
ar
X

iv
:2

31
1.

18
40

1v
2 

 [
qu

an
t-

ph
] 

 1
8 

A
pr

 2
02

4

A relation between Krylov and Nielsen complexity

Ben Crapsa, Oleg Evninb,a and Gabriele Pascuzzia

a TENA, Vrije Universiteit Brussel (VUB) and International Solvay Institutes, Brussels, Belgium and
b High Energy Physics Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

Krylov complexity and Nielsen complexity are successful approaches to quantifying quantum evo-
lution complexity that have been actively pursued without much contact between the two lines
of research. The two quantities are motivated by quantum chaos and quantum computation, re-
spectively, while the relevant mathematics is as different as matrix diagonalization algorithms and
geodesic flows on curved manifolds. We demonstrate that, despite these differences, there is a rela-
tion between the two quantities. Namely, the time average of Krylov complexity of state evolution
can be expressed as a trace of a certain matrix, which also controls an upper bound on Nielsen
complexity with a specific custom-tailored penalty schedule adapted to the Krylov basis.

Quantifying the complexity of quantum evolution has
been a growing topic of research in recent years, driven
by two complementary perspectives. First, it is natu-
rally expected that integrable dynamics is intrinsically
less complicated than chaotic dynamics, and one may
hope that complexity-related measures will provide yet
another insight into the nature of this distinction. Sec-
ond, any quantum evolution can be seen as tautologically
simulating itself, and this invites the application of com-
putational complexity measures that have emerged from
years of research on quantum computing.

The two perspectives we have just described can be
referred to as the ‘quantum chaos’ and ‘quantum compu-
tation’ perspectives, respectively. Correspondingly, two
different branches of research on quantum evolution com-
plexity are in existence. Krylov complexity, originally
introduced in [1], attempts to quantify how fast opera-
tors spread in the space of all possible operators as they
evolve. This program is rooted in the quantum chaos lore
and linked to earlier studies of out-of-time-order correla-
tors [2]. Nielsen complexity, on the other hand, emerged
in [3–5] as a continuum analogue of discrete gate com-
plexity measures in quantum computation. The math-
ematics involved in defining these two quantities could
not be more different. On the Krylov complexity side,
the main ingredient is the Lanczos algorithm for ma-
trix tridiagonalization, which creates a useful basis for
tracking down the spread of the initial seed operator un-
der the dynamical evolution. On the Nielsen complexity
side, the main ingredient is optimization of the length of
curves on the manifold of unitary operators endowed with
an anisotropic metric (this metric captures the relative
difficulty of performing some unitary transformations on
a physical system, for example those involving changing
the state of many particles at once).

Perhaps not surprisingly for two quantities so different
in their origins and in the relevant mathematics involved,
research on Krylov complexity [6–12] and Nielsen com-
plexity [13–16] of quantum evolution has developed in
parallel [17], with very little contact beyond descriptive
qualitative comparisons of the outcomes. Our purpose in

this Letter is to spell out a mathematical framework that
unites these two quantities.
Throughout, we shall consider a quantum system with

Hamiltonian H , and Hilbert space of finite dimension
D [18]. The evolution operator will thus be a D × D
unitary matrix residing in the group manifold SU(D).
We furthermore define the energy eigenvalues En and
eigenstates |n〉 for future use:

H |n〉 = En|n〉 n = 0, . . . , D − 1. (1)

Krylov complexity and its average.— The original defi-
nition of Krylov complexity in [1] tracked the Heisenberg
evolution of quantum operators. We shall be focusing
here on its closely related analogue introduced in [6] that
applies the same protocol to the Schrödinger evolution
of quantum states. (Terms like ‘Krylov complexity of
states’ or ‘spread complexity’ may be used.)
One starts with an initial vector |v0〉 and lets it evolve

as e−iHt|v0〉. The qualitative question is: how many ex-
tra vectors does one need to effectively capture the evo-
lution as time goes on, and how rapidly does this number
increase with time? (Evidently at t = 0, |v0〉 would suf-
fice by itself, while at late times one would likely need a
complete basis.)
To give these questions a concrete expression, one in-

troduces the Krylov basis |vj〉, generated from the Hamil-
tonian H and the initial state |v0〉 via the Lanczos algo-
rithm:

|wj+1〉 = (H − aj)|vj〉 − bj |vj−1〉, |vj〉 =
1

bj
|wj〉. (2)

Here, the Lanczos coefficients aj and bj are defined by

aj = 〈vj |H |vj〉, bj =
√

〈wj |wj〉, b0 = 0. (3)

The basis is constructed to be orthonormal. In fact,
the Lanczos algorithm is nothing but Gram-Schmidt or-
thonormalization applied to the Krylov sequence Hj |v0〉.
Generically, the Krylov basis spans the full space of di-
mensionD, so the algorithm terminates afterD−1 steps.

http://arxiv.org/abs/2311.18401v2


2

We can describe the time evolution of |v0〉 in the Krylov
basis:

|φ(t)〉 = e−iHt|v0〉 =

D−1
∑

j=0

φj(t)|vj〉. (4)

The Hamiltonian is tridiagonal in the Krylov basis, as can
be deduced from (2). Thus, given a Hamiltonian H and
an initial ‘seed’ state |v0〉, the evolution is recast into a 1d
nearest-neighbor hopping model, with φj being the value
of the wavefunction at site j. (Early appeals to using such
tridiagonal representations for physical Hamiltonians can
be seen in [19, 20].)
Krylov complexity is then designed as a measure of the

average position of the hopper along the chain at time t.
(At t = 0, it is evidently localized at site 0.) Specifically,
with a sequence of positive nondecreasing weights wj , we
define

CK(t) =

D−1
∑

j=0

wj |φj(t)|
2. (5)

In practical applications, one often chooses wj = j, so
that CK is literally the average position. If this value
does not grow much, one expects that |φ(t)〉 in (4) is well-
approximated by the first few terms in the sum, making
it ‘simple.’
Krylov complexity typically grows at early times, even-

tually reaching a plateau. This plateau has been tested
as a valid indicator of integrable vs. chaotic properties of
the underlying system [7, 8], though the procedure shows
sensitivity to the seed of the Lanczos algorithm [9, 11]. A
good way to estimate the plateau height is to compute,
following [7, 8], the all-time average of CK . For that, we
write

φj(t) =

D−1
∑

n=0

e−iEnt〈vj |n〉〈n|v0〉, (6)

and hence

|φj(t)|
2 =

D−1
∑

n,m=0

e−i(En−Em)t〈vj |n〉〈n|v0〉〈v0|m〉〈m|vj〉.

Then, for a generic spectrum with nondegenerate eigen-
values,

|φj |2 ≡ lim
T→∞

1

T

∫ T

0

|φj(t)|
2dt =

D−1
∑

n=0

|〈vj |n〉|
2 |〈n|v0〉|

2,

(7)
and thus the time average of Krylov complexity is ex-
pressed as

CK = lim
T→∞

1

T

∫ T

0

CK(t)dt =

D−1
∑

j=0

wj |φj |2

=

D−1
∑

n,j=0

wj |〈vj |n〉|
2 |〈n|v0〉|

2.

(8)

This is the main quantity we shall work with when build-
ing connections with the Nielsen complexity formalism
[21].

Nielsen complexity and its bound.— Defining Nielsen
complexity starts with picturing any curve U(τ) on the
manifold SU(D) of D × D unitary matrices as a ‘pro-
gram.’ The complexity of this program is then the length
of the curve, and the complexity of a given target unitary
U is the minimum of this length over all curves connect-
ing U to the identity matrix. This is a natural contin-
uum analogue of the standard discrete gate complexity
in quantum computation, with the continuum length re-
placing the counting of the number of discrete gate oper-
ations. There is a controllable relation between Nielsen
and gate complexity for qubit systems [3–5].
Which metric should we use on the manifold of uni-

taries to compute the length? The most naive guess
would be the isotropic bi-invariant metric that treats all
directions equally. To define it mathematically, introduce
the Hermitian velocity of the curve U(τ) as

V (τ) = i
dU

dτ
U †. (9)

The bi-invariant length of the curve segment between τ
and τ + dτ is then simply

ds2bi-inv = Tr(V †V )dτ2. (10)

All geodesics of the bi-invariant metric have constant ve-
locities, and therefore the minimization problem involved
in the definition of Nielsen complexity can be solved ex-
actly. The results are (unsurprisingly) disappointing,
however, since this computation assigns the same value of
complexity to all physical systems with the same Hilbert
space dimension [15]. The isotropic bi-invariant metric is
simply too naive, as it fails to recognize that some uni-
tary transformations are more difficult to implement than
others. This ingredient is essential for complexity defi-
nitions in the context of quantum computation, just as
restricting the set of allowed gates is essential for defining
gate complexity.
One must then look for more sophisticated assignments

of the metric on the manifold of unitaries that will bring
out the distinction between different kinds of dynamics.
To this end, we introduce a complete basis [22] of gener-
ators Tα, orthonormal with respect to the inner product
Tr(T †

αTβ). We can then decompose the velocity as

V = V αTα, V α = Tr(T †
αV ). (11)

The Nielsen complexity metric introduces different
penalty factors µa for the various directions Tα:

ds2 = dτ2
∑

α

µα

∣

∣Tr(T †
αV )

∣

∣

2
. (12)

The bigger the penalty factor µa, the more difficult it is
to move in that particular direction. The penalty factors
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are typically chosen on the basis of some locality prop-
erties (for example, acting on only a certain number of
adjacent spatial sites, or acting only on a given number
of particles at once). A common choice is to introduce
a threshold so that all operators above the threshold are
‘hard’ (with the same large µa) and all those below the
threshold are ‘easy’ (with µa set to 1). For the purposes
of making contacts with Krylov complexity, we shall keep
the penalty factors µa completely general.
While the inclusion of penalty factors gives the metric

(12) a chance to distinguish different types of dynamics,
it also renders the minimization problem involved into
the definition of Nielsen complexity largely intractable.
The state of the art is that the geodesic equation has been
solved for such metrics for the case of three qubits [5].
What is even more complicated is finding actual geodesics
connecting two prescribed points [23], and minimizing
the length over all such geodesics. More importantly, in
cases of physical interest, the Hilbert space dimensions
is orders of magnitude higher than for the three-qubit
system, and all the difficulties multiply at a crippling
rate as the number of dimensions increases, making direct
evaluation of Nielsen complexity impossible.
A practical strategy to deal with these issues has been

put forth in [15, 16]. If it is out-of-reach to minimize the
distance over all possible curves using the metric (12),
we can settle on computing an upper bound on Nielsen
complexity by minimizing the distance over a prescribed
infinite family of curves.
A simple and effective family of curves for this purpose

[15] is constant velocity curves e−iV τ . While all of these
start at the identity at τ = 0, to ensure that they connect
to the desired evolution operator U = e−iHt at τ = t,
that is e−iV t = e−iHt, we must impose

V =
∑

n

(

En −
2πkn
t

)

|n〉〈n|, (13)

where kn are D independent integers. (For simplicity,
we are assuming a nondegenerate energy spectrum, as
expected in generic systems. See [16] for how to treat
degenerate spectra.) From (12) and (13), a bound on
Nielsen complexity Cb is then given by a minimization
over the D-dimensional hypercubic lattice kn as

Cb(t) = 2π min
~k∈ZD

√

(~y,Q~y), ~y ≡
~Et

2π
− ~k, (14)

with ~E ≡ (E0, E1, . . . ED−1), ~k ≡ (k0, k1, . . . , kD−1) and
the matrix [24]

Qnm ≡
∑

α

µα〈n|Tα|n〉〈m|T †
α|m〉. (15)

The minimization problem (14) has a natural geomet-
ric interpretation. Up to constant factors, one is simply
asking about the distance from the point ~Et/2π to the

nearest point of the integer hypercubic lattice Z
D, with

the distances measured using not the standard Euclidean
metric, but rather the (position-independent) ‘skewed’
metric (15). This is known as the closest vector prob-
lem, and it has been discussed extensively in the mathe-
matics literature, specifically in relation to lattice-based
cryptography [25]. Effective algorithms exist for finding
approximate solutions to this problem, making the mini-
mization problem (14) computationally tractable, unlike
the original definition of Nielsen complexity. All of this
has been implemented in practice and applied to a broad
range of physical Hamiltonians in [15, 16], which can be
consulted for technical details. While our reliance on con-
stant velocity curves as a proxy for minimization over
all curves may seem rather ad hoc at first sight, it has
been tested in practice and is able to produce meaning-
ful results [15, 16]. In particular, the upper bound (14)
consistently assigns lower values to complexities of inte-
grable Hamiltonians than to chaotic ones. Furthermore,
a direct relation between local (few-body) conservation
laws (a hallmark of integrability) and the properties of
the Q-matrix (15) has been manifested in [16].

Just as for Krylov complexity, some generic features
are expected for the time dependence of Nielsen complex-
ity: initial growth and late-time saturation. And as for
Krylov complexity, the height of this late-time plateau is
of particular interest. In the case of the bound (14), it can
be understood from the following heuristic argument. In
high numbers of dimensions, distances from a randomly
chosen point to a lattice tend to take essentially deter-
ministic values, as one can see by elementary means for
Euclidean distances from hypercubic lattices; a practical
summary can be found in [15]. As the vector ~Et/2π grows
and reaches far outside the unit cell where it started, it
is likely to behave as a generic point in space with re-
spect to its distance from the lattice in (14). Hence, its
actual distance from the lattice (which is, by definition,
the plateau height) will closely track the average distance
[26]. This leads to the following estimate of the late-time
plateau value Cp of (14):

Cp = 2π

∫

0≤xn≤1

d~x min
~k∈ZD

√

(~x− ~k,Q(~x− ~k)). (16)

This estimate is completely controlled by the Q-matrix
(15), which will continue to play a central role in our
story.

Krylov complexity ↔ Nielsen complexity.— With the
above setup, we are in a position to make our key obser-
vations. The starting points for formulating Krylov and
Nielsen complexity are very different (Hamiltonian tridi-
agonalization by linear transformations, and geodesic op-
timization on the curved manifold of unitaries endowed
with an anisotropic metric), so that it is not even imme-
diately clear how to attempt mapping the two structures
into each other. At the same time, once we focus on the
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all-time average of Krylov complexity (8) and the late-
time value for the upper bound on Nielsen complexity
given by (14), the situation no longer appears hopeless.
Indeed, the expressions (8) and (15) are suggestively sim-
ilar, being both quartic in the Hamiltonian eigenvector
components. To complete the picture, it remains to spell
out an explicit relation between the two sets of formulas.
To do so, we note that (8) can be recast in the form

CK = Trq, (17)

with

qnm =

D−1
∑

j=0

wj

2

(

〈n|v0〉〈vj |n〉〈m|vj〉〈v0|m〉+ c.c.
)

. (18)

Can we understand this q-matrix as a special case of the
general Q-matrix (15), which would immediately connect
us to Nielsen complexity? The answer is yes, and one
simply needs to provide an identification of the penalty
factors µa and the operator basis Ta that reduces (15) to
(18).
The relevant assignments can be summarized in the

following table:

Ta µa assignment

|v0〉〈v0| w0

|v0〉〈vj | or |vj〉〈v0| with j ≥ 1 wj/2

|vi〉〈vj | with i, j ≥ 1 0

(19)

One can check that, with these assignments, the general
Q-matrix given by (15) becomes identical to (18). A link
between Krylov and Nielsen complexity has thus been
established: The all-time average of Krylov complexity
is the trace of the q-matrix (18). An upper bound on
the plateau value of Nielsen complexity with the penalty
schedule (19) is given by the average distance from an
integer lattice (16) in a space where the metric Q is set
equal to the same matrix q. This relation is not an equal-
ity of the two quantities [27], but rather a way to express
them as explicit functions of the same q-matrix. The ex-
pressions are similar in spirit, however: for example, if
the eigenvalues of q grow, its trace evidently increases,
but so does the average distance estimate, since the dis-
tance growth in different directions is controlled by the
eigenvalues.
The penalty schedule (19) is rather peculiar in that it

assigns zero penalty to all generators not involving the
Krylov seed vector |v0〉. This penalty schedule nonethe-
less passes an important sanity check: while the com-
mutators of the operators in the second and third lines
of (19) generate a full basis of operators (this property
is called ‘bracket generating’ in the language of sub-
Riemannian geometry [28] that is often evoked in the
context of Nielsen complexity [29]), nested commutators
of the zero-penalty operators in the last line of (19) will

never produce anything involving |v0〉, and hence do not
provide a complete basis. For that reason, while mov-
ing in the zero-penalty directions does not result in any
length increase, it is impossible to reach the target while
moving in those directions alone, and thus all the mini-
mization problems that define Nielsen complexity remain
meaningful.

It is hardly surprising that a rather peculiar penalty
schedule had to be used to make Nielsen complexity cap-
ture the behavior of Krylov complexity. Indeed, Krylov
complexity only tracks the evolution of a single seed vec-
tor |v0〉, while Nielsen complexity is sensitive to the entire
evolution operator. A sort of blinding device had to be
applied to the latter to make it mimic the former. It is
natural to think of the zero penalties in (19) as such a
blinding device.
Note furthermore that the assignment of the growing

sequence wj as penalties for the operators |v0〉〈vj | is very
natural. Indeed, in a typical construction of Krylov com-
plexity, the initial seed will be very simple (for example,
a state where only one spin of a spin chain is excited).
A typical Hamiltonian, on the other hand, also has a
simple structure of interactions (for example, a sum of
terms each of which couples only two spins). Such con-
structions are prevalent in [1, 7–9] and other literature
on the subject. In this situation, higher |vj〉 will be pro-
gressively more and more complicated states (say, with
more and more spins excited). Correspondingly, it is nat-
ural to think of the operators |v0〉〈vj | as becoming more
complicated with growing j, assigning them an increas-
ing sequence of penalties. (This naive intuition does not
work, however, for the operators |vi〉〈vj |, which must be
assigned zero penalties to make the construction work,
as already remarked in the previous paragraph.)

The framework we have described provides a stepping
stone to explore a range of similar relations for anal-
ogous quantities. A natural question is whether the
Krylov complexity for operators, as originally defined in
[1], can be given a similar treatment. Another question
is whether Nielsen complexity of states [30, 31], defined
as the minimum of the Nielsen complexity for unitaries
over all unitaries that convert a given reference state to
the desired state, can meaningfully enter the game, and
in particular provide additional context for the penalty
schedule (19). It could also be interesting to consider
further averaging of (8) over a suitably chosen set of ini-
tial vectors, and explore how that affects (19), possibly
producing more conventional penalty schedules.

To sum up, we have displayed a relation between
Krylov complexity of states and an upper bound on the
Nielsen complexity of the evolution operator. Both quan-
tities end up being expressed through a specific matrix
defined by (18). Krylov complexity and Nielsen com-
plexity take rather different inputs for their definitions,
and we had to spell out explicitly how these inputs are
to be matched so as to make our construction work.
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Krylov complexity requires specifying an initial seed vec-
tor |v0〉, as well as weights wj for the contributions of
higher Krylov components of the wavefunction. Nielsen
complexity requires specifying a basis of generators on
the manifold of unitaries and assigning to them penalty
factors. Within the correspondence we established, the
Krylov seed and its Krylov basis generated using the
Lanczos algorithm are converted into the generator basis
on the Nielsen complexity side, while the weights wj are
converted into penalty factors.

Relating Krylov and Nielsen complexity connects two
very different pictures of quantum evolution: the extent
of spread of states over the Hilbert space with the flow of
time on the one side, and quantum algorithms and quan-
tum simulations on the other side. It has in particular
been proposed (see, for instance, the conclusions of [32])
that minimization problems that define Nielsen complex-
ity can practically contribute to finding optimal quantum
simulation algorithms. A relation between such algo-
rithms and quantities that control evolutionary spread
of states is thus another implication of the findings we
report here.
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