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Finding the best strategy to minimize the time needed to find a given target is a crucial task
both in nature and in reaching decisive technological advances. By considering learning agents
able to switch their dynamics between standard and active Brownian motion, here we focus on
developing effective target-search behavioral policies for microswimmers navigating a homogeneous
environment and searching for targets of unknown position. We exploit Projective Simulation,
a reinforcement learning algorithm, to acquire an efficient stochastic policy represented by the
probability of switching the phase, i.e. the navigation mode, in response to the type and the
duration of the current phase. Our findings reveal that the target-search efficiency increases with
the particle’s self-propulsion during the active phase and that, while the optimal duration of the
passive case decreases monotonically with the activity, the optimal duration of the active phase
displays a non-monotonic behavior.

INTRODUCTION

Target search is a universal problem occurring in vari-
ous fields and at several length scales [1]. Examples range
from animals searching for food, mate, or shelter [2–5] to
castaway rescue operations [6], and to proteins binding to
specific DNA sequences [7, 8]. At the micro-scale, further
paradigmatic examples include bacteria foraging nour-
ishment [9, 10], phagocytes of the immune system per-
forming chemotactic motion during infection [11, 12], and
sperm cells on their way to the egg [13]. Furthermore, ar-
tificial and biohybrid microswimmers [14–16] with good
target-search skills have been envisaged as revolutionary
smart materials able to perform assisted fertilization [17],
targeted drug delivery [18, 19], or environmental remedi-
ation [20].

In many relevant circumstances, the agent has no a pri-
ori knowledge of the target location and has to develop
effective stochastic strategies that allow minimizing, at
least on average, the search time in an environment with
randomly distributed targets. Motivated by observa-
tional data, physical intuition, and analytical tractability,
Lévy walks [21–23] and intermittent searches [1, 24–26]
are among the statistical strategies that have received
major attention in the past. In the former, the agent un-
dergoes straight runs at constant speed with run lengths
l drawn from a Lévy distribution p(l) ∝ l−(α+1), with
0 < α < 2 and the target is detected if the searcher tran-
sits closer than a threshold distance, which also acts as a
small-lengths cut-off allowing to normalize the Lévy dis-
tribution. The optimal value of α depends sensitively on
model details such as the revisitability and mobility of
the targets or the complexity of the environment [22, 27–
29]. Intermittent-search strategies have been proposed
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based on the observation that fast movements allow ex-
ploring quickly the whole environment but may, on the
other hand, significantly degrade perception abilities [3].
In these strategies, phases of diffusive motion permitting
target detection are alternated with phases of ballistic
motion which allow quick relocation to different positions
at the cost of not being able to detect the target. In the
simplest version of the model, the agent switches from
one phase to the other with a fixed rate leading to ex-
ponentially distributed phase durations, but other distri-
butions have also been considered [30, 31]. The mean
search time of these strategies can be minimized under
broad conditions. In particular, it has been shown that
there is an optimal duration of the ballistic nonreactive
phase which depends only on the dimensionality of the
system and is independent of the details of the slow re-
active phase [26]. Intermittent-search strategies remain
robust also in the cases of different target distributions
such as patches [32] and Poissonian distributions in one
dimensions [33].

In the past decade, machine learning has emerged as
a revolutionary tool helping to elucidate various aspects
of active matter systems [34]. In particular, reinforce-
ment learning (RL) [35] and genetic algorithms [36] have
proved to be powerful tools able to identify success-
ful swimming strategies improving the navigation per-
formances of microswimmers and their odds of reach-
ing a target. Promising and worthy results have been
obtained in several situations including simple energy
landscapes [37], viscous surroundings [38–40], complex
motility fields [41], and steady or turbulent flows [42–
46]. However, previous literature has mainly focused on
increasing the net flux of particles in a certain direction
or on optimizing point-to-point navigation towards a tar-
get whose position is fixed and then implicitly learned
during the learning process. Thus, notwithstanding the
increasing popularity of machine-learning algorithms in
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the active matter field [34, 47] and the previously men-
tioned seminal works, investigation of stochastic target-
search problems with randomly distributed targets via
machine-learning approaches remains largely unexplored,
with only a couple of very recent exceptions [48, 49].

Muñoz-Gil et al. [48] have applied RL methods to learn
optimal foraging strategies outperforming the efficiency
of Lévy walks in the case of revisitable, sparsely dis-
tributed targets. In their setup, the learning agent per-
forms a stepwise motion with constant velocity and, at
each step, decides if maintaining the current direction or
turning in a new random one, this choice being based only
on the length of the current straight segment. When-
ever the agent detects a target, it receives a reward and,
through several trials, it optimizes its policy, learning
an efficient distribution of the length of the straight seg-
ments. The former approach, with respect to traditional
analytical ones, has the advantage of not being restricted
to a specific ansatz of the straight-segment length dis-
tribution. However, it remains focused on investigating
known idealized scenarios, which are not entirely apt for
describing the behavior of real microswimmers.

On the other hand, Kaur et al. [49] rely on the ac-
tive Brownian particle (ABP) [50], which well describes
the behavior of artificial microswimmers, and show that
genetic algorithms manage to address the problem of
finding targets of unknown positions for particles able
to decide if and when switching their behavior between
standard passive Brownian diffusion and directed ABP
motion. In particular, they use the algorithm NeuroEvo-
lution of Augmenting Topologies [51] to evolve an ini-
tial population of particles taking random decisions to-
wards a population in which the majority of particles are
optimized to solve the target-search problem. However,
their findings are limited by the fact that, in their setup,
a given individual particle acts deterministically in the
sense that it always selects the same duration for each
phase from a set of predetermined durations.

In the present manuscript, we combine the two for-
mer approaches: While, as in Ref. [49], we resort again
on agents able to switch their behavior between passive
and active Brownian motion, we here exploit the pow-
erful RL framework employed in Ref. [48], thus allowing
our agents to learn a distribution of durations for each
of the two phases. This results in a stochastic strategy
maximizing the foraging efficiency in a homogeneous en-
vironment, which can eventually be tested in experiments
with artificial Janus particles [52, 53] where the activity
is controlled by an external illuminating system [38].

MODEL

With intermittent-search strategies in mind, we design
our agent as a particle switching between two different
phases ϕ and able to keep track of the current phase
duration ω. More specifically, the particle can perform
either standard Brownian diffusion (ϕ = 0) enabling tar-

get detection, or active Brownian motion (ϕ = 1), which
does not allow to sense the target but, depending on its
self-propulsion, may quickly relocate the particle to a dif-
ferent region. In the following, the two navigation modes
are also referred to in short as the Brownian Particle (BP)
phase and the ABP phase, respectively. At each time t,
the state of the agent st is then characterized by the tu-
ple st = (ϕt, ωt), with ϕt representing the current phase
and ωt its time duration since the last switching event.
As customary in the RL framework [35], given its current
state st, the agent replies with an action at, and gains a
reward if this action leads to a benefit for the agent. In
our case, the action corresponds to making a decision on
whether to maintain the current phase or switch to the
other one. This choice follows a probabilistic rule, with
pt the probability of switching phase. We highlight the
fact that, in our approach, pt is not a constant but it de-
pends on the current state st of the agent. The full set of
these probabilities (one for each state st) constitutes the
policy of the agent. During the learning process, such a
policy is constantly updated with the goal of maximiz-
ing the total reward, i.e. the target-search efficiency (see
Methods section for more details).

Including these notions into the standard ABP
model [50] in a homogeneous environment results in the
following set of Langevin equations, discretized according
to Itô rule,

ϕt+∆t =

ß
ϕt with probability 1− pt ,
1− ϕt with probability pt ,

(1)

rt+∆t = rt + v ut ϕt ∆t +
√

2D∆t ξt , (2)

ϑt+∆t =

ß
ϑt +

√
2Dϑ∆t ηt if ϕt+∆t = ϕt ,

2π rand otherwise .
(3)

Here ∆t is the integration time step, rt = (xt, yt) is the
position at time t, and ut =

(
cosϑt, sinϑt

)
denotes the

instantaneous orientation of the self-propulsion velocity
with constant modulus v. D and Dϑ are the translational
and rotational diffusion coefficients, respectively. Finally,
the components of the vector noise ξt = (ξx,t, ξy,t) and of
the scalar noise ηt are independent random variables, dis-
tributed according to a Gaussian with zero average and
unit variance. Note that when the phase of the particle is
that of a passive Brownian particle (ϕt = 0), the spatial
evolution is decoupled from the orientational diffusion of
the self-propulsion.

Our homogeneous environment is modeled as a two-
dimensional square box of size L×L with periodic bound-
ary conditions. A circular target of radius R = 0.05L is
located randomly inside the box. Every time the agent
finds this target (i.e. the distance between the center of
the target and the particle position is smaller than the
target radius R), it gets a positive reward, the target is
destroyed, and a new target appears at a new random
location inside the box. Due to the periodic boundary
conditions, this environment is formally equivalent to an
infinite domain with a lattice of targets.

In the following, we fix the length unit as the size of the
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FIG. 1. Average time required to reach the target during an episode of duration 20τ as a function of the number of episodes for
Pe = 100. The continuous green line represents the average over N = 5 · 103 independent particles, while the box-and-whiskers
symbols report respectively the 10th, 25th, 50th, 75th, and 90th percentiles. The blue dashed line represents the average search
time of a completely passive particle. Inset: Time required to reach the target at the 103-th episode as a function of the Péclet
number for ℓ∗ = 1. The hyperparameters of the PS algorithm for each Péclet number are reported in the Methods section.

box L and the time unit as the typical time τ := L2/4D
required by a passive particle to cover this distance. The
model has thus two free dimensionless parameters: The
Péclet number Pe := vτ/L, measuring the magnitude of
the activity, and the persistence ℓ∗ := v/DϑL, represent-
ing the persistence of directed motion in the ABP phase.

RESULTS

Resorting on the RL algorithm Projective Simula-
tion [54] (PS) described in the Methods section, the learn-
ing performances of our agents are evaluated, for each set
of free parameters, by checking how the average time to
reach the target (also known as the mean first-passage
time [55, 56]) evolves during subsequent episodes of du-
ration 20τ . The average is performed over N independent
agents, all with the same initial policy in which, indepen-
dently of the current phase duration, the probabilities of
switching phase are 10−2 and 10−3 when being in the
passive and in the active phase respectively. Such ini-
tial policy is purposely chosen to have particles with a
rather poor initial target-search efficiency, with an aver-
age searching time at least twice that of a pure passive
particle, the latter being about 1.14τ .

We first consider the case in which the learning par-
ticle, when in the ABP phase, has a large activity and
a persistence length equal to the box size. To do so, we
set the persistence to ℓ∗ = 1 and the Péclet number to
Pe = 100 which means that the ratio between the typ-
ical length traveled because of the self-propulsion and
the typical length traveled due to diffusion is 1 at the
minimal phase duration, corresponding to the integra-
tion time step ∆t = 10−4τ , and grows up to 100 for a
phase duration equal to the time unit τ (see Methods sec-

tion for details). In such a situation, the learning particle
outperforms the target-search performances of a purely
passive particle already after two episodes, see Figure 1.
During subsequent episodes, the average time required
to find the target keeps decreasing, following a stretched
exponential behavior that depends on the details of the
learning algorithms (see Methods section), and after 103

episodes it is about 4 times smaller than the benchmark
value corresponding to the fully passive particle. Fur-
thermore, also the spread of the average search times
among the N different agents decreases during the learn-
ing process, with the difference between the first quartile
and the third quartile reducing from about 1.4τ to about
0.1τ along the 103 episodes, see Figure 1.

An important question is how the target-search effi-
ciency depends on the activity of the particle. To ad-
dress this issue, we investigate how the average time to
reach the target during the 103-th episode varies when
changing the Péclet number. This is reported in the in-
set of Figure 1, which shows that the learning particle
has performances comparable to those of a passive par-
ticle as long as the Péclet number is smaller than about
Pe ≈ 10 and then the average time to reach the tar-
get decreases with increasing activity until it reaches a
plateau for Pe ≳ 200. Such a phenomenology is consis-
tent with the results already found in Ref. [49] and is
intuitively understood as follows: Since the typical dis-
tance covered by pure diffusion grows with time as t1/2

while the one due to the self-propulsion grows about as
t, for small activities, diffusion dominates the relocation
process during the short phases. On the other hand,
having long active phases is not favorable because of the
particle’s inability to find the target when in the ABP
phase. Thus, at low Péclet numbers, the learning parti-
cle tries to maximize the time spent in the passive phase,



4

10−4 10−3 10−2 10−1 100

ω/τ

10−4

10−3

10−2

10−1

100

p
(φ

=
0,
ω

) BP

10−4

10−3

10−2

10−1

100

p
(φ

=
1,
ω

)

ABP
(a)

10−4 10−3 10−2 10−1 100

ω̃/τ

100

101

102

103

P
(ω

=
ω̃
|φ

=
0)

BP

100

101

102

103

P
(ω

=
ω̃
|φ

=
1) (b)

ABP

Pe = 2 Pe = 20 Pe = 100 initial policy

10−4 10−3 10−2 10−1 100

ω̃/τ

0.0
0.2
0.4
0.6
0.8
1.0

P
(ω
<
ω̃
|φ

=
0)

BP

0.0
0.2
0.4
0.6
0.8
1.0

P
(ω
<
ω̃
|φ

=
1) (c)

ABP

100 101 102 103

Pe
0.0

0.5

1.0

fra
ct

io
n

of
tim

e
in

BP
ph

as
e

(e)

100 101 102 103

Pe

10−4
10−3
10−2
10−1

av
er

ag
e

du
ra

tio
n

of
ph

as
e

BP

10−4
10−3
10−2
10−1 (d)

ABP

FIG. 2. (a) Probabilities of switching from BP to ABP motion (lower panel) and from ABP to BP motion (upper panel)
as a function of the phase duration and for different Péclet numbers. Data are obtained after 103 episodes and averaged over
N = 5 · 103 independent particles; (b) Distribution of phase duration for different Péclet numbers (BP phase, lower panel –
ABP phase upper panel); (c) Cumulative distribution of the phase duration for different Péclet numbers; (d) Average duration
of BP and ABP phases as a function of the activity; (e) Average fraction of time spent in the passive phase as a function of
the activity. In all panels, the black dashed line represents the corresponding observable as obtained from the initial policy.

with the resulting performances equivalent to those of a
purely passive particle. In contrast, at large Péclet the
self-propulsion velocity is enough to allow relocation at
a distance larger than the target size even for very short
active phases and the better performances of the learning
particle are in accordance with the idea that having an
intermittent-search strategy is more efficient than having
a simple diffusive process.

Additional insight into how the PS algorithm encodes
learning successful strategies can be gained by directly
investigating the policy, i.e. the probabilities of switch-
ing phase given the state. This is done in Figure 2 which
reports these switching probabilities (panel a) and re-
lated observables as learned after 103 episodes for Pe = 2,
20, and 100, respectively corresponding to a low, inter-
mediate, and high value of the activity. Among the re-
lated observables, we report the probability of having a
phase with a certain duration ω̃ conditioned to being in
phase ϕ, P (ω = ω̃|ϕ) (Figure 2b) and the cumulative
probability of having a phase duration shorter than ω̃
conditioned to being in the phase ϕ, P (ω < ω̃|ϕ) (Fig-

ure 2c). These quantities can be obtained directly from
the switching probabilities p(s) = p(ϕ, ω) related to a
given state s = (ϕ, ω) as

P (ω = ω̃|ϕ) =
1

∆t

ñ−1∏
n′=1

[1− p(ϕ, n′∆t)] p(ϕ, ñ∆t) , (4)

where we discretized the time introducing the integer
variable n = ω/∆t and the factor 1/∆t in front of the
right-hand side accounts for the correct normalization,
and

P (ω < ω̃|ϕ) =

ñ−1∑
n′=1

P (ω′ = n′∆t|ϕ) ∆t . (5)

Further observables reported in Figure 2 are the average
duration of a phase (panel d) and the fraction of time
spent in the passive phase (panel e) as a function of the
Péclet number. However, before discussing the details of
the learned policies, it is important to clarify that, for
large enough ω’s, the value of the switching probability
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FIG. 3. Distribution of times needed to find the target collected during a time interval of length 106τ , for Pe = 2, 20, and
100 (panels a, b, and c respectively). We consider here agents behaving according to the policies learned after 103 episodes as
reported in Figure 2 (solid bars), to the initial policy prior to learning (black line), and completely passive particles (blue line).
The magenta line is the exponential distribution having decay time given by the average time to find the target.

p(s) always drops to the corresponding value in the initial
(arbitrary) policy. In fact, the longer the phase duration
ω of a given state s = (ϕ, ω), the more rarely this state
is visited during the learning process, with the frequency
of these visits depending on the switching probabilities
associated with the states s = (ϕ, ω′) having the same
phase ϕ and lower phase duration ω′ < ω. This results in
practical limitation in sampling states with a large phase
duration. In spite of this issue, the target-search abilities
of the trained agent are not affected since the rarer it is
to visit a given state, the smaller the contribution of the
action following that state to the overall performances of
the particle.

For low activity (Pe = 2), the probability of switching
from the passive to the active phase decreases from the
value 10−2 corresponding to the initial policy to a value
of about 10−3, slightly increasing with the duration of the
ABP phase until it quickly converges to the initial pol-
icy value for a duration of the phase larger than about
10−1τ (see Figure 2a, lower panel). On the other hand,
the probability of switching from the active to the passive
phase (Figure 2a, upper panel) increases from the initial
policy’s value 10−3 to about 4 ·10−2 and drops to the ini-
tial policy for a duration of the phase larger than about
10−2τ . These results, together with the corresponding
ones in panels b and c, indicate that, for low activity, the
trained particle prefers to alternate relatively long passive
phases with short active ones, confirming the previously
mentioned expectations. For Pe = 20, the probability
of having a phase with a certain duration ω of a given
phase shows a peak at around ω = 10−2τ both when con-
ditioned to be in the ABP phase (ϕ = 1) and in the BP
one (ϕ = 0), see Figure 2b. Consequently, for this value
of the activity, the best strategy consists of alternating
between active and passive phases both having a typical
duration of about 10−2τ (see also Figure 2d), with the
duration of the passive phase having a larger variance as

indicated by the fact that the peak of the distribution
conditioned to being in the active phase is narrower than
the one of the distribution in the passive phase. We stress
that, because of its self-propulsion, an ABP with Pe = 20
and ℓ∗ = 1 in a time interval of 10−2τ covers a typical
distance of about 0.2L which is twice the target diameter.
Finally, for Pe = 100, Figure 2 shows that the distribu-
tion of phase durations displays a sharp peak at around
10−3τ for the ABP phase and a rather broad peak at a
few integration time steps. Concomitantly, the learned
strategy alternates between very short active phases with
an average duration of about 1.4 ·10−3τ and even shorter
passive phases lasting about 0.5 · 10−3τ on average. In
this case, the typical distance traveled during the active
phase because of the particle’s self-propulsion is about
0.14L which is of the same order as the one registered in
the case of Pe = 20 even though the activity is now 5
times larger.

It is interesting to note that, as reported in Figure 2d,
while the average passive phase duration monotonically
decreases with the Péclet number, its counterpart for the
active phase has a non-monotonic behavior that can be
rationalized as follows: Both at large and low values of
the activity the ABP phases are very short but for two
different reasons. At low activity, these are short because
active relocation to a distance greater than the target size
would require too much time and the agent responds by
minimizing the time spent in this phase. In contrast,
for large activity, very short active phases are already
sufficient to allow the particle to relocate elsewhere in
the simulation box and improve the target-search perfor-
mances of the smart particle. For intermediate Péclet
numbers, the agent instead finds an optimal duration of
the active phase reflecting the compromise between the
utility of active phases for quick relocation and the fact
that during these phases the target cannot be detected.
The effect of the monotonic and non-monotonic behav-
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iors of the average duration of respectively the passive
and the active phase, also results in a non-monotonic be-
havior of the fraction of time spent in the passive phase.
In fact, this quantity is close to 1 for small Péclet num-
bers, decreases to about 0.25 for Pe ≈ 100, and then
increases again to 0.5 which is the value expected for ex-
tremely large levels of activity, see Figure 2e.

Finally, Figure 3 shows the distributions of times
needed to find the target by agents adopting the learned
policies previously discussed for Pe = 2, 20, and 100.
These distributions are exponential, meaning that the
kinetics is completely characterized by the mean first-
passage time. For a comparison, the distributions ob-
tained by a searching particle adopting the initial policy
and by a completely passive particle are also reported.
Concerning the results obtained by adopting the initial
policy, note that, even if the policy remains the same, in
principle the resulting distribution depends also on the
value of the activity. However, this dependence appears
to be very weak, as revealed by the similar behavior of the
distribution corresponding to the three different Péclet
numbers. For low activity (Pe = 2) the distribution of
the searching times related to the learned policy is very
similar to that of a simple BP, confirming the passive-like
behavior of the agents in this Péclet regime. As expected,
increasing the activity, the distribution for the optimized
particle becomes more and more narrow. In particular,
for Pe = 100, the large majority of targets is found within
the unit time τ .

CONCLUSIONS

In summary, we have introduced a RL-based method
to probe the potential of smart microswimmers in target-
search problems involving targets of unknown positions
in a homogeneous environment. Specifically, we applied
a Projective Simulation based approach [48] to micro-
particles able to perform either passive or active Brow-
nian motion and to switch from one to the other on the
basis of a probabilistic policy. Our findings demonstrate
that, during repeated learning episodes, the agent opti-
mizes its target-search performance and that the optimal
policy strongly depends on the magnitude of the self-
propulsion during the active phase. For low activity, the
behavior of the smart particle is similar to that of a com-
pletely passive particle while, for large activity, the agent
takes advantage of the active phases to quickly cover
more ground and increase the target-finding odds. More
in detail, the duration of the passive phases decreases
with increasing Péclet number while the duration of the
active phases displays a non-monotonic behavior with a
maximum at intermediate Péclet numbers. The proposed
model is inspired by the intermittent search strategies de-
veloped by Bénichou and coworkers [1, 24, 25]. In this
framework, an exponential distribution of phases is as-
sumed to allow analytical tractability and in agreement
with some experimental observations [1]. However, in our

case, the duration of a phase is part of the state sensed by
the agent, meaning that the agent is endowed with some
sort of temporal memory. Consequently, distributions
of phases different from the exponential one may arise,
which is indeed what is observed in the learned policies.
Our results complement and extend those of a previous
study based on a genetic algorithm [49] and demonstrate
that also reinforcement learning is a powerful tool to in-
vestigate target-search problems for agents undergoing a
stochastic dynamics.

With respect to previous literature on stochastic tar-
get search [1, 21–26, 48], which mainly applies to generic
scenarios, our investigation is more focused on the mi-
croscopic world, namely we are interested in natural or
artificial microswimmers. This is the main reason to
resort to the active Brownian particle model. In fact,
this model, besides being the paradigmatic model in the
framework of non-equilibrium dynamics [57–60], also pro-
vides a faithful representation of the behavior of arti-
ficial microswimmers such as the Janus particles [50].
Remarkably, nowadays it is already possible to per-
form experiments in which the activity of artificial mi-
croswimmers is controlled by an external illuminating
system [38]. Thus, the target-search strategies developed
in the present manuscript can potentially be tested in a
laboratory. Furthermore, the intermittent active Brown-
ian dynamics that we introduce in the Model section can
be also considered, in the case of relatively large activity
and persistence, as a first proxy for the run-and-tumble
dynamics which is the typical theoretical model describ-
ing the motion of bacteria [10, 50, 61].

The proposed framework offers new insight into target-
search problems in homogeneous enviroments and paves
the way to further research. In particular, it can be
leveraged to explore more complex scenarios such as,
for instance, target search with resetting events [62–64],
multiple and/or motile targets problems [1], or searchers
with multiple migration modes, the latter being relevant
to dendritic cells searching for infections [65]. More-
over, other possible developments, particularly relevant
for the envisioned medical and environmental application
of smart active particles, entail heterogeneous environ-
ments involving the presence of obstacles, boundaries,
and energy barriers [29, 66–68]. Finally, endowing the
agent with a limited memory of the recently visited lo-
cations [69] or with the ability to sense directional cues
coming from the target itself, may also be an extension
going in the direction of better modelling biological mi-
croswimmers.

METHODS

To identify effective target-search strategies, we used
the RL algorithm Projective Simulation (PS), which was
originally created as a platform for the design of au-
tonomous quantum learning agents [54] and was shown to
have competitive performance also in classical RL prob-
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lems [70, 71].
The core idea of this algorithm is to use the notion of a

particular kind of memory, called episodic and composi-
tional memory (ECM) which is mathematically described
by a graph connecting units called clips. Clips can be ei-
ther percept or decision units, corresponding to states
and actions respectively, or a combination of those. We
design our target-search problem as a Markov decision
process [35], i.e. at each learning step, the agent is in
some state s, takes an action a according to a policy de-
fined by the conditional probabilities π(a|s), and receives
a reward R as a consequence of this action. In such
a case, the ECM structure consists of a layer of states
fully connected with a layer of actions. Each edge of the
graph, i.e each state-action pair (s, a), is assigned with a
real-value weight h(s, a), called the h−value, which de-
termines the policy according to

π(a|s) =
h(s, a)∑

a′∈A h(s, a′)
, (6)

where A represents the set of all possible actions. Fur-
thermore, a non-negative glow value g(s, a) stores the in-
formation on which and, implicitly, how frequently state-
action pairs have been visited during the learning pro-
cess. Such information is then exploited when updating
the policy with the goal of maximizing the total expected
reward.

This last feature of the PS algorithm makes it partic-
ularly apt to solve our target-search problem: Indeed,
on average, the equations of motion (1-3) have to be it-
erated a large number of times before a target is found
and the agent obtains its reward. Consequently, the re-
ward signal is very sparse and has only a very low corre-
lation with the particular state-action pair encountered
when the target is found. Approaches taking into ac-
count long sequences of visited state-action pairs, as the
PS algorithm, should then be preferred with respect to
typical action-value methods such as one-step Q-learning
or SARSA [35].

Applying the PS framework to the model illustrated in
the dedicated section and taking into consideration that
in our case the action a can be described as a binary vari-
able, with a = 1 corresponding to a switch of the phase
(passive or directed motion) and a = 0 to maintaining
the current phase, a single learning step consists of the
following operation:

• Given the current state st = (ϕt, ωt), the probabil-
ity of switching phase pt is determined as

pt = π(at = 1|st) = h(st, 1)/[h(st, 0) + h(st, 1)]

and the next phase ϕt+1 is selected accordingly;

• The glow matrix is damped following the update
rule G ← (1 − η)G, where η is called the glow pa-
rameter and determines how much a delayed re-
ward should be discounted;

Pe ≤ 5 10 20 50 ≥ 100

γ 10−7 10−6 10−6 10−6 10−5

η 10−2 10−3 10−3 10−2 10−2

TABLE I. Hyperparameters used to obtain the results pre-
sented in the present work.

• The glow matrix is updated by adding a unit to the
visited state-action pair, g(st, at)← g(st, at) + 1;

• The position and the direction of the particle evolve
according to Eqs. (2-3);

• The matrix of h-values is updated according to the
learning rule of the PS model, H ← (1 − γ)H +
γH0 + RG, where R is the reward being zero if
no target is found by the particle located at the
updated position and 1 otherwise. Here, γ is called
the damping parameter and specifies how quickly
the H matrix returns to an initial matrix H0.

The initial policy is such that the probabilities of switch-
ing phase are 10−2 and 10−3 when being in the passive
and in the active phase respectively. This is obtained by
setting, for each t, h0(st, at = 1) = 10−2 and h0(st, at =
0) = (1 − 10−2) if the state is in a passive phase, and
h0(st, at = 1) = 10−3 and h0(st, at = 0) = (1 − 10−3)
if the state is in an active phase. All the terms of the
G matrix are initialized to zero at the beginning of each
episode.

We set the integration time step to ∆t = 10−4τ and,
to have a finite set of states, we limit the duration of a
given phase ω to be not longer than τ . This results in a
total of 2 · 104 states st = (ϕt, ωt), being ϕt = 0, 1 (see
Model section) and ωt = 1, . . . , 104. The glow and the
damping parameters are considered hyperparameters of
the model and, for each value of the activity Pe and of the
persistence ℓ∗, are adjusted to obtain the best learning
performances. Their values are reported in Table I. Fi-
nally, to investigate how the learning process evolves, we
split the whole process into several episodes, each lasting
20τ . At the beginning of each episode, each element of
the glow matrix is initialized to zero.
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[58] É. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco,
and F. van Wijland, “How Far from Equilibrium Is
Active Matter?” Physical Review Letters 117, 038103
(2016).
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