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We develop a diagrammatic Monte Carlo method for the real-time dynamics of dissipative quan-
tum impurity models. These are small open quantum systems with interaction and local Markovian
dissipation, coupled to a large quantum bath. Our algorithm sample the hybridization expansion
formulated on a single real-time contour, rather than on the double Keldysh one, as it naturally
arises in the thermofield/vectorized representation of the Lindblad dynamics. We show that local
Markovian dissipation generally helps the convergence of the diagrammatic Monte Carlo sampling
by reducing the sign problem, thus allowing to reach longer time scales as compared to the con-
ventional unitary case. We apply our method to an Anderson impurity model in presence of local
dephasing and discuss its effect on the charge and spin dynamics of the impurity.

I. INTRODUCTION

Quantum impurity models represent the simplest non-
trivial class of quantum many-body problems, where in-
teraction and correlation effects involve only a finite num-
ber of degrees of freedom, the impurity. This is in turn
coupled to an extended set of harmonic modes represent-
ing the bath or environment. Examples of these models
emerge ubiquitously in condensed matter, atomic physics
and quantum optics, from the Caldeira-Leggett model of
a dissipative two-level system [1] to the Kondo effect of
magnetic impurities in metals or quantum dots in nanos-
tructures [2] to the decay of a driven atom in a cavity [3].

While sharing the general setting of an open quan-
tum system, much of the emergent low-energy, long-time
physics in these models is controlled by the spectral prop-
erties of their respective environments. These can be
rather different, ranging from a gapless bath with power-
law correlations for the conduction electrons of a metal
at zero temperature, to fast, featureless Markovian envi-
ronments used to describe for example charge transport
at high-temperature or photonic degrees of freedom in
atomic physics and quantum optics platforms. As such,
traditional studies have treated these two as rather sep-
arate classes of dissipative quantum systems [4, 5].

The recent development of quantum simulators and
noisy intermediate scale quantum devices has brought
forth a variety of platforms where different types of dis-
sipative environment can coexist and be controlled with
high degree of tunability [6]. Experiments with ultra-
cold atoms, for example, have realised quantum trans-
port through a dissipative quantum point contact [7–9],
where the constriction between two quantum conductors
is exposed to additional particle losses. Celebrate quan-
tum impurity models such as the Anderson or the Kondo
model have been realised with ultracold alkaline-earth
atoms [10, 11] which are naturally exposed to correlated
dissipative processes, such as dephasing due to sponta-
neous emission [12, 13] or two-body losses due to inelas-
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tic scattering [14–16]. In solid state platforms one can
couple quantum dots to a quantum point contact [17–19]
or to monitoring environments [20, 21] to study the effect
of dephasing or quantum measurements on the Kondo ef-
fect [22]. Finally, superconducting circuits are emerging
as platform to explore the role of local dissipation in a
controlled way [6, 23].

These developments have triggered the interest around
a new class of dissipative quantum impurity models,
where the impurity is both coupled to a quantum bath,
i.e. a structured frequency-dependent environment, and
exposed to fast Markovian dissipation describing incoher-
ent processes such as particle losses or dephasing, that
can often be modelled within a Lindblad master equa-
tion [4]. The physics of these dissipative quantum impu-
rity models has started only recently to be explored, with
a focus on non-interacting chains with localised single
particle losses [24–28] or pumps [29, 30] or local dephas-
ing [31–34]. Non-Hermitian quantum impurity models,
arising from a postselection over quantum trajectories,
have also been studied [35–37]. In addition to their in-
trinsic interest, dissipative quantum impurity models also
arise as effective description of open Markovian lattice
models in the large connectivity limit, within Dynamical
Mean-Field Theory [38].

Despite these recent progresses the physics of dissipa-
tive quantum impurities is still largely unexplored, par-
ticularly concerning the interplay between local dissipa-
tion and strong correlations. This is in part because
the range of methods and techniques to solve them ef-
ficiently and numerically exactly is rather limited. Sev-
eral techniques have been developed in the past decade
to study the real-time dynamics of unitary quantum im-
purity models ranging from time-dependent Numerical
Renormalization group [39], Matrix Product States and
their extensions [40–43], or auxiliary master equation ap-
proaches [44–46]. We note a recent development using
matrix product state representation in the temporal do-
main [47–53] which is particularly promising. Diagram-
matic Monte Carlo methods, which are the workhorse for
imaginary time dynamics, suffer from a severe sign prob-
lem which limits in practice their applicability [54–57],
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although recent developments have significantly pushed
this boundary [58–62].

In this work we develop a real-time Diagrammatic
Monte Carlo (DiagMC) algorithm to tackle dissipative
quantum impurity models. The idea is to combine the
real-time hybridization expansion algorithm [54] with the
formalism used to solve Lindblad Markovian problems,
often called vectorization or super-fermion representa-
tion [44, 63–66], in such a way to include local dissipation
into the solution of the atomic limit and sample the hy-
bridization expansion in the resulting vectorized Hilbert
space. A similar strategy was developed in Refs. [31, 67]
leading to to a self-consistent diagrammatic theory in the
hybridization (Non-Crossing Approximation and its ex-
tensions). Here instead we sample all diagrams entering
the hybridization expansion using DiagMC. We formu-
late the algorithm in the most general terms and apply
it to the case in which the jump operators are diagonal
in the occupation of the impurity, leading to a gener-
alised segment picture [68]. As a non trivial applica-
tion we study the dynamics of an Anderson Impurity
Model (AIM) in presence of local dephasing. We show
that strong local dissipation helps the convergence of the
diagrammatic expansion, reducing the average number
of vertex and thus the sign problem, allowing to reach
longer time scales than in the usual hybridization expan-
sion algorithm [54]. Our results for the charge and spin
dynamics of the AIM reveal that the former is strongly
slown down by a large local dephasing, a signature of the
Zeno effect, while the latter is only partially affected by
dissipation. On the other hand, we show that an asym-
metric dephasing for the two spin species results in the
formation of a metastable state with finite impurity mag-
netization.

The paper is organized as follows. In Sec. II we intro-
duce the general dissipative quantum impurity model and
present a brief recap of the vectorization formalism. In
Sec. III we formulate the hybridization expansion in this
extended Hilbert space formalism, while in Sec. IV we
describe the diagMC algorithm we developed to sample
the hybridization expansion. Sec. V contains our main
results for the Anderson Impurity Model with Dephas-
ing, including an analysis of the algorithm performance,
benchmarks in the non-interacting case and the results on
charge, spin and entanglement dynamics. Sec. VI is de-
voted to conclusions. Two Appendix complete this work
with additional technical details.

II. DISSIPATIVE QUANTUM IMPURITY
MODELS

The aim of this section is to introduce the model and
setting we will be focusing throughout this work, namely
dissipative quantum impurities and their out of equilib-
rium dynamics. To this purpose, we consider a small
quantum system with a finite number of fermionic de-
grees of freedom {dσ, d†σ′} = δσ,σ′ where the label σ may

Figure 1. Cartoon of the set-up: a dissipative quantum
impurity model consisting of a local fermionic level (i.e. an
interacting dot with Hamiltonian HI) coupled to a fermionic
bath HB through the hybridization HSB and exposed to dis-
sipative Markovian processes with jump operators Lµ, L

†
µ.

include both spin and orbital degrees of freedom , and
described by a local Hamiltonian HI , in the present case:

HI

[
{dσ, d†σ′}

]
=

∑
σ

ϵσd
†
σdσ +HU

[
{dσ, d†σ′}

]
(1)

where HU

[
{dσ, d†σ′}

]
contains the many-body interac-

tions, which at this stage are not necessary diagonal
in the spin or orbital degrees of freedom. These quan-
tum levels are coupled to one or more non-interacting
baths, i.e described by a free fermions Hamiltonian HB =∑

k,σ εkc
†
k,σck,σ with fermionic bath operators ck,σ, c

†
k,σ.

In order to simplify we only consider a linear coupling
with the bath, described by the Hamiltonian HIB :

HIB =
∑
k,a

(
Vk,σd

†
σck,σ + h.c

)
(2)

thus, a generic quantum impurity model is described by
the following Hamiltonian:

H = HI +HB +HIB (3)

In addition to the local interactions described by HU

we are interested in a situation where the impurity is ex-
posed to local dissipative processes, that we assume to
be Markovian and modelled by a Lindblad Master Equa-
tion [4]. This dissipative processes originate from some
fast Markovian environment, whose microscopic degrees
of freedom are not under our control and so can be traced
out from the start. This has to be contrasted with the
quantum bath described by the fermions ck,σ, c

†
k,σ which

play a key role in the many-body physics of the quan-
tum impurity. As a result of this local dissipation the
entire system (quantum bath plus quantum impurity) is
described by a density matrix ρ(t) which evolves in time
according to the Lindblad equation

∂tρ(t) = −i [H, ρ(t)] +
∑
µ

Lµρ(t)L
†
µ − 1

2
{L†

µLµ, ρ(t)}

(4)
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where H is the impurity plus bath Hamiltonian in Eq. (3)
and we have denoted Lµ, L

†
µ the jump operators for the

impurity system only, that is to say they are written only
in functions of the operators dσ, d†σ. A sketch of the setup
we are considering in this work is provided in Fig. 2.

Since we are interested in the non-equilibrium dynam-
ics we want to determine the time evolution of the density
matrix ρ(t) starting from an initial configuration given
by ρ(0). For this one, in principle we could prepare our
system in a thermal state, then drive the system out of
equilibrium, in this case the initial density matrix can be
determined by the Boltzmann distribution at a temper-
ature β−1. In this paper, we assume to start from a de-
coupled situation, where the fermionic bath is in thermal
equilibrium at temperature T = 0, while the impurity
is prepared in a given initial density matrix ρI(0). The
initial density matrix for the whole system then factorize:

ρ(0) = ρI(0)⊗ ρB(0) (5)

where ρB(0) is a thermal density matrix for the fermions
in the bath while ρI(0) depends on the initial prepara-
tion for the impurity and will be specified later. Then we
let the entire system evolve under the action of the Lind-
blad master equation (4). We note that in principle an
initial state with finite impurity-bath correlations could
be also implemented within diagrammatic Monte Carlo,
by adding a third branch (imaginary-time axis) on the
real-time contour, as done in the unitary case [54].

In this work we will be mainly interested in properties
of the impurity which can be computed from the reduced
impurity density matrix, obtained after tracing out the
fermionic degrees of freedom of the quantum bath.

A. Vectorization and Tilde Space

In this section we set-up the theoretical framework we
will use to study non equilibrium dynamics in dissipative
quantum impurity models, in particular to obtain the hy-
bridization expansion that will be sampled through dia-
grammatic Monte Carlo. As a first step we discuss how
to reformulate the Linbdlad master equation, which is
an equation for the density matrix written in terms of a
Linbdlad super-operator, in terms of a non-unitary evo-
lution for a vector state which represents a purification
of the density matrix and lives in an enlarged Hilbert
space. This formalism, sometime referred to as vector-
ization, third-quantization [69], superfermion representa-
tion [44, 63–66] or thermofield [70, 71] depending on the
communities [72, 73], will make the development of the
hybridization expansion and of the DiagMC algorithm
rather natural as we are going to see in Sec. III. The
advantage of the vectorization formalism is that the su-
peroperator structure usually needed to treat Lindbla-
dian problems and the associated hybridization expan-
sion is now encoded by doubling the local Hilbert space
and working with an additional quantum number, similar

to an orbital degrees of freedom in conventional diagram-
matic Monte Carlo. As a by product the diagrammatic
expansion will be formulated on a single real-time con-
tour, rather than on the Keldysh one, the additional label
keeping track of the information on whether operators are
on the upper/lower branch of the contour.

As a warmup we start describing the vectorization for
a single site fermionic problem, which could describe
for example the isolated impurity. The Hilbert space is
spanned by the orthonormal Fock basis |n⟩, with n = 0, 1
and in this space the identity operator is written as

I =
∑
n

|n⟩⟨n| (6)

In this basis any operator, including the density matrix
ρ, reads

O =
∑
n,m

On,m|n⟩⟨m| (7)

Now, we want to duplicate the physical Hilbert space H
and purify the density matrix. We introduce therefore
an auxiliary tilde space H̃ with orthonormal basis |ñ⟩,
where we can also introduce the identity

Ĩ =
∑
n

|ñ⟩⟨ñ| . (8)

We can then define fermionic operators in the new Hilbert
space, respectively {cn, c†n} in the Hilbert space H and
{c̃n, c̃†n}n in H̃, satisfying the usual algebra:

{cα, c†β} = δα,β {c̃α, c̃†β} = δα,β (9)

and with all the other anticommutators equal to zero.
The key step is now to vectorize the identity operator,
introducing the left vacuum [44, 63] (or vectorized iden-
tity)

|I⟩ =
∑
n

(−i)n |n⟩ ⊗ |ñ⟩ (10)

The vectorized identity is particularly useful as it allows
to write any operator, in terms of a vector, for example
if we can write:

|O⟩ = O|I⟩ = O ⊗ Ĩ|I⟩ (11)

In particular, the vectorized density matrix reads:

|ρ⟩ = ρ|I⟩ (12)

In the vectorization formalism we can evaluate the aver-
age of an operator over the density matrix ρ(t) as

⟨O(t)⟩ = Tr{ρ(t)O} =⟨I|O|ρ(t)⟩ (13)

Since we are interested in the dynamics of the impurity
density matrix, we have to write the Lindblad in the Su-
perfermions representation and then write the formal so-
lution of the Lindblad Master equation.
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B. Vectorization of the Lindbladian

We can apply the superfermion formalism to the case
of the master equation for a dissipative quantum impu-
rity model, i.e. to Eq. (4). To this extent we intro-
duce the Hilbert spaces H and its doubled tilde-version
H̃ and duplicate all the degrees of freedom in the prob-
lem, namely the impurity and the bath fermions, and
introduce the associated creation/annihilation operators
dσ, d̃σ and ck,σ, c̃k,σ and their Hermitian conjugate. In
terms of these degrees of freedom we can rewrite the Lin-
blad master equation as a non-unitary Schrodinger type

of equation [44, 63]

∂t|ρ⟩ = L|ρ⟩

where the Lindbladian L has now two contributions

L = L0 + LIB (14)

the first one L0 is the free Lindbladian for the dissipa-
tive impurity and the bath, and the second one LIB is
the coupling term between the two subspaces. By using
the super-fermions rules [44, 71] (dσ|I⟩ = −id̃†σ|I⟩ and
d†σ|I⟩ = −id̃σ|I⟩) and since we consider only the dissipa-
tion on the impurity degrees of freedom, we can formally
write the impurity Lindbladian L0 as:

L0 = −i
(
HI +HB − H̃I − H̃B

)
+

∑
µ

(
sLµ

LµL̃µ − 1

2
L†
µLµ − 1

2
L̃†
µL̃µ

)
(15)

where sLµ
is an extra sign depending on the fermionic

(sLµ
= −i) or bosonic (sLµ

= 1) nature of the jumps
operator. For the second contribution to Eq. (14), the
impurity-bath Lindbladian, we can write it in compact
form by introducing the following fields

Φσ =
∑
k

Vk

(
ck,σ
c̃†k,σ

)
Ψσ =

(
dσ
d̃†σ

)
(16)

which group together the operators living in the space H
and H̃. Using these fields we can write the system-bath
term in a more compact way:

LSB = −i
∑
σα

(
Φ̄α

σΨ
α
σ + Ψ̄α

σΦ
α
σ

)
(17)

where we have introduced a label α = 0, 1 which denotes
the Hilbert space H or H̃ (dσ = Ψα=0

σ and d̃†σ = Ψα=1
σ )

At this point we can write the formal solution of the
vectorized master equation as

|ρ(t)⟩ = Tt exp
(∫ t

0

L(s)ds
)
|ρ(0)⟩ (18)

where we have introduced the time ordering operator Tt
in the Superfermions representation. Unlike the standard
Keldysh time-ordering, here the time ordering is defined
as:

tα > t̄β =

{
t > t̄ if α = β ∈ H, H̃
α ∈ H β ∈ H̃ (19)

This ordering allows to define a time-ordering operator
Tt such that two operators, ψ1 and ψ2, being ψ a creation
or annihilation fermionic operator living in the H(H̃)
Hilbert space, anticommute under time-ordering:

Ttψ1(tα)ψ2(tβ) =

{
ψ1(tα)ψ2(tβ) if tα > tβ
−ψ1(tα)ψ2(tβ) otherwise (20)

Eq. (18) represents the starting point to perform the hy-
bridization expansion, namely an expansion order by or-
der in the system-bath coupling LIB , as we will discuss
in the next section.

III. HYBRIDIZATION EXPANSION

In this section we derive for completeness the hy-
bridization expansion in the vectorized formulation of our
dissipative quantum impurity model. This type of expan-
sion was first derived for dissipative impurities using the
superoperator formalism in Ref. [31].

As in the standard hybridization expansion [54] the
starting point is to write down the trace of density ma-
trix as a dynamical partition function Z = Tr[ρ(t)]. In
the vectorized formalism this amount to evaluate ⟨I|ρ(t)⟩.
Using the formal solution of the vectorized master equa-
tion, Eq. (18), that we write in the interaction picture
with respect to the free Lindbladian L0, we obtain

⟨I|ρ(t)⟩ = ⟨I|eL0tTt exp
(∫ t

0

dτLIB(τ)

)
||ρ(0)⟩ (21)

Then, we Taylor expand the time-ordered exponential
in power of the impurity-bath hybridization, LSB ,

⟨I|ρ(t)⟩ = ⟨I|eL0t
∑
n

1

n!

∫ t

0

n∏
i

dtiTt [LIB(t1) · · · LIB(tn)] |ρ(0)⟩

(22)

and take the average over the bath and the impurity
degrees of freedom, using the fact that the initial state
|ρ(0)⟩ is factorized. Since the Lindladian LSB is bilinear
in terms of the bath and impurity operators, it comes
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directly that only the even terms contribute to the ex-
pansion. Using Eq. (17) for the system-bath Lindbladian

and by factoring the bath operators we can obtain the
hyrbdiziation expansion as

⟨I|ρ(t)⟩ =
∑
n

(−i)n

(n!)2

∫ t

0

n∏
i=1

dtidt̄i
∑
{σ,σ̄}

∑
{α,ᾱ}

⟨I|Tt
[
eLItΨα1

σ1
(t1)Ψ̄

ᾱ1
σ̄1
(t̄1) · · · Ψ̄ᾱn

σ̄n
(t̄n)

]
|ρI(0)⟩Detσ

[
{∆αᾱ

σ }
]
Detσ̄

[
{∆αᾱ

σ̄ }
]
.

(23)

In the expression above the impurity operators are
evolved under the local Lindbladian LI , i.e.

Ψ(t) = e−LItΨeLIt (24)

For what concerns the bath degrees of freedom, we
have used the Wick theorem since we consider a non-
interacting bath, and have introduced the bath hybridiza-
tion function defined as:

∆αᾱ
σσ̄ (t, t̄) = −i⟨IB |Tt

[
Φ̄α

σ(t)Φ
ᾱ
σ̄(t̄)

]
|ρB(0)⟩ (25)

We note that in the case of interest here the hybridization
between impurity and bath is diagonal in the spin-index,
therefore the hybridization function above can be written
as a matrix

∆σ(t, t̄) =

(
∆00

σ (t, t̄) ∆01
σ (t, t̄)

∆10
σ (t, t̄) ∆11

σ (t, t̄)

)
(26)

where the different components refer to the structure of
the Hilbert space H or H̃. We will give explicit expres-
sions for these functions in Appendix A.

A. Trace over the Impurity degrees of freedom

As we have shown in the previous section, for each or-
der n in the hybridization expansion, the trace over the
impurity degrees of freedom involve 2n operators evalu-
ated at a time t by the bare impurity Lindbladian LI .
It is therefore quite natural to rewrite all the operator
in the diagonal basis of LI , in order to reduce the com-
putational cost and also to look at the symmetries of
the system. So, we denoted {|rµ⟩, |lµ⟩}µ respectively the
right and left eigenvectors such that

LI |rµ⟩ = λµ|rµ⟩ and ⟨lµ|LI = ⟨lµ|λ∗µ (27)

where λµ is the associated eigenvalue, which in the case of
a Lindbladian evolution is a complex number, with a real
part that can be non-zero. In fact, the imaginary part of
the eigenvalues give the coherent part for the dynamics
and the real part gives rise to the dissipative dynamics.
Moreover, even in a non-unitary dynamics, the set of
eigenvectors form an orthonormal basis, with an associate
closure relation given by:

I =
∑
µ

|rµ⟩⟨lµ| with ⟨lµ|rν⟩ = δµ,ν (28)

by using the orthoganality and the spectral properties of
LI , we can rewrite the local (impurity) evolution operator
as:

eLIt =
∑
µ

eλµt|rµ⟩⟨lµ| (29)

Concerning the impurity part of the hybridization ex-
pansion, we can insert closure relation in order to rewrite
all the operators in the basis of LI .

Trimp[· · · ] = ⟨I|Tt
[
Ψα1

σ1
(t1)Ψ̄

ᾱ1
σ̄1
(t̄1) · · · Ψ̄ᾱn

σ̄n
(t̄n)

]
|ρI(0)⟩

= ⟨I|

∑
µ,µ′

Aµ,µ′ ({t}) |rµ⟩⟨lµ′ |

 |ρI(0)⟩ (30)

where we have introduced the matrix A, given by:

A ({t}) =
[
eλµ(t−t′1)

] (
Ψα1

σ1

)
µ,µ1

· · ·
(
Ψ̄αn

σn

)
µ′′ ,µ′

[
eλµ′(t−t′1)

]
(31)

where
(
Ψ

α′
1

σ′
1

)
µ,µ′

denoted the matrix component of the

spinor in the diagonal basis:(
Ψ

α′
1

σ′
1

)
µ,µ′

= ⟨lµ|Ψ
α′

1

σ′
1
|rµ′⟩ (32)

where the sum runs over those sectors which are compat-
ible with the operator sequence.

Note that the evaluation of the trace factor thus in-
volves the multiplication of matrices whose size is equal
to the size of the Hilbert space ofHI . Since the dimension
of the Hilbert space grows exponentially with the num-
ber of spin/orbitals, the calculation of the trace factor
becomes the computational bottleneck of the simulation,
and the matrix formalism is therefore restricted to a rela-
tively small number of spin/orbitals. In practice, we can
take to account the symmetries of the Lindbladian in or-
der to restrict the diagrams space, and for some specific
case we can write a analytic expression for the trace over
the impurity degrees of freedom.

IV. DIAGRAMMATIC MONTE CARLO

Diagrammatic Monte Carlo (diagMC) is a numerical
algorithm for sampling infinite series of multiples inte-
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Figure 2. An example of configuration C for the sec-
ond order of the Hybridization expansion. The diagram in
the top(bottom) panel, corresponding to crossing and non-
crossing lines, are combined together in a determinant struc-
ture. We note the expansion is formulated on a single col-
lapsed real-time contour, with an extra index α taking into
account whether a given vertex belong to the Hilbert space
H or H̃.

grals, such as those arising in any perturbative expan-
sion [68, 74]. Often this expansion admits a diagram-
matic representation, even in out-of-equilibrium situa-
tions. One then performs a Monte Carlo sampling of the
resulting space of diagrams to evaluate physical quanti-
ties.

As it can be immediately read out from Eq. (23) in the
previous section, the dynamical evolution of the density
matrix can be written as a weighted sum over configura-
tion C

⟨I|ρ(t)⟩ = ⟨I|V(t)|ρ(0)⟩ =
∑
C

W(C) (33)

where a given configuration C contains, for each flavor σ
, a total of 2kσ vertices occurring at times {tσi , t̄σi } with
i = 1, · · · kσ. Half of these vertices represent an impurity
creation operator d†σ or d̃†σ, and the other half represent
an impurity annihilation operator dσ or d̃σ, both of them
being evolved in time with the local Lindbladian LI . All
the operators are stored in such a way to always pre-
serve global time ordering along the contour, a typical
configuration reads:

C =


σ = {↑, ↓}
kσ = 0, 1, · · · ,∞
(t̄σ1 , ᾱ

σ
1 ) ; · · · ;

(
t̄σkσ

, ᾱσ
kσ

)
(tσ1 , α

σ
1 ) ; · · · ;

(
tσkσ

, ασ
kσ

) (34)

For each configuration, we defined the Monte Carlo
weight directly from the hybridization expansion in
Eq. (23), as:

W [C] = sign[C]Det[C] Trimp[C] (35)

where sign [C] includes all the signs (phases) coming from
the evolution as well as from the time ordering, while the
trace over the impurity degrees of freedom reads

Trimp [C] = ⟨I|D1(t1)D2(t2) · · ·D2n(t2n)|ρI(0)⟩ (36)

where D denoted an impurity operator with some
spin/orbital index σ and living in a Hilbert space H(H̃).
The knowledge of the weight W [C] allows in principle to
compute any observable acting on the impurity degrees
of freedom. In fact, starting from Eq. (37) we can in
principle rewrite the hybridization expansion and obtain

⟨O(t)⟩ =
∑

C O(C)W[C]∑
C W[C]

(37)

where the estimator of local operator has been defined as

O(C) = ⟨I|OD1(t1)D2(t2) · · ·D2n(t2n)|ρ(0)⟩
⟨I|D1(t1)D2(t2) · · ·D2n(t2n)|ρ(0)⟩

(38)

Once the real-time average of a local operator is writ-
ten like this, it would be natural to sample it using a
Monte Carlo method, namely generating a random walk
in the configuration space which visit configurations C
with probability P (C) = W[C]/

∑
C′ W[C′].

One of the challenges of implementing the real-time
diagMC is that the weight W [C] is in general a complex
number. In the specific case of the hybridization expan-
sion, the complex value of the weight is due not only to
the ”i-factors” coming from the real time evolution but
also to the fact the bath part and the contour bath de-
fined previously is a complex function of it’s time argu-
ments. In order to circumvent this problem, we sample
the absolute value of the weight |W [C] |, while including
the phase of the configuration η(C) defined as

η(C) = W [C]
|W [C] |

(39)

in the Monte Carlo estimator. In other words, we can
rewrite Eq. (37) as

⟨O(t)⟩ =
∑

C O(C)η(C)|W [C] |∑
C η(C)|W [C] |

=
⟨Oη⟩MC

⟨η⟩MC
(40)

where we have introduced the Monte Carlo aver-
age ⟨X⟩MC =

∑
C X(C)P (C) with respect to a

well defined (positive) probability measure P (C) =
|W[C]|/

∑
C′ |W[C′]|. This approach, despite its simplic-

ity, becomes problematic when the average phase goes to
zero, as in this case the accuracy of the algorithm dete-
riorates as errors become exponentially large with time.
As we will see later on, the presence of local dissipation
improves the convergence properties of the diagMC algo-
rithm.

A. Metropolis Algorithm

A standard approach to generate configurations with a
given probability P (C) = |W[C]|/

∑
C′ |W[C′]| is to build

up a Markov chain [75], i.e. a stochastic process which
describes the evolution of the probability to visit config-
uration C after n steps, denoted as P (C, n). The way to
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describe a Markov chain is to introduce the conditional
probability R [C → C′] to be in the configuration C′ at
step n + 1 being in the configuration C at step n. This
quantity allows us to define the master equation, the re-
cursive equation that expresses P (C′, n+ 1) in function
of the previous step:

P (C′, n+ 1) =
∑
C
R [C → C′]P (C, n) (41)

In order to reach the desired probability P (C), after wait-
ing a proper equilibration time, the matrix R [C → C′]
must satisfies two constraints. The first one is the er-
godicity of the matrix and the second one is that the
matrix must satisfy the detailed balance condition. Er-
godicity ensures that we can reach any configuration C
from any other configuration C′, after a finite number of
steps. This means that all the space of the configura-
tion can be visit during the simulation. While detailed
balance means that for any configuration C and C′, the
following relation must be verified

R [C → C′]P (C) = R [C′ → C]P (C′) (42)

where P (C) is the probability distribution we want to
sample through the Markov chain. One way to generate
configurations which satisfies the detailed balance condi-
tion is to use the Metropolis Algorithm [75]. The basic
idea is, starting from a initial configuration C we propose
to visit a new configuration C′ with a certain transition
probability T (C → C′), this probability depends on how
we propose the new configuration which in principle it
can be independent of the physical system. Then, this
new configuration is accepted or rejected according to the
probability A (C → C′), so in this context the conditional
probability R [C → C′] to move in the configuration C′

starting from C is given by:

R [C → C′] = A (C → C′)T (C → C′) (43)

Concerning the acceptance probability A (C → C′), the
Metropolis algorithm is based on the following relation

A (C → C′) = min

[
1,
P (C′)T (C′ → C)
P (C)T (C → C′)

]
(44)

which satisfies the detailed balance condition. While
this previous description of the algorithm is generic and
model independent, it is interesting to detail how in prac-
tice we can compute the acceptance probability and what
type of transition probability has to be used, since these
two quantities can strongly affect the performance and
the reliability of the Monte Carlo algorithm.

The transition probability T (C → C′) is determined ac-
cording to the types of moves to implement. In the case
of interest, we implement two classes of local moves, char-
acterized by their way of exploring the space of configu-
ration.

The first one, allows us to change the number of vertex
in a given channel a by unity ∆kσ = ±1. These moves

amount to add or remove a vertex (one creation and one
annihilation fermionic operator) in a given channel a and
at randomly chosen time. In principle, only these two
moves are necessary to ensure the ergodicity of the ma-
trix R. Indeed, it is obvious that using these two basic
updates any configuration can be reached after a finite
number of steps, which guarantees the Metropolis algo-
rithm to visit configurations according to the probabil-
ity P (C). However, although the ergodicity is respected,
these two moves do not guarantee the efficiency and the
speed-up of the Monte Carlo sampling. Indeed, exploring
the space of configurations with a fixed number of vertex
is relatively inefficient and requires drastically increasing
the number of Monte Carlo steps. For this purpose,it
is interesting to implement the second class of moves,
which explore the configuration space at a fixed num-
ber of vertex in a given channel a (∆ka = 0) such as
for example shifting a fermionic operator (annihilation
or creation operator). In practice, we can also imple-
ment other kind of moves, which are more specific, for
example some moves in which more than two operators
are added/removed/shifted. This types of moves become
revelant when dealing with off-diagonal baths or when
dealing with two or more particles dissipation process.
Global moves are also fundamental in the case of multi-
orbital dissipation process. In fact, the choice of moves
is determined by the structure of the Lindbladian and of
the Non-markovian bath.

From the point of view of the computational scaling
of the algorithm the key quantity is the acceptance ratio
A(C → C′) which needs to be evaluated at each Monte
Carlo step. As we can see from the definition of the
weight W(C) in Eq. (35) we have to evaluate the ratio
of two determinants and the ratio of the trace over the
impurities degrees of freedom. For the ratio of deter-
minants fast updates routines are available [68], which
allows us to find a analytical expression and then makes
this operation rather efficient, scaling polynomially with
the number of vertex. On the other hand concerning the
trace over the impurities degrees of freedom, this usu-
ally scales exponentially with the size of the local Hilbert
space since one has to rewrite the operators in the basis of
local eigenstates of the Lindbladian and store the whole
chain of matrix products from left to right (and vicev-
ersa). However in some specific case, the symmetries of
the Lindbladian allows us to use some segment represen-
tation (see next Section) and so find a analytic expression
for the trace over the impurity degrees of freedom, this
is the case of the impurity models without exchange or
hopping terms.

In the next section, we describe the first application of
the diagMC algorithm to the Anderson impurity model
in presence of dephasing. We will first discuss its perfor-
mances, then benchmark it against the exactly solvable
dissipative resonant level model and finally present the
results in the interacting case.
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V. RESULTS: ANDERSON IMPURITY MODEL
WITH DEPHASING

In this section we apply our DiagMC algorithm to
study the non-equilibrium dynamics of the Anderson Im-
purity Model (AIM) coupled to a dephasing bath. We
consider therefore a single spinful impurity with local
Hamiltonian and local jump operator given respectively
by

HI =
∑
σ

ϵdd
†
σdσ + Un↑n↓ and Lσ =

√
γσnσ (45)

which both enter the Lindblad master equation given in
Eq. (4). Concerning the fermions describing the non-
Markovian bath, we assumed a non-interacting bath cou-
pled to the impurity via an energy-dependant hybridiza-
tion function Γ (ϵ) defined as

Γ(ϵ) =
∑
k

|Vk|2δ (ϵ− ϵk) = V 2ρ(ϵ) (46)

where Vk is assumed independent of the momentum for
simplicity and ρ(ϵ) is the conduction density of state,
which at first approach we consider the flat band limit,
namely a flat band of width 2W:

ρ(ϵ) = ρ0Θ(|ϵ−W |) . (47)

Although simplistic this state density encodes the main
properties of a metallic conduction bath, with a finite
bandwidth and a finite weight at the Fermi level. In this
case, the hybridization function which describes the cou-
pling between the bath and the impurity becomes energy
independent, Γ(ε) ≡ Γ. In the following we take Γ as our
unit of energy. Unless stated otherwise we consider the
fermionic bath to be in equilibrium at zero temperature.

Let us briefly discuss some notable limit of this model.
First, in absence of any dephasing the real-time dynam-
ics of the AIM has been studied in detail with different
methods [39, 43, 54]. Here the spin impurity dynamics
is controlled by the emergent Kondo scale TK ∼ e−U/Γ

while charge dynamics is faster and controlled by higher
energy scales, such as U,Γ. In presence of dephasing but
no electron-electron interaction, i.e. U = 0, the model
reduces to a dissipative Resonant Level Model (dRLM)
which can be still solved exactly using Keldysh tech-
niques [34] (see Appendix B). Finally, as we are going
to discuss below, in absence of impurity-bath hybridiza-
tion, Vk = 0, the local occupation of the impurity re-
mains constant, even though the system acquires a finite
lifetime given by the dephasing γ. In the remaining of
this section, we first discuss some aspect of the algorithm
in particular the structure of the DiagMC configurations
and the performances and convergence properties. Then
we present some benchmark results for the dRLM and
finally presents our results for the fully interacting An-
derson model.

Figure 3. Segment representation of the impurity trace in
hybridization expansion of the single orbital Anderson model
with Dephasing . Upper line: spin up orbital, lower line, spin
down orbital. Blue line: orbital in the space H occupied, Red
line: orbital in the space H̃ occupied. Shaded areas: regions
where both up and down orbitals are filled, so the impurity
is doubly occupied. The length of the shaded area enters into
an overall weighting factor for the potential energy.

A. DiagMC: Generalised Segment Picture

In Sec. IV we discussed the general structure of
DiagMC configurations, considering all possible vertex
types, without taking account the symmetries of the
problem. In practice, part of the vertex can induce a
zero contribution when we calculate the trace over the
impurity degrees of freedom, the symmetries constrains
the space of all the configuration to a subspace where we
have only the non-zero contribution.

For open quantum systems described by a Lindbladian
one can distinguish between weak and strong symme-
tries [76]. In particular, whenever an operator commutes
with the impurity Hamiltonian and with all jump opera-
tors than we can associate to it a strong symmetry which
reflects in a block diagonal structure of the Lindbladian.
In the case of the Anderson Impurity with depahsing we
have that

[HI , nσ] = [Lσ, nσ] =
[
L†
σ, nσ

]
= 0 (48)

In other words we can say that the impurity Lindbladian
commutes with the density nσ. This strong symmetry for
the Lindbladian of the impurity means that the evolution
through this Lindbladian preserves the number of parti-
cles on the impurity. We can therefore perform the trace
on the impurity degrees of freedom, since the Lindbla-
dian LI commutes with the occupation number operator
of each orbital, the evolution operator eLIt is diagonal
in the Fock space. This allows to simplify the evalua-
tion of the local trace and also to identify in a simple
way the configurations with non-zero weight. As in the
equilibrium case [68], we can use a segment representa-
tion and write a analytical expression for the trace over
the impurity degrees of freedom. In this representation,
we represent the time evolution of the impurity by col-
lections of segments, which each segments represent time
intervals in which an electron with a given spin resides
on the impurity.

In Fig. 3, we have illustrated an example of such a
segment representation for the Anderson impurity model
with dephasing.
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Using this segment representation we can compute in
closed form the trace over the impurity configuration that

enters the hybridization expansion, see Eq. (23). In par-
ticular one can show that this reads

TrImp [· · · ] = ⟨I|Tt
{
e−LItΨ

ᾱσ
1

σ (t̄σ1 )Ψ̄
ασ

1
σ (tσ1 ) · · · Ψ̄

ασ
kσ

σ (tσkσ
)
}
|ρI(0)⟩ = sei(

∑
σ ϵd[lσ−l̃σ]+U[Oσσ̄−Õσσ̄])−

∑
σ γσWσ+

γσ
2 [lσ+l̃σ]

(49)

where we have introduced the following quantities

• lσ : total length of segments in spin σ and for the
Hilbert Space H

• l̃σ : total length of segments in spin σ and for the
Hilbert Space H̃

• Oσ,σ̄ :total overlap between segment of flavor σ and
σ̄ for the space H

• Õσ,σ̄ : total overlap between segment of flavor σ
and σ̄ for the space H̃

• Wσ: total overlap between segment of same flavor
σ but living in different Hilbert space.

In Eq. (49) s is a extra sign, coming from two contribu-
tions: the first one is the time ordering operator and
the second one from the different permutation of the
fermionic operator in order to get the natural ordering of
the basis. The knowledge of this analytical expression for
the local trace greatly simplify the DiagMC algorithm.

B. Performance of the Algorithm

In order to analyze the performance of DiagMC in pres-
ence of dissipation, we will consider two mains quantities,
namely the probability distribution of perturbative or-
ders (kinks, or vertex) in the diagrammatic expansion
and the average sign of the Monte Carlo weight, both
being precise measures of the efficiency of the algorithm
and for the determination of error bar. In all this subsec-
tion we consider as initial condition an impurity which is
initially empty ρI(0) = |0⟩⟨0|.

1. Statistics of Kinks

As we have shown in the previous section, DiagMC al-
lows to stochastically sample the expansion of the trace
of the density matrix in power of the impurity-bath cou-
pling. The main idea of Monte Carlo algorithm is to
perform a random walk in the diagrams space. Thus,
during the simulation it is natural to verify the stability
of the algorithm by looking at the statistics of the differ-
ent perturbative order, namely the probability distribu-
tion to visit a Monte Carlo configuration with k vertex in

the spin channel σ. The respective probability is defined
as:

Pσ(k) =

∑
C |W (C) |δ (kσ (C)− k)∑

C |W (C) |
(50)

where kσ (C) is the number of vertex with σ in the config-
uration C. In Fig. 4, we have plotted an example of the
behaviour of this probability distribution for different val-
ues of measuring time t and dephasing γσ. As in the uni-
tary case, all histograms of Pσ(k) are peaked around an
average value k̄, with an exponentially small probability
for higher perturbative order. However, Fig. 4 confirms
that all orders contributed and are included, so diagMC
calculation is an unbiased result which does not truncate
at any finite perturbative order the hybridization expan-
sion but rather perform an exact resummation of all the
perturbative orders. Importantly, we note in Fig. 4 that
the effect of dephasing is to shift the hystogram towards
the low diagram-order sector. This means that for a fixed
measuring time t the hybridization expansion converges
faster, i.e. with a smaller number of diagrams, in pres-
ence of dissipation than in the purely unitary case. We
note that a similar effect occurs in the imaginary-time hy-
bridization expansion algorithm [68], upon increasing the
local interaction and it is one of the reasons of its success.
We can understand this decreasing of the perturbative or-
der by looking at eigenvalues of the local lindbladian LI

which can be written in general as

λ = Re(λ) + iIm(λ) (51)

For the Anderson impurity Model with dephasing
the associated eigenvectors have the following form
{|n, m̃⟩}n,m, i.e. they are diagonal in Fock space of both
Hilbert spaces H, H̃. In the segment representation, only
the segment U[t,t̄] with the same number of particle in
the space H and H̃ for a given spin σ are not affected by
the dissipation. For the other segments where we have a
state of the form |n, m̃⟩n ̸=m, the trace over the impurity
degrees of freedom gives:

TrImp [· · · ]U[t,t̄]
∝ eRe(λ)(t̄−t)eiIm(λ)(t̄−t) (52)

Since Re (λ) < 0 , the dissipation then decrease the prob-
ability of sampling the vertex with a non-zero real part
eigenvalue. In this respect, the effect of the dissipation is
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Figure 4. Statistic of the kinks (vertex) k sampled during
the simulation. Top panel shows the probability distribution
of different perturbative orders k in function of the dephasing
for a fixed measuring time t. While the bottom panel, is the
scaling of the average number of kinks with maximum time
t for different values of dephasing γσ. the plots are obtained
for a empty initial state ρI(0) = |0⟩⟨0| and for T = 0 and
W = 2Γ.

to constraint the sampling to a subspace of diagrams. In
particular, in the strong dissipative regime only the state
with Re (λ) = 0 contribute to the dynamics, we can then
write an effective model by projecting the Lindbladian
onto its states.

In order to quantify the impact of dephasing on the
statistics of diagrams order, it is interesting to look at
the average perturbative order k̄σ. In the bottom panel
of Fig. (4), we plot k̄σ as a function of time t for different
value of the dephasing γσ and for a initial empty impu-
rity state. We note an almost linear scaling with time
with a slope which, as expected, decreases as the value
of dephasing is increased, i.e. the effect of the markovian
dissipation is to reduce the number of kinks and so the
scaling with the time. In fact, since in the strong dis-
sipative regime the space of diagrams are reduced to a
subspace, it can then be interesting to modify the prob-
abilities of sampling in the algorithm of Metropolis in
order to favour the diagrams with a non-zero probabil-
ity of sampling. Thus, to summarize the scaling of the
average number of diagrams for our real-time DiagMC
reads

k̄σ = Ct (53)

with C a constant which depends of γσ, but which is

Figure 5. Average Phase as a function of time t for different
dephasing γσ in the regime W = 2Γ, the dephasing being the
same for each spin channel. We clearly see an exponential
decay on a scale of time all the larger as the dissipation is
important.

independent of other local energy scales. Both in the
unitary case and in presence of markovian dissipation,
the coefficient C strongly depends on the bandwidth W
and Γ. Note that even with the dissipation accessing
long time scale in the regime W ≫ Γ, becomes difficult
with this approach. Overall the results of this section
shows that Markovian dissipation such as dephasing is
beneficial for the convergence properties of DiagMC and
can help reach longer time scales compared to the unitary
case.

2. Average Sign

Another important quantity to monitor during the sim-
ulation is the average phase of the Monte Carlo configu-
rations. Indeed, the relation between the physical quan-
tities and the MC phase is given by Eq. (40), a vanishing
average sign turns into very large error bars on Monte
Carlo averages that makes the simulation unstable and
then restricts the regimes accessible by diagMC. In the
real-time diagMC, the average phase of the MonteCarlo
configurations is defined according to the complex nature
of the MC weights,

⟨η(t)⟩ =
∑

C η (C) |W(C)|∑
C |W(C)|

(54)

In Fig. (5) we plot the average phase as a function of
time, for different values of the dissipation. We see that,
consistently with the decrease of the average perturbative
order, the average sign decays to zero in a slower fash-
ion in presence of strong dissipation. This result, which
is one of the important one of this work, implies that
longer time scales can be reached within our diagMC al-
gorithm at fixed computational resources as compared to
the purely unitary evolution algorithm.
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Figure 6. Dynamics of the Dissipative Resonant level model
for differents values of dephasing (bottom) and of the impurity
energy level εd (top). The solid line correspond to the exact
solution obtained by the standard Keldysh methods. All the
results are obtained in the regime W = 2Γ.

C. Benchmark: Dissipative Resonant Level Model

We start by considering the non interacting case with
U = 0, the so called dissipative Resonant Level Model
(dRLM), which allows for an exact solution in the uni-
tary and dissipative case by using standard Keldysh tech-
niques (see Appendix B and Ref. [34]). As a result this
model can be used in order to benchmark the diagMC al-
gorithm and also in order to understand the effect of the
Markovian dissipation. We consider for concreteness the
case of symmetric spin dephasing γ↑ = γ↓ and start from
an empty initial state of the impurity ρI(0) = |0⟩⟨0|.

In Fig. 6 we plot the real-time dynamics of the impurity
density nσ(t) for different values of dephasing (bottom
panel) and impurity energy level (top panel). We note
that spin symmetry is preserved through the time evo-
lution, therefore nσ(t) = n↑(t) = n↓(t). The comparison
between the DiagMC results and the exact solution shows
an excellent agreement at short times, with the Keldysh
results remaining well within the error bars at long time
scales where the sign problem becomes more severe. The
agreement is particularly good for large dephasing (see
right panel) where as discussed our algorithm is more ef-
ficient. Overall we see that the effect of a finite energy
level introduces oscillations in the dynamics of the impu-
rity, which are nevertheless well captured by DiagMC.

Figure 7. Charge and Spin impurity dynamics in the strong
interaction limit, U/Γ = 10, for different values of the dephas-
ing.

D. Charge and Spin Dynamics of the Dissipative
AIM

We now move to the interacting Anderson Impurity
with dephasing and discuss the dynamics of charge and
spin impurity as a function of different system parame-
ters. We consider an initial condition with a single occu-
pied, spin up impurity fermion, for simplicity, and discuss
the role of the initial condition later on. Throughout this
section we take εd = 0.

1. Effect of Dephasing

We start discussing the dynamics in the strong inter-
acting regime, U = 10Γ. In Figure 7 we plot the dy-
namics of the impurity density and impurity spin as a
function of time for increasing value of the dephasing. In
absence of dephasing, i.e. within the unitary AIM, we
expect the initially polarised spin to hybridize with the
bath and decay and also the charge on the dot to delo-
calize in the bath until an equilibrium value is reached
(note that here we are not at particle-hole symmetry even
for γσ = 0, since εd ̸= −U/2). In presence of dephas-
ing this remains true, however we observe immediately
an interesting and counter-intuitive effect, namely upon
increasing the dephasing rate the charge dynamics slow
down significantly (see top panel) and the system remains
frozen close to the initial state. This effect is particularly
pronounced for the charge sector but is also visible on the
spin dynamics (bottom panel): the initially prepared po-
larised spin decays in time with a slower rate in presence
of a large dissipation. We interpret this result as a signa-
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Figure 8. Charge and Spin impurity dynamics in the strong
dephasing limit, γσ/Γ = 60, for different values of the inter-
action.

ture of the Zeno effect [14, 24, 29, 77–79], where strong
monitoring of a dot population leads to a freezing of the
state. We note (not shown) that this behavior emerges
also for moderate values of the local interaction U ∼ Γ,
suggesting its origin comes from a many-body effect due
to the interplay between impurity-bath hybridization and
strong dephasing. This result is also in line with what
discussed in the previous section, namely that dephas-
ing reduces the average number of diagrams sampled, i.e.
makes the system close to the atomic limit.

2. Strong Dephasing Limit and Role of Interaction

We now consider the regime of strong dephasing γσ =
60Γ and study the charge and spin dynamics for differ-
ent values of interaction U/Γ. In Fig. 8 we plot again
the impurity density and the impurity spin starting from
spin-up polarised state. We first of all note how in this
regime our DiagMC algorithm is able to reach time scales
of order tΓ ∼ 3, while retaining very small error bars.
This substantial increase with respect to the basic ver-
sion of the hybridization algorithm [54], which is usually
limited to tΓ < 1, is due to the role played by the de-
phasing. From these results we see clearly that increasing
the interaction has the effect of slow down the dynamics
of the impurity spin. We can understand this behavior
from what is known about the unitary Anderson Impu-
rity model, in particular a slow down of the impurity spin
dynamics is a signature of the onset of the Kondo effect.
An interesting effect is observed however in the impurity
density which remains almost constant for weak interac-
tion while start decaying for large U . We can understand

Figure 9. Doublon dynamics starting from a full impurity, for
different values of dephasing (top panel) at fixed interaction
U/Γ = 10 and at fixed dephasing (bottom panel)γσ/Γ = 20
and different values of interaction.

this effect as the coupling with the fermionic bath induce
some residual losses on the impurity, whose charge would
otherwise be constant due to the Zeno effect and which
however displays a slow decay.

3. Dynamics of Doublons

We now move our attention to the dynamics of dou-
blons and discuss how this is affected by the presence of
dephasing. In particular we consider an initial state of
the impurity containing a doubly occupied site and study
the time evolution after a quench of the bath coupling,
in presence of dephasing. In this case we have there-
fore to modify the initial condition, which implies some
differences in the algorithm as discussed previously. In
Fig. 9 we plot the dynamics of doublon fraction at fixed
interaction changing the dephasing (top panel) and fixed
dephasing while changing the interaction (bottom panel).
In both cases the initially prepared doublon decay with
time, with a decay rate that increases with both inter-
action and dephasing. The first effect is the well known
result related to the lifetime of a doublon in the strong
interacting regime. The second one can be again be inter-
preted as the onset of the Zeno effect. We note however
that, as compared to the total density (see Fig. 7) which
remains practically constant for large dephasing here the
doublon fraction still decays with time.
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Figure 10. Charge dynamics of impurity density (left panels), Spin dynamics (middle panels) and doublon fraction (right
panels) in the asymmetric dephasing case, with γ↓/Γ = 4 and U/Γ = 0.5, 10 from top to bottom panels.

E. Asymmetric Dephasing

Until now we have considered the case in which the
dephasing acts equally on the two spin species of impurity
fermions. We now discuss the case of spin-dependent
dephasing γ↑ ̸= γ↓. Specifically we fix γ↓/Γ = 4 and
change the value of γ↑. In Fig. 10 we plot the dynamics
of charge, spin and doublon fraction upon increasing γ↑
at weak (top) and strong (bottom) interaction U/Γ.

We first focus on the charge dynamics of the impu-
rity (top left panel). At weak interactions U = 0.5Γ
we observe a non-monotonous dynamics for the impurity
density which increases at short times, reaches a maxi-
mum and then decay. For large asymmetry in the de-
phasing, i.e. when only one of the two spin species is
strongly dissipative, this result in an increase of parti-
cle density, which is otherwise absent in the Zeno phase
for symmetric dephasing. The maximum in the impurity
density seems to be controlled by the interaction and in-
deed moves towards short times and smaller values upon
increasing U/Γ (bottom left panel). The dynamics of
doublons (top/bottom right panels) on the other hand
is much less affected by the asymmetry in the dephas-
ing. We see for small interactions a large production of
doublons, while upon increasing U/Γ we see the emer-
gence of coherent oscillations. Finally, the spin dynamics
(top/bottom central panel) shows a rather interesting ef-
fect, namely that increasing the dephasing rate for the
up spin results in a slow down of the dynamics at short
time with the formation of a well defined magnetization
plateau for very large γ↑.

At longer time scales the dynamics seems to escape
from this plateau and continue decaying towards zero
magnetization. For weak interactions on the other hand
there is no sign of the plateau at short times, yet the
dynamics seems to reach a steady state where the impu-

rity is still polarised. This can be understood since the
asymmetric dephasing breaks the spin-rotation symme-
try of the Anderson impurity model.

F. Dynamics of Entanglement Entropy

In addition to the charge and spin dynamics we can
compute the dynamics of the impurity entropy, which
corresponds to the entanglement entropy after tracing
out the fermionic bath We emphasize therefore that the
state of the system is mixed to begin with, due to the de-
phasing, therefore the entropy of entanglement also takes
contribution from the thermal entropy. To compute the
entanglement entropy we reconstruct the impurity den-
sity matrix

ρ(t) =
∑
ab

ρab(t)|a, b⟩⟨a, b|

by sampling each individual matrix element ρab(t) and
reconstruct the entropy from S(ρ) = −Tr (ρlogρ). In
Fig. 11 we plot the dynamics of the entanglement en-
tropy for different values of the interaction at fixed large
dephasing (top panel). We see that strong correlations on
the impurity slows down the growth of entropy at short
time. Similar effect is obtained by tuning the dephasing
asymmetry at fixed interaction (bottom panel), where we
see signatures of the magnetization plateau observed in
the spin dynamics shown in Fig. (10).

VI. CONCLUSION

In this work we have extended the Diagrammatic
Monte Carlo hybridization expansion algorithm to study
the real-time dynamics of dissipative quantum impurity
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Figure 11. Dynamics of Entanglement Entropy for different
values of the interaction (at fixed dephasing γσ/Γ = 40(top)
and different values of dephasing asymmetry (bottom) (at
fixed interaction U/Γ = 10).

models, where the impurity is coupled to local Markovian
dissipative processes (involving different impurity degrees
of freedom) as well as to a fermionic bath. We formulate
the hybridization expansion using the vectorization (or
thermofield) formalism in which all the degrees of free-
dom are doubled to account for the correct structure of
the density matrix (analog to upper and lower Keldysh
contour in the conventional diagMC [55]). In this pic-
ture the local Markovian dissipation is incorporated as
dissipative interaction for the impurity degrees of free-
dom, thus entering the atomic limit around which the
hybridization expansion is performed. With respect to
the standard diagMC the main difference arises due to
the fact that the theory is formulated on a single (col-
lapsed) real-time contour where each impurity operator
carries an extra quantum number (for the duplicated tilde
Hilbert space). While our results are fairly general, inde-
pendent on the specific form of the local Hamiltonian and
local dissipator, we apply our algorithm to the Anderson
impurity model with local dephasing. From the point
of view of the algorithm we show that dissipation helps
the convergence of the diagMC and alleviates the sign
problem, thus allowing to reach longer time scales than
for the unitary case. After benchmarking our method
with an exactly solvable case we discuss how dephasing
affects charge and spin dynamics of the Anderson impu-
rity. We further discuss the case of asymmetric dephas-
ing between spin up and spin down, which gives rise to
an interesting dynamics for the impurity magnetization
showing metastable plateau. In the future our algorithm
can be further extended, implementing for examples the
inchworm algorithm [58] and can be used as impurity

solver for Dynamical Mean-Field Theory [38].
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Appendix A: Structure of the Hybridization
Function

In the Hybridization expansion representation, the
bath is completely characterized by the hybridization
functions ∆αᾱ

σ,σ̄, this function encodes the effect of the
bath on the impurity degrees of freedom. In the case
of the Anderson model, the coupling between the bath
and the impurity degrees of freedom do not hybridize
the spin channel, so we only have to consider the diag-
onal hybridization functions in spin, which are defined
by:

∆αᾱ
σ (τ, τ̄) = −i⟨IB |Tt

[
Φ̄α

σ(τ)Φ
ᾱ
σ(τ̄)

]
|ρB(0)⟩ (A1)

where both time arguments τ and τ̄ live on a single-
real time contour and the operators Φ̄α

σ ,Φ
ᾱ
σ have been

defined in the main text, see Eq. (16). To evaluate the
hybridization function one needs to compute the Green’s
function of the fermion in the bath

Gα,ᾱ
k,σ (τ, τ̄) = −i⟨IB |Tτ

[
Φα

k,σ(τ)Φ̄
ᾱ
k,σ(τ̄)

]
|ρB(0)⟩ (A2)

where the average is taken overt the initial density matrix
of the bath ρB(0)

ρ0,B =
e−βHB

Z
(A3)

with bath Hamiltonian HB given by

HB =
∑
k,σ

ϵk,σc
†
k,σck,σ (A4)

The time ordering operator Tt entering the definition of
the Green’s function orders the operators according to
their time and the Hilbert space they belong to.

For the time evolution of the bath operators (creation
and annihilation operators) it is defined as usual with the
Lindbladian of the Bath LB = −i

(
HB − H̃B

)
:

Φσ(t) = e−LBtΦσe
LBt (A5)

Depending on the position of the time arguments τ and
τ̄ along the single contour and their Hilbert space label
α, the hybridization function acquires a matrix structure

∆⃗σ(τ, τ̄) =

(
∆00

σ (τ, τ̄) ∆01
σ (τ, τ̄)

∆10
σ (τ, τ̄) ∆11

σ (τ, τ̄)

)
(A6)
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From this we recognize a certain similarity with the
Keldysh structure of the hybridization function in the
conventional diagMC [54], as we will discuss more in de-
tail below. Moreover, we note that since we consider a
time independent quantum impurity model, with a bath
which is in thermal equilibrium, all the components of
the hybridization function only depend on the time dif-
ferences τ − τ̄ . Below we give the explicit expressions for
the hybridization function entering the matrix represen-
tation above.

1. Diagonal Sector

We first consider the case when both operators Φ/Φ̄

live on the same Hilbert Space H/H̃. In this case, the
contour time ordering Tt acts as the real time-ordering
operator,

Tt [Φα(τ)Φα(τ̄)] =

{
Φα(τ)Φα(τ̄) τ > τ̄
−Φα(τ̄)Φα(τ) Else

(A7)

where the two operators are living in the same Hilbert
space H/H̃. By using the expression of the spinor de-
scribed in the main text, the bath Green’s function can
be expressed as

G00
k,σ(τ, τ̄) =− iΘ(τ − τ̄)⟨ck,σ(τ)c†k,σ(τ̄)⟩

+ iΘ(τ̄ − τ)⟨c†k,σ(τ̄)ck,σ(τ)⟩ (A8)

where we recognize the usual Keldysh time-
ordered Green function defines as GC

k,σ(τ, τ̄) =

−i⟨Tt
[
ck,σ(τ)c

†
k,σ(τ̄)

]
⟩. As for the second diagonal

component where the two operators are living in the H̃
Hilbert space,

G11
k,σ(τ, τ̄) =− iΘ(τ − τ̄)⟨c̃†k,σ(τ)c̃k,σ(τ̄)⟩

+ iΘ(τ̄ − τ)⟨c̃k,σ(τ̄)c̃†k,σ(τ)⟩ (A9)

annihilation and creation operators in the tilde space can
be expressed in terms of the physical operators by using
the Superfermion relation,

ck,σ|IB⟩ = −ic̃†k,σ|IB⟩

c†k,σ|IB⟩ = −ic̃kσ|IB⟩ (A10)

which lead to the following relation

G11
kσ(τ, τ̄) = −GC̃

kσ(τ, τ̄) (A11)

where GC̃
kσ(τ, τ̄) is the antitime-ordered Green function

for the bath degrees of freedom.

2. Mixed Sector

We now consider the case in which the two operators
are living in different Hilbert Space, this one correspond

to the off diagonal (α ̸= ᾱ) component of the Hybridiza-
tion function. Contrarily to the previous case, in the
mixed sector the time ordering operator acts as,

Tt
[
Φ(τ)Φ̃(τ̄)

]
= Φ(τ)Φ̃(τ̄)

Tt
[
Φ̃(τ̄)Φ(τ)

]
= −Φ(τ)Φ̃(τ̄) (A12)

In the same spirit of the diagonal component of the Hy-
bridization function, we can write the Green’s function
in the Keldysh formalism as:

iG01
k,σ(τ, τ̄) = G<

kσ(τ, τ̄) and iG10
k,σ(τ, τ̄) = G>

kσ(τ, τ̄)

(A13)

where G<(>)
kσ are the lesser (greater) Green’s functions.

With regard to the hybridization functions we obtain the
standard result used also in the Keldysh formalism

∆01
σ (τ, τ̄) =

∫
dϵ (1− nF (ϵ)) Γσ(ϵ)e

−iϵ(τ−τ̄) (A14)

and

∆10
σ (τ, τ̄) = −

∫
dϵnF (ϵ)Γσ(ϵ)e

−iϵ(τ−τ̄) (A15)

where nF (ϵ) is the Fermi distribution and Γ(ϵ) the
energy-dependent hybridization for the channel σ, given
by

Γσ(ϵ) =
∑
k

|Vkσ|2δ(ϵ− ϵkσ) (A16)

Finally, we obtain the two diagonal component ∆00
σ /∆

1
σ

of the hybridization function, which reduce to the off-
diagonal ones depending, namely

∆00
σ (τ, τ̄) = iΘ(τ − τ̄)∆10

σ (τ, τ̄) + iΘ(τ̄ − τ)∆01
σ (τ, τ̄)

(A17)

and

∆11
σ (τ, τ̄) = −iΘ(τ − τ̄)∆01

σ (τ, τ̄)− iΘ(τ̄ − τ)∆10
σ (τ, τ̄)

(A18)

Appendix B: Dissipative Resonant-Level Model

In this Appendix we briefly discuss the Keldysh solu-
tion of the dissipative Resonant Level Model (dRLM),
that we use to benchmark the diagMC algorithm. This
corresponds to the U = 0 limit of the Anderson Impurity
discussed in the main text. In absence of interaction the
Hamiltonian is quadratic in all the fermionic degrees of
freedom. The dephasing on the other hand introduces
a dissipative interacting vertex, which however does not
prevent to compute exactly certain quantities, in par-
ticular the single particle Green’s functions. There are
two ways to proceed to obtain the exact dynamics of the
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model. The first one is to look at the stochastic ver-
sion of the Lindblad Master equation, corresponding to
a unitary unravelling [34], in which the problem remains
quadratic and averages over the noise can be taken ex-
actly. The second one we follow in this paper is to write
down the Dyson equation for the Green’s function, start-
ing from the Lindbladian. In particular we define the
contour-time ordered Green’s function

Dσ(s, s
′) = −i⟨TCdσ(τ)dσ(τ ′)⟩ (B1)

where TC is the standard Keldysh time ordering opera-
tor. Even in the presence of the Markovian dissipation
the retarded component of this Green’s function satis-
fies a closed equation of motion which reads in frequency
domain:

DR
σ (ω) =

DR
0,σ(ω)

1− ΣR
σ (ω)D

R
σ (ω)

(B2)

where ΣR
σ (ω) is the retarded self energy for the spin chan-

nel σ. In fact, since we are interesting in the simplest
resonant level model without any coupling between the
spin channel, we can treat each channel of spin indepen-
dently. For a given spin channel the retarded self energy
reads:

ΣR
σ (ω) = −iγσ

2
+
∑
k

|Vk|2GR
0,σk(ω) (B3)

The first contribution to the self energy is the dephas-
ing term, which is frequency independent and does not
couple to the bath degrees of freedom. The second con-
tribution is just the usual bath hybridization contribu-
tion, where Gσ

0,k(s, s
′) = −i⟨TCckσ(s)c†kσ(s′)⟩0 denotes

the bare bath Green’s function. By using the Lan-
greth rules [80], we can write the lesser Green’s function
D<

σ (s, s
′) = i⟨d†σ(s′)dσ(s)⟩ as:

D< = (1 +DrΣr)D<
0 (1 + ΣaDa) +DrΣ<Da (B4)

where the constraint given by the initial condition is en-
coded in D<

0 . Concerning the lesser self-energy Σ<, as in
the retarded case, we can decompose it into two contri-
butions:

Σ<(τ, τ ′) = Σ<
B(τ, τ

′) + Σ<
Deph(τ, τ

′) (B5)

the bath hybridization contribution Σ<
B and dephasing

part Σ<
Deph given by

Σ<
Deph(τ, τ

′) = γσD
<(τ, τ)δ(τ − τ ′) (B6)

the instantaneous nature of dephasing self energy is due
to the fact that in the Lindblad master equation we as-
sume a Markovian environment with no memory and
with a typical relaxation time that is negligible compared
to the other relaxation times of the system. Solving the
Dyson equation for the retarded Green’s function and
then for the lesser component we can directly compute
the dynamics of the impurity density, nσ(t) = −iD<

σ (t, t)
which we use to benchmark the diagMC algorithm in the
main text.
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