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Casimir torque — a rotational motion driven by zero-point energy minimization — is a problem
that attracts notable research interest. Recently, it has been realized using liquid crystal phases
and natural anisotropic substrates. However, for natural materials, substantial torque occurs
only at van der Waals distances of ~ 10 nm. Here, we employ Casimir self-assembly with
triangular gold nanostructures for rotational self-alignment at truly Casimir distances (100 —
200 nm separation). The interplay of repulsive electrostatic and attractive Casimir potentials
forms a stable quantum trap, giving rise to a tunable Fabry-Pérot microcavity. This cavity self-
aligns both laterally and rotationally to maximize area overlap between templated and floating
flakes. The rotational self-alignment is sensitive to the equilibrium distance between the two
triangles as well as their area, offering possibilities for active control via electrostatic screening
manipulation. Our self-assembled Casimir microcavities present a versatile and tunable platform
for nanophotonic, polaritonic, and optomechanical applications.

KEYWORDS: Casimir effect, self-assembly, self-alignment, quantum trapping, templated
micro- and nano-cavities.

Introduction

The quantum nature of van der Waals forces was initially revealed by London (1) and subse-
quently generalized by Casimir and Polder (2). Furthermore, Casimir extended this concept to
describe the attraction between two ideal mirrors (3), which brought a quantum electrodynamics
effect to the macroscopic scale. Following this, Lifshitz and co-authors developed a theory that
allowed for the calculation of the Casimir effect between arbitrary planar mirrors, relying on the
classical optical response of materials (4, 5). This advancement paved the way for predicting
both repulsive (6, 7) and lateral Casimir forces (8-10) in various contexts.

The introduction of asymmetry allows extending the Casimir effect to a new degree of freedom
— rotation. In this respect, Casimir torque led by quantum fluctuations was first predicted
by Kats (11) and Parsegian and Weiss (12) when considering dielectric media with in-plane
anisotropy at short separation distances. Later, the approach was generalized to longer distances
by Barash (13). However, the predicted torque was small and turned out to be challenging to
observe. The first Casimir torque measurements were reported only recently (14, 15). In these
measurements, the air gap was replaced with a solid isotropic interlayer, which helped support
two anisotropic materials at a fixed distance and in a parallel configuration. The torque was
measured by optical characterization of the twist of a liquid crystal, which acted as one of the
birefringent bodies. Such a setup allowed controlling the sign and strength of the torque by
choosing an anisotropic substrate material and varying the interlayer thickness, but did not
allow to observe the torque directly, since the rotation was hidden inside the liquid crystal.
Furthermore, the torque between two media with artificial in-plane anisotropy, such as lamellar
gratings, was predicted to be substantially greater than in natural anisotropic materials (16, 17).
Particularly, Guerout et al. (16) obtained the torque per unit area for the infinite gratings and
accounted for the finite-size effects using the overlap area approximation, which works well when
the lateral size of the gratings is much larger than their characteristic length scales and the gap
between them. Recently, Antezza et al. (17) calculated the Casimir torque between finite-
sized metallic gratings beyond the overlap approximation. It turned out that a finite number
of gratings periods leads not only to oscillations of the torque direction but also to a much
larger magnitude of the torque than intuitively expected. Moreover, due to a critical zero-order
geometric transition between a 2D- and a 1D-periodic system, the torque per unit area can reach
extremely large values, increasing without bounds with the size of the system, which paves the
way to observation of the torques at truly Casimir distances ~ 100 nm and beyond.
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Importantly, an alternative way to observe Casimir torques is offered by the optical levitation
of anisotropic dielectric nanoparticles (silica in particular) in vacuum (18-20). This method has
ultra-high sensitivity but requires high vacuum conditions and works only with relatively small
nanoparticles that can be captured using conventional optical tweezers. Therefore, this method
does not allow direct imaging of the Casimir torque in an optical microscope but instead relies
on polarization-dependent readout.

We note that the aforementioned works primarily focus on Casimir interactions in dry or
vacuum environments. However, the introduction of liquids can be beneficial — in particular,
repulsive Casimir forces have been successfully demonstrated using a combination of high re-
fractive index liquid bromobenzene interfaced between two solids — gold and glass substrates
(6), as well as in gold-ethanol-teflon systems (21). Furthermore, the liquid environment allows
to use colloids as a platform for studying Casimir interactions. The theoretical framework for
describing colloidal interactions in solution is often based on the DLVO theory, which typically
involves electrostatic stabilization to balance attractive van der Waals forces (22, 23). Recently,
the DLVO theory has been extended to account for retardation effects (24, 25).

Van der Waals and Casimir interactions in colloidal solutions play an important role not only
in their stability but also in self-assembly (21, 26-31). Recently, the formation of self-assembled,
stable Fabry-Pérot (FP) cavities has been achieved through a combination of attractive Casimir
and repulsive electrostatic interactions (25). This development opens up new possibilities for
strong light-matter interactions and highlights the intrinsic relationship between the original
Casimir problem and the planar microcavity problem. Moreover, the electrostatic force in the
system can be actively modified, enabling the tuning of the FP resonance within a certain
range without compromising cavity stability. The repulsive electrostatic force in the Casimir
microcavity can be controlled by adjusting the ion concentration of the aqueous solution. This
delicate balance between the attractive Casimir force and the repulsive electrostatic force not
only stabilizes the FP cavity in the vertical direction but also enables the formation of laterally
stable structures.

The Casimir self-assembly approach offers numerous advantages, but it also presents certain
challenges. These challenges include slow diffusion-limited cavity formation, irreproducibility,
unscalable fabrication, and a lack of integration with microfluidics. One potential solution to
address these challenges is the use of templated structures. Indeed, substrates that are tem-
plated with various nanostructured patterns are commonly employed in self-assembled colloidal
systems and plasmonic arrays (32-35). Implementing this approach could help overcome several
problematic issues on the road towards realizing asymmetry-induced Casimir torques in liquid
environments and scalable as well as stable formation of Casimir microcavities in vertical, hor-
izontal, and rotational domains. However, to date, the templated self-assembly approach has
not been explored for Casimir self-assembly and Casimir torques.

Here, we introduce template-assisted systems for the self-assembly of Casimir microcavities,
where patterned metallic surfaces on the substrate are crucial for achieving lateral Casimir
forces and self-alignment through Casimir torque. We specifically chose an equilateral triangle
geometry to realize the Casimir torque, as triangles’ symmetry provides the highest possible
torque among other equilateral microstructures. We investigate the self-alignment of triangular
nanoflakes in an aqueous solution at room temperature by monitoring the rotational motion
induced by the lateral Casimir force, which strives to maximize the overlap area between the
top colloidal flake and the bottom templated flake on the substrate. This rotational effect is
substantial and can be observed in real time using an optical microscope. Additionally, we study
the influence of thermal fluctuations, the separation distance between the flakes, and their areas
on the stability of the obtained microcavities. Our approach not only enables the scalability
of the Casimir self-assembly and self-alignment but also paves the way for the integration of
Casimir torque effects with colloidal science, nanophotonics, polaritonics, and self-assembly. On
a broader account, it is important to mention that Casimir and Casimir torque effects studied
here could be relevant for the design of micro-electromechanical devices (36) and in future devices
relying on an efficient and contactless transfer of angular momentum (37-40).

Results and Discussion

The process of formation of stable Casimir microcavities in aqueous solution (25) can be substan-
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Fig. 1. Self-assembled triangular Casimir microcavities composed through a combi-
nation of top-down lithography and colloidal chemistry. (A) Schematic illustration of
the triangular seed approach on the glass substrate and Casimir self-assembly forming a stable
Fabry-Pérot microcavity. (B) The seed approach allows exploring the effect of overlap area on
Casimir self-alignment and its stability to thermal fluctuations. (C) Illustration of the rotation
angle (6) variation as the flakes self-align. The angle 6 is defined as the angle between the edges
of the seed and the floating flake. When the floating flake is fully aligned to the seed § = 0. (D)
Optical bright field image of the templated Au seed arrays on a glass substrate with a = 4, 5, 7,
and 10 pm edge lengths, respectively. (E) True-color reflectivity images of self-aligned Casimir
microcavities using 5 pm seeds recorded at distinct L.q values, denoted as L; for i =1,2,...,6.
(F) Reflection spectra of the self-aligned Fabry-Pérot microcavities used to determine L, by
the transfer-matrix method. Ly > L3 > Lg, i.e. Ly = 199, Ly = 161, and Lg = 123 nm,
respectively. (G) Selected video frames of the self-alignment process. The floating flake ini-
tially approaches the seed in the opposite orientation and begins rotating around ¢ = 9.37 s.
The rotation continues until the flakes are fully aligned, after which the configuration remains
stable.
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Fig. 2. Formation of stable Casimir microcavities along lateral (z) and rotational
(0) coordinates. (A) Evolution of the overlap area with time, S(t)/Sy, due to the Casimir
self-alignment at two distinct equilibrium distances, Leq = 160 nm and Leq = 110 nm. The Au
seed size is 7 um in both cases. Insets depict exemplary video frames corresponding to data
points marked on the S(t)/Sp graph. (B) Evolution of lateral displacement between the centers
of mass of the floating flake and the seed with time, x(¢), for the dimers shown in (A), eventually
leading to a complete overlap, i.e. x = 0, in both cases. Black curves are exponential fits of the
experimental displacement data. (C) Evolution of the overlap area between the seed and Au
flake with time, S(t)/So, marking distinct phases of lateral and rotational motions for an Leq =
118 nm dimer. The Au seed size is 7 pum. Insets depict exemplary video frames corresponding
to data points marked on the S(t)/So graph. (D) Evolution of angle between the seed’s and the
floating flake’s edges with time, 6(t), illustrating the self-alignment process. Black line marks
an exponential fit of the experimental alignment data.

tially enhanced and more accurately controlled by combining top-down nanopatterned gold areas
(referred to as “seeds”) on the glass substrate and floating Au flakes in the solution (Fig. 1A).
This approach allows to control the density, size, and shape of the seeds, which is unavailable
for the previous method. Over time, the floating Au flakes, playing the role of “micromirrors”,
diffuse towards the seeds and form dimers due to lateral Casimir forces. Moreover, if the seeds
are triangular, the floating flakes not only form stable cavities but also geometrically align with
the seeds to maximize the overlap area (and hence minimize the Casimir potential, see Fig. 1C).

In this work, we focus specifically on equilateral triangles (Fig. 1A). Experiments are de-
signed with two main components: (¢) glass substrates with the precisely fabricated seeds pro-
duced by electron beam lithography (EBL), and (i¢) single crystal Au flakes in aqueous solution
produced by wet chemical synthesis (41). Triangular Au seeds with lateral dimensions in the 4
— 10 pm range and 20 nm heights are shown in Fig. 1D (also see Methods). The seed approach
allows us to control the Casimir force on the floating Au flake. Since it is difficult to control
the colloidal growth with high precision (41), chemically synthesized Au flakes are typically
obtained in a range of sizes, thicknesses, and shapes. To simplify the self-alignment problem,
we therefore preselect only equilateral triangle flakes of appropriate size by dragging them with
optical tweezers to the seeds.

Stable dimers emerge as a result of the equilibrium between two opposing forces, the attrac-



tive Casimir force and the repulsive electrostatic force, occurring at a specific distance denoted as
Leq. Furthermore, these dimers support optical Fabry-Pérot (FP) resonances that can be mod-
ified by controlling Leq. This is illustrated in Fig. 1E, where variations in the reflected light’s
color are depicted for different Ly values. The corresponding reflection spectra, as shown in Fig.
1F, serve as the basis for the experimental determination of Ley (see Methods). The variation
of L.q not only impacts the FP resonance but also substantially influences the Casimir poten-
tial, which scales approximately as L 2 for 30 nm thick Au flakes (25). The manipulation of
L4 can be achieved by adjusting the total ion concentration in the solution, due to altering the
Debye-Hiickel screening length of electrostatic repulsion, described by x~! (see Methods, Eq. 4).
Furthermore, the engineering of geometric patterns on the substrate allows to employ diverse
sizes of triangular Au seeds and flakes (Fig. 1D). This approach facilitates an investigation into
the influence of overlap areas on the lateral Casimir force (Fig. 1B).

A specific example of Casimir self-alignment, depicted in Fig. 1G, demonstrates the nearly
isolated nature of two distinct motions: lateral and rotational (Supplementary Video 3), enabling
their separate analysis. Throughout the self-assembly and self-alignment process, the floating Au
flake initially exhibits predominantly lateral motion, moving towards the Au seed with minimal
rotation. This lateral shift aims to increase the overlap area. Subsequently, in the second phase,
the floating flake begins to rotate, ultimately achieving full overlap with the seed. It is intriguing
to observe the individual contributions of these two motions to the overall increase in the overlap
area and eventually forming a stable dimer (see Supplementary Videos 1-3).

In what follows, we analyze both, the dimer formation process and the stability of the self-
assembled dimers to thermal fluctuations. Furthermore, by employing the seed concept, the
system’s behavior can be controlled by both Leq and the total area of the Au seeds. The
forthcoming sections provide a detailed exploration of how both of these parameters impact the
Casimir potential, the dimer formation, the self-alignment process, and the robustness of these
alignments to thermal fluctuations.

Accelerated dimer formation by lateral and rotational Casimir forces

Previously, we elucidated the advantages of employing the seed approach for achieving lateral
motion and enhancing stability in lateral alignment with the corresponding seed. In this section,
we additionally note that the lateral motion of the flake exhibits varying speeds during the
dimer formation with the seed. This phenomenon is especially evident when the floating flake
approaches the seed with the same orientation. The lateral Casimir force draws the floating
flake towards the Au seed, which causes a concurrent increase in the overlap area between the
flake and the seed, S(t). When the initial orientations of the triangles match, dimer formation
occurs without any rotational motion, simplifying the observation of lateral motion acceleration
as well as alterations in acceleration with increasing overlap area. This process is evidenced in
Fig. 2. Initially, when the overlap area is minimal, the flake’s motion is slow and of predominantly
Brownian nature. Over time, the seed exerts a robust attraction on the floating flake, eventually
leading to full area overlap, Sy. The lateral and rotational motions stop when the two triangles
achieve perfect overlap and alignment. Our data analysis involves extracting the overlap area
of the seed and Au flake from each frame of the videos (Supplementary Videos 1 and 2) and
normalizing it with the total area of the seed (or floating flake) — S(t)/So, as depicted in Fig. 2A.

Since the separation distance is intricately linked to the Casimir potential, the acceleration
of the Au flake exhibits a direct dependence on Leq. This is demonstrated in Fig. 2A, where
we present S(t)/So for two distinct Leq values. It is important to highlight the critical role
played by Lcq, given its strong influence on the lateral Casimir forces — even slight alterations in
Leq yield a substantial impact on the acceleration dynamics of the Au flake. The inset pictures
correspond to video frames depicting the exemplary data points. Furthermore, we calculate the
position changes over time by tracing the displacement of the center of mass of the floating flake
with respect to that of the seed, x(t).

Due to the viscous friction in the liquid and the small mass of the flake, the motion under
the lateral Casimir force in our case occurs deeply in the overdamped regime (I'y >> w,, where
T'; is the oscillator’s lateral damping constant normalized to the mass and w, is the oscillator’s
eigen frequency). In this regime, the role of the flake’s mass is negligible, and the general
solution of the equation of motion (see Supplementary Theory and Figs. S4-S5) can be reduced
to the sum of the fast e T=! (microsecond scale) and slow —e®s/T=t (second scale) decaying
exponents with a negligible role of the former. Then, on a time scale of seconds, the lateral



(and rotational) motion obeys the slow decaying exponential function z(t) = @ (1 - ez(t_t"‘a")),

where @ = w? /T, is a characteristic effective frequency and @ is close to the triangle’s edge size
a as long as tyax >> W~ ! (see Supplementary Theory). Notably, the non-harmonic nature of
the lateral overlap potential results in the inverse curvature of this exponential function, while
in a harmonic case, the decaying solution exhibits an ordinary positive curvature x(t) ~ ae™“*.
The effective frequency @ = |Ug|D;v/3/2kgT ~ 1 Hz is determined by the total potential per
unit area Uy (with Casimir and electrostatic contributions) and the lateral diffusion coefficient
D,. These contributions distinctly depend on Lq. Specifically, the absolute value of the total
potential grows with a decrease in Leq as follows: [Up| ~ |Ae™"lea — BL_ |, where A and
B are distance-independent constants of the electrostatic and Casimir potentials, k=1 is the
Debye—Hiickel screening length, and a = 2.6 is the Casimir potential power law for 30 nm thick
Au flakes (25). On the contrary, the lateral diffusion coefficient decreases with a decrease in L
as D, ~ qu. However, according to previous hydrodynamic simulations, it exhibits a slower
dependence with distance, with 8 < 1 (31). Consequently, the effective frequency @ is expected
to increase with a decrease in Leq, so the lateral motion occurs faster when L., is smaller, as
clearly illustrated by the exponential fits depicted in Fig. 2B (the fitting procedure is described
in Methods).

In Fig. 2C, we employ the same method as in Fig. 2A but for a different dimer configuration.
As depicted in the plot, lateral motion plays a dominant role until &~ 7 s mark, at which point
the floating flake is found exactly on top of the seed but with an opposing orientation (6 = 60°).
From that point on, the rotational motion becomes dominant, causing the floating flake to rotate
around the vertical axis under the influence of the Casimir torque until it achieves full alignment
(see Supplementary Video 3). Since the lateral motion becomes negligible after the first 7 s, we
find it reasonable to analyze solely rotational motion by tracking changes in () over time, as
depicted in Fig. 2D. Similar to the lateral displacements, this rotational motion conforms to
decaying exponential function with an effective ~ 1 Hz frequency (see Supplementary Theory
and Methods), starting from a state of complete misalignment (f ~ 60°) and culminating in
a state of perfect alignment (§ = 0°). It is worth mentioning that generally the lateral and
rotational motions are coupled and in most cases occur simultaneously, creating a system that
is too complex to analyze (see Fig. S8). However, in a few particular cases (such as the ones
illustrated in Figs. 1-2), we observed the two motions in a nearly isolated fashion, which allowed
for their independent analysis.

Thus, our method results in the precise positioning (trapping) of floating Au flakes within
three-dimensional space, offering control over their vertical, horizontal, and rotational orienta-
tions. This unique quantum trapping approach harnesses quantum vacuum fluctuations, rather
than real fields (as in e.g. optical tweezing), for particle manipulation (21, 25). Despite the
inherent influence of thermal fluctuations, the trapping potential created by the Casimir effect
exhibits remarkable stability, enabling controlled particle confinement. In the subsequent sec-
tions, we delve into an in-depth investigation of thermal fluctuations, specifically focusing on
their magnitude and the resulting particle displacement, especially concerning rotational motion
around the vertical axis.

Calculation of the lateral and rotational Casimir effect between two
triangular flakes

To improve our understanding of the observed phenomenon and confirm its primary association
with the Casimir effect, we conducted both analytical and numerical computations focusing on
the in-plane motion of flat triangular Au flakes induced by vacuum fluctuations. The analytical
calculations were performed using the Lifshitz formalism (4, 5) and involved several critical
approximations to model the underlying dynamics.

First, the Casimir-Lifshitz potential Uy per unit area for the system comprising two identical
infinite Au planar mirrors immersed in an aqueous solution and separated by a gap of thickness
L was calculated using the following expression:
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where the integration was performed over the imaginary frequencies ¢ = iw/c, normalized by
the speed of light ¢, and the wave vector components along the mirrors k. The summation



involved both p- and s-polarizations. Here, 7, (i, k||, day) are the Fresnel reflection coefficients
for the gold plates evaluated at various wave vectors and mirror thicknesses da,. The dielectric
functions of gold ea,(i€) and water ep,o(i€) were evaluated at the imaginary frequencies.

Second, to account for the shape and size of the floating flakes and seeds, we employed
the overlap approximation. This approximation assumes that the Casimir-Lifshitz potential is
proportional to the overlap area between the flake and the seed while neglecting any edge effects.
In this approach, the lateral potential can be expressed as follows:

Elat(mmyae) ~ S(‘T7ya9>ULif(Leq)» (2>

where x,y are the in-plane displacements, 6 is the in-plane rotation angle, S(z,y,0) is the
overlap area between the flake and the seed, and Uy is the Casimir-Lifshitz potential per unit
area evaluated at Leq.

Third, we assume that the lateral displacements (along x or y) and rotations (around z by
angle 0) are independent of each other, allowing for factorization. Certainly, this assumption
is valid only in some particular cases, e.g. the ones analyzed in Figs. 1-2. In general, lateral
and rotational motions are not independent, and require more involved numerical simulations,
as discussed below. In the independent scenario, however, we arrive at simplified forms for
the potentials: E,(x) ~ S(x)ULit(Leq) for lateral displacement (along x) of perfectly aligned
triangles and Ey(6) ~ S(8)ULit(Leq) for rotation of triangles with the same position of the center
of mass. In our experiments, we focused on equilateral triangles, where the corresponding overlap
areas are expressed as follows:

_ g, t8(r/3-0/2) — t&(0/2)
x=0 \/3

where Sy is the area of an equilateral triangle with the edge a. Lateral Casimir forces and
Casimir torques can be obtained by differentiating E, and FEjy, correspondingly, along their
respective motions (see Supplementary Theory).

To assess the significance of the edge effects, we conducted a comparative analysis between
the analytical calculations within the overlap approximation and numerical simulations using
SCUFF-EM (42, 43). Specifically, we simulated the relative rotation and in-plane translation
of two vertically trapped Au equilateral triangles immersed in an aqueous solution, where the
Casimir and electrostatic forces at Lo, are balanced. Figure 3 presents the simulation results
alongside analytical calculations. Due to the symmetry of the equilateral triangles, we considered
rotation angles ranging from 0° to 60°. Examining the rotational dependence of the Casimir
energy normalized to the corresponding triangle surface area at zero x and y displacements,
it is evident that the numerical curve approaches the analytical approximation as the triangle
size increases. For triangles with a ~ 8 pum , the overlap approximation performs exceptionally
well for § > 10° (Fig. 3A). As mentioned earlier and detailed in Supplementary Theory, the
lateral Casimir potential has a non-harmonic shape in the overlap approximation. However, at
small angles, the edge effects captured by SCUFF-EM simulations become prominent, resulting
in a quasi-harmonic potential, as shown in Fig. 3A (see also Supplementary Theory and Figs.
S6-S7). This effect is even more pronounced for the Casimir torque, normalized to the overlap
area S(6,0) (Fig. 3B). Here, the overlap approximation performs well at ~ 6 > 20°. However,
at small angles, the edge effects become considerable. Importantly, the torque cannot surpass
the limit set by the overlap approximation at any angle. Furthermore, the torque reaches its
maximum at an angle where an optimal balance between edge effects and increased overlap
area is attained. With increasing triangle size, the role of edge effects diminishes, causing the
optimal angle to decrease, and eventually approach zero for infinite triangles. Notably, unlike
the anisotropic finite-sized systems considered by Antezza et al. (17), we observe high accuracy
of the overlap approximation for large triangles owing to their isotropy.

For non-zero in-plane displacements of the triangles, the discussed phenomena become even
more intricate. Figures 3C, D show the combined influence of translation and rotation on the
Casimir energy and torque, respectively. The energy’s dependence on displacements consistently
reaches a minimum in the center at © = y = 0 (Fig. 3C), corresponding to the stable configura-
tion of the system and the lateral Casimir trapping. As rotation is introduced (6 # 0), the energy
colormap undergoes a shape transition from hexagon to triangle forms, although this does not
lead to qualitative changes. The role of rotation is evident in the torque colormaps (Fig. 3D). For
a non-zero rotation angle, in the region of zero displacements, a pronounced spot of maximum
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Fig. 3. Calculation of the lateral Casimir interactions of two gold equilateral tri-
angles. The triangles have edge a, thickness 40 nm and surface area Sy, are vertically trapped
at Leq = 200 nm and immersed in aqueous solution, for the relative rotation by angle § and/or
translation by r = (x,y). (A) Casimir energy vs. the rotation angle of one triangle around
the center of mass. The energy normalized to triangle surface area Sy increases with size until
the limit determined by the overlap area, S(6,r = 0), of two mutually rotated triangles. (B)
Casimir torque 7T, around an axis normal to the triangle surface and going through the center
of mass normalized to the overlap area S(6,0) vs. 6, exhibiting an asymmetric increase towards
small angles. (C, D) Casimir energy and torque for two triangles (¢ = 4 pm) as a function of
both rotation around the center of mass (6 = 0°, 30°, 60°) and translation (z,y). The dashed
lines mark the symmetry axes of the rotated triangle.

torque emerges, aligning with the earlier discussed scenario of rotation at zero displacements.
Remarkably, even at zero rotation, the interplay between the system’s geometry and relative
displacements may lead to non-vanishing torques. This effect disappears on the symmetry axes
of the rotated triangle, having different signs on opposite sides of these axes. Additionally, at
6 = 60°, the rotated system becomes so symmetric that the torque is entirely compensated in
the large area around zero displacements. For all intermediate angles (additional data shown in
Supplementary Material) between 0° and 60°, a mixed pattern emerges, with maximum torque
at the center, surrounded by areas of effective torque induced by displacements and rotations.
These areas deviate from the symmetry axes of the rotated triangle but maintain alternating
torque signs around the central maximum. Consequently, as the flake moves with simultaneous
displacement and rotation, additional torque in the opposing direction may arise, resulting in a
crawling-like motion.

The self-alignment experiments are conducted in the L.y range spanning ~ 100 — 200 nm, where
conditions allow establishing a stable equilibrium and a sufficiently deep trapping potential.
In each self-alignment measurement, L., is precisely determined by assessing the reflection
spectrum of the stable FP microcavity, Fig. 1F, and subsequently fitting the spectrum using
the transfer-matrix method (see Methods).

To investigate the impact of L.y on self-alignment, we maintain a fixed seed size, a = 4 pm,
while choosing a floating flake that matches this seed size. Optical tweezers are employed to bring



the flake into close proximity with the seed, and then allow it to freely diffuse until the Casimir
potential ensures the formation of a stable dimer. Subsequently, we track the dynamics of the
angle between the triangles over time, 6(¢t). When 6 = 0, the floating Au flake perfectly aligns
with the seed, and the Casimir potential is minimized, thus corresponding to the equilibrium
position, as illustrated in Fig. 3A.

Figures 4A-D illustrate the variations in 6(¢) for four distinct Leq values: 195 nm, 180 nm,
138 nm, and 114 nm, respectively, as a result of thermal fluctuations. Specifically, in Fig. 4A, the
fluctuations in # are the strongest among situations presented in Fig. 4. This is attributed to the
fact that at this Leq, the thermal energy (kgT') approaches the depth of the trapping potential,
leading to more pronounced deviations in 6(t) from its equilibrium position due to thermal
fluctuations. As a result, the floating flake exhibits fluctuations of up to +20° at different points
in time (see 6 distributions and standard deviations to the right of the corresponding 6(t) plots).

Importantly, the fluctuations of 6 decrease upon reduction in L.q. To demonstrate that,
we fit the experimental histograms of 6(¢) to the normal distribution functions, and find that
the variances, denoted as oy, grow with L.y, as depicted in Fig. 4E. The reason for this lies
in the steep dependence of the trapping Casimir potential on the distance, Uc Le_qQ'6 (25)
as discussed above. Furthermore, we determine oy theoretically by substituting the analytical
Casimir-Lifshitz potential from Eq. (1) into the equation for the mean square displacement
using Gibbs formalism (see Methods, Eq. 5). Combined with the overlap approximation and the
Casimir potential from SCUFF-EM simulations, we arrive at results that are qualitatively similar
to experimental observations. Our theoretical results are especially close to the experimental
findings at small Leq, however, they underestimate oy approximately 2-fold (for SCUFF-EM
simulations) at large Leq. This discrepancy can be attributed to electrostatics, which was not
included in our calculations and modeling, given its relatively weak contribution compared to
Casimir forces. Indeed, the relative contribution of the electrostatic part to the total potential
increases with L4, contributing to the growing mismatch at large separations. Furthermore,
the difference between the analytical and numerical results reflects the significance of the edge
effects, especially at small deviations from equilibrium. Additionally, the accuracy of the overlap
approximation not only increases with the size of the flakes (a), as we discussed earlier, but
also with a decrease in L¢q. In other words, the analytical approximation’s accuracy increases
with the ratio a/Leq. Finally, it is important to note that at small displacements (x and y),
the Casimir torques (and hence 6(t)) are almost independent of displacements (see Fig. 3D),
justifying our analysis.

The magnitude of the trapping potential scales with the area overlap of the seed and the
floating Au flake. This is a fundamental reason for the rotational self-alignment observation in
the seed configuration — Au flakes in the aqueous solution strive to maximize their overlap areas
with the seeds due to strong Casimir attraction. As previously, we preselect the flakes such
that they match the shape and size of the corresponding seed, which simplifies experiments and
allows for precise tracking of the rotational motion of the floating flake 6(t) (see Supplementary
Video 4).

In the subsequent study, we probe the stability of the trapping potential to thermal fluctu-
ations for a fixed Leq &~ 195 nm, as a function of the total area of the seed, Sy (Fig. 1B). We
specifically investigate four different seed sizes in the range between 4 and 10 um, depicted in
Fig. 4F-1. As expected from the Casimir energy calculations (see Fig. 3A), increasing the area of
Au seeds increases the Casimir energy (and the depth of the trapping potential), which results
in more stable microcavities.

The stability dependence on the overlap area is shown in Fig. 4F-1 by plotting the dynamics
of A(t) caused by thermal fluctuations for a = 4, 5, 7, and 10 um triangle seed sizes. The standard
deviations, op, obtained from fits of 6(t) histograms to the normal distribution function, indicate
that the stability strongly depends on the area overlap. In particular, the biggest flakes display
the most pronounced stability — i.e. the stability is inversely proportional to the flake area, or
more accurately, og o< S 1.2 (Fig. 4J). This aligns with the analytical calculations and numerical
simulations discussed in the previous paragraphs. However, in this case, the difference between
the calculations and measurements remains consistent across different overlap areas. This further
validates that the discrepancy is indeed caused by the contribution of the electrostatic potential.
These results demonstrate that control of lateral stability of the FP cavity can be achieved by
selecting various seed sizes while maintaining the same separation distance (see Supplementary
Video 5).

Finally, we note that the stability of the self-alignment process is not notably impacted by
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the Au flake (or seed) thickness within the range of 20 — 35 nm used in our experiments. The
resulting variance of the Casimir potential is less than 5% (see Fig. S9, where we present a
theoretical calculation based on Lifshitz formalism).

In conclusion, vertically and laterally stable self-assembled and rotationally self-aligned
Casimir microcavities can be formed by equilibrating two opposing forces: attractive Casimir
and repulsive electrostatic. The so-formed microcavities exhibit optical Fabry-Pérot resonances
in the visible spectral range, observed as pronounced reflection colors. Control of the self-
alignment of the cavity is demonstrated by using triangular templated substrates and is studied
upon variation of two independent parameters: (%) the equilibrium distance, Le¢q, between the
floating flake and the templated substrate, and () the flake area, Sy, by varying the seed and
the floating flake sizes. These two parameters are straightforward to control. Therefore, our
method offers flexibility to achieve the desired conditions for liquid-phase Casimir torque ex-
periments. Furthermore, we investigated the stability of self-alignment to thermal fluctuations,
which was assessed by examining 6(¢) as a function of Leq and S;. We find that our experi-
mental observations are in good agreement with Casimir-Lifshitz theory and with SCUFF-EM
numerical modeling. This work presents a new self-assembly and self-alignment platform based
on quantum trapping and templated substrates that is suitable for Casimir torque experiments.
Furthermore, the presented FP microcavities are stable at room temperature for as long as
they have been monitored, which offers a possibility of their future use in nanomachinery (21),
self-assembly (28), optomechanics (44), polaritonic chemistry (45), and other potential cavity-
inspired applications (46-48).

Author information

Corresponding author. Timur O. Shegai, Email: timurs@chalmers.se
Notes. The authors declare no competing financial interest.

Methods
Seed Fabrication

All seed samples were prepared on thin (170 pm) microscope glass coverslips. The glass coverslips
were cleaned in acetone, 2-propanol, and water at 50 °C in an ultrasonicator for 15 min for
each solvent. Subsequently, the coverslips were dried using compressed nitrogen, followed by
oxygen plasma cleaning. Triangular Au seed arrays with various edge sizes were fabricated using
standard electron-beam lithography (Raith EBPG 5200). To provide the adhesion of the Au to
the glass substrate, first, a 2 nm Cr layer was evaporated. Subsequently, a 20 nm Au layer was
evaporated. Both layers were evaporated using the Kurt J. Lesker PVD 225 tool.

Gold Flake Synthesis and KBr Preparation

Single crystal Au flakes were synthesized using an aniline-assisted method in ethylene glycol
(EG) (41). This synthesis method is preferred due to its ability to produce colloidal microflakes
with a large aspect ratio between their lateral size and thickness. Briefly, the synthesis protocol
includes the following steps. First, a 0.72 mM HAuCl-3H50 solution in 50 ml EG is prepared
in a glass bottle and heated to 95 °C in a water bath for 20 min. Second, a 0.1 M aniline
solution in EG is added to the heated solution under mild stirring until the molar ratio reaches
2:1 of aniline to gold. In order to reach this molar ratio, a 0.72 ml of 0.1 M aniline is added
in our case, since our initial solution contained a 50 ml of 0.72 mM HAuCl;-3H2O. When the
aniline is mixed homogeneously, the reaction is kept undisturbed in a water bath at 95 °C for
3 h. This synthesis protocol yields Au flakes with a high aspect ratio, with flake thicknesses
ranging from 20 to 35 nm and lateral dimensions varying from 3 to 15 um. After successful
synthesis, the solution contains a large number of precipitated Au flakes on the bottom or walls
of the bottle. Additionally, the synthesis yields a large amount of byproduct — quasi-spherical
Au particles in the solution. Therefore, it is important to remove the spherical particles as well
as to replace the EG with cetyltrimethylammonium bromide (CTAB) aqueous solution. This
replacement requires several steps of washing. Specifically, after the Au flakes sediment, half of
the volume of the supernatant is removed and replaced with the same volume of pure 20 mM
CTAB aqueous solution. The new mixture is shaken to disperse the CTAB and form a double
layer on the surface of the Au flakes. This step is repeated several times until most of the
spherical particles are removed and EG is replaced with the 20 mM CTAB solution. Once the

11



replacement of EG is completed, the CTAB concentration in the solution is further diluted to the
1 mM level. The final synthesis batch is stored at this CTAB concentration for subsequent use.
In self-alignment experiments, the CTAB concentration was further diluted to 0.1 mM and the
final ionic environment was adjusted with an aqueous solution of potassium bromide (KBr). To
do that, KBr salt is dissolved in deionized water in the desired concentration and subsequently
mixed with the 0.1 mM CTAB. The total ion concentration in solution is a parameter that is
directly connected to the Debye-Hiickel screening length, defined as:

1 €H20(O>€0kBT
- Al 4
" CtotQ(2)22 ( )

where €5,0(0) is the static permittivity of water, e¢ is the vacuum permittivity, gy is the
elementary charge, Cy,; is the total ion concentration with valence z (in this case ions are CTA™
and Br~ from CTAB and K™ and Br~ from salt, therefore, z = 1 in all cases).

Optical measurements

All reflectivity and self-alignment measurements were performed using an inverted microscope
(Nikon Eclipse TE2000-E) equipped with an oil immersion 100x objective with an adjustable
numerical aperture (NA = 0.5 — 1.3). All reflection spectra are taken at quasi-normal incidence
using NA = 0.5 and a halogen light source, the reflected spectrum is directed to the fiber-coupled
spectrometer (Andor, Shamrock 500i), equipped with a CCD camera (Andor, Newton 920).
The equilibrium distance, Leq, was assessed by fitting the experimentally measured reflectivity
spectra with the transfer-matrix method (see Figs. S1-S3).

For the selection of the Au flakes with the correct size and shape, the optical tweezers method
was employed. To trap the Au flakes, a A = 447 nm continuous wave laser with a power of 9 mW
was focused on the desired flake through a 100x objective (NA = 1.3). All self-alignment data is
collected through recording videos using Thorlabs DCC1645C-HQ camera and each video frame
is analyzed using MATLAB, allowing to extract the dynamics of angle, 6(t), for subsequent
analysis of the Casimir self-alignment process.

Fitting procedure

To fit the experimental observations of lateral and rotational microcavity formation observed
in Fig. 2, we used the decaying exponential solution described in detail in the Supplementary

Theory. The expression for the lateral motion reads: z(t) = @ (1 — e(t_t‘"a"ﬁ), where a =

a(l — e~ tmax@)~1 and q is the triangle’s edge size. The fitting parameters for the lateral motion
shown in Fig. 2B are as follows: G160 = 6.2 um, wigo = 0.25 871, tmax = 10.3 s for Leg =160 nm
cavity; and @110 = 7.7 pm, @110 = 0.33 571, timax = 11.7 s, for Leq = 110 nm cavity, respectively.
For rotational motion, shown in Fig. 2D, we similarly use 6(t) = 6 (1 - e(t_tmx)‘*’), where

50 = 0p(1 — e_t"‘axs)_1 and 0y = 60°. The extracted parameters are: y = 66°, @ = 0.7 s~ 1,
tmax = 3.9 S.

Calculations of the angular spread

To theoretically determine the standard deviation of angle € describing rotations under the
lateral Casimir potential F(f) and subjected to thermal fluctuations at temperature T, we
utilized the expression for the mean squared displacement in Gibbs formalism:

600 600
o = m: \// gge—E(o)/kBng// e~ EO)/ksTdf, (5)
_600 —600

where we account for the symmetry of the potential, implying (§) = 0. Substituting the
analytical Casimir-Lifshitz potential from Eq. (1), combined with the overlap approximation
E(0) ~ S(0)ULit(Leq) and the Casimir potential from the SCUFF-EM simulations, we obtained
the final results denoted as calculations and simulations, respectively, in Fig. 4.
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Fig. S1. Stable Casimir microcavities with different L., values. (A) True-color reflec-
tivity images of self-aligned microcavities using 5 pm triangular seeds with various L.q values
measured using an inverted microscope. The same image is shown in Fig. le of the main text.
(B) Reflection spectra of the microcavities from (A) together with corresponding TMM fits
(black dashed lines). Leqvalues are obtained as L1 = 199 nm, Ly = 179 nm, L3 = 161 nm, Ly
= 140 nm, Ls = 131 nm, Lg = 123 nm.
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Fig. S2. TMM fitting of the reflecitivty measurements from 4 pym flake with dif-
ferent L.,values. (A-D) Experimental reflection spectra and their transfer-matrix method
(TMM) fittings for various Leq. This procedure allows to determine Lqq distance for Fabry-Pérot
microcavities shown in Fig. 4A-D of the main text.
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S2 Supplementary Notes

Supporting Note S1: Determination of the L., with Transfer Matrix Method .

In order to determine the L.q distances for each FP cavity, the reflection spectrum is fitted
using the transfer-matrix method (TMM). It is an important parameter since the self-alignment
is studied by analyzing its Le.q dependence, systematically. In the TMM fitting for the reflection
spectra, the thickness of the cavity mirrors is required as an input parameter. The thickness of
the Au seed is 20 nm, in accordance with the nanofabrication process. The thickness of each
floating flake is determined from the optical contrast between the seed and the floating flake
using optical microscopy. We then utilize this optical contrast, together with a calibrated 20 nm
thickness of the seeds, to determine the floating flake thickness. This procedure uses microscope
images, collected at the same conditions and the same frame rate as the calibrated seed image.
The so-determined thicknesses of the floating flakes (typically in the 20 — 35 nm range) are
subsequently used as input parameters in TMM-calculated reflection spectra of self-assembled
FP microcavities.

S3 Supplementary Videos

Supplementary Video 1. Accelerated dimer formation for Leq = 160 nm (video for Fig. 2a,b).
Supplementary Video 2. Accelerated dimer formation for Leq = 110 nm (video for Fig. 2a,b).
Supplementary Video 3. Casimir Self-alignment example with both lateral and rotational
motion analysis (video for Fig. 1g and Fig. 2¢,d).

Supplementary Video 4. Variation of § with time at various Leq= 195, 180, 138, 114 nm
with edge size 4 pm seed (video for Fig. 4a-d).

Supplementary Video 5. Variation of § with time for various edge sizes 4, 5, 7, 10 um and
with Leq = 195+5 nm (video for Fig. 4f-i).

S4 Supplementary Theory

S4.1 Equations of motion
S4.1.1 Lateral motion:

The motion of a floating flake towards the seed of identical size and shape under the influence
of a lateral force can be described by the equation of motion for the lateral displacement (x)
between triangles’ centers of mass along one of the triangle’s edges:

mi = —vy. & + Fp(x), (S1)

where m is the mass of the floating flake, v, = kgT'/ D, is the lateral friction coefficient expressed
through the temperature T' and lateral diffusion coefficient D,, and F, = —0FE(x)/dz is the
lateral force caused by the lateral potential E(x). In the overlap approximation the lateral
potential can be written as E(x) = S(x)Uy(x, Leq), where S(x) is the overlap area between the
flake and the seed, Uy = Uc+U, is the total ground-state potential per unit area with the Casimir
Uc and the electrostatic U, contributions. Importantly, Uy(Leq) < 0, as in any trapping potential
at an equilibrium position. For equilateral triangles with the edge size a, the overlap area
(assuming that the triangles are not rotated with respect to each other) is S(z) = (a —z)2v/3/4,
which is equal to the triangle’s area at 2 = 0 (maximum overlap) and becomes zero at z = a (no
overlap). Neglecting the edge effects, one can assume the total potential Uy to be independent
of z and write the lateral potential as E(x) ~ Ug(Leq)(a — x)%v/3/4. Interestingly, this potential
has the opposite curvature to the harmonic one, as well as a kink point at z = 0 (see Fig. S4a).
Note, that such a form of the lateral potential is typical for other flake geometries, such as
disks (25).

The corresponding lateral force F,, = (a—x)v/3/2 Uy(Leq) begins to grow from z = a reaching
a maximum at x = 0, whereas in the harmonic case it is exactly the opposite (see Fig. S4b).
Thus, accounting for the negativity of Up(Leq), the Eq. (S1) takes an oscillator equation form
with an unusual restoring force:

i+ T3+ w?(a—2x) =0, (S2)
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Fig. S4. Qualitative comparison of the lateral motion potential and an arbitrary
harmonic one. (A) Normalized lateral motion potential in the overlap approximation (solid
red) and an arbitrary harmonic one (dashed gray) versus the displacement (z) between trian-
gles’ centers of mass along one of the triangle’s edges (see the sketch). (B) The same for the
normalized force in the lateral and harmonic cases.

where T, = 7,/m is the oscillator lateral damping constant and w, = 1/|Uo|v/3 / 2m is the
oscillator’s eigen frequency. This equation has a general solution of the form:

2(t) = a+ Cle—t/2(l‘m+ T3 +4w?) n C2e—t/2(1‘m—1/1“§+4w§)’ (S3)

where the constants C1 2 are determined by the boundary conditions. Particularly, from z(0) = a
it follows that C; = —C5. The solution (S3) differs from that for the harmonic potential only by
the positive sign in front of w?, but this causes a significant difference in the behavior. Firstly,
this solution always monotonically decreases and has no oscillation regime, which usually occurs
for a harmonic potential when I', < 2w,. Secondly, in the deep overdamped regime when
Iy >> w, the solution (S3) reduces to:

z(t)=a+ A (e‘trz — et‘”i/r’”) . (S4)

Therefore, such a solution contains a fast decaying exponent with large I',, and a slow decaying
exponent with inverse curvature and effective frequency w?/T', (see Fig. S5). The condition

Z(tmax) = 0 gives A = —a/ (e*tmaxpw - etmaxwi/m), or, after simplification, due to I'y >>

W2 /Ty, A~ ae~tmaxws/Ta So, towards the end of the motion, where only the slow decaying
exponent remains, the solution has the form:

a(t) =@ (1= et /T ) (S5)

where @ = a/(1 — e tm»«2/T=) > ¢ is the renormalized edge size of the triangle, which is close
to the actual edge size a as long as tp.x >> I, /wg This solution satisfies both boundary
conditions: z(0) = @ and z(tmax) = 0. In the deep overdamped regime, the fast decay occurs
on a microsecond time scale and the corresponding exponent leads to a negligible change in the
coordinate x as long as tyayx >> 'y /w?2. So, on the scale of seconds, on which the measurements
are conducted, we can safely neglect the fast exponent as doing so leads to a negligible error in
the initial coordinate. The harmonic case, instead, is characterized by a sum of two ordinary
decaying exponents with positive curvatures x(t) = Cre=T's + Coe= /T where z(0) = a
results in the relation Cy + Cy = a and z(0c0) = 0 is always true.

As clearly seen from Fig. S4a and Fig. S5, the inverse curvature of the lateral potential gives
the inverted exponent in the solution. This, in particular, leads to the fact that the lateral
motion ends with a non-zero speed, in contrast to the harmonic case. This means that the flake
can pass by the equilibrium position for a short distance, however, because the flake is deeply in
the overdamped regime, it will quickly return to the equilibrium position without oscillations.
So, the speed eventually reaches zero due to the damping. If there were no damping, the
system would oscillate from x = a to z = —a with the frequency w,, even though the solution
(S3) formally does not contain oscillating functions. However, that is true only in the overlap
approximation, which conforms to the special form of the potential having a non-zero derivative
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Fig. S5. Qualitative comparison of the solution to the equation of motion for the
lateral and arbitrary harmonic potentials. The solution of the equation of the lateral
motion in the deep overdamped regime obtained in the overlap approximation consists of a fast-
decaying exponent and a slow one (the parameters are exaggerated for better visibility). While
in the harmonic case, the curvature of the slow decaying exponent is positive, in the lateral one
it is negative, which gives the decay ending with a non-zero speed (see the discussion in the
text).

at x = 0 (see Fig. S4a). Although this approximation performs surprisingly well, for very small
displacements from the equilibrium position, the edge effects result in a harmonic form of the
potential (see in Fig. S6a; in the vicinity of 2 = 0 the points from the SCUFF-EM simulations of
the 7-pm-edge triangles). The role of the edge effects is even more noticeable from the deviation
of the force from the linear dependence (see Fig. S6b). This harmonicity of the lateral potential
near x = 0, provided by the edge effects, restores the ordinary decaying exponent e~twi/Te gt
the end of the lateral motion and provides zero final speed. The harmonicity of the lateral
potential near the equilibrium position is even more pronounced for the rotational potential, as

we show below.
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Fig. S6. Numerical verification of the overlap approximation for the lateral motion.
(A) The lateral motion potential obtained with the overlap approximation (solid lines) and using
the SCUFF-EM simulations (points) for the 7-pm-edge triangles at different Leq. (B) The same
for the lateral force.

To estimate the parameters of the solution (S3) in our case we can take D, ~ 0.05um?/s (31)
for micro-sized 30-nm-thick Au triangle flakes at room temperature, which results in ', =
7 MHz. Taking the total potential at Leq = 110 nm as Uy ~ 0.5eV/um? (25) we obtain
wy ~ 2.4 kHz, which is approximately three orders of magnitude smaller than I',. This implies
that our system is deep in the overdamped regime, I';, >> w,. Therefore, even if the parameters
of the system do slightly deviate from those assumed by us, it still will behave in accordance with
the overdamped regime. The system, therefore, behaves according to the solution (S4). The



fast decaying exponent can be seen at the very beginning of the motion on a sub-microsecond
scale, t < 1/T'; ~ 0.1 ps. The rest of the motion is determined by the slow exponent fet“’i/rz,
where w?/T'y = |[Up|v/3/2v, = |Up|Dyv/3/2ksT. From the estimations above, we arrive at
w2 /T ~ 1 Hz, which corresponds to the time scale of seconds that we indeed observe in our
experiments (see e.g. Fig. 2b in the main text and exponential fits of both lateral and rotational
motions). Note, that in this regime, the mass goes out of the problem and the motion is
determined by the total potential and the diffusion coefficient, which is typical for the Brownian
motion.

S4.1.2 Rotational motion:

The rotational motion on the angle 6 around an axis normal to a triangle surface and going
through its center of mass can be described similarly to the lateral displacements using the
equation: ) )

10 = —p0 + T,(0), (S6)
where I = ma?/12 is the moment of inertia around the center of mass of equilateral triangle with
a side a, yp = kgT/Dg, and T, = —0[S(0)Uo(0, Leq)] /0 is the torque around the considered
axis of rotation defined in the overlap approximation by the overlap area S(#) and the total
potential per unit area Up(6, Leq) < 0. Note that the units of Dy differ from that of D, by an
amount of area. For the rotation of the upper equilateral triangle around its center of mass, the
overlap area with the identical lower stationary triangle can be found as follows:

ta(/3 — 0/2) — ta(0/2) s
V3

where Sy is the equilateral triangle’s area. Neglecting the edge effects, one can assume the total
potential Uy to be independent of ¢ and write the lateral potential as E(0) ~ S(0)Up(Leq)-
Plotting this potential with the Eq. (S7) clearly shows a perfect correspondence of the overlap
approximation to the SCUFF-EM simulations of the 6-pum-edge triangles at § > 10° (see in
Fig. S7a). At smaller angles, the edge effects make this potential harmonic, which in this rota-
tional case significantly deviates from the overlap approximation. This leads to even more pro-
nounced deviations in the torque per overlap area, starting already from 6 ~ 20° (see Fig. S7b).
In general, Eq. (S6) with the area given by Eq. (S7) is nonlinear, but for the angles 6 > 20°, for
which the overlap approximation results in similar torque as the SCUFF-EM simulations, the
torque can be approximated by the linear function T (6) ~ (7/3 — 0) 2 SoUp(Leq) (see dashed
line in Fig. S7b).
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Fig. S7. Numerical verification of the overlap approximation for the rotation. (A)
The rotational motion potential obtained with the overlap approximation (solid lines) and using
the SCUFF-EM simulations (points) for the 6-pm-edge triangles versus the rotation angle around
the center of mass (see the sketch). (B) The same for the torque normalized to the overlap area.
Here the dashed line is added, which shows the linear approximation for the normalized torque.

In this approximation the Eq. (S6) becomes similar to the Eq. (S2) for the lateral displace-

ments: } )
0 +T90 +wi(r/3—0) =0, (S8)

where 'y = ~/I and wy = \/\UO|%SO/I. To estimate these parameters we can take Dy ~
D../S, thus Ty = kgT /Dyl ~ kgT/D, - So/I. Note that Sp/T = <3 /ma® — 33 Therefore,




Iy ~ 3v3l, ~ 5, and wy = |U0|%3m—‘/g = wy/27/27 ~ 2w,. This implies that for the
rotational motion, we obtain the parameters, which, by the order of magnitude, are similar to the
lateral displacements. Therefore, the rotation, similarly to translations, occurs on the time scale
of seconds and adopts the slow exponent form 6(t) ~ —e@is/Tot with wi/Tg ~ 2w?2 /Ty ~ 1 Hz,

which we indeed observe in the experiment (see Fig. 2d in the main text).



S4.2 SCUFF-EM calculations
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Fig. S8. Calculation of the Casimir potential for finite nanotriangles. SCUFF-EM
simulation results for the relevant parameters of the lateral Casimir interactions of two 40 nm-
thick gold equilateral triangles, vertically trapped by the balance of the Casimir and electrostatic
forces at Loq = 200 nm and immersed in aqueous solution, depending on the relative shift in
and y in the range -4.4 to 4.4 pm and rotation angle 6 from 0° to 60°; each row corresponds to a
particular angle . Column 1: total Casimir energy Uc, Column 2: Casimir energy normalized
to surface overlap Uc/S(6,7), Columns 3 and 4: in-plane Casimir forces F, and Fy, respectively,
Column 5: Casmir torque T, around an axis normal to the triangle surface and going through

the center of mass.
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S4.3 Substrate thickness tuning

0 10 20 30 40 50
Au substrate thickness, d (nm)

Fig. S9. Substrate thickness dependence. The dependence of the Casimir potential on
the thickness of the gold substrate. The thickness of the gold floating flake is 30 nm and L.q =
100 nm.
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