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ZX-diagrams are a powerful graphical
language for the description of quantum
processes with applications in fundamental
quantum mechanics, quantum circuit opti-
mization, tensor network simulation, and
many more. The utility of ZX-diagrams
relies on a set of local transformation
rules that can be applied to them with-
out changing the underlying quantum pro-
cess they describe. These rules can be ex-
ploited to optimize the structure of ZX-
diagrams for a range of applications. How-
ever, finding an optimal sequence of trans-
formation rules is generally an open prob-
lem. In this work, we bring together
ZX-diagrams with reinforcement learning,
a machine learning technique designed to
discover an optimal sequence of actions in
a decision-making problem and show that
a trained reinforcement learning agent can
significantly outperform other optimiza-
tion techniques like a greedy strategy or
simulated annealing. The use of graph
neural networks to encode the policy of the
agent enables generalization to diagrams
much bigger than seen during the training
phase.

1 Introduction

ZX-calculus is a diagrammatic language for the
representation of quantum processes as graphs
equipped with a set of local transformation
rules. Due to the utility of these transfor-
mation rules, ZX-calculus has been applied to
a wide range of problems ranging from fun-
damental quantum mechanics [1] over the de-
scription of measurement-based quantum com-
puting [2] and analyzing variational quantum cir-
cuits [3] to quantum error correction [4, 5]. In
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particular, ZX-calculus has proven a promising
candidate for speeding up tensor network simu-
lations [6] and quantum circuit optimization [7–
11]. However, finding the optimal sequence of
transformation rules to achieve a given task is
often a non-trivial task. Therefore, we bring
together ZX-diagrams with reinforcement learn-
ing (RL), a machine learning technique where an
agent iteratively interacts with an environment
to learn a policy predicting an optimal sequence
of actions. RL has been successfully applied to
various domains such as game-playing [12, 13],
robotics [14, 15], quantum chemistry [16, 17], and
problems in quantum computing like quantum er-
ror correction [18–20], quantum control [21, 22],
and circuit optimization [23, 24]. To capitalize on
the graph structure of ZX-diagrams, we encode
the policy of our reinforcement learning agent as
a graph neural network (GNN) [25]. We train the
agent to reduce the node number of random ZX-
diagrams and show that the agent learns a non-
trivial strategy outperforming a greedy strategy
and simulated annealing. Moreover, the agent’s
policy generalizes well to diagrams much larger
than seen during training. Our work lays the
foundation for applying the combination of RL
and ZX-calculus to a broad range of tasks like
minimizing the gate count of quantum circuits or
speeding up tensor network simulations by chang-
ing the optimization goal of the agent in future
work.

2 ZX-diagrams

A ZX-diagram is a graph representation of a
quantum process defined by an arbitrary com-
plex matrix of size 2k ×2j , where j is the number
of ingoing and k the number of outgoing edges
of the diagram. For example, we can represent
the following matrix either as a quantum circuit
consisting of single qubit X- and Z-gates and a
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Figure 1: Schematic of the optimization loop. At each step, the reinforcement learning agent is provided with a
ZX-diagram in the form of a graph. The agent then uses a graph neural network to suggest action probabilities of
local graph transformations (color-coded), which act on either a unique edge (orange) or node (blue). Finally, an
action is sampled from this probability distribution and applied to the diagram. In total, there are 6 separate actions
per node and edge, some of which are not allowed in their local environment and, therefore, masked (grey dots). For
a definition of the graph transformations see Figure 2.

CNOT gate or as a ZX-diagram according to

Z
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(1)
The central building blocks of ZX-diagrams are
Z-spiders (white) and X-spiders (grey) defined as

 = |0…0⟩⟨0…0 | + eiα |1…1⟩⟨1…1 |α mn

 = | + … + ⟩⟨ + … + | + eiα | − … − ⟩⟨ − … − |α mn

 }m  }m
 }m  }m

 } n  } n

 } n  } n ,
(2)

where |1/0⟩ (| + /−⟩) are the eigenvectors of the
Pauli-Z (Pauli-X) matrix, α is an angle, and n
and m are non-negative integers specifying the
amount of input and output edges of the spi-
der. While multiple different ZX-diagrams can
describe the same underlying matrix, they can
be transformed into each other by the set of local
transformation rules depicted in Figure 2, which
are correct up to a non-zero scalar factor [26].
These rules also imply that multiple edges con-
necting spiders of the same color can be reduced
to just one edge and multiple edges between spi-
ders of differing colors can be taken modulo two.
Therefore, and due to the inherent symmetries
of the Z- and X-spiders, ZX-diagrams can be re-
garded as simple graphs [27].

3 Optimization of ZX-diagrams as a
reinforcement learning problem

Reinforcement learning (RL) is a machine learn-
ing technique where an agent recursively interacts
with an environment during a trajectory compris-
ing multiple steps. At each step t, the agent uses
its policy to select an action (in our case a graph
transformation) based on an observation describ-
ing the environment’s state (in our case a ZX-
diagram) as depicted in Figure 1. This action
then modifies the state of the environment and
a new observation and a numerical value, the re-
ward rt (in our case the difference in node num-
ber between the old and new diagram), is sup-
plied to the agent. This scheme continues until
the environment terminates the trajectory after a
fixed amount of steps or the agent chooses a spe-
cial Stop action. The agent is trained by repeat-
ing two phases: During the sampling phase the
agent interacts with the environment for a fixed
amount of steps. Then, during the training phase,
the agent’s policy is updated to maximize the ex-
pected cumulative reward over a complete trajec-
tory ⟨

∑
t γ

trt⟩, where γ is the discount factor [28].
To enable the use of graph neural networks to
encode the agent’s policy, we use a custom im-
plementation of a state-of-the-art reinforcement
learning algorithm named Proximal Policy Opti-
mization (PPO) [29] to train the agent (for details
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Figure 2: Encoding of the local transformation rules of ZX-diagrams as actions of a reinforcement learning agent.
Blue colors indicate the encoding as an action of the agent acting on either an edge or a node. Some transformations
are implemented in both directions as separate actions of the reinforcement learning agent (equal signs), while some
are only implemented in one direction (arrows). Three dots stand for zero or more edges. Each rule also holds with the
spiders’ colors inverted and in both directions. Black squares represent a Hadamard gate as defined by the Hadamard
fuse transformation. During the Unfuse transformation, a spider is split into two by arbitrarily splitting up its angle
between the two resulting spiders, connecting them with a new edge, and transferring a subset of the originally
connected edges (orange) to the new spider. In the Copy transformation, a ∈ 0, 1. In the Euler transformation,
α1/β1/γ1 are related to α2/β2/γ2 by trigonometric functions as defined in [26].

on the algorithm and ablation studies of its fea-
tures see Appendix B).

Each of the transformation rules of ZX-
diagrams acts only on the local neighborhood
of an edge or node. We can, therefore, identify
each possible action of the RL agent with either
a unique node or a unique edge as indicated by
the blue lines in Figure 2. The agent’s policy
then predicts the unnormalized log-likelihood for
each of the possible actions. By normalizing over
the whole diagram, we build a probability distri-
bution from which we sample an action that is
applied to the diagram (see Figure 1).

Some of the transformations are symmetric and
only implemented in one direction (arrows) re-
sulting in one action. For example, the Color
change transformation changes the color of a
spider by inserting Hadamards on all connected
edges. Because of the Identity transformation,
an implementation in the other direction would
be redundant. Other transformations need to be
implemented in both directions (equal signs). For
example, the Hadamard (un)fuse transformation
either fuses three spiders into a single Hadamard
or splits up a Hadamard into three spiders and
needs to be implemented as two separate actions.

The Unfuse transformation is especially chal-
lenging to implement since it requires choosing
a subset of the edges connected to the selected

node. As the number of edges connected to a spi-
der is in principle unbounded, defining multiple
Unfuse actions, each corresponding to separating
the spider with a specific division of its edge set
is not feasible. As a solution, we split up the
Unfuse transformation into multiple consecutive
actions of three types. First, the start Unfuse
action selects a spider. After that, the selected
spider is marked by a new node feature and the
agent can only select one of two actions at each
step: It can iteratively either use the Mark edge
action on an edge connected to the selected spi-
der or select the stop Unfuse action. Once the
stop Unfuse action is selected, the spider is split
and all previously marked edges (orange edges in
Figure 2) are moved to the newly created spider.
The angle remains fully at the original spider. To
also split the angle between both spiders, as an
extension, multiple different stop Unfuse actions
could be defined, each standing for a different an-
gle of the newly created spider. Due to the sym-
metry of the Bialgebra right transformation, it
can not be identified with a single unique edge.
Instead, it is applied if the agent selects one of the
corresponding 4 colored edges. Due to its poten-
tially global properties, the Copy transformation
is only implemented in one direction. In prin-
ciple, the other direction could be implemented
similarly as the Unfuse action by first iteratively

3



marking all participating nodes.
In total, the agent can choose from 6 different

actions for each node and each edge of the consid-
ered diagram. Additionally, the agent can always
select a global Stop action to end a trajectory
if it expects that it can’t optimize the diagram
any further. To enable more efficient training,
we mask actions that are not allowed in their lo-
cal environment by setting their probability to
0. Finally, after each step, possible Identity and
Hadamard loop transformations are applied auto-
matically and redundant edges are removed. We
also delete parts of the ZX-diagram that are dis-
connected from all ingoing and outgoing edges, as
they correspond to simple scalar factors.

To encode ZX-diagrams as observations sup-
plied to the agent, we represent them as undi-
rected graphs with one-hot encoded node fea-
tures. Each node has a color feature that can
either be Z-spider, X-spider, Hadamard, Input,
or Output and is, therefore, represented as a 5
dimensional vector. For example, the color fea-
ture of an X-spider would be [0, 1, 0, 0, 0]. The
Input and Output nodes are used to define the
ingoing and outgoing edges of the diagram by be-
ing connected to their otherwise open end. Ad-
ditionally, each node has an angle feature that
can either be an unspecified placeholder angle α,
multiples of π/2, or specify that the node is not
a spider and doesn’t have an angle. The angle
feature, therefore, is a 6 dimensional vector. The
discrete multiples of π/2 are necessary to eval-
uate the possibility of the transformation rules
depicted in Figure 2. Finally, each node has a
binary feature indicating whether the node has
been marked by the start Unfuse action. The
complete feature vector of each node n, xn

0 , given
to the agent’s policy is then all of its features con-
catenated into a single vector, resulting in a 12
dimensional vector. The feature vector e(n,m)

0 of
the edge connecting node n and m contains just
a single number that is 0 if the edge has not been
marked by the Mark edge action and 1 otherwise.

Finally, a vital part of every RL algorithm is
the definition of the reward of the agent as it de-
termines the optimization goal. To demonstrate
the utility of our algorithm we choose a reward
that is computationally cheap to evaluate and in-
tuitive to understand for humans but still requires
non-trivial strategies to maximize: The difference
in node number of the diagram before and after

action application. As the sum of those differ-
ences corresponds to the total change in node
number, the agent tries to minimize the total
amount of nodes in the diagram at the end of
the trajectory.

4 Neural network architecture

The use of a graph neural network (GNN) to en-
code the agent’s policy has several advantages:
As we suppose the ideal policy depends only on
the local structure of the ZX-diagram, we expect
the GNN to train more efficiently and general-
ize better to unseen diagrams than other neural
network architectures. Also, unlike a dense neu-
ral network, the GNN can handle any size of in-
put data. Therefore, it can be efficiently trained
on relatively small diagrams and later straight-
forwardly applied to much bigger diagrams.

As an input, the GNN directly takes the
graph representation of a ZX-diagram. First,
6 message-passing layers [30] are applied to the
graph. At each layer i, the node feature vectors
xn

i are updated according to

xn
i+1 = ϕi

xn
i ,

∑
xm

i ∈Nn

[ψi(xn
i , x

m
i , e

(n,m)
i )]

 ,
(3)

where Nn are the nearest neighbors of node n,
and ϕi and ψi are single dense neural network
layers. We also update the edge feature vectors
at each layer according to

e
(n,m)
i+1 = θi

(
e

(n,m)
i , xn

i , x
m
i

)
, (4)

where θi is also a single dense neural network
layer. After the message-passing layers, we ap-
ply the multi-layer perceptron χnode (xn

f ) to the
final features of each node xn

f and the multi-layer
perceptron χedge

(
e

(n,m)
f

)
to the final features of

each edge e(n,m)
f . The networks χnode and χedge

have 6 output neurons each which are interpreted
as the unnormalized log-probabilities of the pos-
sible actions (see Figure 1).

As the Stop action of the agent depends not
only on the local structure of the graph but also
on global features, we treat it differently from the
other actions by computing its unnormalized log-
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Figure 3: Results. (a) Training progress as the agent is trained to reduce the node number in random ZX-diagrams.
Mean cumulative reward of the agent per trajectory against total steps taken in the environment. (b) Optimization of
an example ZX-diagram ten times larger than the RL agent’s training diagrams. Number of nodes in the ZX-diagram
against each action taken for the RL agent (orange), a greedy strategy (blue), and simulated annealing (green). For
the RL agent and simulated annealing, multiple trajectories are plotted (transparent). The RL agent and simulated
annealing significantly outperform the greedy strategy in terms of cumulative reward with the RL agent requiring an
order of magnitude less steps than simulated annealing (inlay). Actions taken by the RL agent that intermittently
increase the node number (i.e. non-greedy actions) are indicated by arrows. (c) Average number of nodes after
optimization of 1000 ZX-diagrams with 10-15 initial spiders (left), which is the size the agent was trained on, and
100-150 initial spiders (right). Hyperparameters for simulated annealing are optimized to give good performance on
two example diagrams and then kept fixed for all diagrams. The agent outperforms both simulated annealing and the
greedy strategy on average, while also requiring much fewer steps than simulated annealing. (d) Two examples of
non-greedy actions learned by the agent (orange lines), that lead to a positive cumulative reward by consecutive Fuse
actions (blue lines). (e) Example ZX-diagram sampled from the agent’s training set. The greedy strategy can reduce
the node number by applying 3 Fuse actions (blue lines) while the agent further optimizes the diagram beginning
with a non-greedy Pi action (orange line).

probability according to

ps = χstop

(
C,MEAN

n
(xn

f ) ,MEAN
(n,m)

(
e

(n,m)
f

))
,

(5)
where χstop is a multi-layer perceptron, the

MEAN functions are taken over the final
node/edge features, and C is a vector contain-
ing global information about the amount of each
node type, edges and allowed actions.

For an efficient implementation of the GNN, we
use the TensorFlow-GNN software package [31]
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with custom layers to handle undirected edges.
For further details on the network architecture
and implementation see Appendix C.

5 Results

5.1 Training

We train the agent to reduce the node number in
randomly sampled ZX-diagrams with 10-15 ini-
tial spiders (for details on the diagram sampling
see Appendix A). The agent is trained for a to-
tal of 36 ∗ 106 total actions. However, it already
reaches its optimal performance around 9 ∗ 106

actions as shown in Figure 3 (a). To evaluate the
trained agent, we sample 1000 new ZX-diagrams
of the same size as the training set and optimize
them for 200 steps. We then calculate the av-
erage of the minimum number of nodes found
during optimization which is significantly lower
than the number of initial nodes. Next, we want
to answer the question of whether the learned
policy can straightforwardly be applied to larger
diagrams by repeating the same evaluation on
ZX-diagrams with 100-150 initial spiders. Even
though the agent was only trained on diagrams
an order of magnitude smaller, it can reduce the
number of nodes in the diagram substantially,
thereby highlighting the powerful generalization
ability of GNNs [see Figure 3 (c)]. To demon-
strate the need for non-trivial strategies of the
trained agent to achieve these results, we show
two selected actions that initially increase the spi-
der number but later lead to an overall positive
cumulative reward in Figure 3 (d).

Training the agent takes around 41 hours on a
single compute node with 32 CPUs and 2 GPUs.
We run multiple environments in parallel on the
CPUs during the sampling phase and train the
agent distributed on both GPUs. The implemen-
tation of the algorithm could directly take advan-
tage of larger compute nodes to speed up training
time.

5.2 Comparison with other techniques

To better estimate the agent’s performance, we
compare it with a greedy strategy and simulated
annealing. The greedy strategy always selects the
action with the highest possible reward as long
as there are actions with a non-negative reward
available. If there are multiple actions leading to

the highest possible reward, the greedy strategy
chooses randomly out of them. Simulated an-
nealing is a probabilistic strategy for non-convex
global optimization problems [32]. We optimize
its hyperparameters, i.e. the start temperature
and temperature annealing schedule, by hand on
two example diagrams [used for Figure 3 (b) and
(e)] and then keep them fixed. To compare the
different strategies, we evaluate them on the same
sets of 1000 diagrams as the RL agent. The RL
agent on average outperforms both simulated an-
nealing and the greedy strategy on diagrams the
size of the training set as well as on diagrams a
magnitude of order larger while requiring much
fewer steps than simulated annealing [see Fig-
ure 3 (c)]. Moreover, the RL agent needs on aver-
age less than 4 s to simplify a diagram with 100-
150 initial spiders running on a single GPU and
single CPU while simulated annealing with 20000
steps needs over 40 s and the greedy strategy over
100 s, albeit running on only a CPU. For more de-
tails on the simulated annealing algorithm and its
hyperparameters see Appendix D.

5.3 Analysis of learned policy

While deep neural networks have been success-
fully employed to solve a wide range of problems,
they are often regarded as a ’black box method’
due to difficulties in interpreting their learned
strategies. However, it is in principle highly desir-
able to gain some insight into how the neural net-
works arrive at their predictions [33]. For graph
neural networks, an interesting quantity is how lo-
cal their learned strategy is, i.e. how far away pre-
dictions on nodes or edges are influenced by the
node and edge features of the diagram. There-
fore, we evaluate how far away from a chosen ac-
tion the ZX-diagram still influences the agent’s
decision.

To this end, we optimize ZX-diagrams with the
agent until 1000 actions of each type are sampled.
For each sampled action and the corresponding
ZX-diagram, we then build up the diagram in
layers around the node/edge identified with the
action. Layer n is defined as all nodes that can
be reached in n steps by traversing the diagram
from the starting point. For each layer n and the
corresponding sub-diagram spanning only nodes
up to this layer, we compute the agent’s unnor-
malized probability of sampling the original ac-
tion Player. We deliberately choose not to normal-
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Figure 4: Analysis of learned policy. (a) Action dependence on the local environment. 1000 actions of each type are
sampled by the agent. Then, for each action and the diagram in which it was chosen, sub-diagrams are built up in
layers around the node/edge identified with the action (see inlay). For each sub-diagram spanning only the nodes in
a specific layer, we compute the agent’s unnormalized probability of sampling the chosen action Player and compute
the difference ϵ to its probability Pcomplete in the full diagram, where we define ϵ in Equation (6). We plot the average
of this difference against the number of layers for 5 action types. (b) Probability of sampling the Copy action on
the blue edge in the diagram depicted in the inlay for multiple outputs of the diagram nout and multiple additionally
inserted spiders on the outputs nextra. The ideal strategy is to select the Copy action for nout − nextra ≤ 2. The
agent approximately learns the ideal policy.

ize the probabilities, as otherwise far away action
probabilities would influence our results through
the normalization constant even though no actual
information traveled through the GNN.

In Figure 4 (a) we plot the average over the
1000 sampled actions of the quantity ϵ which cap-
tures how different Player is from the unnormal-
ized probability in the full diagram Pcomplete. We
define ϵ as

ϵ = max
(

Player
Pcomplete

,
Pcomplete
Player

)
− 1, (6)

where ϵ = 0 indicates that Player and Pcomplete
are equal. The max function is necessary to give
meaningful values when averaging this quantity.
We find that to predict the agent’s policy with
an accuracy of 1%, information of 3-5 layers is
required. Results for all action types are shown
in Figure 7.

Finally, we compare the agent’s policy in a
simple scenario to the, in this case, known op-
timal policy. Specifically, we take a closer look
at the Copy action by evaluating its probability
in a class of example diagrams as shown in Fig-
ure 4 (b). A phaseless Z-spider is connected to
a phaseless X-spider with nout additional edges.

On nextra of those edges, Z-spiders with arbi-
trary phase are inserted (see inlay). We plot
the probability Pcopy of applying the Copy ac-
tion to the edge connecting the phaseless spiders
against nextra for several nout. The ideal strat-
egy in this diagram is to apply the Copy action if
nout−nextra ≤ 2 as then multiple Fuse actions are
enabled, leading to a cumulative positive reward.
The agent learns this ideal strategy to good ap-
proximation even though it was only trained on
random ZX-diagrams and never specifically on di-
agrams of the type considered here.

6 Outlook

In this work, we have introduced a general scheme
for optimizing ZX-diagrams using reinforcement
learning with graph neural networks. We showed
that the reinforcement learning agent learns non-
trivial strategies and generalizes well to diagrams
much larger than included in the training set.
The presented scheme could be applied to a wide
range of problems currently tackled by heuristic
and approximate algorithms or simulated anneal-
ing.

For example, in [6] the authors speed up tensor
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network simulations of quantum circuits by opti-
mizing the graph property treewidth of the corre-
sponding ZX-diagram using simulated annealing,
which could straightforwardly be replaced by a
reinforcement learning agent.

In [7], a deterministic algorithm for simplifi-
cation of quantum circuits using ZX-calculus is
introduced. The used transformation set is re-
stricted to just two kinds of actions to preserve a
special graph property of the ZX-diagram called
gFlow, guaranteeing an efficient extraction of a
quantum circuit from the optimized diagrams.
Later, a heuristic modification was proposed to
reduce the number of two-qubit gates in the re-
sulting circuits [8]. Meanwhile, also other gFlow
preserving rules have been found [34]. However,
it is currently unclear when these rules should be
applied for the goal of circuit optimization. In fu-
ture work, a reinforcement learning agent could
be trained including all gFlow preserving rules
with a reward dependent on the efficiently ex-
tracted quantum circuit corresponding to the di-
agram, thereby taking advantage of new rules and
replacing human heuristics with a learned strat-
egy. The agent’s reward could, for example, be
the total gate, two-qubit gate, or T-gate count.

During the final preparations of this
manuscript, a master thesis using reinforce-
ment learning for quantum circuit compilation
with ZX-calculus, albeit using convolutional
neural networks, was released [35].

7 Data availability
Python code of the custom reinforcement learning
algorithm using graph neural networks and neural
network weights of the trained agents are publicly
available on GitHub [36].
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A Sampled diagrams
To enable the agent to simplify a wide range
of ZX-diagrams, we sample a diverse set of di-

agrams during training. A typical example is
shown in Figure 3 (e). Each new ZX-diagram is
constructed with the following steps: The num-
ber of inputs and outputs is sampled uniformly
between 1 and 3, while the number of initial spi-
ders ninit is sampled uniformly between 10 and
15. The amount of Hadamards is then sampled
between 0 and ⌊0.2ninit⌋. The angles of the initial
spiders can be one of 0, π, π/2, and α. To deter-
mine the angles of the spiders, we uniformly sam-
ple a number between 0 and 1 for each angle type,
reduce the number for π, π/2, α by a factor 0.4
and then normalize the result to a probability dis-
tribution from which we sample the angle of each
spider. We then uniformly sample the expected
number of neighbors nneigh per spider between 2
and 4. From this, we compute the edge probabil-
ity pedge such that when we create each possible
edge in the diagram with pedge we will have an
expected amount of nneigh neighbors per spider.
We then add each possible edge between all pairs
of spiders with probability pedge to the diagram.
Finally, we apply the automatic actions that we
also apply after each action by the RL agent, i.e.
removing redundant edges, removing parts of the
diagram not connected to any input or output,
and applying all possible Identity and Hadamard
loop transformations. For the performance evalu-
ation of the agent on bigger diagrams we instead
sample the number of initial spiders ninit between
100 and 150.

B Details on custom PPO algorithm

PPO is an actor-critic RL method with a pol-
icy network predicting action probabilities and
a critic network predicting the so-called advan-
tage of a specific action [29]. The critic network
is only used during training to reduce the vari-
ance in gradient update steps. Due to the vari-
able size of our observations and action space, we
use a custom implementation of PPO. During the
sampling phase of the training, we run nenv envi-
ronments in parallel for nmax steps each. Then,
the agent’s experiences are randomly split into
minibatches of size nminibatch which the agent’s
policy and critic network is then trained on for
one gradient step. After the agent is trained on
all minibatches, they are reshuffled and another
round of training starts for a maximum of ntrain
steps. However, if the Kullback-Leibler diver-
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Figure 5: Ablation studies. Average number of nodes left after optimization through an agent trained without a
certain feature of the PPO algorithm evaluated over 1000 ZX-diagrams with 10-15 initial spiders (a) and 100-150
initial spiders (b). Two agents with all features were trained resulting in similar performance (leftmost bars in each
diagram). The features that were switched off are the Stop action of the agent, the stop counter (see Appendix C),
the entropy bonus ϵ, the annealing of ϵ, the annealing of the clip range c, and the early stopping of gradient updates
if a Kullback-Leibler divergence of cKL is exceeded.

gence, estimated as in [37], between the agent’s
newly trained policy and the policy used in the
last sampling phase gets larger than the constant
cKL we stop the training early and start a new
sampling phase. This is not a standard feature of
PPO algorithms but has e.g. been implemented
in [38]. We linearly anneal both the clip range c of
the PPO algorithm (as defined in [29]) and the en-
tropy coefficient ϵ, which rewards higher entropy
of the policy during training leading to more ex-
ploration. During training, we clip all gradients
to a maximum of cabsgrad and also clip the norm
of the gradients of a minibatch to cnormgrad. For
the gradient updates, we use the ADAM opti-
mizer [39] with a learning rate η and exponential
moment decay rates β1 and β2. All parameter
values are summarized in Table 1, chosen as sug-
gested in [29, 40], and not further optimized.

We perform ablation studies on some features
of the PPO algorithm by switching them off and
training a new agent without them. The results
are summarized in Figure 5. Entropy annealing
has a significant positive impact on the agent’s
performance when simplifying large diagrams. As
a policy with high entropy is more probabilistic,
it might need more than the 200 given steps to
fully simplify a large diagram. All other features
don’t impact performance significantly. However,
we did not optimize the hyperparameters of any

parameter value
nenv 90
nmax 1000

nminibatch 3000
ntrain 10
cKL 0.01
c 0.2
ϵ 0.1

cabsgrad 100
cnormgrad 0.5

PPO policy loss γ 0.99
PPO policy loss λ 0.9

η 3 ∗ 10−4

β1 0.9
β2 0.999

Table 1: Parameter values used in the PPO algorithm.
For the definition of γ and λ see [29].

of the features which might further increase the
performance of the agent.

C Details on network architecture

In the policy network, we use 6 message-passing
layers. The message functions ψi, node features
computed by ϕi, edge features computed by θi, as
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Figure 6: Simulated annealing. (a) Average number of nodes left after optimization through simulated annealing
with start temperature Tstart = 0.5 evaluated over 1000 ZX-diagrams with 10-15 starting spiders (left) and 100-150
starting spiders (right). The temperature decay factor cann is chosen as 0.01/0.001/0.0001 for 200/2000/20000 total
steps taken respectively, which results in an acceptance probability of non-greedy actions as shown in (b) for different
values of the instantaneous reward of the action.
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well as the hidden layers of the final action predic-
tion networks χnode, χedge and χstop, all contain
128 neurons and use the Tangens hyperbolicus
as an activation function. The χnode and χedge
multi-layer perceptrons both have only a single
hidden layer, while χstop has two hidden layers
to better learn the more complex global Stop ac-
tion. In addition to the final node/edge states
xi

f/e
(n,m)
f , χnode/χedge also get as input an inte-

ger number, the stop counter. The stop counter
is defined as min(20, Steps left in trajectory) and
tells the agent when a trajectory is about to fin-
ish due to the maximum amount of allowed steps
being reached.

The global vector C, which is used as part of
the input of χstop contains the number of nodes
and the number of edges. Additionally, it holds
the number of Z-spiders, X-spiders, Hadamards,
spiders with zero/pi/arbitrary angle, and the
amount of allowed Hadamard fuse and Euler ac-
tions all normalized by the total spider number
and the amount of allowed Fuse, Pi, Copy, Bial-
gebra right, and Bialgebra left actions all normal-
ized by the total edge number. Finally, it con-
tains the stop counter and a binary flag, whether
the agent has currently selected the start Unfuse
action. We find that providing the agent global
information for predicting the Stop action and for
predicting the advantage through the critic net-
work is critical to achieving stable training and
avoiding exploding gradients as the GNN can oth-
erwise only learn local quantities of the graph.

The critic network has the same network archi-
tecture as the network predicting the probability
of the Stop action but shares no weights with the
policy network.

We initialize all trainable parameters of the
neural network layers as recommended in [40] us-
ing an orthogonal initializer with gain

√
2 for all

hidden layers, gain 0.01 for the action prediction
networks χnode, χedge and χstop, and gain 1 for
the final layer of the critic network.

No optimization over the network size or pa-
rameters is performed suggesting further possi-
bilities for improving the performance of the RL
agent.

D Details on simulated annealing

Simulated annealing is a probabilistic algorithm
iteratively transforming the ZX-diagrams. At

each step, it randomly selects one of all allowed
actions. If the immediate reward r of the action
is non-negative, the action is applied. If r is neg-
ative, the action is only accepted with probability

paccept = exp(r/T ), (7)

where T is the so-called temperature. T is typi-
cally continuously decreased during the optimiza-
tion process. We choose to exponentially anneal
T with the start temperature Tstart at optimiza-
tion step nstep according to

T = Tstart exp(−cannnstep), (8)

where cann determines the speed of the tempera-
ture decay, as it performs better on the example
diagrams than linearly annealing T . This may be
because the exponential temperature decay leads
to a longer nearly greedy phase of the algorithm
in the later stages of the optimization.

We further improve the performance of the sim-
ulated annealing algorithm by changing the re-
ward structure of the Unfuse transformation. In-
stead of giving 0 reward when the start Unfuse
action is selected and −1 rewards when the stop
Unfuse is selected we switch the order of the two
rewards. This helps the algorithm to avoid select-
ing start Unfuse in the later, nearly greedy stages
of optimization and then getting stuck since it
never accepts the negative reward of the stop Un-
fuse action.

We optimize Tstart and cann on two diagrams
which the greedy strategy can not optimize well
[the diagrams used for Figure 3 (b) and (e)] and
then keep them fixed while evaluating the per-
formance of simulated annealing on the same
set of diagrams, we evaluated the RL agent
on. We find that Tstart = 0.5 performs well
with cann = 0.01/0.001/0.0001 for a maximum
of 200/2000/20000 optimization steps. We also
tried Tstart = 1 which performed similar to
Tstart = 0.5 on the example diagrams but consid-
erably worse on average and even higher starting
temperatures which even failed to optimize the
example diagrams. As shown in Figure 6, simu-
lated annealing performs slightly worse on aver-
age while needing a lot more optimization steps
than the RL agent.
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