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ABSTRACT
Large-scale pre-trained models have demonstrated impressive

performance in vision and language tasks within open-world sce-
narios. Due to the lack of comparable pre-trained models for 3D
shapes, recent methods utilize language-image pre-training to real-
ize zero-shot 3D shape recognition. However, due to the modality
gap, pretrained language-image models are not confident enough
in the generalization to 3D shape recognition. Consequently, this
paper aims to improve the confidence with view selection and hi-
erarchical prompts. Leveraging the CLIP model as an example, we
employ view selection on the vision side by identifying views with
high prediction confidence from multiple rendered views of a 3D
shape. On the textual side, the strategy of hierarchical prompts is
proposed for the first time. The first layer prompts several classi-
fication candidates with traditional class-level descriptions, while
the second layer refines the prediction based on function-level
descriptions or further distinctions between the candidates. Re-
markably, without the need for additional training, our proposed
method achieves impressive zero-shot 3D classification accuracies
of 84.44%, 91.51%, and 66.17% on ModelNet40, ModelNet10, and
ShapeNet Core55, respectively. Furthermore, we will make the code
publicly available to facilitate reproducibility and further research
in this area.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Com-
puter vision; Computer vision tasks; Visual content-based
indexing and retrieval.
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1 INTRODUCTION
With the extensive applications of 3D models in computer-aided

design (CAD), autonomous driving and virtual reality/augmented
reality (VR/AR), together with the rapid advancements in 3D scan-
ning and reconstruction technologies, the number of 3D shapes has
experienced an explosive increase. How to effectively identify and
manage these unlabeled 3D data has become a challenging problem.
Zero-shot 3D shape recognition aims to classify unseen 3D shapes
without explicit training, which has become a hot topic in computer
vision with significant benefits such as identifying novel objects
and alleviating labor-intensive annotations.

Traditional zero-shot methods [5, 6, 30] rely on a limited distribu-
tion of “seen” 3D shape data, resulting in insufficient generalization
to new “unseen” categories. Additionally, the hand-crafted semantic
attributes designed for “seen” data cannot cover the characteristics
∗Corresponding Author
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Figure 1: Improve CLIP’s confidence at zero-shot 3D shape
recognition in the visual aspect: select images with clear
semantics.

of “unseen” data and mapping high-level shape features to these
attributes is difficult. Pre-trained large-scale models have demon-
strated strong generalization capabilities, making them highly fa-
vored for zero-shot tasks. Due to the absence of comparable pre-
trained models specifically designed for 3D shapes, recent methods
utilize vision-language models (e.g., CLIP [26]) to realize zero-shot
3D shape recognition, which can be classified into training-based
and non-training-based methods. Training-based methods [13, 35]
create multi-modal datasets for 3D shapes and performmulti-modal
contrasts. Integrating 3D data into the pre-training stage greatly en-
hances the capabilities of zero-shot 3D recognition. However, such
approach comes with challenges such as the need for large-scale
3D data, extensive pre-processing requirements, and high compu-
tational training costs. Non-training-based methods [28, 41, 47]
render 3D shapes into images which are later encoded by the visual
encoder of CLIP and compared with the textual encoding of cate-
gory labels. Our approach falls into the non-training paradigm and
raises concerns about the reliability of CLIP when applied to 3D
shape recognition, considering both the visual and textual prompt
aspects.

Visual aspect. PointCLIP [41] projected 3D point clouds to
sparsely distributed points in a depth map, which for the first time
leverage CLIP for zero-shot 3D shape recognition. To improve the
image quality according to CLIP’s preference, PointCLIP V2 [47]
transformed point clouds into voxels to generate much smoother
projection values and DiffCLIP [28] enhanced the style of depth
map closely to natural photos with diffusionmodel. CLIP2Point [14]
enhanced the projection between points and pixels and refined the
issue of excessive blank area in rendered depth images. However,
as shown in Figure 1, the view images with ambiguous semantics
confuse CLIP and will hinder the performance of shape recognition.

Prompt aspect. PointCLIP [41] adopted a hand-crafted template
“point cloud depth map of a [class]" as prompt. Similarly,
DiffCLIP [28] used “a 3D rendered image of a [class]". To
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具体的文本Prompt在40类别直接分干
扰项太多了。
在某几项类别中更能捕捉类型细节。
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Figure 2: Improve CLIP’s confidence at zero-shot 3D shape
recognition in the textual prompt: refine the prediction with
hierarchical prompts. Left: an example of bathtub that is
mis-classified into sink. Right: Statistical zero-shot top-k
accuracy on three popular datasets, which is obtained by
the CLIP model under the settings of 12 pre-defined online-
rendered views and hand-crafted prompts of first layer.

design a more detailed prompt in 3D perspective, PointCLIP V2
fed 3D command into GPT-3 like “Give a caption of a table
depth map" and obtained 3D-specific prompt such as “A height
map of a table with a top and several legs". By match-
ing the visual feature and textual feature encoded by pre-trained
model, the class that owns the highest similarity score becomes the
predicted result. However, based on our observations as shown in
Figure 2, sometimes the visual encoding does not perfectly match
the ground-truth textual encoding, but usually ranks at the fore-
front. Directly adopting the top-1 result as prediction will limit
further optimization.

To improve the confidence of pre-trained vision-languagemodels
towards the task of zero-shot 3D shape recognition, the proposed
MV-CLIP (Multi-View CLIP) is equipped with view selection and
hierarchical prompts. On the visual side, we select the view im-
ages with clear semantics based on the prediction entropy and fuse
the classification results of the selected views as the final predic-
tion. On the textual side, we propose a novel prompt mechanism
named hierarchical prompts. For the first layer, we design a hand-
crafted prompt as “a synthetic 3D model view of [class]
with different angles". By matching the encoding of selected
views and hand-crafted prompts via MV-CLIP, we acquire top-k
results as candidates for further consideration. The second layer
for refinement is designed based on current large language model
(GPT-3.5 [3]). Specifically towards the candidate classes, we feed
sentences like “describe the visual characteristics and
functional features of [candidate classes]" or “what is
the difference between [candidate classes] in visual
characteristics and functional features". The concise an-
swer generated by GPT is then used as the textual prompts for
these candidates. View selection improves CLIP’s confidence by
filtering confusing views while hierarchical prompts give MV-CLIP
a second chance with more specific descriptions. Consequently,
without any training the proposed method achieves impressive
zero-shot 3D classification accuracies of 84.44%, 91.51%, and 66.17%
on ModelNet40, ModelNet10, and ShapeNet Core55, respectively.
With the performance improvement of vision-language models, the

proposed lightweight method can be further extended to the latest
models to enhance zero-shot shape recognition performance.

In summary, the contributions are as follows:
• We propose MV-CLIP for directly extracting multi-view features.
We utilize the pre-trained image encoder as the backbone of the
multi-view network, achieving state-of-the-art performance in
zero-shot 3D shape recognition.

• We introduce a view selection module to evaluate the quality
of each view based on the principle of entropy minimization.
This allows us to identify views that have a positive impact on
MV-CLIP.

• We propose a novel hierarchical prompts strategy to improve the
matching between MV-CLIP’s view representations and textual
prompts. With the candidates voted by the first-layer classifi-
cation, LLMs-powered prompts towards candidates contribute
more accurate second-layer matching.

2 RELATEDWORK
2.1 Zero-shot Learning in 3D Shape Recognition

In recent years, Vision-Language Models (VLMs) such as CLIP
[26], which employs large-scale image-text contrastive pre-training,
have achieved remarkable success in the realm of 2D visual task.
Many works [13, 14, 20, 27, 32, 35, 38, 39, 41] have explored to apply
VLMs in 3D learning, thereby attaining the capability of zero-shot
recognition.

Some methods directly apply VLMs to the 3D domain. Point-
CLIP [41] stands as the pioneering effort in applying VLMs to 3D
recognition. It directly projects point clouds into multi-view depth
maps and utilizes a frozen CLIP model for zero-shot classification.
With this advancement, PointCLIP V2 [47] introduces more real-
istic shape projection and utilizes LLMs-assisted 3D prompts to
effectively mitigate the 2D-3D domain gap. Meanwhile, CLIP2Point
[14] fixes CLIP and additionally trains a depth encoder using 3D
dataset with initialization of CLIP’s visual encoder.

In addition, other methods explore extending the multi-modal
learning between images and language to 3D modalities [13, 20,
35, 36, 38], achieving impressive zero-shot 3D model recognition
performance. ULIP [35] learns a unified representation between
language, images, and point clouds, and it significantly enhances the
recognition capability of 3D backbone. Furthermore, ULIP-2 [36]
specifically focuses on the scalability and comprehensiveness of the
language modality. The more recent work of Openshape [20] also
adopts a multi-modality contrastive learning framework, which
improves the ability of open-world 3D shape understanding by
improving aspects such as data scalability, text quality, 3D backbone
scaling, and data resampling.

In this paper, we focus on lightweight zero-shot 3D recognition
without the necessity for 3D pre-training, resulting in outstanding
zero-shot classification performance, comparable to the state-of-
the-art results achieved by multi-modal contrast methods that need
fine-tuning.

2.2 Multi-View in 3D Shape Recognition
For 3D shape recognition, multi-view representation stands as

one of the most classical types, which employs 2D views from mul-
tiple perspectives to represent 3D shapes. The work proposed by



Bradski et al. [2] was the trailblazer in employing multiple views
to depict 3D shapes. Subsequently, with the advancement of deep
learning, MVCNN [29] uses 2D CNN to extract features from a set of
predefined views and aggregates them into a descriptor that could
effectively represent 3D shapes. View-GCN [33] utilizes dynamic
graph convolutional networks for hierarchical learning, leveraging
inter-view relationship information to aggregate multi-view fea-
tures. MVTN [12] combines differentiable rendering techniques for
predicting the optimal viewing angles in multi-view setups, which
enhances the robustness and recognition performance ofmulti-view
networks. Additionally, some recent studies [9, 40, 41, 43] process
3D point clouds in the form of multiple depth images, which further
emphasizes the importance of multi-view in 3D shape recognition.

However, it is essential to ensure the effectiveness of each view
in the multiple views for subsequent tasks. In this study, we exploit
the extensive semantic insights provided by VLMs [26] to assess the
efficacy of multiple views. We select a subset of views for each 3D
shape, prioritizing those that offer semantic clarity and excluding
those that introduce ambiguous information.

2.3 Prompt Learning in Vision
The concept of prompts is initially introduced in the field of

Natural Language Processing (NLP) [17, 21, 31], and has found
increasingly flexible and widespread application in pre-trained lan-
guage models such as BERT [8] and the GPT [3] series. Inspired by
the success of prompts in NLP, the practice of prompt engineering
has also been adopted in 2D vision [1, 10, 16, 19, 26, 45, 46]. Some
of them employ a few learnable prompts either in the encoder input
[45, 46] or within the transformer layers [19] to adapt the model
for enhanced alignment between text and images. Others introduce
visual prompting to apply in the pixel space [1, 16] or embeddings
of input images [10] without extensive retraining or fine-tuning.

Additionally, in vision approaches related to CLIP [26], notable
advancements have been achieved by integrating LLMs to refine the
prompts. CuPL [24] and CaFo [42] utilize GPT-3 [3] to improve the
downstream capabilities of CLIP in handling a variety of 2D datasets.
Meanwhile, CHiLS [23] employs GPT-3 [3] to generate subclass
labels that formmutually mapping hierarchical label sets, which are
utilized to produce the final prediction. PointCLIP V2 [47] prompts
GPT-3 [3] to enhance performance in open-world 3D tasks using 3D-
oriented commands. Concurrently, ULIP-2 [36] and OpenShape [20]
leverage LLMs to improve the quality of 3D prompts, aiming to a
more effective alignment across various modalities. Although LLMs
facilitate the design of prompts, the single-step top-1 prediction
limits further improvement.

In this paper, we propose a novel strategy of hierarchical prompts.
At the first layer, candidate categories are voted via matching hand-
crafted prompts. At the second layer, we further utilize GPT-3.5
[3] to generate 3D-specific prompts for these candidates in aspects
of function and difference. The design of hierarchical prompts en-
ables more accurate category prediction without the necessity for
training.

3 METHODOLOGY
The overview of Multi-View CLIP (MV-CLIP) for zero-shot 3D

shape recognition is illustrated in Figure 3. In Sec. 3.1, we give a brief

introduction to multi-view rendering and visual feature extraction.
Sec. 3.2 explains how semantic information indicated by CLIP [26]
is utilized to filter ambiguous views. Furthermore, in Sec. 3.3, we
design hierarchical prompts to firstly propose candidates and then
refine the prediction.

3.1 View Rendering and Feature Extraction
In order to fully validate and implement the proposed view selec-

tion module, we employ a multi-view online renderer R [11]. In our
approach, we initially render a total of𝑀 views𝑋 = {𝑥𝑖 }𝑀𝑖=1 for a 3D
shape based on fixed view configurations. We adopt three different
view configurations, among which the circular [29] aligns view-
points on a circle around the object, the spherical [18, 33] aligns
equally spaced view-points on a sphere surrounding the object,
and the random selects randomly view-points around the object. In
addition, we replace 2D CNNs in the traditional multi-view convo-
lutional neural network [29] with pre-trained visual encoder, which
is referred to as MV-CLIP for zero-shot 3D recognition network.
The feature extraction for multiple views is formulated as:

{𝑓 }𝑀𝑖=1 = E𝑉 (R(S)) (1)

where E𝑉 denotes the visual encoder of MV-CLIP, R represents the
online renderer, and S stands for an arbitrary 3D shape.

3.2 View Selection
The objective of this module is to select views that capture clear

semantic features of the 3D shape from multiple pre-defined views.
As entropy reflects the prediction uncertainty, we utilize it to evalu-
ate the prediction confidence of pre-trained models. The views with
higher prediction confidence are selected as representative views.
In the following contents, we will first elaborate the prediction
process via CLIP [26] and then compute entropy for view selection.

Specifically, we evaluate the semantic representation of each
view by matching the straightforward and hand-crafted prompts.
Based on Eq. 1, multiple views are passed through MV-CLIP to ob-
tain corresponding visual features, denoted as {𝑓 }𝑀𝑖=1 ∈ R𝑀×𝐶 . For
textual prompts, we design a pre-defined template: “a synthetic
3D model view of [class] with different angles .” to
generate hand-crafted prompts containing 𝐾 categories and encode
their textual features as𝑊𝑡 ∈ R𝐾×𝐶 . Subsequently, the prediction
of each view is calculated separately,

𝑙𝑜𝑔𝑖𝑡𝑠𝑖 = 𝑓𝑖𝑊
𝑇
𝑡 , 𝑓 𝑜𝑟 𝑖 = 1, . . . , 𝑀 (2)

where each bit of 𝑙𝑜𝑔𝑖𝑡𝑠𝑖 represents the similarity score between
the 𝑖𝑡ℎ view and each category.

Then the entropy of 𝑙𝑜𝑔𝑖𝑡𝑠𝑖 is computed as:

𝐻 (𝑙𝑜𝑔𝑖𝑡𝑠𝑖 ) = −
𝐾∑︁
𝑗=1

𝑃 (𝑙𝑜𝑔𝑖𝑡𝑠𝑖, 𝑗 ) log2 𝑃 (𝑙𝑜𝑔𝑖𝑡𝑠𝑖, 𝑗 ) (3)

where𝐻 (·) denotes the entropy of 𝑙𝑜𝑔𝑖𝑡𝑠𝑖 , which is the information
summation over all possible categories. Besides, 𝑃 (𝑙𝑜𝑔𝑖𝑡𝑠𝑖, 𝑗 ) repre-
sents the probability of the occurrence of the 𝑗𝑡ℎ category, and the
term log2 𝑃 (𝑙𝑜𝑔𝑖𝑡𝑠𝑖, 𝑗 ) is used to quantify the information content of
the probability. Lower entropy signifies higher information quality
compared with other views of the same 3D shape.
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Figure 3: Overview of the proposed MV-CLIP for zero-shot 3D shape recognition. Firstly, multiple view images are obtained via
a render R and the corresponding visual features are extracted via the visual encoder of CLIP [26]. Secondly, visual features are
matched with textual features encoded by CLIP with hand-crafted prompts, and we select representative views according the
prediction confidence. By aggregating the representative predictions, several candidates with the top classification probability
are kept for the second matching. Finally, by matching the prompts powered by LLMs for these candidates, the prediction
result is refined.

We rank all views by the entropy of prediction and select a subset
of views with clearer semantics, i.e., smaller entropy, to represent
the 3D shape. The selected views are denoted as:

𝑋𝑠𝑒𝑙𝑒𝑐 = {𝑥𝑖 |𝑅𝑎𝑛𝑘 (𝐻 (𝑙𝑜𝑔𝑖𝑡𝑠𝑖 )) <= 𝑀𝑠𝑒𝑙𝑒𝑐 } (4)

where the 𝑅𝑎𝑛𝑘 (·) is used to sort the information quality in ascend-
ing order, and𝑀𝑠𝑒𝑙𝑒𝑐 represents the number of selected views.

3.3 Hierarchical Prompts
3.3.1 3D-Specific Prompts Powered by LLMs. As previously shown
in Figure 2, due to modality gap, the prediction via CLIP is not
confident enough. Therefore, we propose the hierarchical prompts
where for the first layer hand-crafted prompts with clear category
indication are used to vote several class candidates and for the
second layer we utilize the prompts generated by powerful LLMs
for these candidate classes. The prediction result gets refined by
twice matching the view feature with hierarchical prompts.

With the consideration that the pre-trained models is trained
using a collection of image-text pairs obtained from the Internet,
besides focusing on the difference between candidates, we enhance
the richness of prompts for augmenting the functional attributes.

Specifically, we employ a pre-defined question template and uti-
lize the GPT-3.5 [3] to generate 3D textual description: “Describe
the visual characteristics and functional features of
[candidate classes]’s rendering view.”

Take the candidate classes as [dresser, bookshelf, wardrobe] for
example, GPT-3.5 produces:

• It displays a series of horizontal shelves designed to
hold books to provide storage for reading materials.

• It has the vertical structure with multiple drawers
used for storing clothes or personal items.

• It is tall, upright structures with multiple compart-
ments or shelves for storing clothes and accessories.

Subsequently, the specific prompts are encoded by the pre-trained
textual encoder E𝑇 into text features, which are then utilized for
second-layer classification. Formally, the textual features for candi-
date classes are represented as:

{𝑡}𝑘𝑖=1 = E𝑇 (LLM(𝑄𝑖 )) (5)

where 𝑄𝑖 is the question template with the 𝑖𝑡ℎ candidate class and
𝑘 represents the number of candidate classes.



3.3.2 Hierarchical Prompts Matching. The potential of the match-
ing capability of 3D shape using hand-crafted prompts has been
overlooked in zero-shot 3D learning with CLIP. Under the hand-
crafted prompts, the first-layer classification score via MV-CLIP is
computed by aggregating the scores of the selected views. Formally,
denote the prediction of a 3D shape in the first layer as:

𝑙𝑜𝑔𝑖𝑡𝑠𝐼 =
∑𝑀𝑠𝑒𝑙𝑒𝑐

𝑖=1 𝑙𝑜𝑔𝑖𝑡𝑠𝑖 (6)
where 𝑙𝑜𝑔𝑖𝑡𝑠𝑖 is computed as Eq. 2, and𝑀𝑠𝑒𝑙𝑒𝑐 denotes the number
of selected views.

If the prediction output by the first layer is not confident enough,
e.g., the maximum probability within 𝑙𝑜𝑔𝑖𝑡𝑠𝐼 is lower than a thresh-
old 𝛿 , we choose the 𝑡𝑜𝑝-𝑘 labels as candidate classes for the second
matching. Subsequently, at the second-layer, we employ the spe-
cific prompts generated by LLMs for re-matching to attain optimal
classification outcomes.

Suppose the textual features in the second layer towards can-
didate classes are 𝑊𝑡𝑘 = {𝑡1; 𝑡2; 𝑡3; · · · ; 𝑡𝑘 } ∈ R𝑘×𝐶 where 𝑡 is
encoded as Eq. 5, the final prediction is computed as:

𝑙𝑜𝑔𝑖𝑡𝑠𝐼 𝐼 =
∑𝑀𝑠𝑒𝑙𝑒𝑐

𝑖=1 𝑓𝑖𝑊
𝑇
𝑡𝑘

(7)

𝑦𝑝𝑟𝑒 = 𝐴𝑟𝑔𝑚𝑎𝑥 (𝑙𝑜𝑔𝑖𝑡𝑠𝐼 𝐼 ) (8)
Rather than directly classifying within the initial categories, we

combine hand-crafted and LLMs generated prompts into a novel
strategy of hierarchical prompts. For less certain samples, MV-
CLIP will further focus on category details within a limited set
of candidate labels, thereby achieving more accurate zero-shot
recognition results.

4 EXPERIMENTS
4.1 Dataset

We evaluate the performance of zero-shot 3D shape classification
on three popular datasets ModelNet10[34], ModelNet40[34] and
ShapeNet Core55[4], using the complete test set without any
pre-training on 3D training set.

ModelNet10 andModelNet40 are two synthetic 3Dmodel datasets
commonly used for shape recognition and classification tasks. The
former one selects 10 most common categories from ModelNet [34]
and provides a simplified dataset. It contains approximately 4,899
3D models from 10 different categories, with 908 3D models used
for testing. In contrast, the ModelNet40 includes a greater number
of categories and exhibits a richer variety of 3D shapes. It consists
of 40 categories from ModelNet [34] and comprises a total of 12,311
3D models, with 2,468 samples for testing. ShapeNet Core55 is a
more diverse and challenging synthetic 3D dataset, widely used for
3D model analysis and understanding. It selects 55 commonly seen
categories from ShapeNet [4], comprising approximately 51,300
shapes in total, with 10,265 shapes for testing.

4.2 Experimental Setting and Details
Our framework is built entirely on the PyTorch and experiments

are executed on the NVIDIA RTX 3090 GPU. In terms of multi-view
processing, we transform theMVCNNarchitecture by incorporating
the publicly available pre-trained visual encoders, OpenCLIP[15]
and CLIP[26], specifically utilizing the ViT/B-16 as the backbone

network for extracting view features. Regarding the hierarchical
prompts, we employ the existing large-scale language model GPT-
3.5[3] to generate the 3D-specific prompts of candidate classes. To
maintain the conciseness of the prompts, we enforce the prompt
length constraint of 40.

In terms of experimental details, we designate the batch size as
4 and establish the confidence threshold parameter 𝛿 at 0.96. The
rendering of multi-views is executed using the MV-pytorch [11]
framework. Following the default settings of the online renderer,
we uniformly set the rendering color to gray and the background
color to white. The radial distance between the centroid of model
and the camera is fixed at a value of 2, with an incorporation of
random lighting conditions. The dimensions of the output views are
set to 224×224 pixels. For the experimental results, unless explicitly
stated otherwise, we concentrate on rendering views from a circular
perspective. Except addressed particularly, we set the total number
of views to 20 and the selected number of views to 4 for analysis.

4.3 Zero-shot 3D recognition
In Table 1, we evaluate the performance of zero-shot 3D shape

recognition on ModelNet10 and ModelNet40 using the complete
test set without any pre-training on 3D training set. Training-based
methods utilize large-scale 3D datasets for multi-modal contrastive
learning. CG3D [13], ULIP [35] and ULIP2 [36] employ an upgraded
version of CLIP named SLIP [22], while OpenShape [20] uses the
best model of OpenCLIP [15]. On the other hand, non-training-
based methods like PointCLIP V2 [47] and DiffCLIP [14] use CLIP-
ViT/B-16 [26]. For MV-CLIP, we use ViT/B-16 from both CLIP [26]
and OpenCLIP [15] for our experiments. Besides, our approach
achieves a zero-shot classification accuracy of 91.51% and 84.44%
on the ModelNet10 and ModelNet40, respectively. The results are
among the best in zero-shot 3D shape classification without any pre-
training on 3D data, and they are comparable to the state-of-the-art
results based on multi-modal contrast.

Although in the absence of 3D dataset training, our approach
could still achieve competitive experimental results by fully lever-
aging the potential of the pre-trained model for 3D shape analysis.
Our approach selects views with clear semantics from original
multiple views, which significantly enhances the discriminative
power of MV-CLIP and avoids the interference of semantically am-
biguous views. Furthermore, under the first matching with hand-
crafted prompts, we leverage LLMs-generated prompts that describe
the characteristics within the scope of candidate labels for refined
matching, effectively improving the zero-shot performance with
hierarchical prompts.

4.4 Ablation Study
4.4.1 Effectiveness of the designed modules. As shown in Table 2,
we conduct ablation study for individual modules and different
versions of CLIP. We observe that with the addition of key com-
ponents and the upgrade of CLIP versions, there is a consistent
improvement in zero-shot 3D shape recognition performance.

We initially analyze the benefits brought by different moudles
based on the baseline that uses OpenCLIP’s ViT/B-16 as the back-
bone. By incorporating only the hierarchical prompts, the accuracy



Table 1: Zero-shot 3D shape classification performance. We compare the experimental results of existing zero-shot 3D learning
methods using their best-performing settings on ModelNet10 and ModelNet40.

Method CLIP version Pre-training source Zero-shot performance
ModelNet40 ModelNet10

CG3D[13]+PointTransformer[44]

SLIP[22]

ShapeNet[4] 50.6 -
ULIP[35]+PointBERT[37] ShapeNet[4] 60.4 -
ULIP2[36]+Point-BERT[37] ShapeNet[4] 66.4 -
ULIP2[36]+Point-BERT[37] Objaverse[7] 74 -

OpenShape[20]+PointBERT[37] OpenCLIP[15] ShapeNet[4] 72.9 -
OpenShape[20]+PointBERT[37] Ensembled(no LVIS)[20] 85.3 -

CLIP2Point[14] CLIP[26] ShapeNet[4] 49.38 66.63
Recon[25] 61.7 75.6

PointCLIP[41]
CLIP[26]

× 20.18 30.23
PointCLIP v2[47] × 64.22 73.13
DiffCLIP[28] × 49.7 80.6

Ours CLIP[22] × 65.92 77.53
OpenCLIP[15] × 84.44 91.51

Table 2: Performance comparison with different components. We conduct ablation study on ModelNet10, ModelNet40 and
ShapeNet Core55 to explore the impact of individual designed modules on the experimental results, respectively.

CLIP
(ViT\B-16)

OpenCLIP
(ViT\B-16)

View
selection

Hierarchical
prompts

Zero-shot 3D classification
ModelNet40 ModelNet10 ShapeNet Core55

√ × × × 61.93 70.70 57.90√ × × √
63.85 (↑ 1.92) 71.37 (↑ 0.67) 58.70 (↑ 0.8)√ × √ × 64.18 (↑ 2.25) 76.34 (↑ 5.64) 60.80 (↑ 2.9)√ × √ √
65.92 (↑ 3.99) 77.53 (↑ 6.83) 61.70 (↑ 3.8)

× √ × × 78.03 86.45 60.62
× √ × √

80.22 (↑ 2.19) 87.35 (↑ 0.9) 61.77 (↑ 1.15)
× √ √ × 83.32 (↑ 5.29) 90.41 (↑ 3.96) 64.89 (↑ 4.27)
× √ √ √

84.44 (↑ 6.41) 91.51 (↑ 5.06) 66.17 (↑ 5.55)

improvements of 2.19%, 0.9%, and 1.15% are achieved on Model-
Net40, ModelNet10 and ShapeNet Core55, respectively. It validates
the effectiveness of being tolerate with several candidates and giv-
ing a further refined matching. By incorporating only the view
selection, higher improvements are achieved, i.e., 5.29%, 3.96%, and
4.27% on three datasets. It shows that the selected views possess
clearer semantic information and effectively mitigate the adverse
impact of ambiguous views. Furthermore, it indicates that the first-
layer of class-level hand-crafted prompts can effectively eliminate
interfering categories, allowing the functional-level prompts of
second-layer to have good candidate classes. When both modules
are employed, we achieve the best results, with improvements of
6.41%, 5.06%, and 5.55% against baseline. The significant improve-
ments demonstrates that the key modules could facilitate each
other, both enhancing MV-CLIP’s confidence towards 3D shape
recognition.

In addition, we also conduct ablation experiments on different
CLIP versions. By altering the backbone network in MV-CLIP from
CLIP [26] to OpenCLIP [15], we observe the gains of 16.10%, 15.75%,
and 2.72% on ModelNet40, ModelNet10 and ShapeNet Core55 re-
spectively. With CLIP as backbone, the proposed modules bring the

gains of 3.99%, 6.83%, and 3.8%. It implies that our method has po-
tentials to adapt to various pre-trained vision-language models and
will further lift the performance of zero-shot 3D shape recognition
with rising advanced pre-trained models.

4.4.2 Discussions on the view selection module. Table 3, 4 and 5
show the classification results on ModelNet40 for different number
of views, view rendering configurations and multi-view aggrega-
tion types, respectively. Additionally, we show the superiority of
selected views with the average accuracy of individual view image
and further discuss the variance of selected views, as shown in
Table 6 and Figure 4.

(1) Different number of views. In Table 3, we find that in the case
of multi-view setting without selection, once the number of views
exceeds 12, the performance of 3D shape classification improves
slowly (almost no gains). With the adoption of view selection, the
zero-shot classification performance is steadily improved, but select-
ing too many views will bring redundant information and slightly
hinder the performance.

(2) Different configurations of rendering. Table 4 shows not only
the importance of view quality, but also the effectiveness of view



Table 3: View selection ablation with different number of
views on ModelNet40.

𝑀 𝑀𝑠𝑒𝑙𝑒𝑐 First-layer Second-layer

𝑤/
Vs 20

12 82.62 83.43
8 83.21 84.27
4 83.32 84.44

𝑤/𝑜
Vs

20 78.03 79.65
12 78.02 80.22
8 76.41 77.47
4 64.38 61.91

Table 4: View selection ablation with different configurations
of rendering on ModelNet40.

View configuration First-layer Second-layer

Random 𝑤/𝑜 Vs 57.90 58.02
𝑤/ Vs 75.08 (↑ 17.18) 75.72 (↑ 17.7)

Spherical 𝑤/𝑜 Vs 64.02 61.79
𝑤/ Vs 69.20 (↑ 5.18) 69.43 (↑ 7.64)

Circular 𝑤/𝑜 Vs 78.03 80.22
𝑤/ Vs 83.32 (↑ 5.29) 84.44 (↑ 4.22)

Table 5: View selection abla-
tion with different aggrega-
tion types on ModelNet40.

Aggregation type Acc

𝑤/Mean pooling 66.89
𝑤/Max pooling 62.27
𝑤/𝑜 Pooling 84.44

Table 6: Average accuracy for indi-
vidual view on ModelNet40 (only
first layer involved).

Dataset All views
(20)

Selected views
(4)

MN40 57.54 79.97
MN10 66.37 86.71
SN55 51.23 64.07

Table 7: Hierarchical prompts ablation with different
prompt settings on ModelNet40. All results are based on
an accuracy of 83.32% at the first layer.

Prompts setting Acc
Only visual characteristics prompts of candidate classes 83.72
Only functional features prompts of candidate classes 83.75

Fusion of visual characteristics and functional features prompts 84.31
The prompts of difference between candidate classes 84.42

The visual characteristics and functional features of candidate classes 84.44
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Figure 4: The decisions of the selected 4 views of
40×4 randomly chosen samples onModelNet40.
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Figure 5: Sensitivity analysis of view selection and hierarchical prompts on
ModelNet40.

selection to filter low-quality views. Furthermore, the gains caused
by view selection will increase when the view sets contain poorer
viewpoints. Please note that the camera positions of different con-
figurations are shown in the supplement and Figure 7 gives an
example of captured views under these configurations.

(3) Different multi-view aggregation types. In Table 5, given that
the backbone network of MV-CLIP is a 2D pre-trained visual en-
coder, aggregating the features of multiple views negatively affects
the alignment between views and texts. Therefore, unlike MVCNN,
MV-CLIP fuses the prediction instead of any pooling of features.

(4) Average accuracy for individual view. Table 6 illustrates the
average view prediction accuracy of the selected views and the
total views on three datasets. We find that the views within the
selected set have much higher accuracy than the rest, which shows
that view selection choose views with high prediction confidence

from multiple views, and filters the negative influence of views
with ambiguous semantics on the final decision.

(5) Variance within the selected views. Figure 4 shows the vari-
ance within the selected view decisions, where red patch indicates
the right decision and different colors in each column show the
disagreement. We find that the views selected in most samples have
similar decisions, and we regard the similar decision as a kind of
weighting where the fused decision of selected views is impacted
by majority voting. Furthermore, we tried another variant of view
selection by keeping more diversity in decisions of selected views.
Along the increase of entropy, we select 4 views with different
decisions, but the accuracy only reaches 74.68% (84.44% for the pro-
posed method). It indicates that incorporating views with contrary
decisions may introduce ambiguity into the final decision-making
process.

4.4.3 Discussions on the hierarchical prompts module.



(1) Different prompt settings. Several variants for prompting have
been tried, with emphasis on only visual characteristics, only func-
tional features, fusion of the both, difference between candidates
and a combination of visual and functional features. Table 7 illus-
trates the results of different variants, which shows that both visual
and functional characteristics are important and each aspect con-
tributes comparatively. Putting emphasis on the difference between
candidates is also an alternative way for the second matching.

(2) The correction capability of hierarchical prompts. As shown in
Figure 6, we visualize some successful and failed cases caused by the
second-layer matching based on hierarchical prompts. Sometimes
the second matching changes the decision of first-layer matching.
Statistically, the number of successful corrections by second-layer
matching is approximately 2.3 times that of failure cases. Addi-
tionally, we find that in most of the successful cases, the unique
function and shape characteristics compared to other categories
are captured in the second match. For example, bathtub is used for
bathing, dresser has multiple drawers for storing items, toilet has a
water tank, and monitor has a rectangular screen. We also summa-
rize the failed reasons as: (1) Visual similarity, e.g., vase and cup. (2)
Limited rendering quality, e.g., views of glass_box do not display
transparency which is an important attribute in the second layer
prompt. (3) Prompt quality, e.g., desk has more explicit descriptions
than table. (4) Co-existence of multiple objects, e.g., flower_pot and
plant.

4.5 Sensitivity Analysis
We discuss the prediction accuracy affected by different views

settings of view selection and different numbers of candidate classes,
as shown in Figure 5. According to our observations, selecting
too few views results in insufficient information, while selecting
too many views reduces the benefits of view selection under a
defined total number of views, which are not desirable for zero-
shot 3D recognition. Furthermore, if the total number of views
is excessively high, it can lead to high similarity among different
views, resulting in the selected views being similar to each other
and lack of diversity.

Additionally, we test on the classification results under the dif-
ferent numbers of candidate classes, as shown in Figure 5. We can
observe that when the number of candidate labels equals to 3, it
leads to the maximum gain in hierarchical prompts. It reflects that
the LLMs powered prompts in the second layer, which describe
fine-grained characteristics of categories, performs better within a
limited number of classes.

4.6 Visualization
As shown in Figure 7, we visualize a subset of the selected views.

It is observable that the chosen views typically encompass more
comprehensive category features and have relatively clearer se-
mantic information. In contrast, views with fewer features or even
lacking semantic contents, like the bottom of a cup, the back of a
piano or the side of a bookshelf, are not selected. Consequently, the
view selection based on entropy minimization effectively reduces
the redundancy present in the rendered multiple views of a 3D
shape.

vase vase √ cup × glass_box glass_box √ bathtub ×

table table √ desk × plant plant √ flower_pot×

bathtub sink× bathtub√

toilet sink× toilet√

dresser night_stand× dresser√

monitor range_hood× monitor√

Ground truth 1st prediction  2nd prediction Ground truth 1st prediction  2nd prediction 

Figure 6: Visualization of successful and failed cases for sec-
ond matching. Note that the text below the selected views
represents the true label, the first-layer prediction, and the
second-layer prediction, respectively.

Circular view configuration-Bookshelf

Spherical view configuration-Piano

Random view configuration-Cup

发光图案
填充

加阴
影

加透
视

Figure 7: Visualization of multiple views from the models
in ModelNet40. Note that the selected views are indicated by
green boxes.

5 CONCLUSION
We design a zero-shot 3D recognition pipeline based onMV-CLIP

to fully leverage the large-scale pre-trained models. We utilize the
pre-trained visual encoder to evaluate the prediction confidence of
the rendered multiple views, and explicitly select views with clearer
semantics. In addition, we combine hand-crafted prompts with 3D-
specific prompts powered by LLMs to form hierarchical prompts,
which refine the first-layer prediction and achieve more accurate
zero-shot performance via the second-layer matching. The experi-
mental results demonstrate that we obtain superior performance
of zero-shot 3D shape recognition by directly utilizing pre-trained
models without any pre-training on 3D dataset, and this paper also
discovers some interesting findings in prompt engineering.
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