. Our evaluation encompasses normal quality



Method Normal ! Novel View Synthesis Albedo Relight Runtime
MAE PSNR{1 SSIM{ LPIPS| | PSNRT SSIM1{ LPIPS| | PSNRT SSIM?T LPIPS|
NeRFactor [48] 6.314 24.679 0.922 0.120 25.125 0.940 0.109 23.383 0.908 0.131 > 100 hrs
InvRender [49] 5.074 27.367 0.934 0.089 27.341 0.933 0.100 23.973 0.901 0.101 15 hrs
NVDiffrec [33] 6.078 30.696 0.962 0.052 29.174 0.908 0.115 19.880  0.879 0.104 <1hr
TensolR [22] 4.100 35.088 0.976 0.040 29.275 0.950 0.085 28.580  0.944 0.081 5 hrs
Ours 4.948 35.333 0.974 0.039 30.286 0.941 0.084 24374  0.885 0.096 <Ilhr

Table 1. Quantatitive Comparison on TensoIR Synthetic dataset. Our method outperforms baseline methods in terms of novel view
synthesis and albedo quality, showcasing the effectiveness of material decomposition and PBR rendering. This is particularly noteworthy
considering that our normal reconstruction is slightly inferior to TensoIR. In terms of relighting performance, we rank second, trailing only
behind TensolR. Importantly, the average training time of our GS-IR is accelerated by a factor of 5x, making its performance acceptable

and further demonstrating the effectiveness of our approach in handling complex inverse rendering tasks.

Method PSNRT SSIM{ LPIPS| Runtime ]

TensolR Synthetic [22] Mip-NeRF 360 [5]

Method

NeRF++ [43] 25.112 0.696 0.375 ~ 20h Nl\‘/’['Amé‘l | PSNRtT SSIMT LPIPS| | PSNRT SSIM+ LPIPS |
Plenoxels [17] 23.079 0.625 0.462 ~ 30m Vol. Accum. | 16347 25756 0855  0.131 | 22.052 0610 039
INGP-Base [32] 25.303 0.671 0.371 ~ Sm Peak Selec. 9.466 28750  0.927 0.084 | 23.093 0719 0.317
INGP Big 1] Loavinen, | 6215 mon 0% tow |l w003
Mip-NeRF 360 [32] 27.569  0.793 0.234 ~ 48h Peak Selec.! | 7986 31064 0950 0060 | 25.143 0753 0281
3DGS [24] 27.21 0.815 0.214 ~ 35m Linear Interp.! | 4.948 35333 0974  0.039 | 25381 0757  0.267
Ours 25.381 0.757 0.267 ~ 45m

Table 2. Quantatitive Comparison on Mip-NeRF 360. The
results show that our inverse rendering approach even surpasses
some NeRF variants dedicated to novel view synthesis.

(measured by MAE), novel view synthesis, albedo fidelity,
relighting effects (measured by PSNR, SSIM, and LPIPS),
and efficiency. Tab. 1 summarizes the quantitative compar-
isons on the synthesis dataset. Our method achieves supe-
rior performance in novel view synthesis and albedo quality
compared to the baseline methods, demonstrating the effec-
tiveness of material decomposition and PBR rendering, par-
ticularly given that our normal reconstruction is slightly in-
ferior to TensolIR. Our relighting performance ranks second,
only behind TensoIR. Notably, the average training time of
our GS-IR is accelerated by a factor of 5x, making its per-
formance acceptable and demonstrating the effectiveness of
our approach in handling complex inverse rendering tasks.
We also include qualitative comparisons in Fig. 5, which
show that our GS-IR produces reasonable albedo and pho-
torealistic renderings that are closer to the ground truth than
most methods.

Meanwhile, owing to our more efficient and compact
representation with powerful expressiveness, our method
showcases remarkable performance on complex real un-
bounded scenes [5]. Tab. 2 presents the quantitative com-
parisons on the real dataset. Fig. 6 demonstrates the normal
reconstruction and novel view synthesis on the real dataset.
Our method renders a high-fidelity appearance and recovers
fine geometric details, such as those on the leaves and bicy-
cle axil. In summary, by leveraging the efficient 3D Gaus-
sian representation and a powerful tile-based rasterizer, GS-
IR achieves fast convergence and supports real-time render-
ing. This performance advantage highlights the effective-

Table 3. Analyses on the impact of different depth generation
strategies on normals. Methods without { marks directly use the
normals derived from the depth map; Methods marked with | use
depth derivation to optimize the normals stored in 3D Gaussians.

(d) Linear Interpolation

(b) Volumetric Accumulation  (c) Peak Selction

() Reference Image

Figure 7. Visual comparison of depth produced by different
strategies. The linear interpolation adopted in GS-IR overcomes
the floating problem and disc aliasing.

TensolR Synthetic [22]
PSNRT SSIMT LPIPS |

Mip-NeRF 360 [5]

Method PSNRT SSIM1 LPIPS |

w/o occlusion 34.997 0.962 0.041 25.060 0.753 0.270
w/o indirect illum. | 35.186 0.965 0.044 24.898 0.749 0.272
Ours 35.333 0.974 0.039 25.381 0.757 0.267

Table 4. Analyses on the occlusion and indirect illumination.
Physically modeling indirect illumination improves the inverse
rendering of objects and scenes.

ness of our method in handling complex inverse rendering
tasks, outperforming existing state-of-the-art approaches.

5.2. Ablation Studies

We initially introduce the 3DGS technique for inverse ren-
dering in GS-IR and propose depth-derivation-based nor-
mal regularization and a baking-based method to address
the challenges encountered during the process. To evalu-
ate the efficacy of our proposed schemes, we design elabo-
rate experiments on both TensoIR Synthetic [22] and Mip-
NeRF 360 [5] datasets, providing comprehensive insights
into the effectiveness of our approach in handling complex
inverse rendering tasks. Below is the detailed ablation study
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Figure 8. Relighting Visualization. We perform relighting experiments on both synthetic and real scenes using the recovered geometry,
material, and illumination properties from our GS-IR method. We test our method under different lighting conditions and directions.

Figure 9. Ambient Occlusion Visualization. The visualization
highlights the intricate shadowing and occlusion details captured
by our GS-IR method, emphasizing the performance of our ap-
proach in modeling indirect illumination.

on Normal Regularization and Indirect Illumination.
Analysis on the Normal Regularization Reliable normal
estimation is critical for conducting inverse rendering. To
this end, we present depth-derivation-based regularization
to facilitate 3D Gaussian-based normal estimation as stated
in Sec. 4.1. In this section, we explore the impact of dif-
ferent acquisition schemes on the final normal quality and
inverse rendering results. The quantitative results shown
in Tab. 3 demonstrate that using 3D Gaussians as a nor-
mal proxy and adopting the linear interpolation strategy sig-
nificantly improves the normal estimation and inverse ren-
dering results. In addition, Fig. 7 qualitatively shows that
conducting volumetric accumulation results in the floating
problem (cf. Fig. 7 (b)). Despite peak selection overcomes
this problem, it introduces disc aliasing (cf. Fig. 7 (c)).
Compared with them, the linear interpolation adopted in
GS-IR robustly produces accurate depth (cf. Fig. 7 (d)).
Analysis on the Indirect Illumination To demonstrate the
effectiveness of our indirect illumination model, we com-
pare our method with two variants: a model without occlu-
sion volume (w/o occlusion) and a model without indirect
illumination (w/o indirect illum.). The quantitative com-
parisons in Tab. 4 indicate that each component is crucial
for estimating accurate material decomposition and gener-
ating photorealistic rendering results. Additionally, Fig. 9
showcases the ambient occlusion visualization in both syn-

thetic and real scenes. The visualization highlights the intri-
cate shadowing and occlusion details captured by our GS-IR
method, emphasizing the performance of our approach in
modeling indirect illumination. This analysis further sup-
ports the effectiveness of using occlusion volume and in-
troducing indirect illumination in enhancing the decompo-
sition capabilities of our GS-IR.

5.3. Application

We perform relighting experiments using the recovered ge-
ometry, material, and illumination from our GS-IR method.
We test GS-IR under different lighting conditions and di-
rections, observing how the reconstructed scene responds
to the changes in lighting. The results of these experiments
demonstrate that our GS-IR method can effectively han-
dle relighting applications, producing photorealistic render-
ings under various lighting conditions. More results can be
found in the supplement.

6. Conclusion

We present GS-IR, a novel inverse rendering approach
based on 3D Gaussian Splatting (3DGS), which employs
forward mapping volume rendering to achieve photoreal-
istic novel view synthesis and relighting results. Our GS-
IR proposes an optimization scheme with depth-derivation-
based regularization for normal estimation and a baking-
based occlusion to model indirect lighting. These compo-
nents are eventually employed to decompose material and
illumination. Our extensive experiments demonstrate the
effectiveness of GS-IR in achieving state-of-the-art inverse
rendering results, surpassing previous neural methods in
terms of both reconstruction quality and efficiency.
Limitation Spherical Harmonics (SH) is only suitable for
representing low-frequency, and we only use the occlusion
represented by SH to model the diffuse term of indirect illu-
mination. Modeling the specular term of indirect illumina-
tion remains a limitation of GS-IR, and has been a challeng-
ing problem in computer graphics. We believe it would be
valuable to address this limitation in future work and sug-
gest screen space global illumination (SSGI) techniques.
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GS-IR: 3D Gaussian Splatting for Inverse Rendering

Supplementary Material

7. Implementation Details

We implement GS-IR in PyTorch framework [36] with
CUDA extensions, and customized the baking-based
method for GS-IR.

Representation. In the vanilla GS [24], each 3D Gaussian
utilizes learnable T = {p, s,q} and A = {a, f.} to de-
scribe its geometric properties and volumetric appearance
respectively, where p denotes the position vector, s denotes
the scaling vector, q denotes the unit quaternion for rotation,
« denotes the opacity and f. denotes spherical harmonics
(SH) coefficients for view-dependent color. In GS-IR, we
use 2 to present the normal vector of 3D Gaussian and ex-
tend the geometric properties as 7 = {p, s, g, n}. In addi-
tion, we introduce M = {a, p, m} to describe the material
of 3D Gaussian.

Training Details. We use the Adam optimizer [27] for
training, and the training process includes the initial stage
(cf. Sec. 4.1) and decomposition stage (cf. Sec. 4.3). In
the initial stage, we minimize color reconstruction loss L.
and normal loss £,, (¢f. Eq. (9)) to optimize 7, A for 30K
iterations. In the decomposition stage, we fix 7, .4 and min-
imize the proposed decomposition loss L4 (¢f. Eq. (16)) to
merely optimize M for 10K iterations. The total optimiza-
tion is running on a single V100 GPU.

Loss Definition. In the initial stage, the supervision loss
Lini: consists of the L1 color reconstruction loss £, and our
proposed normal loss £,,:

Linit = Lo+ Ly,
nit (16)
En = En»p + >\n—TV TVnormal
the smoothing term 7'V orma in our proposed normal loss
Ly, is a total variation (TV) loss conditioned by the pre-
dicted normal map N and the given reference image I:

AN =exp (—|I; 4

B = Lic1)) (Nij = Nioyj)? +

exp (=|Ti ;= Lij-1]) (Nij = Nij-1)%, an
1 ~
TVnormal = m A;’;]
i

In the decomposition stage, the supervision loss L, in-
cludes Lghade; Lmaterial Elight:

L= HI _ phade(yy, B, pilley

+AM TVmat +AE TViign,
N———-r ——

Lmaterial Ly;
Lshade light

(18)
the smoothing term TV, in Eq. (18) is a TV loss similar

to T'V hormar in Eq. (17):

AN = exp (<L = Tima ) (Mg — Mi—1,5)° +

exp (—|Tij — L j_1]) (M j — M j_1)%,

) 19)
Tme = = Af\JJ,

|NI| 4
where M is the predicted material map. Unlike the above
two smoothing terms, T'Vjgp is defined as:

—Ei 1) + (Bij — Eij1)%,

£ (20)
17"

AE =(Ei
1
TVlighl = =
1Bl 55
During training, we set \,,.7v, Anz, Ag t0 5.0,1.0,0.01.

And we study the efficacy of these smoothing terms in
Sec. 11.

8. Occlusion Caching and Recovery

In the baking stage (cf. Sec. 4.2), we introduce SH archi-
tectures and cache occlusion into occlusion volumes 1°¢¢!
as illustrated in Fig. 10a. For each volume v{°! C 1V°,
we set six cameras with FoV of 90" and non-overlapping
each other, and perform six render passes to obtain the depth
cubemap {b,i;}g:y Then we convert {15;},‘;1 into the oc-
clusion cubemap {0; ;6):1 and store the principal compo-
nents of occlusion into SH coefficients fg.

In the decomposition stage, we recover the ambient oc-
clusion (AO) for each surface point « from occlusion vol-
umes VI, The first step is to get the coefficients f2 of
the point . Considering that AO of the point « only cal-
culates the occlusion integral of the upper hemisphere €2 of
the normal n, we thus conduct masked-trilinear interpola-
tion to get the correct coefficients. As illustrated in Fig. 10b,
for the given point  with normal n, we firstly find the eight
nearest volumes {vy, }$_, . In this case, each volume has po-
sition vector py, and SH coefficients f;. Given the trilinear
interpolation weights {wk}izl defined in vanilla trilinear
interpolation, we get the coefficients fg:

Wk = )
wg, (pr—x) -n>0

W D @1
k=—§ =
> k1 Wk
8
f;(lm) :Zwkflg(lm)
k=1

The weights in trilinear interpolation satisfy 22:1 wi =1
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Figure 10. Occlusion caching and recovery in GS-IR.

Scene Method Normal ! Novel View Synthesis Albedo Relight
MAE PSNR1+ SSIM{t LPIPS| | PSNRT SSIM{1 LPIPS| | PSNR{ SSIM?T LPIPS|
NeRFactor 9.767 26.076 0.881 0.151 25.444 0.937 0.112 23.246 0.865 0.156
InvRender 9.980 24.391 0.883 0.151 21.435 0.882 0.160 20.117 0.832 0.171

Lego NVDiffrec 12.486 30.056 0.945 0.059 21.353 0.849 0.166 20.088 0.844 0.114
TensoIR 5.980 34.700 0.968 0.037 25240 0.900 0.145 28.581 0.944 0.081
Ours 8.078 34.379 0.968 0.036 24.958 0.889 0.143 23.256 0.842 0.117

NeRFactor 5.579 24.498 0.940 0.141 24.654 0.950 0.142 22.713 0914 0.159

InvRender 3.708 31.832 0.952 0.089 27.028 0.950 0.094 27.630 0.928 0.089

Hotdog NVDitfrec 5.068 34.903 0.972 0.054 26.057 0.920 0.116 19.075 0.885 0.118
TensoIR 4.050 36.820 0.976 0.045 30.370 0.947 0.093 27.927 0.933 0.115

Ours 4.771 34.116 0.972 0.049 26.745 0.941 0.088 21.572 0.888 0.140

NeRFactor 3.467 26.479 0.947 0.095 28.001 0.946 0.096 26.887 0.944 0.102

InvRender 1.723 31.116 0.968 0.057 35.573 0.959 0.076 27.814 0.949 0.069

Armadillo NVDiffrec 2.190 33.664 0.983 0.031 38.844 0.969 0.076 23.099 0.921 0.063
TensoIR 1.950 39.050 0.986 0.039 34.360 0.989 0.059 34.504 0.975 0.045

Ours 2.176 39.287 0.980 0.039 38.572 0.986 0.051 27.737 0918 0.091

NeRFactor 6.442 21.664 0.919 0.095 22.402 0.928 0.085 20.684 0.907 0.107

InvRender 4.884 22.131 0.934 0.057 25.335 0.942 0.072 20.330 0.895 0.073

Ficus NVDiffrec 4.567 22.131 0.946 0.064 30.443 0.894 0.101 17.260 0.865 0.073
TensoIR 4.420 29.780 0.973 0.041 27.130  0.964 0.044 24.296 0.947 0.068
Ours 4.762 33.551 0.976 0.031 30.867 0.948 0.053 24.932 0.893 0.081

Table 5. Per-scene results on TensoIR Synthetic dataset. For albedo reconstruction results, we follow NeRFactor [48] and scale each RGB
channel by a global scalar.

After performing masked—trﬂinear interpolation’ the ocC- Method bicycle flowers garden stump treehill | room counter kitchen bonsai
K A K NeRF++ 2264 2031 2432 2434 2220 | 2887 2638 2780 29.15
clusion O, is written as: Plenoxels 2091 2010 2349 2066 2225 | 2759 2362 2342 2467
INGP-Base 2219 2035 2460 2363 2236 | 2927 2644 2855 30.34
INGP-Big 2217 2065 2507 2347 2237 |29.69 2669 2948  30.69
deg 1 Mip-NeRF360 | 2440 2164 2694 2636 2281 |29.69 2669 2948  30.69
A o 3DGS 2525 2152 2741 2655 2249 | 3063 2870 3032 3198
Oq (0’ ¢) - LZ; Zl fm(lm)ylm(e’ ¢) (22) Ours 2380 2057 2572 2537 2179 | 2879 2622 2799  28.18
=0 m=—

Table 6. PSNR scores for Mip-NeRF360 scenes.
For indirect illumination [ (‘j“d“ in Eq. (13), we recover it
from the volumes V'™ via vanilla trilinear interpolation.
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Figure 11. Visualization of our inverse rendering and relighting results on TensoIR Synthetic dataset.

Method bicycle flowers garden stump treehill | room counter kitchen bonsai
NeRF++ 0526  0.453  0.635 0.594 0530 | 0.530 0.802 0.816 0.876
Plenoxels 0496 0431  0.606 0.523 0509 | 0.842 0759  0.648  0.814
INGP-Base 0.491 0450  0.649 0574 0518 | 0.855 0.798 0.818  0.890
INGP-Big 0512 0486 0701 0594 0542 | 0.871 0817 0.858  0.906
Mip-NeRF 360 | 0.693  0.583  0.816 0.746  0.632 | 0913  0.895 0.920  0.939
3DGS 0.771 0.605  0.868 0.775 0.638 | 0.914  0.905 0922 0.938
Ours 0.706  0.543  0.804 0.716 0.586 | 0.867 0.839  0.867  0.883

Tahle 7 SSIM scores for Mip-NeRF360 scenes

Method bicycle flowers garden stump treehill | room counter kitchen bonsai
NeRF++ 0455 0466 0331 0416 0466 | 0.335 0.351 0.260  0.291
Plenoxels 0506  0.521 0386 0.503  0.540 | 0419 0.441 0.447  0.398
INGP-Base 0487 0481 0312 0450 0489 | 0301 0342 0254  0.227
INGP-Big 0446 0441 0257 0421 0450 | 0261 0306  0.195  0.205
Mip-NeRF 360 | 0.289  0.345  0.164 0254 0.338 | 0.211  0.203 0.126  0.177
3DGS 0.205 0336  0.103 0210 0317 | 0220 0204  0.129  0.205
Ours 0259 0371  0.158 0258 0372 | 0279 0260  0.188  0.264

Table 8. LPIPS scores for Mip-NeRF360 scenes.
9. Results on TensoIR Synthetic Dataset

Tab. 5 provides the results on normal estimation, novel view
synthesis, albedo reconstruction, and relighting for all four
scenes. We also visualize the inverse rendering and relight-
ing results of GS-IR in Fig. 11.

10. Results on Mip-NeRF 360

For Mip-NeRF 360 [5], a dataset captured from the real
world, we list the results on novel view synthesis (i.e.
PSNR, SSIM, and LPIPS) of GS-IR and some NeRF vari-
ants [17, 32, 43] in Tabs. 6 to 8. In addition, we provide

the normal estimation, novel view synthesis, and relighting
results of all seven publicly available scenes in Fig. 12.

11. Ablation on Loss

The loss in GS-IR consists of contrast terms and smooth-
ing terms. For contrast terms, we set the weights of color
reconstruction loss L., normal penalty loss £,,.,, and shade
10ss Lshade to 1, which is intuitive. And the smoothing terms
include T'V normats TV mat, and T'Viigne, we evaluate their ef-
ficacy by adjusting their weights (i.e. \,,.7v, Ag, and Apg),
and the ablation results are shown in Tab. 9.

Normal Novel View Synthesis Albedo

Arv. Ae Am | MAE| | PSNRT SSIMt LPIPS| | PSNRT SSIM1t LPIPS |

5.030 | 35170  0.970 0.042 30.083  0.938 0.090

4.948 35330 0974 0.039 30216 0.940 0.088

v 4.948 35230 0972 0.040 30236 0.940 0.087
v 4.948 35314 0973 0.038 30275 0.941 0.085

v v 4948 | 35333 0974 0.039 30.286  0.941 0.084

ENENENEN

Table 9. Analysis of the impact of different loss terms on the
TensoIR dataset. v'indicates setting the smoothing term to be
valid.
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Figure 12. Visualization of our inverse rendering and relighting results on the Mip-NeRF 360 dataset.
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