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Figure 1. Given a set of multi-view videos and corresponding fitted meshes, we build a DiffusionAvatar of a person. Our method translates
expressions of a morphable model into realistic facial appearances of a person while also providing control over the viewpoint. Project
website: https://tobias-kirschstein.github.io/diffusion-avatars/

Abstract

DiffusionAvatars synthesizes a high-fidelity 3D head
avatar of a person, offering intuitive control over both pose
and expression. We propose a diffusion-based neural ren-
derer that leverages generic 2D priors to produce com-
pelling images of faces. For coarse guidance of the expres-
sion and head pose, we render a neural parametric head
model (NPHM) from the target viewpoint, which acts as
a proxy geometry of the person. Additionally, to enhance
the modeling of intricate facial expressions, we condition
DiffusionAvatars directly on the expression codes obtained
from NPHM via cross-attention. Finally, to synthesize con-
sistent surface details across different viewpoints and ex-
pressions, we rig learnable spatial features to the head’s
surface via TriPlane lookup in NPHM’s canonical space.
We train DiffusionAvatars on RGB videos and correspond-
ing fitted NPHM meshes of a person and test the obtained
avatars in both self-reenactment and animation scenarios.
Our experiments demonstrate that DiffusionAvatars gener-
ates temporally consistent and visually appealing videos for
novel poses and expressions of a person, outperforming ex-
isting approaches.

1. Introduction

A significant problem in computer vision and graphics is the
creation of photorealistic animatable avatars. Ideally, these
avatars permit consistent video renderings while providing
free control over desired expression, pose, and viewpoint. A
digital 3D head avatar may then be used in various scenarios
such as VR/AR applications, immersive teleconferencing,
gaming, movie animation, or as a virtual assistant.

Unfortunately, creating a 3D avatar from which one can
render photorealistic images from arbitrary viewpoints is
challenging. The task becomes even more difficult when
the avatar has to simultaneously offer precise control over
poses and expressions, for instance given by a driving se-
quence from a different video or controlled manually. Tech-
nically, this leads to a 4D photometric reconstruction prob-
lem which is typically underconstrained. This presents an-
imation systems with a challenging task that traditionally
involves extensive efforts by 3D artists.

Many existing methods have tackled the challenge of
facial image synthesis via 2D neural networks [26, 31,
52, 58, 70, 73]. In particular, Diffusion Models have re-
cently been demonstrated to produce visually appealing im-
agery [23, 59, 61, 86, 89]. 2D models are great at gen-
erating photo-realistic images but generally do not offer

ar
X

iv
:2

31
1.

18
63

5v
2 

 [
cs

.C
V

] 
 1

6 
A

pr
 2

02
4

https://tobias-kirschstein.github.io/diffusion-avatars/


the degree of control and temporal consistency needed for
a high-quality 3D head avatar. On the other side, meth-
ods that reconstruct an animatable 3D representation of the
head [21, 92, 93, 95] provide much better consistency but
in many cases the resulting renderings do not have the same
photo-realism as 2D models.

To this end, we introduce DiffusionAvatars, a novel ap-
proach for 3D head avatar creation, by combining the strong
image synthesis capabilities of 2D diffusion models with
the view consistency of a detailed 3D head representation.
As a controllable 3D representation, we leverage the re-
cent neural parametric head model (NPHM) [18] due to
its detailed prediction of human head geometry, which can
give us better geometric cues than established mesh-based
3DMMs [38, 55]. Inspired by neural textures [72], we fur-
ther base face synthesis on person-specific learnable fea-
tures rigged to the model’s surface via NPHM’s canonical
space. Such surface-mapped features can effectively com-
pensate for imperfect geometry and improve consistency
across views by giving the neural renderer cues about cor-
responding surface points. To avoid learning a neural ren-
derer from scratch, we base our architecture on a pre-trained
latent diffusion model (LDM) [59] and convert it into an
image-to-image translation model by following the Con-
trolNet [89] paradigm to condition on the rasterized images
of NPHM meshes. That way, we not only inherit a pow-
erful image synthesis backbone but also benefit from the
learned facial prior obtained from large 2D image datasets,
which facilitates generalization to unseen expressions. Fi-
nally, we insert cross-attention blocks into the pre-trained
LDM to condition the diffusion-based neural renderer on
the expression codes of NPHM directly. This allows our
model to produce more expressive renderings. Intuitively,
the direct conditioning helps the diffusion model to distin-
guish subtle expression details while the rasterized NPHM
renderings encode the viewpoint and the overall shape of
the head. In summary, our contributions are as follows:
• We present DiffusionAvatars, a diffusion-based neural

renderer that leverages ControlNet to create animatable
3D head avatars.

• We design a method for rigging learnable spatial features
to the surface of the underlying NPHM via TriPlanes.

• We propose direct expression conditioning via cross-
attention to transfer detailed expressions from NPHM to
the synthesized 3D head avatar.

2. Related Work

2.1. 3D Face Animation

It is natural to approach the task of 3D Face Animation with
an actual 3D representation. In the seminal work by [4],
a 3D morphable model (3DMM) was introduced, which
paved the way towards reconstructing animatable 3D head

geometry from images or depth observations. More recent
3DMMs [7, 38, 55, 74, 82] still build upon this paradigm
and have since been the drivers of face animation oriented
applications with most methods leveraging a 3DMM to gain
control over the expression and pose of the avatar. For ex-
ample, Neural Head Avatars [21] and ROME [33] finetune
the mesh topology of FLAME [38] to obtain more faith-
ful and realistic mesh-based avatars. NeRFace [16], IN-
STA [95] and RigNeRF [1] build a radiance field that is
controlled by a 3DMM. Other 3D representations such as
points [93] or signed distance functions [40, 92] have also
been explored for avatar creation.
In our work, we do not aim to learn a complete 3D represen-
tation. Instead, we utilize the 3D prior of the recent neural
parametric head model (NPHM) [18] with a 2D rendering
network for high-quality image synthesis.

2.2. Face Synthesis in 2D

Ever since the impactful Pix2Pix [94] work, it has been a
popular approach to obtain control over synthesized images
via 2D networks. In the face synthesis domain, methods
based on Generative Adversarial Networks (GANs) [20]
have received a lot of attention [26, 31, 52, 58, 70, 73].
To obtain better control over head pose and camera view-
point, a common technique is to combine powerful 2D
image synthesis networks with a controllable 3D head
proxy [2, 8, 11, 39, 49, 67, 69, 71, 72, 79]. Another line
of work aims at directly generating consistent videos by
video-to-video translation [34, 76] or even video styliza-
tion [15, 28, 83]. Most related to our method is Deferred
Neural Rendering [72] which allows facial animation by
learning a neural renderer in order to decode neural tex-
tures rigged to Basel Face Model [55]. While 2D-based
approaches produce visually appealing frames, they often
struggle with synthesizing consistent images across both
views and time or provide only limited viewpoint control.
Our method aims to improve consistency by utilizing a
more powerful implicit 3D representation as geometric
proxy and provides better expression generalization by uti-
lizing a diffusion model as a synthesis backbone.

2.3. Controllable 2D Diffusion

Recently, Diffusion models emerged as powerful 2D image
generation models. While they demonstrate superior capa-
bilities in generating high-fidelity and diverse 2D content
from text prompts [23, 59, 61], it has been a key challenge
to leverage their power for other tasks. Several works
extend 2D diffusion models to text-guided video generation
by employing a multi-stage approach [5, 24, 64, 77], gen-
erating frames autoregressively [25] or stylizing an input
video [17, 78, 81, 84]. In the human domain, diffusion
models have already been applied to face editing [27],
animation [66, 86] and bodies [68]. Other works, such as



ControlNet [89], IPAdapter [85] or T2I-Adapter [50], allow
fine-tuning a pre-trained diffusion model on additional con-
trols such as landmarks or depth cues, opening a wide space
of possible applications for 2D face editing. Most similar to
our method, DiffusionRig [12] proposes a diffusion model
conditioned on rasterized FLAME meshes to provide 3D
animation control over an avatar created from a personal
photo album. While the synthesized images or videos of
these approaches already show great controllability and
visual quality, they typically lack consistency due to the
absence of an underlying accurate 3D representation.

2.4. Diffusion for 3D Faces

Following a different approach, several works explore dif-
fusion for generic 3D generation [43, 51, 56]. This has also
been extended to 3D head generation [22, 75, 88], text-
guided 3D head editing [53] or 3D body generation [87].
Some works also generate animatable 3D asset animatable
for heads [3] and bodies [6, 29, 57] by rigging the 3D as-
set to a parameterized FLAME [38] or SMPL [45] mesh.
Such generated 3D avatars are view consistent by design
but lack the visual quality of 2D-based diffusion models.
Furthermore, animation control is limited by the underly-
ing mesh template. In our work, we employ a more accu-
rate, implicit 3D morphable head model for better expres-
sion control and follow ControlNet [89] and IPAdapter [85]
to build a diffusion-based neural renderer for high-quality
image synthesis.

3. Method
Our goal is to create a temporally consistent 3D head avatar
of a person with explicit control over viewpoint and expres-
sion. We approach this task by designing a diffusion-based
neural renderer that decodes learnable features rigged to the
surface of an implicitly defined proxy geometry. In analogy
to Deferred Neural Rendering [72], we dub this approach
Deferred Diffusion. We begin by introducing the founda-
tions of diffusion models (Sec. 3.1) and NPHM (Sec. 3.2)
that we use as proxy geometry before going into detail about
our method: In the rasterization (Sec. 3.3) and surface fea-
ture mapping (Sec. 3.4) stage, we generate the input images
for our diffusion-based neural renderer. These renderings
encode the desired viewpoint, head shape, and global ex-
pression. For more fine-grained expression control, we add
NPHM’s expression codes as an additional input to the dif-
fusion model (Sec. 3.5). Finally, our pipeline leverages a
pre-trained diffusion model’s image synthesis and general-
ization capabilities for better quality.

3.1. Diffusion

We build our work upon latent diffusion models
(LDM) [59], which operate in the the latent space of an au-

toencoder. Formally, LDMs employ an encoder E to map
RGB images into a lower-dimensional latent space, facili-
tating generative tasks [13]. In the following, any mention
of an image x0 always refers to an RGB image I that was
mapped into the autoencoder’s latent space via x0 = E(I)
to obtain a latent image.

In diffusion, the fixed forward process iteratively adds
noise to the latent image:

q(xτ |xτ−1) = N (xτ ;
√
ατxτ−1, (1− ατ )I) (1)

where τ = 1...N indicates the denoising step and the for-
ward process variances ατ define the noise scheduling [23].
In practice, noisy samples xτ are obtained with the standard
Gaussian reparameterization:

xτ =
√
ᾱτx0 +

√
1− ᾱτ ϵ ϵ ∼ N (0, I) (2)

Typically, diffusion models are trained to predict the origi-
nal noise ϵ given the noisy sample xτ . We empirically find
a different method, known as the v-parameterization [61],
to work better in our scenario, where v is defined as:

v =
√
ᾱτ ϵ−

√
1− ᾱτx0 (3)

This has two advantages. First, v-prediction ensures that the
loss can always guide the model to learn something mean-
ingful, even when the input already contains a lot of noise,
leading to faster convergence [24]. Second, it allows us to
train the model also on pure noise inputs, which during in-
ference is the most challenging denoising step. To this end,
we rescale the noise schedule α to ensure zero signal-to-
noise ratio inputs during training as proposed by [42].

3.2. NPHM

NPHM [18] is a morphable head model that generates a
signed distance field (SDF) of a human head given an iden-
tity code zid and an expression code zexp. We employ
COLMAP [62, 63] to obtain pointclouds {Pt} for each
timestep t of a multi-view video sequence of the person.
Subsequently, we fit NPHM to each pointcloud Pt to obtain
zid and ztexp. We use a variant of NPHM, namely MonoN-
PHM [19], that uses a backward deformation field instead of
the originally proposed forward deformation field as it sim-
plifies the fitting process. Formally, we obtain the NPHM
fitting as follows:

zid, z
t
exp = argmin

zid,zexp

∑
x∈Pt

|Fid(Fexp(x))| (4)

where Fid is NPHM’s identity network implemented as a
signed distance field, and Fexp is the backward deforma-
tion network. Note that we drop the dependency of Fid and
Fexp on their respective latent codes for simplicity. The fit-
ted SDF representation can then be translated into a mesh
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Figure 2. Method overview: We decode an NPHM expression code zexp in two ways to obtain a realistic image: We first extract an
NPHM mesh and rasterize it from the desired viewpoint in (a), giving us canonical coordinates, depths, and normal renderings for the head
mesh. In (b), the canonical coordinates xcan are used to look up spatial features in a TriPlanes structure, rigging the features onto the mesh
surface. Together with the rasterizer output, these mapped features form the input for the ControlNet part of DiffusionAvatar. The second
route for the expression code goes through a linear layer depicted in (c). It yields expression tokens that are subsequently used in a newly
added cross-attention layer inside the pre-trained latent diffusion model. Intuitively, the rasterized inputs should encode pose, shape and
rough expression while the direct expression conditioning hints at more detailed facial expressions. The final image is synthesized in (d)
by iteratively denoising Gaussian noise using the original DDPM denoising schedule [23].

Mt via marching cubes [46]. Furthermore, for each vertex
x ∈ Mt of the extracted mesh, we can obtain its canoni-
cal coordinates xcan ∈ R3+2 via the backward deformation
field:

xcan = Fexp(x) (5)

where the first 3 coordinates of xcan represent the usual spa-
tial dimensions while the remaining 2 coordinates are am-
bient dimensions that can help resolve topological issues in
mouth and eye regions [54]. We utilize the meshes Mt in the
subsequent rasterization stage, whereas the canonical coor-
dinates xcan are necessary for the spatial feature lookup.

3.3. Rasterization

We employ nvdiffrast [37] to generate the actual input im-
ages for the diffusion model. Let Mt be a facial mesh of a
person at timestep t and πt a camera pose. We then obtain
a set of renderings Rt ∈ RH×W×C for this timestep using
the rasterizerR:

Rt = R (Mt, πt) (6)

In our case, the channels of Rt are normals, depths, and
a canonical coordinate rendering Rt

can ∈ RH×W×(3+2) of
the NPHM mesh.

3.4. TriPlane Feature Mapping

It has been shown that tying learnable features to a surface
helps neural renderers to synthesize more detailed images,
a technique known as neural textures [72]. Since NPHM

lacks a consistent UV space due to its implicit nature, we
propose a simple extension of neural textures: We tie learn-
able features to the surface of the extracted mesh Mt by
querying a spatial structure with the canonical coordinates
xcan. We use TriPlanes [8] for the 3 spatial dimensions and
a regular 2D feature map for the ambient dimensions:

Rt
feat = TRIPLANE

(
Rt

can,0-3

)
(7)

Rt
feat amb = AMBIENTMAP

(
Rt

can,3-5

)
(8)

These learnable feature maps form the 2D input for our
diffusion-based neural renderer, together with the other
buffers Rt from the rasterizer:

Rt ← Rt, Rt
feat, R

t
feat amb (9)

3.5. Direct Expression Conditioning

Conditioning on renderings guides the head pose as well
as coarse expressions. However, subtle details may not be
easy for the network to decode from renderings. To facili-
tate the synthesis of detailed expressions, we add new cross-
attention layers to the U-Net, following IPAdapter [85]. Let
Z be the intermediate feature map computed by an exist-
ing cross-attention operation in the pre-trained LDM: Z =
ATTENTION(Q,K, V ). We then perform direct expression
conditioning by adding another cross-attention layer:

f t
exp = EXP(ztexp) (10)

Z ← Z + ATTENTION(Q,W kf t
exp,W

vf t
exp) (11)



where EXP is our expression conditioning module that lin-
early maps ztexp into a sequence f t

exp ∈ R4×d of 4 expres-
sion tokens forming the keys and values for cross-attention.
In total, we add 15 cross-attention layers to the LDM.

3.6. Deferred Diffusion

The final rendering is obtained by iteratively denoising full
noise xT ∼ N (0, I) with our diffusion-based neural ren-
derer D conditioned on the rasterized NPHM meshes Rt

and expression tokens fexp:

xτ−1 ∼ D(xτ ) = S(xτ , f
t
exp, C(xτ , R

t)) (12)

where C is the ControlNet architecture and S a pre-trained
LDM with our expression conditioning modules inserted.
The denoised prediction xτ−1 is obtained via the sampling
procedure of [23].

During training, we minimize the following loss:

L = Eϵ,τ,xt
0,R

t,ft
exp

[∥∥D (
xt
τ , R

t, f t
exp

)
− v

∥∥
2

]
(13)

where ϵ is the sampled noise, τ is the denoising step and
xt
0 = E(It) is the ground truth latent image. We use L to

optimize (i) the ControlNet C, (ii) the parameters of expres-
sion conditioning W k,W v , and EXP, and (iii) the spatial
feature maps TRIPLANE and AMBIENTMAP.

4. Experimental Results
4.1. Training

For our experiments, we employ the recently released multi-
view video dataset from NeRSemble [36]. The dataset con-
tains 26 different multi-view sequences per person captured
with 16 cameras, featuring different facial expressions, sen-
tences and emotions. We use BackgroundMattingV2 [41] to
remove the background and a segmentation network to re-
move the torso [91]. We fit NPHM on the video sequences
of 8 different persons to create pairings of multi-view videos
and fitted meshes. In total, we use about 3300 timesteps
per person. We train one DiffusionAvatar for each per-
son on these pairings with Adam [35] using a learning rate
of 1e − 4 for ControlNet and the expression conditioning
layers, and a learning rate of 1e − 2 for the TriPlane fea-
ture lookups. We use a batch size of B = 8 and spatial
resolutions H = W = 512. We employ random crop-
ping and resizing of the target images to avoid overfitting.
The size of our spatial feature maps is 512 × 512 × 16 for
each TriPlane and the ambient map. In total, this yields
16 × (3 + 1) + 5 + 1 + 3 = 73 channels for the input
renderings Rt fed to our diffusion-based renderer. The pre-
trained LDM is a Stable Diffusion v2.1 network [59]. Train-
ing takes roughly two days on a single RTX A6000 for 100k
gradient descent steps.

Method PSNR↑ LPIPS↓ JOD↑ AKD↓ AED↓ APD↓ CSIM↑

NeRFace [16] 23.0 0.279 6.76 5.37 1.06 0.053 0.787
DiffusionRig [12] 19.6 0.220 6.41 2.74 0.55 0.029 0.887
DNR [72] 24.5 0.226 7.32 2.06 0.63 0.027 0.903
DNR+GAN [72] 23.0 0.114 7.08 2.14 0.69 0.028 0.868
MVP [44] 23.6 0.221 7.02 3.42 0.78 0.034 0.882
Ours 24.9 0.081 7.55 1.79 0.50 0.023 0.917

Table 1. Quantitative Comparison: We report metrics for a self-
reenactment scenario on unseen expressions and unseen views av-
eraged over 8 persons from the NeRSemble dataset [36].

4.2. Experiment Setup

Tasks. To measure the quality of a 3D avatar, we conduct
experiments on two tasks: Self-reenactment and avatar an-
imation. For self-reenactment, we hold out 2 complete se-
quences and the frontal camera of every sequence during
training to measure both image quality and view consis-
tency. During testing, we provide the holdout fitted meshes
of the same person and render from the novel view. For
avatar animation, we first generate NPHM meshes using the
same identity code zid as the avatar and a sequence of ex-
pression codes {ztexp} from a different person. We then ren-
der a video of the avatar from a novel view. To evaluate the
realism of this expression transfer, we conduct a user study
where we show the animated avatars to participants.

Metrics. We employ two paired-image metrics to mea-
sure the quality of individual generated frames: Peak
Signal-to-Noise Ratio (PSNR) and Learned Perceptual Im-
age Patch Similarity (LPIPS) [90]. Furthermore, we mea-
sure visual similarity of a rendered video to its ground truth
counterpart with the perceptual video metric JOD [47]. Fi-
nally, we make use of several face-specific metrics: Aver-
age Keypoint Distance (AKD) measured in pixels with key-
points estimated from PIPNet [30], and cosine similarity
(CSIM) of identity embeddings based on ArcFace [10]. We
further follow [9] and utilize DECA [14] to measure Aver-
age Expression Distance (AED) and Average Pose Distance
(APD) between the rendered and the ground truth images.

Baselines. We compare our method against the following
state-of-the-art 3D head avatar creation methods:

NeRFace [16]. A NeRF-based method that reconstructs
a radiance field conditioned on expression codes. The
original implementation is for monocular videos and uses
FLAME. We extend it to our multi-view training scenario
and provide NPHM expression codes for better comparison.

Mixture of Volumetric Primitives (MVP) [44]. An
encoder-decoder architecture that generates a set of small
feature grids rigged to a template mesh. We provide a
FLAME tracking to learn the driving.
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Figure 3. Qualitative results for self-reenactment. We compare against 3D methods (NeRFace [16], Mixture of Volumetric Primi-
tives [44]) and methods employing 2D renderers (Deferred Neural Rendering [72], DiffusionRig [12]). Note that the slightly gray back-
ground for DiffusionRig is caused by their training scheme using ϵ-prediction (see Sec. 3.1). Our method consistently produces more
expressive facial performances while simultaneously providing more detailed renderings.

Deferred Neural Rendering (DNR) [72]. A screen-space
decoder built on top of Pix2Pix [94] that uses learnable neu-
ral textures rigged to a tracked Basel Face Model [55]. We
provide our fitted NPHM meshes as input for better compar-
ison. Additionally, we compare against a version of DNR
that also uses an adversarial loss for sharper images that we
call DNR+GAN in the following.

DiffusionRig [12]. A recent diffusion-based method
that uses albedo, normal, and shaded color renderings of
FLAME meshes tracked by DECA [14] as input to con-
trol pose and expression. While their method was originally
proposed to be fine-tuned on a small personal photo album
of 20 images, we fine-tune their pre-trained model on all
training frames of our dataset.
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Figure 4. Qualitative results for avatar animation. Our method faithfully transfers the source actor’s expression and consistently
produces compelling renderings, even for complex performances.

4.3. Self-Reenactment

In Tab. 1, we compare DiffusionAvatars to other state-
of-the-art approaches on the self-reenactment task. Re-
sults are averaged over avatars generated from eight dif-
ferent persons. Our method shows the overall best per-
formance with the biggest improvement in perceptual and
face-specific metrics. The results indicate that Diffusion-
Avatars generates sharper images (LPIPS) that are more
temporally consistent (JOD). Furthermore, our method bet-
ter maintains the person’s identity when rendered from a
novel view (CSIM) than the baselines. Finally, facial fea-
tures such as the position of mouth corners and eyebrows
synthesized by our method match the ground truth expres-
sions more closely (AKD, AED, APD).
We further provide a qualitative comparison in Fig. 3. The
baselines struggle especially in facial regions that are poorly
explained by the NPHM mesh, such as the mouth interior.
In contrast, our method can plausibly fill these regions, pro-
viding a consistently realistic appearance.

4.4. Avatar Animation

Due to the task’s inherent lack of any ground truth, we per-
form a user study to validate avatar animation. We collect
735 responses from 49 participants on two questions:

NeRFace DiffusionRig DNR DNR+GAN Ours

VQ↑ 2.19 2.47 2.87 3.06 4.02
DF↑ 2.35 3.52 3.94 3.97 4.14

Table 2. User Study: For our user study on avatar animation,
we collect 735 responses from 49 participants to measure Visual
Quality (VQ) and Driving Fidelity (DF) on a scale of 1-5.

(i) Visual Quality (VQ): What is the overall quality of
the avatar animation?

(ii) Driving Fidelity (DF): How closely does the ani-
mated avatar match the expressions of the driving sequence?

We present two videos side-by-side: One sequence of a
source actor performing various expressions, and a video of
another person’s avatar with the expressions transferred to
it. The results of our user study can be seen in Tab. 2. Our
method achieves the highest scores for both visual quality
and similarity to the driving sequence. The difference is
particularly pronounced for the visual quality score. We at-
tribute this to the fact that users heavily penalize any visual
artifacts immediately obvious in video renderings. These
perceptual differences in the task of avatar animation are
also apparent in the qualitative comparison shown in Fig. 4.



4.5. Ablations

In Tab. 3, we examine the design choices of our method. All
ablation experiments are conducted on 3 avatars on the self-
reenactment task. We refer to our supplementary material
for a qualitative comparison.

PSNR↑ LPIPS↓ JOD↑ AKD↓ CSIM↑

w/o diffusion 25.1 0.133 7.69 1.96 0.892
FLAME 24.2 0.083 7.36 2.46 0.900
w/o exp. cond. 24.5 0.081 7.65 1.98 0.911
w/o LDM prior 24.5 0.078 7.67 1.89 0.913
w/o spatial features 24.9 0.078 7.77 1.87 0.918
spherical UV 24.9 0.075 7.77 1.95 0.920
Ours 25.3 0.074 7.85 1.91 0.918

Table 3. Ablation of architectural choices.

Effect of Diffusion. To study whether diffusion is neces-
sary, we train our architecture without the pre-trained LDM
to directly predict the output in a single forward pass, simi-
lar to Deferred Neural Rendering. Such a method performs
notably worse, especially in the LPIPS metric, indicating
that diffusion is important for sharp renderings.

Effect of NPHM vs FLAME. We compare Diffusion-
Avatars with a version trained on renderings of a fitted
FLAME instead of NPHM. Since NPHM models facial ge-
ometry as an SDF, it possesses a much higher represen-
tational power than FLAME. As a result, the renderings
are much closer to the actual desired appearance of the
head. This is also reflected in our ablation study, where
using FLAME gives consistently worse performance. This
is especially true for the AKD metric, indicating that our
diffusion-based neural renderer cannot reenact certain com-
plex expressions based on FLAME alone.

Effect of Expression Conditioning. Turning off expres-
sion conditioning worsens overall performance, presumably
because the expression codes help to distinguish subtle ex-
pression details that can hardly be inferred from the NPHM
mesh alone. It also helps DiffusionAvatars to synthesize
expressions not captured by NPHM, such as tongue move-
ment, by enabling the network to correlate such appearances
with certain expression code combinations.

Effect of 2D LDM Prior. We train our pipeline from
scratch without resorting to a pre-trained LDM. In this case,
we remove the ControlNet module and condition the U-Net
directly on the NPHM renderings. This architecture, trained
from scratch, performs competitively but slightly worse.
We see the biggest advantage of pre-training in faster con-
vergence and better coherence of the generated images.

Effect of Spatial Features. We compare three spatial fea-
ture mapping approaches: (i) Our Triplanes, (ii) a simpler
approach based on spherical feature mapping, and (iii) no
spatial features at all. For spherical feature mapping, we
create an approximate UV map for each NPHM mesh by
projecting the 3D canonical coordinates for each vertex onto
a sphere centered inside the head. Tab. 3 shows that using
TriPlanes boosts most metrics, whereas the simpler spheri-
cal mapping brings almost no benefit.

5. Limitations

DiffusionAvatars can create photo-realistic 3D head avatars
with pose and expression control. More challenges must be
solved, however, before an avatar can be used in produc-
tion. For example, to put an avatar into a realistic environ-
ment, it is necessary to have control over the lighting prop-
erties. Currently, DiffusionAvatars bakes the lighting into
the generated images. Since we employ a detailed 3D head
geometry underneath, one could imagine directly modeling
shadow effects as a composite of the synthesized images.
Further, our current architecture is not (yet) amenable to
real-time applications due to the comparatively compute-
intensive denoising loop. Here, recent advances in the dis-
tillation of diffusion models may provide a remedy [48, 65].

6. Conclusion

This paper presents a novel method DiffusionAvatars,
which creates a photo-realistic 3D head avatar from multi-
view videos using a tracked parametric head model of a
person. DiffusionAvatars can be animated by a source ac-
tor or directly via NPHM. We use rendered NPHM meshes
with rigged spatial features as input to a diffusion-based
neural renderer. We leverage the image synthesis capabili-
ties of a pre-trained latent diffusion model with ControlNet,
facilitating generalization to unseen expressions. While
this pipeline is already capable of synthesizing appealing
images, we show that additionally conditioning the neu-
ral renderer on NPHM’s expression codes further improves
the model’s ability to generate complex facial expressions.
Our experiments suggest that the proposed architecture can
effectively synthesize high-quality renderings and animate
the 3D avatar with high fidelity. We believe our approach
demonstrates an exciting application for high-fidelity 3D
avatar creation.
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Appendix
A. Additional Results
We provide additional qualitative results for the self-
reenactment task on three more people from the NeRSem-
ble [36] dataset in Fig. 11.

A.1. Novel View Synthesis Results

Tab. 4 contains results for novel view synthesis. We mea-
sure the performance from the unseen frontal view and av-
erage over the 24 train sequences for each of our 5 avatars.
DiffusionAvatars scores the best metrics except for PSNR,
which favors the overly blurry renderings of NeRFace.
These results show that our method also provides good 3D
control.

Method PSNR↑ LPIPS↓ JOD↑ AKD↓ CSIM↑

NeRFace [16] 28.12 0.284 7.93 2.72 0.841
DiffusionRig [12] 19.73 0.231 6.02 9.71 0.917
DNR [72] 26.90 0.213 7.91 1.58 0.933
DNR+GAN [72] 23.56 0.104 7.30 1.70 0.906
Ours 26.93 0.067 8.28 1.16 0.939

Table 4. Quantitative Comparison: We report metrics for novel-
view-synthesis averaged over five persons from the NeRSemble
dataset.

A.2. Ablation of Number of Training Views

We analyze the data efficiency of DiffusionAvatars on one
person of the Multiface dataset [80] in Fig. 5. Our method
only suffers negligibly from the removal of train views, as
opposed to MVP. We attribute this to NPHM’s strong prior
over 3D head shapes which allows fitting to sparse point-
clouds, while direct 3D methods like MVP struggle more to
recover accurate surfaces from sparse views.
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Figure 5. Ablation of number of cameras on the Multiface dataset.

A.3. Qualitative Comparison of Ablations

As an addition to Tab. 3 of the main paper, we provide qual-
itative comparisons of three ablations in Fig. 6, Fig. 7 and
Fig. 8.

FLAME [38] Ours GT

Figure 6. Effect of FLAME vs. NPHM. Using FLAME instead
of NPHM as the underlying morphable head model makes the gen-
erated faces less expressive. This is due to FLAME’s limited ge-
ometry and expression space, which does not provide enough ge-
ometric cues for our diffusion-based neural renderer.

w/o exp. cond. Ours GT

Figure 7. Effect of expression conditioning. Directly providing
zexp to the diffusion model helps synthesize areas not modeled by
NPHM’s geometry, such as eye movement.

w/o LDM prior Ours GT

Figure 8. Effect of LDM prior. Using a pre-trained LDM instead
of training the diffusion model from scratch steers the generation
towards more realistic faces.

A.4. Experiments on the Multiface dataset

We conduct additional experiments on 16 cameras from the
Multiface dataset [80] in Tab. 5. Although MVP has the ad-
vantage of a high-end textured mesh tracking pre-computed
from 100+ cameras there, DiffusionAvatars performs com-
petitively showing that our method (i) can compete with re-
cent 3D methods and (ii) generalizes to different datasets.
In Fig. 9, we show that our method produces sharper ren-
derings than MVP on the Multiface dataset.



PSNR↑ LPIPS↓ JOD↑ AKD↓ AED↓ APD↓ CSIM↑

MVP 26.4 0.126 7.92 2.25 0.655 0.026 0.904
Ours 25.5 0.077 7.77 1.86 0.503 0.025 0.914

Table 5. Quantitative comparison for self-reenactment averaged
over 2 persons from the Multiface dataset.

MVP [44] Ours GT

Figure 9. Qualitative comparison for self-reenactment on the Mul-
tiface dataset.

B. User Study Setup
In Fig. 10, we show the interface of our user study. We ask
users to rate visual quality and driving fidelity by providing
them with the following definitions:

Visual Quality. The overall quality of the generated
video: Is there any flickering, visual artifacts, blurriness,
etc., that feel unnatural?

Driving Fidelity. How closely does the generated video
follow the desired facial expressions: Are the displayed
expressions the same? Is the emotion displayed by the
avatar recognizable?

During the study, each user is presented with 15 ran-
domly chosen pairs of driving sequences (left) and avatar
animations (right). The pairs were drawn from 135 dif-
ferent avatar animations generated by the baselines and
our method. In total, we received 735 responses for each
question from 49 participants.

C. Analysis of Temporal Consistency
Since DiffusionAvatars is based on 2D diffusion mod-
els, the generated images may be susceptible to view-
inconsistencies and screen-space stitching artifacts. Fol-

Figure 10. Setup of our User Study. We ask participants to eval-
uate the avatar animation task in which an avatar is controlled by
a sequence of a different person.

lowing StyleGAN3 [32], we therefore perform an analysis
of the temporal consistency of generated videos. In fig-
ure Fig. 12, we compare our method to MVP [44] and De-
ferred Neural Rendering [72]. Our finding is that Diffusion-
Avatars generates images with more high-frequency detail
than 3D methods while being significantly less prone to
texture-sticking than other 2D methods.

D. Model Architecture
Fig. 13 depicts DiffusionAvatars’s model architecture.

E. Societal Impact
DiffusionAvatars provides the means to generate realistic
images of faces with control over viewpoint, pose, and ex-
pression. As such, an avatar could be misused to the orig-
inal person’s disadvantage. However, we focus on 3D ap-
plications such as immersive teleconferencing or character
animation, not indistinguishable 2D video synthesis. Our
method does not model lighting, the background, or the
torso. Therefore, we believe a detection system can be built
to identify generations of our method by exploiting such
characteristics [60].
All subjects shown in the paper and the supplemental video
are part of the NeRSemble dataset [36] and have consented
to their recordings being used for research purposes.



DNR [72] DNR+GAN MVP [44] DiffusionRig [12] Ours GT

Figure 11. Qualitative results for self-reenactment.

MVP DNR+GAN Ours GT
← time→ ← time→ ← time→ ← time→

Figure 12. Analysis of Temporal Consistency. We extract a short vertical segment of pixels from each frame of a generated video and
concatenate them left-to-right (bottom). The desired result is that texture details move together with the underlying head geometry. It
can be clearly seen that combining Deferred Neural Rendering with an adversarial loss (DNR+GAN) causes severe texture sticking as the
person rotates their head to the left. On the other hand, MVP and our method do not suffer from this issue. Additionally, as opposed to
MVP, our method generates much of the high-frequency detail that is also present in the ground truth video.
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Figure 13. Architecture of DiffusionAvatars. We build on the U-Net architecture of a pre-trained Stable Diffusion [59] model. While
we keep all original layers fixed, we introduce an additional cross attention layer in each block that allows spatial features to attend
to expression tokens extracted from NPHM’s expression codes. That way, subtle expression details can influence the image formation
process. Additionally, following the ControlNet [89] paradigm, the encoder part of the diffusion U-Net is copied and conditioned on the
NPHM rasterizations. The feature maps produced by this ControlNet are added to the existing skip connections of the U-Net, allowing the
diffusion model to generate articulated facial images while keeping the knowledge from its pre-training.
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