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Abstract

The main result of this thesis is the use of the boost operator to develop a systematic method
to construct new integrable spin chains with nearest-neighbour interaction and characterized
by an R-matrix of non-difference form. This method has the advantage of being more
feasible than directly solving the Yang-Baxter equation. We applied this approach to various
contexts, in particular, in realm of open quantum systems, we achieved the first classification
of integrable Lindbladians. These operators describe the dynamics of physical systems in
contact with a Markovian environment. Within this classification, we discovered well-known
models such as the Hubbard model, as well as a novel deformation of the Hubbard model
spanning three sites of the spin chain. We extensively analyzed this range 3 model and
uncovered the existence of multiple Non Equilibrium Steady States (NESS). The presence of
multiple NESS is connected to the existence of certain "hidden strong symmetries" in the
form of quasi-local charges. We computed the NESS analytically in the form of a Matrix
Product Operator. Additionally, we applied our method to classify models with su(2)⊕su(2)
symmetry. In this class of models, we recovered the matrix part of the S-matrix of AdS5×S5

derived by requiring centrally extended su(2|2) symmetry. We also obtained five models
that, to the best of our knowledge, are new. Furthermore, we focus on spin 1/2 chain. We
demonstrated that all Hermitian integrable Hamiltonians can be reconducted to models of
8-Vertex type. We classified models in this class and we found two difference form models
that correspond to the known XXZ and XYZ spin chain. We also found two models of non-
difference form type: the one of 6-vertex type is a known model, while the one of 8-vertex
type is a newly discovered model. Furthermore, we showed that the two non difference form
models satisfy the free fermion condition. This enables us to express the transfer matrix
associated to some of the models in a diagonal form, simplifying the computation of the
eigenvalues and the eigenvectors.
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Introduction

The study of the general behaviour of complicated non-linear systems is of interest for both
physicists and mathematicians. In certain models, the presence of numerous conserved
quantities restricts their dynamics and allows for exact solutions. While this is expected in
isolated systems of non-interacting particles, it is remarkable that this phenomenon can also
occur in certain interacting theories. There are various definitions of integrability [1], but
in this thesis, we focus on quantum models characterized by an R-matrix solution of the
Yang-Baxter equation. The significance of integrability lies in its ability to often provide a
general mathematical approach to determine the dynamics of the system, [2].

Historical Remarks Integrable systems and classical mechanics developed together as sci-
entists aimed to find precise solutions to Newton’s equations of motion. Newton’s discovery
of the exact solution to the Kepler’s problem was remarkable, but only a few other models
had exact solutions at that time. In the 19th century, Liouville categorized Hamiltonian
systems as either integrable or non-integrable, where integrable referred to systems whose
equations of motion could be solved using quadratures. While integrable models had been
known for many years, the development of systematic methods to study them is relatively
recent.
Classical integrable models can be studied via the Inverse scattering method. This method
was introduced in the 1960s by Gardner, Greene, Kruskal, and Miura, as well as Lax, Za-
kharov, and Fadeev. Initially, it was employed to investigate completely integrable models
in classical mechanics, such as the Korteweg-de Vries equation in fluid mechanics. Over
the subsequent years, the method was expanded to include certain relativistically invariant
models. In the following decade, Faddeev, Korepin, Kulish, Reshetikhin, Sklyanin, Semenov
Tian-Shansky, and Takhtajan began developing the quantum version of this method.
In the realm of quantum mechanics and statistical physics, various techniques have been
developed by physicists such as Bethe, Onsager, Baxter, Zamolodchikov, and many others.
They have played a crucial role in advancing our understanding of quantum systems and their
behavior.
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In 1931, the young postdoc Hans Bethe made a pioneering contribution to the field of
quantum integrability, [3]. At that time, the general formalism for non-relativistic quantum
mechanics was still being developed. Bethe directed his attention to a specific model known
as the Heisenberg spin chain1, nowadays considered the prototype of integrable models,
whose Hamiltonian reads

H= ∑
l

(1
4
− S⃗l · S⃗l+1

)
, with S⃗l =

1
2

σ⃗l , (1)

where σ⃗l are the three Pauli matrices. He was able to find the exact solution for this model
by guessing the expression of the "wave function" |ψ⟩ of the system, which corresponds to
the eigenstates of the spectral problem

H|ψ⟩= E|ψ⟩, (2)

where E are the Hamiltonian eigenvalues. Bethe’s discovery of the exact solution to the
spectral problem in the Heisenberg spin chain, nowadays known as the Bethe ansatz, has had
a profound impact on condensed matter theory and mathematical physics. This method has
proven to be highly versatile and applicable to a wide range of diverse integrable problems.
When approaching a new model, it is important to determine whether it is integrable or not.
However, determining the integrability of a given model is not a straightforward task. In this
thesis, we analyze this question and aim to provide a clearer understanding of the criteria and
characteristics that define integrability in different systems. We focus on quantum spin chain
models.

Classification of integrable models Over the course of the history of quantum integrable
systems, various approaches have emerged for finding solutions to the Yang-Baxter equation
and, as a result, discovering integrable models. One fruitful approach in the early days
was to impose specific symmetries on the solutions, [4, 5]. However, finding models that
do not exhibit the symmetries is a challenging task and, as time passed, different groups
analyzed this problem. This lead to the discovery of a substantial number of new integrable
models2. Considering the importance of integrable models, the main focus of this thesis is
on the use and the development of a new method to classify and discover integrable models
in different contexts. This method makes use of the boost operator, [6, 7] to generate
higher conserved charges and has the advantage of being more versatile compared to many

1A quantum spin chain is a one-dimensional lattice, where operators can act on each site of the chain.
2More details about the available methods will be given in chapter 2.



3

of the other available methods3. Specifically4, we conducted a classification of all integrable
spin chains of 8-vertex type, resulting in the discovery of new solutions that encompass the
S-matrices of the AdS2 and AdS3 integrable models as special cases. Although these models
are very interesting, they are not the central focus of the thesis. We primarily concentrate on
applying the method to the realm of open quantum systems. This exploration leads us to the
discovery of new interesting models, for instance, the first range three deformation of the
Hubbard model.

One possible application of the boost method: Open quantum systems We start by
considering a total closed physical system, so that its dynamics can be represented in terms
of a unitary time evolution. We are primarily concerned with studying a subsystem of the
total system, which we refer to as the "system". Consequently, the total system is composed
of the system of interest (the orange portion in the figure) and the surrounding environment
(the blue one).

In introductory physics courses, the importance of the environment is often disregarded,
resulting in an idealized depiction of natural phenomena. In that case, the system is closed.
However, in reality, the environment has a substantial influence, giving rise to non-trivial
dynamics. The theory of open quantum systems aims to develop a general framework to
analyse the dynamical behaviour of the systems by removing the environmental degrees of
freedom.

3In chapter 2, we state the pros and cons of each of the available methods and we compare them with the
ones of the boost method.

4In chapter 2, we list all the contexts in which the classification was performed.
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A complete description of the system-environment interaction is in general a very hard prob-
lem. Under some approximations, the dynamics become more tractable and it is described
via the Markovian Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation,
[8, 9]. This equation, also known as the Lindblad equation, was independently derived by
Lindblad and by Gorini, Kossakowski, Sudarshan around 1975. It takes the following form

ρ̇(t) = i[ρ(t),h]+
N

∑
a

γa

[
ℓaρ(t)ℓ†

a −
1
2
{ℓ†

aℓa,ρ(t)}
]
, (3)

where ρ denotes the reduced5 density matrix of the system, h is the Hamiltonian of the
system, ℓa describe the effective action of the environment on the system, typically involving
multiple reservoirs, and γa represents the corresponding coupling constants between each
reservoir and the system.
This equation is only valid under the Markovian approximation6. This approximation
assumes that the memory effects of the environment on the system can be neglected, meaning
that the system’s evolution depends solely on its present state and not on its past history.
A relevant role is played by the correlation time of the environment, the measure on how
quickly the property of the enviroment changes. If this time is significantly shorter than the
characteristic time scale of the system’s dynamics, then the approximation holds. It is worth
noting that the Markovian approximation may not be applicable in all cases, particularly when
the system-environment interaction is strong or when the environment possesses long-range
correlations. In such cases, non-Markovian effects may become significant, requiring more
advanced theoretical frameworks to describe the dynamics of such open quantum systems.
In this thesis, we will not consider this type of system. Our focus is primarily on the study of
systems where the Markovian approximation is applicable.

Why do we study integrable open quantum systems? Studying open quantum systems
is intriguing for several reasons. First, it is essential for addressing fundamental aspects
of quantum physics, including the phenomenon of decoherence [10], which is critical for
quantum technologies like quantum computers. Decoherence disrupts quantum properties
such as superposition and entanglement due to interactions with the environment. Addition-
ally, calculating non-equilibrium steady states (NESS) [11] in quantum statistical mechanics
offers insights into complex systems’ behavior far from equilibrium.
Moreover, due to the vast range of applications, investigating the dynamics of many-body

5The reduced density matrix is obtained by tracing out the degrees of freedom of the environment from the
total system+environment density matrix.

6The validity of this approximation is discussed in more details in section 3.1.1.
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systems is both captivating and challenging. Over the past few decades, significant progress
has been made through the utilization of perturbative methods and numerical analyses. How-
ever, exact solvable cases have gained attention in recent years. These cases allow for the
study of out-of-equilibrium dynamics using exact methods, which not only contribute to the
development of approximate methods but also serve to validate their precision.
In the literature of open quantum systems, the meaning of solvability is various. We provide
a list of some of them

• models solvable by free fermion techniques, [12, 13];

• models for which the full spectrum can be constructed, those are characterized by an
evolution operator of upper triangular form, [14];

• open spin chain with the environment contribution acting on the boundary and allowing
for the exact construction of the NESS, [15];

• model for which the evolution operator is integrable in different subspaces, [16];

• Yang-Baxter integrable models: models that can be associated to an R-matrix solution
of the Yang-Baxter equation, [17, 18].

In this thesis, the focus is on the class of solvable models that are Yang-Baxter integrable.
The advantage of working with integrable models is that the NESS and the relaxation
towards them can be computed with exact methods and the generator of the dynamics can be
diagonalized involving some of the available technique, for example the Bethe Ansatz.
Furthermore, integrable models have played an important role in understanding the non-
equilibrium dynamics in isolated quantum systems. Isolated non-integrable many particle
systems are not very interesting since they relax very quickly toward an equilibrium state.
Isolated integrable system, due to the infinite number of conserved charges, equilibrate to the
Generalized Gibbs Ensamble (GGE), [19] and the dynamics is described by the Generalized
Hydrodynamics (GHD), [20].
In general, when a system interacts with its environment, the property of integrability tends to
be lost. However, it is remarkable that certain models exist in which integrability is preserved,
allowing for the application of the Bethe ansatz technique. The availability of such integrable
models is particularly valuable as they may serve to validate the accuracy of the GGE and
GHD in describing the system’s time evolution. However, this field of research is very new
and still mostly unexplored.
Motivated by these reasons, very recently, different groups started to study Lindblad models
that can be mapped onto known Yang-Baxter integrable interacting systems. By employing a
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super-operator formalism7, the Lindbladian generator of the dynamics can be written as a
matrix in a higher dimensional space that corresponds to a “two-leg ladder” quantum spin
chain. In one of the initial papers [17], the authors provide a map between the well known
Hubbard model8 and an open quantum system, while in [18] the authors did a similar job for
the Hubbard model and some generalization, the Maassarani models.
In this thesis, based on our initial work [21] of 2020, we initiated the first systematic
classification of Yang-Baxter integrable Lindblad systems by using the already mentioned
Boost automorphism method.

7More details can be found in section 3.1.3.
8To be precise, the mapping is between the Hubbard model with an imaginary coupling constant and an open

quantum system. In the latter, the system is an XX spin 1/2 chain subject to dissipation. The effective action of
the environment on the system is ℓ= Z, with Z representing the third Pauli matrix. Given the importance of the
result, we explicit describe it in chapter 5.
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Contents

In this thesis, we focus on quantum integrable models defined on a spin chain: a one-
dimensional lattice, where each site of the chain is a Hilbert space.
The main result of this thesis is the use of the boost operator to develop a systematic method
to construct new integrable spin chains of non-difference form with nearest-neighbour inter-
action, which has the advantage of being more feasible than directly solving the Yang-Baxter
equation. By applying this approach, we were able to achieve the first systematic classifica-
tion of integrable Lindbladians. These operators describe the evolution of physical systems
in contact with a Markovian environment. Within this class of integrable Lindbladians, we
discovered well-known models such as the Hubbard model, as well as its first medium-
range deformation9. These models will be deeply analyzed in the following. We also
applied the models to various contexts, for instance, to models with su(2)⊕ su(2) symmetry
and with a non-difference form R-matrix. Furthermore, we focus on spin 1/2 chain with
Hamiltonian of 8-vertex type. We show that all the non-difference form models we found
satisfy the free fermion conditions. This enables us to express the transfer matrix associated
to some of the models in a diagonal form, simplifying the computation of the eigenvalues and
the eigenvectors. These new models10 are relevant in the context of AdS/CFT, in particular
they correspond to integrable deformations of the AdS2 and AdS3 models.
The thesis is composed of nine chapters:

• In chapter 1, we introduce quantum integrable systems and how to characterize
them. We highlight the importance of the Yang Baxter equation, which serves as the
cornerstone of integrability. Having an R-matrix solution of the Yang-Baxter equation
and the presence of an infinite set of commuting conserved charges are two ways
to characterize integrable models. We show the interconnection between those two
definitions. We introduce some useful definitions: Lax, monodromy and transfer
matrices. We use the Heisenberg spin chain as the prototype of integrable models
and we show how a direct diagonalization of the Hamiltonian becomes unfeasible
as soon as the volume of the system increases. We explicitly present how to use the
Bethe ansatz method, that makes use of the integrability property, to overcome the
difficulties.

This chapter is mainly based on the reviews: [24–26].

9We use the word "medium" to refer to next-to-nearest-neighbour interactions.
10Although these models are very interesting, they are not the central focus of the thesis. We refer to [22]

and [23] for additional details.
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• In chapter 2, our focus shifts towards the classification of quantum integrable models.
We begin by providing an overview of the existing methods in the literature for
this purpose. We discuss the pros and cons of each approach and provide a list
of the different types of models that we discovered. Then, we present the boost
automorphism mechanism: the novel mechanism we used to classify integrable
models of non-difference form. By following [6, 7], we derive the boost operator. To
illustrate the effectiveness of the boost automorphism mechanism, we provide a simple
example that demonstrates how it can be used to classify and discover new integrable
models. At the end of the chapter, we list some of the "tricks" we acquired through the
experiences. These tricks and strategies have been instrumental in our classification.

This chapter is mainly based on the author’s paper: [27].

• In chapter 3, we use the boost authomorphism method to classify integrable open
quantum systems, which represents one of the key contributions of this thesis. We
give the derivation of the Lindblad master equation by following the reviews [28, 29].
The dynamical evolution of the density matrix corresponding to the system is described
via a Lindblad superoperator L , which we identify as one of the conserved charges of
the spin chain. We show, with an example, how to use the boost operator to provide
the first systematic approach to classify integrable Lindbladians. We also give the
connection between the Lindblad equation and the classical stochastic Markovian
system. This connection was known in the literature, but starting from integrable
Lindbladians is a new result.

This chapter serves as an introduction to understand the results presented in the author’s
paper [21].

• In chapter 4, we present a collection of integrable Lindbladians found through
the application of the boost automorphism mechanism. We classify these models
into two groups: fine-tuned models and coupled models. One particular model that
deserves special attention among the coupled models is model B3. We investigate the
Non Equilibrium Steady States and the particle current flowing through these states.
Surprisingly, this model serves as an integrable example of the pumping effect11, where
a finite current persists even when the coupling constant is very small. We provide a
proof of the equivalence between model B3 and the generalized Toda system associated
with the non-exceptional affine Lie algebra A(2)

3 . To solve this model, we utilize the
nested Algebraic Bethe ansatz, and we present the expressions for the eigenvalues and

11This effect was already observed in other systems, see for example [30]. We provide the first case where it
is observed in an integrable model.
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the Bethe equation. Further computational details can be found in Appendix A. Lastly,
we introduce model B2, which represents an integrable deformation of the Hubbard
model. This model serves as bridge to the next chapter. It is worth noting that, with
the exception of model B2, all the discovered models are of difference form type.

This chapter is mainly based on the author’s papers: [27] for the classification of the
models and [31] for the analysis on the model B3.

• In chapter 5, we introduce the Hubbard model, a toy model used to describe the motion
of electrons in the conduction band of a solid. We present the Hubbard model in both
fermionic and bosonic formulations. Additionally, we explore the relation between the
Hubbard model’s Hamiltonian and the Lindblad superoperator, given in [17] and we
investigate all the cases where this mapping is possible. Furthermore, we introduce a
new nearest-neighbour integrable elliptic model and we show how to use the bond site
transformation to relate it to a range 3 integrable deformation of the Hubbard model.
We believe that this is the first range three integrable deformation of the Hubbard
model. To confirm our findings, we prove the integrability of the 3-site model and
highlight the unusual functional dependence of the R-matrix. The explicit expression
of the R-matrix for the nearest-neighbour model is given in Appendix B. Details on the
bond site transformation are given in Appendix C.

This chapter is mainly based on the author’s paper [32].

• In chapter 6, we analyze the symmetry of the Lindblad superoperator associated with
the range 3 deformation of the Hubbard model introduced in the previous chapter.
We start by providing a brief introduction on the meaning of conserved quantities
and symmetries in non-Hermitian models. Then, we analyze the 3-site model and we
discover the presence of multiple NESS. We motivate this multiplicity with the presence
of hidden strong symmetries in the form of quasi-local charges. We compute the
NESS exactly in the form of Matrix Product Operators with fixed bond dimensions
and we use this to compute the mean values of some local observables. Furthermore,
we prove that the dynamics leads to the emergence of the Gibbs ensemble constructed
from the hidden quasi-local charge. Interestingly, we did not use the fact that the 3-site
model is Yang-Baxter integrable. However, the “superintegrability” property of the
Hamiltonian (5.15) plays an important role. Details on the computation of the mean
values are given in Appendix D.

The introduction of this chapter is based on the paper [33]. The main results is based
on the author’s paper [34].
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• In chapter 7, we apply the boost automorphism method to classify integrable models
where the local Hilbert space is of dimension 4. Since the most general Hamiltonian
involves 256 free functions, it is a challenging task to solve the coupled systems of
differential equations using current methods. To overcome this, we limit our focus
to models with su(2)⊕ su(2) symmetry and with a non-difference form R-matrix.
We begin by presenting the procedure for constructing the ansatz for the Hamiltonian
with the given symmetry and then we list the integrable models found. This ansatz
is motivated by the fact that many interesting known physical models such as the
Hubbard model (discussed in chapter 5), exhibit this symmetry. We discover five
models which, based on our current knowledge, are new. Furthermore, we demonstrate
that the Hubbard model can be classified within our framework.

The beginning of this chapter is based on the explanation given in [35]. The main
result is based on the author’s paper [27].

• In chapter 8, we apply the boost automorphism method to classify integrable models
where the local Hilbert space is C2. We restrict our ansatz to Hamiltonians of 8-vertex
type or lower. We start with a short introduction on vertex models and then we list
the models that we found. Two of them can be reduced to a difference form type
and are equivalent to the well-known XXZ and XYZ spin chains. The remaining two
are of non-difference form: the 6-vertex B can be mapped to the solution A of the
paper [36] while the 8-vertex B (to the best of our knowledge) is a new model. To
motivate the ansatz chosen, we prove that any 4x4 Hermitian integrable Hamiltonian
can be transformed into an 8-vertex model. Models 6-vertex B and 8-vertex B are of
non-difference form type and contain the AdS2 and AdS3 integrable models as special
case. We explore this statement in Appendix E.

The introduction of this chapter is based on the book [37]. The main result is based on
the author’s papers [22, 27].

• In chapter 9, we prove that the difference form integrable models discussed in chapter 8
satisfy the Baxter relation, while the non difference form ones satisfy the free fermion
condition. The latter condition is particularly significant as it enables us to express
the transfer matrix associated with these models in a diagonal form, simplifying the
process of computing eigenvalues and eigenvectors. We have explicitly demonstrated
that the free fermion condition enables us to express the transfer matrix associated with
the 6-V B model in a diagonal form, simplifying the computation of eigenvalues and
eigenvectors. This was previously hidden in the standard formalism. Furthermore, we
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identify the equivalent free fermion conditions for some of the models with su(2)⊕
su(2) symmetry discussed in chapter 7.

This chapter is mainly based on the author’s paper [38] .

The organizational structure of the thesis and the interrelation among the chapters are
presented on the following page.
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Chapter 1

What is an integrable model and how can
we solve it?

There is not a single, clear-cut definition for quantum integrability, [1]. However, it is
commonly accepted to characterize integrable models using the R-matrix solution of the
Yang-Baxter equation and the presence of an infinite set of commuting conserved charges.
In this chapter, we explain these two definitions in more detail and demonstrate how they
are interconnected. Furthermore, we define some crucial elements like the monodromy and
the transfer matrix, using both analytical and visual explanations to make them easier to
understand.
Furthermore, we introduce the Heisenberg spin chain as an example of an integrable model
and we use it to highlight the importance of integrability in understanding the dynamics
of a system. We solve the spectral problem of this model via the Algebraic Bethe ansatz
technique and we show that this solution would not be achievable for a large system by using
a brute force diagonalization.

1.1 Useful Definitions

A quantum integrable model has an infinite number of conserved charges and it is character-
ized by an R-matrix solution of the Yang-Baxter equation1 (YBE), [39]

R12(λ1,λ2)R13(λ1,λ3)R23(λ2,λ3) = R23(λ2,λ3)R13(λ1,λ3)R12(λ1,λ2). (1.1)

1Sometimes the Yang Baxter equation can be found in a slightly different form recalling Ri j → Ři j = Pi jRi j
with P being the permutation operator that swaps the sites i and j.
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This is a matrix relation defined in End(V ⊗V ⊗V ), with V ≡ Cn the n-th dimensional
complex vector space. The R-matrix is defined in End(V ⊗V ) and in the indexed version Ri j,
the subscripts denote which of the three spaces R acts on (for example R12 = R⊗ I, I being
the identity operator in Cn) and λ1,λ2,λ3 are known as spectral parameters, each of them
associated to one of the three Hilbert spaces. They can take values in C.
The YBE is considered the crucial component of integrability (at both classical2 and quantum
levels). The primary focus of this thesis is to classify the solutions of the quantum YBE and
uncover new models that possess intriguing physical properties.
In some cases, the R-matrix can be interpreted as the scattering matrix which serves as an
operator linking the initial and final states during a scattering process. The YBE is also
called a factorization equation: the total scattering can be viewed as a series of two-particle
interactions, with the order of scattering being irrelevant, [40]. When a particle interpretation
is applicable, the spectral parameters are associated to the momenta of the involved particles.
Pictorially, the R-matrix and the YBE can be represented in the following way:

i j

λi λ j

;

1 2 3

λ1 λ2 λ3

1 2 3

λ1 λ2 λ3

=

Fig. 1.1 Graphical representation of the R-matrix (left) and the Yang-Baxter equation (right).

where to each line we associated a space and a spectral parameter.
From this representation of the R-matrix, we can construct more complicated objects like the
monodromy matrix and the transfer matrix and also prove some of the identities involving
them.
In general, the R-matrix depends on two spectral parameters (λi,λ j) and we can distinguish
two possible cases

• R(λi,λ j) = R(λi −λ j) difference form

• R(λi,λ j) ̸= R(λi −λ j) non difference form.

2The classical YBE takes a different expression than (1.1), we refer to [2, 24] for a detailed explanation.
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Some examples of difference form types of models include the Heisenberg spin chain (also
known as XXX), as well as the XXZ and XYZ spin chains. In section 1.2, we give a
definition of these models and we use the Heisenberg spin chain, known for its simplicity, as
a prototype for integrable models. A very famous model of non-difference form type is the
Hubbard model, which describes the physics of interacting spin-1/2 fermions on a lattice
and will be extensively examined in Chapter 5, along with some newly discovered integrable
deformations.

1.1.1 Why and how does the YBE define an integrable model?

In this thesis, the models under investigation are constructed on a spin chain: a one-
dimensional lattice. Operators can act on each site of the chain. When discussing an
observable A, the notation A j specifies the site(s) where the observable acts non-trivially

A j = I⊗·· ·⊗ A︸︷︷︸
jth site

⊗·· ·⊗ I. (1.2)

The index j can refer to a single site or multiple sites simultaneously. L is the dimension of
the spin chain, also referred as length or volume, the total Hilbert space is

⊗
LV , V = Cn. I

is the identity operator in V .
We now introduce operators that play a crucial role in characterizing the integrable properties
of the models.

Lax matrix The Lax operator3 L can be defined using the RLL relation

R00′(λ ,λ
′) L0n(λ ,λn) L0′n(λ

′,λn) = L0′n(λ
′,λn) L0n(λ ,λn) R00′(λ ,λ

′) . (1.3)

The Lax operator L acts on one auxiliary space (0 or 0′) and one physical space (n). We
can represent graphically the Lax operator L0i(λ ,λi) and the RLL relation in the following
way:

3We use the symbol L to represent both the length of the spin chain and the Lax matrix. However, it will be
clear from the context to which of the two we refer.
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0 i

λ λi

;

0 0′ n
λ λ ′ λn

0 0′ n
λ λ ′ λn

=

Fig. 1.2 Graphical representation of the Lax matrix (left) and the RLL relation (right). Blue
lines identify the auxiliary spaces.

When the auxiliary space is equivalent to the physical space, it is possible to consider the
Lax matrix to be the same as the R-matrix. In this situation, we say the spin chain is in the
fundamental representation, and the RLL equation is equivalent to the YBE (1.1) by taking

0 → 1, 0′ → 2, n → 3. (1.4)

In this and the following chapters, we consider the Lax operators and the R-matrix as the
same objects. The only exception is in Section 5.6, where we present an example where
these two operators are distinct from each other.
If the auxiliary space has dimension 2, the Lax operator L0n can be represented in matrix
form4

L0n(λ ,λn) =

(
αn(λ ,λn) βn(λ ,λn)

γn(λ ,λn) δn(λ ,λn)

)
, n = 1 ,2 , . . . ,L , (1.5)

with α,β ,γ,δ matrices acting on the physical space n. The algebra of these operators is
encoded into the RLL relation (1.3).

Monodromy matrix The monodromy matrix T0(λ ,{λi}) is the product of L operators

T0(λ ,{λi}) = L0L(λ ,λL) · · ·L01(λ ,λ1) =

(
αL βL

γL δL

)
· · ·

(
α1 β1

γ1 δ1

)
. (1.6)

4The extension to the case of auxiliary space of higher dimension is obvious.
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In the cases where we can identify the Lax matrix with the R-matrix, the monodromy
matrix is equivalently defined as5

T0(λ ,{λi}) = R0L(λ ,λL) · · ·R01(λ ,λ1) . (1.7)

The parameters λi are known as inhomogeneities, and each parameter is associated with a
particular physical space. When all the inhomogeneities have the same value λi = θ for all i,
the spin chain is said to be homogeneous.
We can represent graphically the monodromy matrix in the following way:

0

L L−1 L−2

...

2 1

Fig. 1.3 Graphical representation of the Monodromy matrix. The blue line identifies the
auxiliary space.

By using (1.3) repeatedly, we can prove that the monodromy matrix obeys the fundamen-
tal relation

R00′(λ ,λ
′) T0(λ ,{λi}) T0′(λ

′,{λi}) = T0′(λ
′,{λi}) T0(λ ,{λi}) R00′(λ ,λ

′) , (1.8)

or in graphical form

L L−1 1

...

0

0′

=

L L−1 1

...

0

0′

Fig. 1.4 Graphical representation of the RTT relation.

5Sometimes, for convenience, one can also identify L0i(λ ,λi) = R0i(λ ,λ
′
i ), where λi is related to λ ′

i by a
shift.
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Transfer matrix The transfer matrix t(λ ,{λi}) for periodic spin chains is defined as

t(λ ,{λi}) = tr0T0(λ ,{λi}) , (1.9)

where tr0 is the partial trace over the auxiliary space. t(λ ,{λi}) is an operator acting only on
the physical spaces. The graphical representation of the transfer matrix is:

j j+1j−1

1 L
L−1

2

Fig. 1.5 Graphical representation of the transfer matrix.

By multiplying (1.8) for R00′(λ ,λ
′)−1 from the right, taking the partial trace over both

auxiliary spaces 0 and 0′ and using the cyclicity of the trace, we find[
t(λ ,{λi}) , t(λ ′,{λi})

]
= 0 . (1.10)

Conserved charges Provided that all the inhomogeneities are the same (λi = θ ), we can
expand for a spin chain of definite length L, the transfer matrix in series

log t(λ ,θ) =Q1

(
θ +λ

2

)
+(λ −θ)Q2

(
θ +λ

2

)
+

1
2
(λ −θ)2Q3

(
θ +λ

2

)
+ . . . , (1.11)

and by considering6 (1.10) order by order we obtain

[Qi(θ),Q j(θ)] = 0, i, j = 1, . . . ,∞, (1.12)

which is the cornestone of integrability. Qi(θ) are the conserved charges characterizing the
integrability of the models.

6To be precise, (1.10) implies that also [log t(λ ,{λi}), log t(λ ′,{λi})] = 0.
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If the inhomogeneties are different, the expansion of the transfer matrix can still be performed,
but now takes the more involved expression

log t(λ ,{λi}) =Q1

(
θ +{λi}

2

)
+∑

j
(λ −λ j)Q2

(
θ +{λi}

2

)
+

∑
j

1
2
(λ −λ j)

2Q3

(
θ +{λi}

2

)
+ . . . . (1.13)

And the commutation property (1.12) becomes

[Qi(θ ,{λi}),Q j(θ ,{λi})] = 0, i, j = 1, . . . ,∞. (1.14)

To clarify, in a model characterized by an R-matrix that satisfies the YBE, it is always possible
to define an infinite set of conserved charges. However, the converse is not always true.
Indeed, some models have an infinite set of conserved charges, but with not known R-matrix.
An example of such a model is the Inozemtsev’s spin chain, [41]. In this model, the dynamic
is governed by a density Hamiltonian acting on all the sites of the spin chain. This class of
models, including Inozemtsev’s spin chain, will not be considered in this thesis. Instead, we
consider Hamiltonian density that acts on nearest-neighbour sites or on 3 sites.

Regular R-matrix We are interested in models where the conserved charges act locally,
therefore we should restrict to the case where the R-matrix is regular7,

Ri j(λ ,λ ) = Pi j, (1.15)

where P is the permutation operator swapping the site i and j of the chain. We give the action
of P on both vectors |a⟩, |b⟩ and on a 2 site operator B:

P|a⟩⊗ |b⟩= |b⟩⊗ |a⟩, Pi jB jkPi j = Bik. (1.16)

In general, we can also renormalize the R-matrix while still satisfying the Yang Baxter
equation (YBE), resulting in Ri j(λ ,λ ) ∼ Pi j. As mentioned, we are considering the case
where the R-matrix and the Lax matrix coincide and consequently, the regularity property
can be analously given in term of one of these two matrices. In chapter 5, we consider one of
the case where L and R are two different objects and we define the regularity condition on

7We remark that to have a regular R-matrix, the spin chain should be homogeneous. Furthermore, the
statement that regular R-matrix implies that the charges are local can be understood from (1.18) and (1.25)-
(1.26).
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the Lax matrix, see expression (5.67).
From now on, we always work with the assumption of regularity, unless explicitly mentioned.
For this case, the charges Qi are local and have interaction range i. This identifies on how
many sites of the spin chain the charge Qi is acting non-trivially. As an example, we can
consider the case i = 2

Q2 = ∑
j

Q j, j+1, (1.17)

and more generally, each charge Qi can be written as a sum of densities Q acting non-trivially
on i sites of the spin chain. With this in mind, it is important to note that in the expression
(1.11), the length L of the spin chain must be bigger than the maximum range of the charge
we are interested in. Taking L smaller or equal gives rise to wrapping effect, [42].

Periodic and open boundary conditions The boundary conditions of the sum differ if we
work with open or closed spin chain.
For example, in (1.17)

• closed Q2 = ∑
L
j=1 Q j, j+1, QL,L+1 ≡ QL,1

• open Q2 = ∑
L−1
j=1 Q j, j+1.

In this thesis, we work with closed spin chain (periodic boundary condition). The scenario
changes when dealing with open boundary conditions, [43]. In such cases, the reflection
matrix, often referred to as the K-matrix, assumes a prominent role. The YBE (1.1) continues
to hold, but there are two extra equations called boundary YBE (one for the left and one for
the right boundaries).

Charges and transfer matrix: meaning of the first few charges By using (1.11), the
charges are related to the transfer matrix by

Qi(θ) = ∂
i−1
λ

log t(λ ,θ)|λ=θ . (1.18)

The charge Q1 can be identified with the momentum of the spin chain. We can first
consider the case L = 2 and take the auxiliary space to be the same as the physical one so
that the R and the Lax matrix coincide, the transfer matrix (1.9) is

t(θ ,θ) = tr0T0(θ ,θ) = tr0R02(θ ,θ) R01(θ ,θ) = tr0P02P01 = P12 , (1.19)
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where we have used the regularity condition (1.15) and the identity tr0A0P0n = An.
Given an operator A acting on the first site of the spin chain, we find that

t(θ ,θ) A1 t(θ ,θ)−1 = P12 A1 P12 = A2 , (1.20)

and this easily generalizes to arbitrary n

t(θ ,θ) An t(θ ,θ)−1 = An+1 , n = 1 , . . . ,L . (1.21)

Remembering that the momentum operator of quantum mechanics follows the property

eiaP X e−iaP = X +a , (1.22)

where P and X are the momentum and position operators, and a is a c-number. We can define
the momentum operator for a spin chain by eiP = t(θ ,θ), which implies

P=−i log t(θ ,θ) =−iQ1, (1.23)

so the first charge Q1 is related to the momentum.
For the sake of clarity, we point out that the condition (1.10) holds for any R-matrix satisfying
the YBE. The regularity condition is necessary to ensure the locality of the charges.
Traditionally, one takes the charge Q2 to be the Hamiltonian of the system

Q2(θ) =H(θ) =
L

∑
j=1

H j, j+1(θ), HL,L+1 ≡ HL,1 (1.24)

and given a regular R-matrix, we can construct an integrable spin chain with nearest-neighbour
interaction Hamiltonian. This density is itself related to the R-matrix in a very simple way:

H12(θ) = P12∂λ R12(λ ,θ)|λ→θ (1.25)

and as given by (1.18), [5]

Q2(θ) = ∂λ log t(λ ,θ)|λ→θ . (1.26)

For difference form R-matrix, the relation is H12 = P12∂λ R12(λ )|λ→0. It becomes clear
that we can also investigate the nature of the R-matrix, whether it is of difference or of non-
difference form, by analysing the charges associated with it. Constant charges correspond to
difference form R-matrices.
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Knowing the R-matrix gives us information about the Hamiltonian and the dynamics of the
system. However, there are alternative methods for constructing higher conserved charges
besides using the transfer matrix. For regular R-matrices, we can recursively generate the
charge Qi+1 from Qi using the boost operator mechanism, [6, 7]. In chapter 2, we provide a
thorough explanation of this mechanism, as we use it to find new integrable models.

In the next section, we follow the approaches of [44, 25],

"[...] not to begin in full generality but rather to choose a representative example and
explain on it all technical features in such a way, that generalization become reasonably
evident." Faddeev, [44].

We introduce the well-known Heisenberg spin chain as an example of an integrable model.
We utilize this model to initially highlight the significance of integrability in understanding
the dynamics of a system.

1.2 A typical example: the XXX spin chain

The XXX model (Heisenberg) is a standard example of integrable spin chain.
Even if this model is really simple, its rich and elegant mathematical structure makes it the
prototype of all integrable models. This Hamiltonian was first used for condensed matter
applications where it serves as a model for a ferromagnetic or antiferromagnetic material.
Furthermore, it is also very important in high energy physics. In fact, in the AdS/CFT context,
it describes the leading order anomalous dimensions for operators in the SU(2) sector of the
N = 4 supersymmetric Yang-Mills theory [45].

1.2.1 Why do we need integrable models?

Given a physical model, we are interested in solving the spectral problem

H|ψ⟩= E|ψ⟩. (1.27)

We start to explore the problem considering H on a spin chain of length L = 2 and then to
generalize to arbitrary length. It will then be clear where the difficulties start to arise and
how integrable models can assist in addressing them.
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Definitions

We focus on a spin 1/2 chain (the generalization to s > 1/2 is straightforward and can be
found in many reviews or books, for example [44, 25]).
The Hilbert space is given by ⊗LC2 and we use the standard basis(

1
0

)
= |↑⟩,

(
0
1

)
= |↓⟩, (1.28)

to identify particles of spin up and down, respectively.
The density Hamiltonian of the Heisenberg spin chain is

Hi j =
J
4

(
XiX j +YiY j +ZiZ j − I

)
, (1.29)

where X ,Y,Z are the Pauli Matrices. The inclusion of the identity term is for convenience, as
shifting the Hamiltonian globally does not affect the system’s dynamics but only leads to a
uniform energy level shift. The factor J serves as a normalization constant.
This model is called XXX spin chain because the coefficients in front of each term
XX , YY, ZZ are the same. However, the integrability property remains even when these
coefficients are different. For instance, the XXZ spin chain has matching XX and YY co-
efficients, while the ZZ coefficient differs. Similarly, the XYZ spin chain features distinct
coefficients for all three terms. Other limits can also be taken, like the XX model where the
ZZ coefficient is set to 0.
The density (1.29) can also be written as

Hi j =
J
2

(
Pi j − I

)
, (1.30)

with Pi j the permutation operator acting as defined in (1.16) and I the identity matrix 4x4, or
in matrix representation as

H12 =
J
2


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

 . (1.31)
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Spectral problem for L = 2

We are interested in solving the problem

H|ψ⟩= (H12 +H21)|ψ⟩= E|ψ⟩. (1.32)

Here and in the following we use periodic boundary conditions.
It is easy to see by direct inspection that a solution is given by∣∣ψ(1,1)

〉
= |↑⟩⊗ |↑⟩= |↑↑⟩,

∣∣ψ(1,0)
〉
= |↑↓⟩+ |↓↑⟩, (1.33)∣∣ψ(1,−1)

〉
= |↓↓⟩,

∣∣ψ(0,0)
〉
= |↑↓⟩− |↓↑⟩. (1.34)

The states with
∣∣ψ(1,i)

〉
have energy E = 0, while

∣∣ψ(0,0)
〉

has energy E =−2J.
J > 0 is called antiferromagnetic regime because the ground state is a spin singlet state;
while for J < 0 (ferromagnetic) there is a degenerate ground state, triplet.
The reason of this result can be also easily understood from the su(2) symmetry of the model.
In fact, the total spin operator

S⃗ =
1
2

(
σ⃗ ⊗ I+ I⊗ σ⃗

)
, (1.35)

with σ⃗ = (X ,Y,Z), are generators of a reducible 4-dimensional representation of su(2).
There exists a unitary matrix U such that

U S⃗ U† =

(
S⃗(S=1)

S⃗(S=0)

)
, (1.36)

where S⃗(S=1) and S⃗(S=0) generate irreducible representations of dimensions 3 and 1, respec-
tively. Since,

S⃗2 =
1
2

σ⃗ ⊗ σ⃗ +
3
2
I⊗ I , (1.37)

the two-site Hamiltonian can be expressed in terms of S⃗2,

H12 =
J
4
(σ⃗ ⊗ σ⃗ − I) =

J
2

(
S⃗2 −2I

)
(1.38)

and using the fact that S⃗2|S ,Sz⟩= S(S+1)|S ,Sz⟩, we see that

H12|S ,Sz⟩= J
2
(S(S+1)−2) |S ,Sz⟩ , Sz =−S , . . . ,S ; S = 0 ,1 . (1.39)
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In this way, we recover the result found earlier: for S = 1 the energy is E = 0, and for S = 0
the energy is E =−J (the 2 in the energy eigenvalue given after (1.34) comes from the fact
that H= 2H12).
We remark that symmetry arguments are of course not available for all physical models and
in some cases, only a brute force computation can be performed.

Spectral problem for arbitrary L and why integrability is useful

The problem of diagonalizing the Hamiltonian, now corresponds to a problem of diagonaliz-
ing a matrix of dimension 2L ×2L. While this problem can be solved using a computer, it
becomes more difficult as the chain length increases, eventually reaching a point where it
becomes impractical. To give a more precise idea, we performed the diagonalization of the
Hamiltonian (1.31) by using the software Mathematica 12.3. The eigenvalues and eigenvec-
tors were computed separately using the commands "Eigenvalues" and "Eigenvectors". We
set the numerical value J =−1/2, and we plot in Figure 1.6 the computation time needed by
the program to finish as a function of the length of the spin chain.
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Fig. 1.6 Brute force diagonalization of the Heisenberg Hamiltonian (1.31) for different L.
The left graph shows the computation time for "Eigenvalues", while the right graph displays
the computation time for "Eigenvectors".

From the graph, it is evident that the computation time for the diagonalization was
relatively short (the maximum time is approximately 1000 seconds or around 17 minutes).
However, when attempting to increase the length of the spin chain by one, we encountered
significant difficulties within the time frame we had. The computation of the "Eigenvectors"
for L = 15 was not completed after 7 hours, and a similar issue occurred with "Eigenvalues"
for L = 16. Therefore, explicit diagonalization rapidly becomes computationally challenging.
However, there are optimized algorithms available if one is interested in specific eigenvalues,
such as the smallest or the largest. Or one can use supercomputers. Nevertheless, it would be
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highly advantageous to have a method to obtain the complete spectrum efficiently.
If the model is integrable, there exist some techniques that allow to transform the problem
of exactly diagonalize a matrix, to the problem of solving a set of polynomial equations.
For example, in [46], the authors developed a method to generate all possible solutions
(analytically) of this polynomial equations for the rational GL(N|M) spin chain in the case
where the quantum numbers involved are not too large, proving the enormous advantage
of using integrable models. The analytical solution is in general not available, however
using numerical technique, the spectrum can be computed for spin chain with higher length
compared to the ones obtained by brute force diagonalization.
Furthermore, for many physical purposes, it is interesting to study the behaviour of the
eigenvalues in the thermodynamic limit (L → ∞), [47], which is definitely not achievable
by direct diagonalization. For all these reasons, integrability becomes handy. For integrable
models, the thermodynamic limit can be obtained by involving the so called string-hypothesis.
In the following section, we discuss a technique called the Algebraic Bethe Ansatz (or
Quantum Inverse Scattering method), [48]. However, this is not the only available technique
to exactly diagonalize the Hamiltonian, and to mention a few: Coordinate Bethe ansatz, [3];
Analytic Bethe ansatz, [49]; Baxter’s Q-operator method; a method that allows to directly
work in the thermodynamic limit, [50]; Quantum Spectral Curve [51].
Now, we apply the algebraic Bethe ansatz to the Heisenberg spin chain. Furthermore, in
Appendix A, we explore a more advanced technique called nested Algebraic Bethe ansatz,
which shares similar foundational elements to the approach discussed here, but it applies also
for systems with higher dimensional local Hilbert space.

1.3 Algebraic Bethe Ansatz

The Algebraic Bethe Ansatz is one of the techniques used to find the eigenvalues and the
eigenvectors of the Hamiltonian belonging to an integrable model. It allows us to obtain not
only the eigenvalues of the transfer matrix but also, by taking their logarithmic derivatives,
through the use of equation (1.18), the eigenvalues of all conserved charges.
The R-matrix8 of the XXX spin chain is

8Now, we consider the R-matrix as a known object, in chapter 2 we explain how to obtain it from the
Hamiltonian.
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R12(λ ) = λ I+ iP12 =


λ + i 0 0 0

0 λ i 0
0 i λ 0
0 0 0 λ + i

 , (1.40)

and it is of difference form type.
To verify that this is indeed the R-matrix associated with the XXX spin chain, we can
substitute it into the expression for the Hamiltonian (1.25) and we obtain

H12 ∼ P12∂λ R12(λ )|λ→0 = P12, (1.41)

which corresponds to (1.30) up to a normalization factor and a shift by the identity. These
transformations are always allowed9. If an R-matrix satisfies the YBE, then gR also does.
Similarly, shifting the matrix by an operator proportional to the identity is permissible and
only results in a global energy shift. We also notice that, the regularity condition holds (any
normalization pre-factor is not important) and the conserved charges are local.

The general idea

The starting point of the Algebraic Bethe ansatz is to find the reference state of the model.
From this state, by recognising a certain creation operator, we can build the other excited
states that belong to the spectrum. This idea is the same as the one used to solve the problem
of the harmonic oscillator.
For simplicity, we consider the case of a homogeneous spin chain, which corresponds to
setting10 the inhomogeneities λi in equation (1.6) to zero.

Commutation relations: From the RTT

The monodromy matrix T0(λ ) (1.7) can be written as

T0(λ ) = R0L(λ − i
2
) . . .R01(λ − i

2
) =

(
A(λ ) B(λ )
C(λ ) D(λ )

)
, (1.42)

9The transformations preserve the integrability of the model, however they may swap between the fer-
romagnetic and the antiferromagnetic regime. We discuss the allowed transformations in detail in section
2.6.1.

10Indeed, a more general condition is to have λi = k with k ∈ C. However, we can simplify the analysis by
setting k = 0 through a reshifting of λ .
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where the matrices A,B,C,D are related to the αi,βi,γi,δi of (1.6). T0(λ ) can be seen as a
2×2 matrix living in the auxiliary space and A,B,C,D are operators on the physical space
⊗LC2. We identify the Lax matrix with the R-matrix with a shift in the spectral parameter11.
Using this expression of the monodromy matrix and the R-matrix from (1.40) in the funda-
mental relation RTT (1.8), we can recover the following commutation relations[

B(λ ) ,B(λ ′)
]
= 0 ,

[
C(λ ) ,C(λ ′)

]
= 0 , (1.43)

A(λ ) B(λ ′) =
a(λ ′−λ )

b(λ ′−λ )
B(λ ′) A(λ )− c(λ ′−λ )

b(λ ′−λ )
B(λ ) A(λ ′) , (1.44)

D(λ ) B(λ ′) =
a(λ −λ ′)

b(λ −λ ′)
B(λ ′) D(λ )− c(λ −λ ′)

b(λ −λ ′)
B(λ ) D(λ ′) , (1.45)

where

a = λ + i, b = λ , c = i. (1.46)

Based on (1.43), we interpret B and C respectively as creation and annihilation operators12.

The reference state and the action of the transfer matrix

From (1.42), the transfer matrix t(λ ) is simply

t(λ ) = A(λ )+D(λ ). (1.47)

We consider the ferromagnetic regime with J < 0. The reference state is the one with all
spins aligned13,

ω+ =

(
1
0

)
⊗·· ·⊗

(
1
0

)
︸ ︷︷ ︸

L

= |↑↑ . . . ↑⟩ , (1.48)

which is an eigenstate of A(λ ) and D(λ ) and is annihilated by C(λ ),

A(λ ) ω+ =

(
λ +

i
2

)L

ω+ , D(λ ) ω+ =

(
λ − i

2

)L

ω+ , C(λ ) ω+ = 0 . (1.49)

11This choice is done in order to have a more symmetric final result for the Bethe equations.
12The choice between B and C as the creation or annihilation operator is motivated by the expression of the

reference state, as clarified in the following paragraph.
13We remind that the reference state has degeneracy 3. We chose here only one of the possible ground states.
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Furthermore, this state is not an eigenstate of B(λ ).
The state (1.48) is also called vacuum state or, since it is degenerate, pseudo-vacuum state.
In this particular case, determining the reference state was straightforward due to the exact
diagonalization of the Hamiltonian for L = 2 and the simplicity of the model. However, it
should be noted that for more complex models, this may not always be the case.
Let us outline the general steps involved in finding the ground state of a theory:

1. Write the transfer matrix for a spin chain of L = 2 and L = 3;

2. Perform numerical diagonalization of the matrix to obtain its eigenvectors;

3. Among those eigenvectors, select the ones that were not eigenvectors of B(λ );

4. Among those, select the ones that are eigenvectors of A(λ ) and D(λ );

5. Among those, select the ones that factorize, so that we can write them as κ⊗κ⊗·· ·⊗κ ,
with κ being a vector in C2.

The plan is to carry out these steps on a short spin chain, with L = 2 or 3, making it
possible to use direct diagonalization. We then aim to extend what we learn to understand
how things work for a spin chain of any length. We explain the reasons for steps 3. and 4. in
the footnote 15. The step 5. is optional. If it is possible to realize it, it is easier to generalize
the construction for arbitrary L.
Sometimes there is also the requirement that the reference state is annihilated by the C(λ )s.
This condition is met in the case of the Heisenberg spin chain we’re examining. Nevertheless,
unlike conditions 3. and 4., it does not need to be satisfied for all the models. In fact,
it depends if in the RTT relation the C terms appears. This point will be clarified in the
Appendix A, after the expression (A.19).
It is useful to notice that in some integrable models like the anisotropic XYZ chain a simple
reference state is not known in the generic situation, and one has to use other methods to
solve them, [52].

Bethe states

Due to the property (1.43), we can identify the operators Bs as creation operators and we use
them to construct the so-called Bethe states or Bethe vectors,

|λ1 , . . . ,λM⟩= B(λ1) · · ·B(λM) ω+ , (1.50)
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where λi are the Bethe roots14. We can refer to this excited state as a state of M magnons. A
key step consists in requiring that this state is an eigenvector of the transfer matrix. We will
illustrate how this requirement leads to the determination of the Bethe roots’ expression.

One magnon state

To understand how to find this constraint, we can start with the one magnon state

|λ1⟩= B(λ1)ω+ (1.51)

and we want that

t(λ )|λ1⟩= (A(λ )+D(λ ))B(λ1)ω+ = Λ(λ ;λ1)|λ1⟩, (1.52)

with Λ(λ ;λ1) the eigenvalue to be determined.
We use the relations (1.44) and (1.45) and obtain

t(λ )|λ1⟩=
[a(λ1 −λ )

b(λ1 −λ )
B(λ1) A(λ )+

a(λ −λ1)

b(λ −λ1)
B(λ1) D(λ )

]
ω+

−
[c(λ1 −λ )

b(λ1 −λ )
B(λ ) A(λ1)+

c(λ −λ1)

b(λ −λ1)
B(λ ) D(λ1)

]
ω+ (1.53)

and we now use (1.49)

t(λ )|λ1⟩=
[a(λ1 −λ )

b(λ1 −λ )

(
λ +

i
2

)L
+

a(λ −λ1)

b(λ −λ1)

(
λ − i

2

)L]
B(λ1)ω+

−
[c(λ1 −λ )

b(λ1 −λ )

(
λ1 +

i
2

)L
+

c(λ −λ1)

b(λ −λ1)

(
λ1 −

i
2

)L]
B(λ )ω+. (1.54)

We recognize that in the first line, the one magnon state15 (1.51) appears and that it corre-
sponds to (1.52), if we identify

Λ(λ ;λ1) =
a(λ1 −λ )

b(λ1 −λ )

(
λ +

i
2

)L
+

a(λ −λ1)

b(λ −λ1)

(
λ − i

2

)L
. (1.55)

14We remark that before we identified with λi the inhomogeneities. Now λi are the Bethe Roots. Since we
set all the inhomogeneities to 0, there should be no ambiguity in the notation.

15The expression (1.54) provides the reasoning behind implementing steps 3. and 4. when selecting the
ground state. In particular, because we have identified B as the creation operator for the excited state, ω+ cannot
be its eigenstate. Step 4. is justified by the observation that, as seen in (1.44) and (1.45), the coefficients in front
of B(λ ′)A(λ ) and B(λ ′)D(λ ) are generally different. Consequently, we must ensure that ω+ is an eigenstate of
both A and D separately.
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The terms in the second line of (1.54), often referred to as the unwanted terms, are required
to vanish. This condition imposes a constraint on the rapidity λ1 of the magnon. In particular,
we impose

c(λ1 −λ )

b(λ1 −λ )

(
λ1 +

i
2

)L
=−c(λ −λ1)

b(λ −λ1)

(
λ1 −

i
2

)L
, (1.56)

or equivalently (
λ1 +

i
2

λ1 − i
2

)L

=−c(λ −λ1)

c(λ1 −λ )

b(λ1 −λ )

b(λ −λ1)
= 1. (1.57)

So, for the one-magnon state, the solution of the eigenvalue problem is given by:

eigenvector: Bethe vector (1.51),

eigenvalue (1.55),

constraint for Bethe roots λ1: Bethe equations (1.57).

Two magnon state

To derive the expression for M magnons, let’s start by examining the case of M = 2. By
understanding this particular case, we can then easily generalize the results to any number of
magnons. The Bethe vector for M = 2 is

|λ1,λ2⟩= B(λ1)B(λ2)ω+ (1.58)

and similarly to what we did for M = 1,

t(λ )|λ1,λ2⟩= (A(λ )+D(λ ))B(λ1)B(λ2)ω+ = Λ(λ ;λ1,λ2)|λ1,λ2⟩. (1.59)

We now should start to use many times the commutation relations (1.44) and (1.45) and then,
when A(λ ) or D(λ ) are closed to ω+ we apply (1.49).
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Explicitly,

A(λ )B(λ1)B(λ2)ω+ =
a(λ1 −λ )

b(λ1 −λ )

a(λ2 −λ )

b(λ2 −λ )

(
λ +

i
2

)L
B(λ1)B(λ2)ω++

−
(a(λ1 −λ )

b(λ1 −λ )

c(λ2 −λ )

b(λ2 −λ )
− c(λ1 −λ )

b(λ1 −λ )

c(λ2 −λ1)

b(λ2 −λ1)

)(
λ2 +

i
2

)L
B(λ )B(λ1)ω+

− c(λ1 −λ )

b(λ1 −λ )

a(λ2 −λ1)

b(λ2 −λ1)

(
λ1 +

i
2

)L
B(λ )B(λ2)ω+, (1.60)

which can be re-written as

A(λ )B(λ1)B(λ2)ω+ =Λ(λ ;λ1,λ2)|λ1,λ2⟩+
M2B(λ )B(λ1)ω++M1B(λ )B(λ2)ω+, (1.61)

where

Λ(λ ;λ1,λ2) =
a(λ1 −λ )

b(λ1 −λ )

a(λ2 −λ )

b(λ2 −λ )

(
λ +

i
2

)L
, (1.62)

M1 =−c(λ1 −λ )

b(λ1 −λ )

a(λ2 −λ1)

b(λ2 −λ1)

(
λ1 +

i
2

)L
, (1.63)

M2 =−c(λ2 −λ )

b(λ2 −λ )

a(λ1 −λ2)

b(λ1 −λ2)

(
λ2 +

i
2

)L
. (1.64)

We obtain similarly

D(λ )B(λ1)B(λ2)ω+ =Λ̃(λ ;λ1,λ2)|λ1,λ2⟩+
M̃2B(λ )B(λ1)ω++ M̃1B(λ )B(λ2)ω+, (1.65)

where

Λ̃(λ ;λ1,λ2) =
a(λ1 −λ )

b(λ1 −λ )

a(λ2 −λ )

b(λ2 −λ )

(
λ − i

2

)L
, (1.66)

M̃1 =−c(λ −λ1)

b(λ −λ1)

a(λ1 −λ2)

b(λ1 −λ2)

(
λ1 −

i
2

)L
, (1.67)

M̃2 =−c(λ −λ2)

b(λ −λ2)

a(λ2 −λ1)

b(λ2 −λ1)

(
λ2 −

i
2

)L
. (1.68)
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M magnon state

This expression generalizes to the case of M magnons, the Bethe vector is

|λ1,λ2, . . . ,λM⟩= B(λ1)B(λ2) . . .B(λM)ω+ (1.69)

and

A(λ )B(λ1)B(λ2) . . .B(λM)ω+ =
M

∏
j=1

a(λ j −λ )

b(λ j −λ )

(
λ +

i
2

)L
|λ1 . . .λM⟩+

M

∑
j=1

M jB(λ )B(λ1) . . .B(λ j−1)B(λ j+1) . . .B(λM)ω+,

(1.70)

with

M j =−
c(λ j −λ )

b(λ j −λ ) ∏
k ̸= j

a(λk −λ j)

b(λk −λ j)

(
λ j +

i
2

)L
. (1.71)

We can repeat similar steps for D(λ ) and we obtain

D(λ )B(λ1)B(λ2) . . .B(λM)ω+ =
M

∏
j=1

a(λ −λ j)

b(λ −λ j)

(
λ − i

2

)L
|λ1 . . .λM⟩+

M

∑
j=1

M̃ jB(λ )B(λ1) . . .B(λ j−1)B(λ j+1) . . .B(λM)ω+,

(1.72)

with

M̃ j =−
c(λ −λ j)

b(λ −λ j)
∏
k ̸= j

a(λ j −λk)

b(λ j −λk)

(
λ j −

i
2

)L
. (1.73)

Adding the results (1.70) and (1.72), we find both the expressions of the eigenvalues and
the Bethe Ansatz equation.
The expression of the eigenvalue is

Λ(λ ;λ1, . . . ,λM) =
M

∏
j=1

a(λ j −λ )

b(λ j −λ )

(
λ +

i
2

)L
+

M

∏
j=1

a(λ −λ j)

b(λ −λ j)

(
λ − i

2

)L
, (1.74)
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with the Bethe roots λi constrained to be solution of the Bethe ansatz equation (BAE).
We notice that the the unwanted terms cancel against each other M j + M̃ j = 0. In our specific
case, the functions a(λ ), b(λ ), and c(λ ) are given by the expressions (1.46). In particular, c
is a constant and b(λ ) =−b(−λ ). This leads us to the Bethe equations(

λ j +
i
2

λ j − i
2

)L

= ∏
k ̸= j

−a(λ j −λk)

a(λk −λ j)
= ∏

k ̸= j

λ j −λk + i
λ j −λk − i

, j = 1, . . . ,M. (1.75)

We remind that the Hamiltonian is related to the transfer matrix by (1.26), and considering
(1.42), to obtain the Hamiltonian

H=
J
2

(
i

d
dλ

log t(λ )
∣∣∣
λ= i

2

−LI
)
=

L−1

∑
n=1

Hn ,n+1 +HL ,1 , (1.76)

where we considered the normalization and the shift. Furthermore, the derivative is evaluated
at λ = i/2 because we defined the monodromy matrix as (1.42). In particular, the 2 site
Hamiltonian is related to the R-matrix by (1.41) and we obtain

Hi j =
J
2
(
Pi j ∂λ Ri j(λ )|λ=0 − I

)
=

J
2
(
Pi j − I

)
. (1.77)

In this way, using the expression of the eigenvalue (1.74), and the fact that the momentum
and the energy are related to the transfer matrix by (1.23) and (1.76), we find

P =
1
i

M

∑
α=1

log

(
λα + i

2

λα − i
2

)
(mod 2π) , E =−J

2

M

∑
α=1

1
λ 2

α + 1
4

, (1.78)

where λα are the Bethe roots satisfying (1.75).

Trick to obtain the Bethe equations

We observe that in the case of the XXX spin chain, we were able to explicitly compute the
commutation relations between the A and D operators with the B operators and identify the
unwanted terms. However, for more complex models, this calculation can be lengthy and
cumbersome. Fortunately, there exists an alternative method to derive the Bethe equations.
First, to obtain the expression of the eigenvalues (1.74), we explicitly permute the A and D
with all the Bs and then we require the cancellation of the unwanted terms. By disregarding
the unwanted terms from the beginning, obtaining the expression for the eigenvalues becomes
straightforward. Specifically, from (1.44) each time we commute A with one of the B, we
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get one term of the type a
b and similarly from (1.45) by commuting D with B. Finally, from

(1.49), when the A or D acts on the vacuum, it picks up the eigenvalue. By following this
procedure, we can easily derive the expression for the eigenvalue. Schematically,

Λ(λ ,{λi}) =
( M

∏
j=1

)
︸ ︷︷ ︸
from AB

(
. . .
)

︸ ︷︷ ︸
fromAω+

+
( M

∏
j=1

)
︸ ︷︷ ︸
fromDB

(
. . .
)

︸ ︷︷ ︸
fromDω+

. (1.79)

The eigenvalue Λ(λ ;λ1, . . . ,λM) (1.74) has a pole when b(λ − λ j) = 0, that is when
λ = λ j. However, it is important to note that the transfer matrix remains non-singular at
these points, suggesting that these poles should not exist. To eliminate these poles, we can
ensure that the residue of the eigenvalue at these points is zero. From

Resλ→λ j(1.74) =−
M

∏
k=1
k ̸= j

a(λ j −λk)

b(λ j −λk)

(
λ j +

i
2

)L
+

M

∏
k=1
k ̸= j

a(λk −λ j)

b(λk −λ j)

(
λ j −

i
2

)L
= 0, (1.80)

we exactly obtain the Bethe equations (1.75).
This technique proves to be valuable, particularly in the case of more complex models, where
the commutation relations between A and B, or D and B, may involve more than three terms.
Keeping track of all of them become tortuous. We use this trick in the Appendix A, when
we apply the nested Bethe ansatz technique to solve one of the new integrable model that
we find. However, we remark that, even though this trick works for the known cases, to the
best of our knowledge, it has not been proven that the cancellation of the poles is a sufficient
condition for obtaining the Bethe equations.

Roots at infinity

A valid concern arises when two or more states are degenerate, as we may only obtain one of
the corresponding Bethe states via the Algebraic Bethe ansatz. How can we obtain the Bethe
states corresponding to the same eigenvalue?
Let us start from the beginning. The reason of the degeneracy is the symmetry. The
Hamiltonian (1.76) commutes with the generators of the global su(2) algebra

[H,Sx] = [H,Sy] = [H,Sz] = 0, SA = ∑
j

A j, A = X ,Y,Z. (1.81)

For example, we can choose the eigenstate of the Hamiltonian to be the eigenstate of Sz as
well.
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Since at each site of the chain there is a su(2) algebra, the whole Hilbert space is a tensor
product of L copies of the fundamental representation of su(2) and can be decomposed into
a direct sum of irreducible representations Vα of the global su(2) symmetry,

C2 ⊗·· ·⊗C2 =⊕αVα , (1.82)

Vα is an invariant subspace of the Hamiltonian and all the states have the same energy.
For example, for L= 2, the Hilbert space decomposes into a spin-0 and a spin-1 representation.
The eigenstates of the Hamiltonian are (1.33) and (1.34). The states |↑↑⟩ and |↑↓⟩− |↓↑⟩ are
highest weight states and corresponds to the Bethe states (1.50). Having found all the highest
weight states, one can use the lowering spin operator and obtain all the other states as well.
These are called descendants.
An equivalent way to obtain the other states is to consider the Bethe roots at infinity. In fact,
in the limit λ → ∞, the lowering spin operator S− is related to the B operator by

B(λ ) = c1 λ
L−1S−+ . . . , λ → ∞, (1.83)

with c1 a constant. If we add roots λk = ∞ to any solutions of the Bethe ansatz, we have the
Bethe equations still satisfied. In other words, for finite Bethe roots, the Bethe states (1.69)
are highest weight states, and if some of the roots are at infinity they are descendant. We
refer to [53] for a more detailed analysis16.
We can also check that since

[Sz,B(λ )] =−B(λ ), (1.84)

the Bethe state of M magnons is an eigenstate of Sz, with eigenvalue L/2−M, and we can
think of this state as having M spins flipped from |↑⟩ to |↓⟩. This observation clarifies the
meaning of an M magnon state, highlighting that it corresponds to a state where a certain
number of spins have been flipped. Furthermore, since the eigenvalue of Sz for a Bethe state
is L/2−M, to get all highest weight states17 it is enough to consider only M ≤ L/2 in the
Bethe equations.

16The author breaks the su(2) symmetry by considering a twisted model and afterward, sending the twist
parameter to 0, he recovers the un-twisted result.

17We remark that, restricting to M ≤ L/2, we obtain the highest weight state. To explore the complete
spectrum, which includes M > L/2, one must repeatedly apply the lowering spin operator.



1.3 Algebraic Bethe Ansatz 37

Completeness of the Bethe ansatz

It is also interesting to investigate whether the Bethe equations provide all the eigenvalues of
the transfer matrix, a property known as the completeness of the Bethe ansatz. The answer to
this question is expected to be positive for the XXX and XXZ model, however a rigorous
proof is not available18. It is common practice to verify completeness numerically when
applying the Bethe ansatz to a specific model. We first diagonalize numerically the transfer
matrix for different lengths of the spin chain L = 3,4,5, . . . and then compare the obtained
eigenvalues with those derived from the Bethe ansatz.
To illustrate the process, let’s consider the case of L = 5 for the XXX spin chain. By
direct diagonalization of the Hamiltonian H in (1.76) with J = −1, we find the following
eigenvalues Λ along with their corresponding degeneracies d

{Λ,d}= {{0,6},{0.3455,8},{0.4410,4},{0.9045,8},{1.0,2},{1.5590,4}}. (1.85)

We can verify the completeness of the Bethe ansatz by checking if we can obtain the
same eigenvalues by solving the Bethe equations (1.75) and plugging the solutions into the
expression for the energy eigenvalues (1.78).
As mentioned, it is enough to focus on the case19 M ≤ L/2. In this case, we obtain20

M = 0, 0, (1.86)

M = 1, 0.3455, 0.9045, (1.87)

M = 2, 0.4410, 1.5590, 1, (1.88)

that reproduce all the eigenvalues found by numerical diagonalization, confirming the com-
pleteness of the Bethe ansatz for the XXX spin chain with L = 5. The common practice to
verify completeness is to extend this computation to different values of L and check if all the
eigenvalues will be found.

18We refer to [54] for a summary.
19We remark that this restriction is due to the su(2) symmetry of the model. If we consider a state with

M > L/2, its energy will not be different than one of the state with M ≤ L/2. At the level of the Energy (1.78),
this is understood because we are adding constribution of states characterized by a Bethe root at infinity. We
recommend to read the discussion at p. 197, 198 of [53] for more details.

20The Bethe equation are solved numerically by using the command FindRoots in Mathematica and specifying
the starting point of the searching.
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Is this method really powerful?

As showed in this chapter, the problem to find the eigenvalues of the Hamiltonian become
equivalent to solve the Bethe Ansatz equations (1.75) for the Bethe roots. We may ask why it
is beneficial to use this reformulation since the equations become very difficult to solve as the
system size and number of magnons increase. As we showed in Figure 1.6, as L increases,
direct diagonalization becomes impossible even with the help of a powerful computer due to
the exponential growth of the matrix size. In particular, we showed that for the Heisenberg
XXX model, the direct diagonalization is possible until L = 15 for the eigenvectors and
L = 16 for the eigenvalues. If we imagine to apply this problem to a physical system, for
example a “metal”, the number of atoms in a unit volume is of the order of the Avogadro
number O(1023) and the direct diagonalization is clearly impossible.
In that case, however, the equations (1.75) tend to enormously simplify and one often is able
to derive elegant linear integral equations. The case where L → ∞ is called thermodynamic
limit, [47]. In this context, various methods have been developed involving some assumptions
about the nature of the solutions, such as the string hypothesis (see, e.g., [55]).
From the Bethe equations (1.75), qualitatively, it can be understood that computing the Bethe
roots for small M is not very complicated numerically, even if L is very big. The problem
become more challenging as both L and M grow. However, without any sophisticated
algorithm, one can check that it is possible to obtain (numerically) some of the eigenvalues
even for L ∼ 100, M = 40 and bigger.
Furthermore, if we know the Bethe equations of a theory but lack knowledge of the specific
spin chain from which it originates, we can obtain information about the theory’s original
symmetry by examining the quantity of Bethe roots at infinity.
The Bethe ansatz has proven to be an incredibly powerful technique, yielding a wide range
of results in various areas of physics. Some notable achievements include determining the
spectrum of low-lying states, finite-size corrections, scattering matrices and thermodynamics
(finite temperature and magnetic field). Progress has been made on the computation of
correlation functions.

Other models

The spin 1/2 isotropic Heisenberg chain which we have discussed is the simplest integrable
models. However, it is possible to introduce additional complexities, such as considering
inhomogeneities into the spin chain. Since this chapter aimed to provide an introduction,
we focused on the simplest case. In the Appendix A, we apply this technique to a more
complicated model and we also consider inhomogeneities.
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Moreover, by using the appropriate R-matrices, one can apply this technique to the anisotropic
XXZ chains, chains with spins in higher-dimensional representations (S = 1 ,3/2 , . . .) and
chains with spins in representations of higher-rank algebras su(N). The Bethe ansatz
technique can also be applied for open boundary conditions, [43].
The Bethe Ansatz equations have been obtained for many such models.





Chapter 2

Classification of Integrable models

Due to the relevance of quantum integrable models, numerous approaches have been devel-
oped to find solutions to the Yang-Baxter equations.
In this chapter, we give a brief overview of these methods, discussing their strengths, weak-
nesses, and the types of solutions found. Then, we provide a detailed explanation of the
boost automorphism method and how to apply it with a concrete example. One of the main
contributions of this thesis is the application of this method to discover new solutions of the
Yang-Baxter equation with R-matrices of non-difference form in different scenarios. At the
end of the chapter, we enumerate all the contexts in which we applied the method.

2.1 A brief introduction

The most intuitive and obvious method to classify integrable models consists in searching
for the solution of the Yang-Baxter equation (1.1). The latter is a cubic polynomial equation
whose solution gives, in principle, all possible quantum integrable models1. However, since
it is technically enormously difficult to solve cubic coupled functional equations, different
groups of researchers developed various methods to overcome this problem. It’s worth
mentioning that the literature on this topic is extensive, so our reference list is therefore
partial. We have included a selection of papers, and interested readers are encouraged to
consult the references therein.
We divide the classifications methods into two classes:

• Top-down: The outcome of these methods is the expression of the R-matrix that
satisfies the YBE. This R-matrix is the key component that enables us to construct the

1We remark that we refer here to quantum integrable models characterized by an R-matrix solution of the
Yang Baxter equation. There exist, in fact, long range interacting models characterized by the conserved charges
but for which the R-matrix is not known.
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transfer matrix. By taking the logarithmic derivative of the transfer matrix, we can
derive all the conserved charges.

• Bottom-up: The outcome is the Hamiltonian belonging to an integrable model. These
methods impose constraints on the form of one of the conserved charges, namely the
Hamiltonian, ensuring that it belongs to an integrable model. Afterwards, this is used
to find the corresponding R-matrix.

The boost automorphism method used in this thesis belong to the bottom-up class and, in the
following, after giving a derivation of the boost operator, we clarify with an example how to
perform the various steps of the classification of quantum integrable models.

2.2 Top-down methods

Impose symmetries on the R-matrix

In physics, it is common to be interested in models that exhibit particular symmetries. The
symmetries of the Hamiltonian are carried out also to the R-matrix. In particular, requiring
that H commutes with the generator of a bialgebra A , translates to the level of the R-matrix
as ∆op(a)R(u,v) = R(u,v)∆(a), where ∆ and ∆op denote the coproduct and opposite coprod-
uct related by conjugation on A , respectively. These constraints restrict the number of
independent functions of the R-matrix and usually only leave few functions to be fixed with
the help of YBE.
Type of solutions found: This approach has been used since early days [4, 5, 56–58] to
obtain finite-dimensional irreducible representations of GL(2,C) but also more recently was
applied in the context of AdS/CFT [59–66].
Pros: Easy to apply.
Cons: It will only produce R-matrices characterized by a given symmetry.
As a curiosity, this approach was one of the first used and in the paper [5] of 1982 one of the
first classification was given. It is interesting to point out a statement of their paper

Nowadays, with the software Mathematica (and many others) we can check the YBE (equa-
tion (1) of [5]) in seconds.
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Baxterisation procedure

The Baxterisation procedure uses representations of the braid group, such as the Hecke
algebra, the Temperley-Lieb algebra, or the Birman-Murakami-Wenzl algebra, to obtain
solutions of the Yang-Baxter equation (YBE) with a spectral parameter.
In fact, it is known that the S-matrix of a representation of a braid group is a solution of the
Yang-Baxter relation (which is the spectral parameter independent case of the Yang-Baxter
equation). The Baxterization was initially proposed in the context of knot theory [67–70]
and consists in inserting a spectral parameter into a given representation of braid group so
that the Yang-Baxter equation is satisfied. We can recover the original representation of the
braid group as a limit in the spectral parameter of the Baxterized version.
Type of solutions found: Many new R-matrices of difference form with dimension 4x4
and 9x9 [71–77] and recently also of non-difference form of 4x4 type and higher spin
representation of sl(2) [78–80].
Pros: Easy to apply
Cons: Only R-matrices coming from a representation of an algebra can be found.

Differential approach

This method was broadly used in the context of spin chain with open boundary conditions
to solve the reflection equation [81, 82]. It was used in the early days, [5] and also, more
recently by R. S. Vieira through a series of works [83, 84]. In physical models, we can
typically assume that the R-matrix is differentiable in a neighbourhood of a certain point.
This condition is not overly restrictive, in fact for regular spin chain to obtain the conserved
charges from the transfer matrix one can take the power series expansion (1.11).
The method consists in taking the formal derivative of the YBE (1.1) with respect to one of
the spectral parameters and evaluate the derivatives at a fixed point of these variables (for
example at zero). Then, since the system of equations is overdetermined, the derivatives and
the functions can be treated as independent between each other. In this way, one can select
and solve first the easiest equations i.e. those linear in the derivatives and then, plugging back
these solutions into the others, the remaining ones become simpler than they were initially.
Once all the solutions of the system are found, it is necessary to individually check that the
derivatives and functions satisfy the compatibility conditions. These conditions ensure that
the solutions are valid and consistent. In some cases, these impose additional constraints,
while in other cases they may reveal incorrect or incompatible solutions which should be
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discarded2.
Type of solutions found: This method provides a full classification of R-matrix of difference
form of size 4×4 of 8-and-lower-vertex models [83]; difference form R-matrix of size 9×9
satisfying the so-called ice rule condition3 [84].
Pros: The method is complete: given an ansatz for the structure of the R-matrix, all the
possible solutions of that type will be found.
Cons: It quickly becomes unwieldy as the size of the R-matrix increases.

2.3 Bottom-up methods

Models solvable via the coordinate Bethe ansatz

As discussed in chapter 1, the strength of integrable models lies in their exact solvability. The
coordinate Bethe ansatz is one of the techniques available to solve these models. Another
method to classify integrable models involves the identification of the constraints on the
Hamiltonian to ensure that the spectrum can be obtained through the coordinate Bethe ansatz.
Having the expression of the Hamiltonian belonging to an integrable model allows the
construction of the corresponding R-matrix4.
Type of solutions found: In a series of papers [85–87], the authors classify the integrable
Hamiltonians of difference form of dimension 9×9 with 14,17, 19 or 33 vertex.
Pros: Once some integrable models are found, we are sure that they can be solved via the
Coordinate Bethe Ansatz.
Cons: Unfeasible for the integrable models that cannot be solved via the coordinate Bethe
ansatz5 and it is hard to generalize for Cn ⊗Cn, n > 3 local Hilbert space.

Iterative procedure

This old procedure to find integrable models of difference form type can be considered a
mix between the bottom-up and the top-down methods. It consists in fixing the symmetries
of the Hamiltonian and reconstruct the R-matrix iteratively by imposing the YBE order by
order in the spectral parameter. Explicitly, the starting point is the expansion for R(u) =

2This last case happens if for example we found that one of the entries of the R-matrix should be zero, but
the corresponding derivative is not zero.

3More details on this type of models will be given in section 8.1.
4The steps on how to obtain the R-matrix from the Hamiltonian are given in section 2.5.
5As already remarked, non all methods to solve integrable models is applicable to all of them. For example,

the XYZ spin chain is integrable but it cannot be solved via the standard coordinate Bethe ansatz approach
because we cannot define a good reference state.
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R(0)+uR(1)+u2R(2)+ . . . . Inserting this into the YBE and considering separately order by
order in u, gives a set of equations for the R(i). In the models obtained using this method,
the solution for R(1) was determined, and it was observed that the matrices R(2) and R(3) are
completely determined by the solution6 of R(1). This allowed to re-sum and find the explicit
expression of the R-matrix. Since R(1) corresponds to the Hamiltonian (1.41), from this
method, the Hamiltonian can be computed first and then use the results obtained to re-sum
and obtain the R-matrix.
Type of solutions found: In [88] and [89, 90] they listed the difference form R-matrix of
19-vertex type.
Pros: The method is complete.
Cons: The re-sum is very complicated for more complex ansatz.

2.4 New method: Boost automorphism mechanism

The main result of this thesis is the use of the boost operator to classify quantum integrable
spin chain with R-matrix of non-difference form. In this section, we describe in details the
method used: we give the derivation of the boost operator [6, 7], explain the main idea behind
it and then we clarify the statements with an example.
The boost method was first used to classify R-matrix of difference form [91, 35] and then,
we generalized it to the case of non-difference form [22, 27]. In this thesis, we focus on the
second case and in particular in application in the context of Open quantum systems. We
refer to the thesis [92, 93] for applications in AdS/CFT.
As mentioned, there are various historical approaches to classify integrable models and many
of them start from the R-matrix, solution of the Yang-Baxter equation (YBE). The R-matrix
is then used to construct the transfer matrix, and by taking the logarithmic derivative, all the
conserved charges of the integrable model can be obtained. In particular, the Hamiltonian
provides the dynamics of the model.
In our approach, we followed a bottom-up strategy. Instead of starting from the R-matrix,
we began with the Hamiltonian of the system and used it to derive the corresponding R-
matrix. This allowed us to directly establish the connection between the Hamiltonian and the
integrable structure of the model.
The main advantage of this method lies in its versatility and applicability to a wide range
of contexts. In fact, the starting point is to chose an ansatz for the Hamiltonian density
H12(θ). The ansatz is dictated by different reasons: we may need to focus on Hamiltonians

6This is an old conjecture called tangential star-triangle hypothesis . It states that all the higher orders of the
R-matrix depend on the first one. This is not proved but it is believed to be true, [88].
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with a given symmetry or having some particular properties, for example in chapter 3 we
identify the Hamiltonian to be a Lindblad superoperator: the generator of the dynamics of
an open quantum systems. While the method can be extended to more general Hamiltonians,
it is important to note that the computational complexity of the calculations increase to
the point where it may become unfeasible to obtain explicit results. However, with the
advancement of computational power, we expect that more general integrable Hamiltonians
can be successfully classified using this method.
Obviously, by starting from any type of ansatz for the Hamiltonian, there is no a-priori reason
such that it defines an integrable model. This is the point where we apply the method and
we restrict the entries of the Hamiltonian such that it belongs to an integrable model. We do
this by using the so-called boost operator [94, 6, 7], which is an alternative way to generate
the tower of conserved charges for regular integrable models without the need to construct
the transfer matrix and expand it. In the following section, we explicitly write the derivation
of the boost operator by following [6, 7]. For the moment, we can consider the boost as a
machinery that allow us to compute the conserved charge Q3 by starting from Q2.
Since our model should be integrable, the two charges Q2 (constructed from the density
Hamiltonian) and Q3 should commute. This will place a number of constraints on the entries
of the density H12 (and consequently on Q2) in the form of a system of ODEs. We then
solve the set of constraints and show that the resulting Hamiltonian defines an integrable
system, meaning it can be obtained from a solution of the YBE.

2.4.1 Boost method in a nutshell

1. Start from an ansatz for the Hamiltonian density H12 = Q2 (this depends on some
functions h1,h2, . . . ,hk). We remark that we work with the general case of R-matrix
of non-difference form type. In this case, the Hamiltonian depends on a spectral
parameter H12 = H12(θ) and hi = hi(θ). For simplicity, we do not write the explicit
dependence.

2. Use the boost operator to construct the density Q3 (it depends on the same functions
h1, h2, . . . ,hk).

3. Solve the constraint [Q2,Q3] = 0 → potentially7 integrable Hamiltonian H12.

4. Use H12 to find the R-matrix via the Sutherland equation.

5. Check that such R-matrix satisfies the YBE.
7In principle, we should check that all the commutators [Qi,Q j] vanish. We instead prove integrability by

constructing the R-matrix.
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6. Answer the question: Is the R-matrix that we found new?

2.4.2 Derivation of the boost operator

In this section, we review the construction of the boost operator (also known as ladder
operator) for non-difference form models. Our exposition closely follows that of [6, 7]. This
operator can be used in a recursive relation to generate all the tower of conserved charges
without using the transfer matrix.
The term boost operator is derived from the fact that, in (1+1)-dimensional continuum
field theories, the generators of the Poincaré group are B,P and H, which correspond to the
generators of Lorentz boosts and spatial and temporal translations, respectively. The last two
are the total momentum operator and the Hamiltonian, respectively. They obey the algebra

[B,H] = P, [B,P] = H, [H,P] = 0. (2.1)

For some integrable models defined on a lattice, the entire set of conserved quantities satisfy

[B, t(n)] = t(n+1), [t(n), t(m)] = 0, (2.2)

with t(0) and t(1) the momentum operator P and the Hamiltonian H. The boost acts as a
ladder operator for the charges.
In the derivation of the explicit expression of the boost operator, we focus on the case of R-
matrices of non-difference form R = R(u,v) ̸= R(u−v) and, for completeness, we comment
on how to apply the method to the difference form case.
Our starting point is the Yang-Baxter equation (1.1)

R12(u1,u2)R13(u1,u3)R23(u2,u3) = R23(u2,u3)R13(u1,u3)R12(u1,u2), (2.3)

we take the derivative w.r.t. u3 and we omit the dependence on the spectral parameters. There
is no ambiguity, since Ri j = Ri j(ui,u j)

R12R′
13R23 +R12R13R′

23 = R′
23R13R12 +R23R′

13R12, (2.4)

we identify with R′(u,v) the differentiation w.r.t. v. We multiply by P23 from the left, we
send u2 → u3 and we use the regularity (1.15) and the boundary condition (1.25)8

8Notice that here we are using the boundary condition by taking the derivative w.r.t. the second spectral
parameter, so we have an extra minus sign.
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Ri j(u,u) = Pi j, ∂u jRi j(ui,u j)|ui→u j = R′
i j(ui,u j)|ui→u j =−Pi jHi j(u j). (2.5)

This leds to the well known Sutherland equation

[R13R12,H23(θ)] = R13R′
12 −R′

13R12, (2.6)

where here we denote9 Ri j := Ri j(u,θ). We now make the replacement 1 7→ a, 2 7→ k,
3 7→ k+1, obtaining[

Ra,k+1Rak,Hk,k+1(θ)
]
= Ra,k+1R′

ak −R′
a,k+1Rak. (2.7)

We consider an infinite homogeneous spin chain with monodromy matrix10 Ta(u,θ) (the
infinite version of (1.6)) given11 by

Ta(u,θ) = . . .Ra1Ra0Ra,−1 . . . . (2.8)

Now take (2.7) and multiply from the left with the product of R-matrices . . .Ra,k+2 and from
the right with Ra,k−1 . . . and then multiply the resulting equation by k and sum over k from
−∞ to ∞. The two terms on the right hand side of (2.7) telescopically cancel12 and we are
left with

∞

∑
k=−∞

k [Ta(u,θ),Hk,k+1(θ)] =
d Ta(u,θ)

dθ
, (2.9)

and by taking the partial trace over the auxiliary space

∞

∑
k=−∞

k [t(u,θ),Hk,k+1(θ)] =
d t(u,θ)

dθ
. (2.10)

Finally, using the expansion (1.11) we obtain

Qr+1(θ) =
∞

∑
k=−∞

k [Hk,k+1(θ),Qr(θ)]+∂θQr(θ), r = 1,2,3, . . . . (2.11)

9The Sutherland equation only depends on two spectral parameters since we considered the limit on the
YBE where one parameter approaches the other.

10For clarity, we call the auxiliary space a instead of 0, since we are using the labels ∞, . . . ,1,0,−1, . . . ,−∞

for the physical spaces.
11Here we identify the auxiliary space with "a" instead of "0" since "0" is one of the site of the physical spin

chain.
12This happens because we are considering a spin chain of infinite lenght.
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We can then identify the boost operator with

B[Q2] := ∂θ +
∞

∑
k=−∞

kHk,k+1(θ). (2.12)

The infinite sum should be interpreted in a formal sense since what we are interested is not
the boost operator itself but rather its commutator with the tower of conserved charges which
is perfectly well-defined even for finite chains. In fact,

Qr+1 = [B[Q2],Qr], r ≥ 1. (2.13)

To clarify this, we can explicitly compute the boost operator for a chain of finite lenght L.
This construction will be in fact very useful in the following.
Taking r = 2 in (2.11) and remembering that Q2 = ∑ j H j, j+1, we can keep in the commuta-
tion relations only the cases where j = k±1, all the other terms will trivially vanish and we
obtain

Q3(θ) =
∞

∑
k=−∞

k [Hk,k+1(θ),Hk−1,k(θ)+Hk+1,k+2(θ)]+∂θQ2(θ). (2.14)

We shift in the second term of the commutator k → k − 1 and, in this way, the linear
dependence in k drops out and we get

Q3(θ) =
∞

∑
k=−∞

[Hk−1,k(θ),Hk,k+1(θ)]+∂θQ2(θ). (2.15)

The k factor multiplying the sum was problematic because it was breaking the periodicity of
the spin chain. Now, we consider the terms inside the sum as a range three operator, and we
write the total charge Q3 in a chain of lenght L

Q3(θ) =
L+1

∑
k=2

[Hk−1,k(θ),Hk,k+1(θ)]+∂θQ2(θ). (2.16)

In what follows, we use periodic boundary condition

HL,L+1 ≡ HL,1. (2.17)

The expression obtained for the boost operator (2.12) relies on the assumption that the
R-matrix is of non-difference form and the Hamiltonian depends on a spectral parameter. In
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the case of a difference form R-matrix, a similar derivation can be carried out, resulting in
the absence of the derivative term in (2.16).

2.5 Detailed explanation with an example

Step 1. Starting point: ansatz for H12

Our starting point is a nearest-neighbour Hamiltonian density H12(θ) on Cn ⊗Cn. We
emphasize that the validity of the method does not depend on the chosen ansatz. However,
selecting a highly intricate ansatz, may lead to the technical problem of solving a very
complicated coupled set of differential equations.
In this example, we start from an easy ansatz for a density Hamiltonian in C2 ⊗C2:

H12(θ) =


0 0 0 0
0 h1(θ) h3(θ) 0
0 h4(θ) h2(θ) 0
0 0 0 0

 , (2.18)

hi(θ) are the functions to be determined. To construct the total Hamiltonian Q2 from the
density, we need to specify the length of the spin chain. We work13 with L = 4. For this
reason, the total Hamiltonian is

H(θ) =Q2(θ) =
4

∑
j=1

H j, j+1(θ), H4,5 = H4,1. (2.19)

The last condition defines a periodic chain.

Step 2. Construction of Q3 using the boost operator

Using the boost operator (2.16), the charge Q3 is related to Q2 as

Q3(θ) =
4

∑
j=1

[H j, j+1(θ),H j+1, j+2(θ)]+∂θQ2(θ) =
4

∑
j=1

Q j, j+1, j+2(θ), (2.20)

13The reason is the following. A charge Qi is the sum of range i densities. Since we are firstly interested
in the commutator [Q2,Q3], this is a sum of densities of range 2+3−1 = 4. Starting from a chain of length
lower than 4, the commutator produces some cancellations which do not happen in general, while starting from
a chain of higher length is computational more expensive and it does not give any additional information.
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with Q j, j+1, j+2(θ) a range 3 density. In matrix form, this is

Q123(θ) =



0 0 0 0 0 0 0 0
0 0 −h1h3 0 −h2

3 0 0 0
0 h1h4 ḣ1 0 ḣ3 −h2h3 0 0 0
0 0 0 ḣ1 0 ḣ3 +h1h3 h2

3 0
0 h2

4 ḣ4 +h2h4 0 ḣ2 0 0 0
0 0 0 ḣ4 −h1h4 0 ḣ2 h2h3 0
0 0 0 −h2

4 0 −h2h4 0 0
0 0 0 0 0 0 0 0


, (2.21)

for simplicity we suppress the θ -dependence on the entries and ∂θ hi = ḣi .

Step 3. Imposing the integrability constraints

Since we want the model to be integrable, we have to require that the two operators Q2 and
Q3 commute

[Q2,Q3] = 0. (2.22)

This constraint leads to a set of coupled ordinary differential equations. For the example
analysed, those are

ḣ3(h1 +h2) = (ḣ1 + ḣ2)h3, ḣ4(h1 +h2) = (ḣ1 + ḣ2)h4, (2.23)

easily solved by

h3 =
c3

2
(h1 +h2), h4 =

c4

2
(h1 +h2), (2.24)

for some constants c3,4.
In this way, we obtain the Hamiltonian density

H12(θ) =


0 0 0 0
0 h1

c3
2 (h1 +h2) 0

0 c4
2 (h1 +h2) h2 0

0 0 0 0

 . (2.25)

This Hamiltonian density "potentially" belongs to an integrable model. At this stage, we have
determined that [Q2,Q3] = 0. However, to establish integrability, it is necessary to show
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that this commutativity condition holds for all charges, i.e., [Qi,Q j] = 0 for all i and j. To
compute the infinite set of commutation relations would be a challenging task, so instead of
taking that approach, we can prove the integrability of the model by finding the corresponding
R-matrix for the density Hamiltonian (2.25). This approach also provides insight into the
logic behind the other bottom-up methods discussed in section 2.3 for classifying integrable
models.

Step 4. Use H to find the R-matrix via the Sutherland equation

To guarantee that the model we found is integrable, we find the R-matrix corresponding to
the density Hamiltonian. By doing so, we ensure that the model is indeed integrable.
In order to do this, we start from the YBE

R12(u1,u2)R13(u1,u3)R23(u2,u3) = R23(u2,u3)R13(u1,u3)R12(u1,u2) (2.26)

and we differentiate with respect to u1

Ṙ12(u1,u2)R13(u1,u3)R23(u2,u3)+R12(u1,u2)Ṙ13(u1,u3)R23(u2,u3) = (2.27)

R23(u2,u3)Ṙ13(u1,u3)R12(u1,u2)+R23(u2,u3)R13(u1,u3)Ṙ12(u1,u2) (2.28)

where we used the shortcut Ṙi j = ∂u1Ri j(u1,u2). We now send u1 → u2 and use the regularity
property (1.15) the boundary condition (1.25)

Ri j(u,u) = Pi j, Ṙi j(u,u) = Pi jHi j(u). (2.29)

In this way, one gets another version of the so-called Sutherland equations

[R13R23,H12(u)] = Ṙ13R23 −R13Ṙ23 , (2.30)

where Ri j := Ri j(u,v). Similarly, as explained before, one can get the second Sutherland
equation (2.6)

[R13R12,H23(v)] = R13R′
12 −R′

13R12, (2.31)

where now R′
i, j = ∂u2Ri, j(u1,u2). The Sutherland equations (2.30) and (2.31) constitute two

sets of ODEs for the entries of the R-matrix and the boundary conditions are fixed by (2.29)
and (2.5).
From Step 3. we found the potentially integrable Hamiltonian, which we use as input in
the Sutherland equation. To verify its integrability, we proceed by solving the Sutherland
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equations for the corresponding R-matrix.
In principle, we can start from a general ansatz for the R-matrix, but to simplify the problem,
we can already impose some constraints on the entries of the R-matrix. In particular, we
compute an expansion14 of the R up to order (u− v)2

R12(u,v) = P12

(
1+(u− v)H12

(
u+ v

2

)
+

(u− v)2

2
H12

2
(

u+ v
2

)
+O(u− v)2

)
(2.32)

and use it to understand which entries are non-zero and which entries are the same. The
expansion of the R-matrix at order 2 in (u− v) can be understood from the braiding unitarity
property R(u,v)R(v,u) ∝ I. This ansatz on the entries of the R-matrix resulted to be correct
for all the models analyzed in this thesis.
We should also remember that the YBE continues to hold if one consider a different nor-
malization of the R-matrix, R(u,v) → f (u,v)R(u,v), with f any well defined function in
the two parameters u,v. For more complicated models, a right choice of the normalization
enormously simplifies the solution of the set of differential equations. However, in choosing
a normalization, the compatibility with the boundary conditions should still hold.
For this specific example, we used the following ansatz for the R-matrix

R =


r1 0 0 0
0 r2 r3 0
0 r4 r5 0
0 0 0 r1

 , (2.33)

the entries 1,1 and 4,4 are equal as suggested from the expansion (2.32). The boundary
conditions (2.29) corresponding to this ansatz are

r1(u,u) = 1, r2(u,u) = 0, r3(u,u) = 1, (2.34)

r4(u,u) = 1, r5(u,u) = 0, (2.35)

ṙ1(u,u) = 0, ṙ2(u,u) =
c4

2
(h1(u)+h2(u)), ṙ3(u,u) = h2(u), (2.36)

ṙ4(u,u) = h1(u), ṙ5(u,u) =
c3

2
(h1(u)+h2(u)), (2.37)

where the notation ṙi(u,u) means ∂uri(u,v)|v→u. We are allowed to chose to normalize the
entry r1(u,v) to 1. Note that not all the choices are admitted, for example r5 = 1 would have
been not compatible with the boundary condition.

14This expansion provides a transparent explanation for the different signs in the boundary conditions (2.5)
and (2.29).
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From the Sutherland equation (2.30), we obtained the set of partial differential equations
(PDEs) that are not independent from each other15

c4 r5 = c3 r2,
ṙ4

r4
=

ṙ3

r3
+h1 −h2, (2.38)

ṙ2 =
c4

2
(h1 +h2)r3r4,

ṙ3

r3
= h2 +

c3

2
(h1 +h2)r2, (2.39)√

1− c3c4(1− r3r4) = 1+ c3r2, (2.40)

where ṙi = ∂uri(u,v).
In certain cases, solving the set of equations derived from the Sutherland equations proved to
be challenging and resulted in non-trivial solutions involving functions such as trigonometric
or elliptic Jacobi functions. To simplify the process, a more efficient approach was taken by
considering a linear combination of these equations and using both the Sutherland equations
(2.30) and (2.31).
For the example analyzed, by solving these equations, imposing the boundary conditions and
plugging the result into our ansatz, we obtain

R =


1 0 0 0
0 c4

ω cot(ωH+)−1
ωe−H−

ω cos(ωH+)−sin(ωH+)
0

0 ωeH−
ω cos(ωH+)−sin(ωH+)

c3
ω cot(ωH+)−1 0

0 0 0 1

 , (2.41)

where for simplicity of notation we called

H± =
H1(u,v)±H2(u,v)

2
, Hi(u,v) =

∫ u

v
hi(θ)dθ , ω

2 = c3c4 −1. (2.42)

Step 5. Check that the R-matrix satisties the YBE

As last step, we check that the R-matrix (2.41) is a solution of the Yang-Baxter equation
and that the boundary conditions are satisfied. We conclude that the "potentially" integrable
Hamiltonian (2.25) is actually integrable.
A comment is now necessary. It is worth noting that the constraint [Q2,Q3] = 0 alone was
sufficient to ensure the integrability of the model, as we were able to find the corresponding
R-matrix. It will be clear in the following chapters, that for all the initial ansatz we chose,
this condition was enough to guarantee the integrability of the models. This goes back to an
old conjecture of [95] and to the best of our knowledge it is still unproven.

15Here we have already eliminated the equations that would clearly lead to the same solutions.
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Step 6. Is the R-matrix that we found new?

In order to address this question, it is necessary to first examine a related issue. We return to
this point later in section 2.6.2.

2.6 How many different models did we discover?

For the example we have examined, the simplicity of the chosen ansatz results in a single
Hamiltonian density that corresponds to an integrable model. However, there is some freedom
in choosing the functions h1(u) and h2(u) and the constants c3,c4.
For more complicated ansatz for the density Hamiltonian (and R-matrix), this method gives
rise to a large redundancy in solutions. However, not all of these models are independent.
In fact, there are different transformations that can be performed on the R-matrix (and
consequently on the Hamiltonian) that preserve integrability. We list them in the next section.
As a result, in the following chapters, we present only one representative model from each
class.

2.6.1 Identifications

Given a regular solution R(u,v) of the Yang-Baxter equation, we can make the following
identifications, which preserve integrability and regularity.

Local basis transformation (LBT)

Given V (u) ∈ Cn an invertible matrix,

R(LBT )(u,v) =
[
V (u)⊗V (v)

]
R(u,v)

[
V (u)⊗V (v)

]−1
, (2.43)

R(LBT )(u,v) remains a solution of the YBE.
The Hamiltonian associated to this R-matrix is

H (LBT ) =
[
V ⊗V

]
H
[
V ⊗V

]−1−
[
V̇V−1 ⊗ I− I⊗V̇V−1], (2.44)

where for simplicity we omit the spectral parameter dependence. We notice that terms
of the form A⊗ I− I⊗A in the Hamiltonian density can be removed by performing a basis
transformation with the matrix V (u) satisfying V̇ = AV . Adding these telescopic terms to the
density Hamiltonian does not affect the total Hamiltonian H because they cancel each other
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in periodic spin chain.
The regularity condition of the R-matrix is also preserved, in fact

R(LBT )(u,u) =
[
V (u)⊗V (u)

]
R(u,u)

[
V (u)⊗V (u)

]−1
= P. (2.45)

Reparametrization

R(g(u),g(v)) is still a solution of the YBE and the regularity condition is preserved. The
Hamiltonian associated to it is

H (u) 7→ ġH (g(u)). (2.46)

Notice however that a simple reparametrization of the Hamiltonian without renormalization
(and also the other way around) does not preserve the compatibility condition [Q2,Q3] = 0.
We clarify this point in section 5.4.3.

Normalization

Normalization of the R-matrix is also allowed, with the associated Hamiltonian density

R(u,v)→ g(u,v)R(u,v), H (θ) 7→ H (θ)+ ġ(θ ,θ)I, (2.47)

where I is the identity matrix. To preserve regularity, g(θ ,θ) = 1.

Discrete transformations

The following discrete transformations are also allowed

R(u,v)→ PR(u,v)P, H (θ)→ PH (θ)P (2.48)

R(u,v)→ RT (u,v), H (θ)→ PH T (θ)P (2.49)

R(u,v)→ PRT (u,v)P, H (θ)→ H T (θ) (2.50)

R(u,v)→ R∗(u,v), H (θ)→ H ∗(θ) (2.51)

R(u,v)→ R†(u,v), H (θ)→ PH †(θ)P (2.52)

where T is the transpose of the matrix and ∗ the complex conjugation element-wise. The
regularity condition is also satisfied.
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Twists

If U(u) is an invertible n×n matrix which satisfies [U(u)⊗U(v),R12(u,v)] = 0 then it can
be shown that

R12(u,v)→U2(v)R12(u,v)U1(u)−1 (2.53)

is a solution of the YBE. Under this transformation, the Hamiltonian density H12 is

H12 7→U1H12U−1
1 +U̇1U−1

1 (2.54)

and the analogue of the condition [U(u)⊗U(v),R12(u,v)] = 0 for the Hamiltonian density
can be easily worked out to be

[U1U2,H12] = U̇1U2 −U1U̇2. (2.55)

This relation may also derived by plugging the twisted R-matrix (2.53) and Hamiltonian
(2.54) into the Sutherland equations (2.30) and taking the spectral parameters to be the same.
This is not surprising given the similarity between (2.55) and the Sutherland equations (2.30).

Universal and non-universal transformations

Among the transformations described here, the local basis transformation, reparametrization,
normalization and the discrete transformations are universal as they do not alter the degen-
eracies of the eigenvalues and the symmetries of the model. To determine if two models are
related by any of these transformations, one can compute the spectrum for spin chains of
different lengths and compare the degeneracies.
In contrast, recognizing if two models are related by a twist is more complicated. This one
changes the spectrum and the other physical properties of the integrable model in a non-trivial
way. However, on the level of the R-matrix, a twist is a simple transformation and the twisted
R-matrix remains a solution of the YBE.
Some other transformations that preserve integrability are model dependent, for instance
Drinfeld twist [96].

2.6.2 Is the model that we found in the example new?

The Hamiltonian density (2.25) and its corresponding R-matrix (2.41), which we obtained
by employing the simple ansatz (2.18) are not new. This is not unexpected considering the
simplicity of the ansatz we used.
We now perform the transformations that bring the Hamiltonian (2.25) to a known one. First,



58 Classification of Integrable models

we use a local basis transformation to set h1 = h2. This is achieved using the matrix V (θ)

V (θ) = exp
(

1
2

H−(θ)Z
)
, (2.56)

in the transformation law (2.44), with H±(θ) =
1
2 (H1(θ)±H2(θ)), Hi(θ) =

∫
θ hi(u)du and

Z the third Pauli matrix.
Next, we renormalize the Hamiltonian by 1

2

(
h1 +h2

)
. In this case, the renomalization does

not affect the commutation constraint [Q2,Q3] = 0, since the remaining Hamiltonian is
constant,

H12(θ) = H12 =


0 0 0 0
0 1 c3 0
0 c4 1 0
0 0 0 0

 . (2.57)

Moreover, we use a twist and set c3 = c4 = c. Indeed, it is trivial to check that the twist
condition (2.55) is satisfied for any constant invertible diagonal matrix. In particular we use
the twist U

U = diag(
√

c4,
√

c3) , (2.58)

in (2.54), to bring the Hamiltonian density to the form

H (θ) =


0 0 0 0
0 1 c 0
0 c 1 0
0 0 0 0

 . (2.59)

The Hamiltonian (2.25) presented in the example is equivalent to the XXZ Hamiltonian,
which is given by

HXXZ = α(Xi Xi+1 +YiYi+1 +∆Zi Zi+1 −∆I), (2.60)

with the identifications α =− 1
2∆

and ∆ =−1
c .

At this point, one can apply the same transformations to the R-matrix (2.41). Alternatively,
one can obtain the R-matrix corresponding to the transformed Hamiltonian by using the
Sutherland equation. Both approaches are equivalent and will lead to the same results. We
follow the second one.
The Sutherland equations are easily solved since all the coefficients of the Hamiltonian are
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simply constants. As a consequence, the R-matrix corresponding to (2.59) is

R(u) = eu


cosωu− sinωu

ω
0 0

0 c sinωu
ω

1 0
0 1 c sinωu

ω
0

0 0 0 cosωu− sinωu
ω

 , (2.61)

where now ω2 = c2 −1.
To demonstrate the equivalence between the solution obtained and the solution (2.41), we can
reverse the identifications made to make the Hamiltonian constant. First, we undo the twist
and apply R12 7→U−1

2 R12U1 to (2.61) and put c =
√

c3
√

c4 so that we arrive at the R-matrix
for the Hamiltonian (2.57). Next, we reparameterize u 7→ H+(u), and finally we apply the
inverse of the local basis transformation (2.56), which immediately yields (2.41). This shows
that the two solutions are indeed equivalent and that the model we found with the example is
not new.

Difference vs. Non-difference After using all the identifications, we see that (2.41) is
just an R-matrix of difference form in disguise. The non-difference nature of the rapidity
dependence of the R-matrix only resides in the local basis transformations. This can also be
considered a way to obtain a non-difference form solution by starting from a difference form
one.
In what follows, we will present our results that will concern R-matrix genuinely of non-
difference form type, so that the non-difference form nature cannot be removed by any of the
mentioned identifications. We will present only one matrix for each equivalence class.

2.7 Some useful tricks

Before going into the heart of the classifications, it is worth sharing some tricks we have
learned through our exploration of different classes of models.
While the example discussed here is relatively simple and does not require additional com-
putational details, those tricks were essential to find new models by starting from more
complicated ansatz and in cases where the dimension of the Hilbert space is bigger.
To explain the tricks learned and also the complexity of the problem, it is useful to consider
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the ansatz used in the chapter 8: Hamiltonian of 8-vertex type

H12 =h1 I+h2(Z ⊗ I− I⊗Z)+h3σ+⊗σ−+h4σ−⊗σ+

+h5(Z ⊗ I+ I⊗Z)+h6Z ⊗Z +h7σ−⊗σ−+h8σ+⊗σ+

, (2.62)

where σ± = 1
2(X + iY ) and hi = hi(θ), or in matrix form

H12 =


h1 +2h5 +h6 0 0 h8

0 h1 +2h2 −h6 h3 0
0 h4 h1 −2h2 −h6 0
h7 0 0 h1 −2h5 +h6

 . (2.63)

By plugging this ansatz in the integrability constraint [Q2,Q3] = 0 we obtain 21 non-
independent equations. To simplify the problem, since we know that solutions related
by the Identification given in 2.6.1 are equivalent, we can eliminate some of the redundant
degrees of freedom, narrowing down our search to models that are not related by these identi-
fications. For example, without loss of generality we can set h1 = 0 (shift of the Hamiltonian)
and h2 = 0 (as already discussed, this telescopic terms vanish in a closed spin chain).
Furthermore, we consider a linear combination (with the appropriate coefficients) of 2, 3 or 4
of the differential equations obtained from [Q2,Q3] = 0 and start to solve for the simplest
one first.
Similar to the discussion in the section 2.2 about the "Differential approach" method, the
number of different equations coming from [Q2,Q3] = 0 is bigger than the number of vari-
ables, so we can consider the derivatives as independent variables. In other word, we can
recall dhi = ḣi. In this way, some of the equations will be linear in dhi. One can select the
equations containing those terms and solve for them and then plug back into the remaining
equations. We have yet to discover a precise algorithm for determining the optimal order of
variables for easier solution finding. In some cases, solving for all the derivatives first and
then substituting into the remaining equations works well. Other times, it is more efficient to
solve for specific derivatives and functions. After finding the solution, one needs to impose
the compatibility condition that the variables and the derivatives are not actually independent.
Treating the derivatives as independent variables simplifies the initial stage to solving sets of
linear or polynomial equations, deferring the differential equations to a later stage. However,
some complications arise also here. For example, for the 8-V type ansatz, we obtained

(−h3 +h4)h6h7 = 0. (2.64)
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There are 3 solutions to this equation

h3 = h4, h6 = 0, h7 = 0. (2.65)

We should consider these 3 branches separately. By taking more general ansatz and increasing
the dimension of the Hilbert space, the number of branches increases, rendering the search of
a solution a computationally hard problem. For the ansatz of 8-V type, a brute force solution
of the equations led to 31 solutions. For more general ansatz, brute force is unfeasible and
each branch should be analysed separately.
One approach to solve this branch problem is to select a block of n equations to solve and
get m solutions. Among the m solutions, there may be some variables that are the same in all
the solutions. One can then plug back only this one into the initial system of equations and
the complexity of the problem is simplified.
Combining all these tricks allowed us to successfully carry out the classification of integrable
models by starting from different ansatz.

2.7.1 Ansatz used

In what follows, we apply the boost automorphism mechanism to classify and discover new
integrable models in different contexts.

• In chapter 3, we assume that the Hamiltonian density has the structure of a Lindblad
superoperator. This generates the dynamics of an open quantum systems, a quantum
spin chain with Hamiltonian h in contact with a Markovian environment (described
by the jump operator ℓ). We apply the boost method to investigate a specific simple
example, revealing the discovery of a novel model. Additionally, we analyse the
connection between Lindbladians and classical Markovian process.

• In chapter 4, we generalize the ansatz used in chapter 3. We consider a general
Hamiltonian h and an operator ℓ with at most two elements below the diagonal. Then,
we consider both h and ℓ of 6-Vertex type. Surprisingly, we found two integrable
models for which the environment and the system do not require fine-tuning. One of
these models, B3, is new and exhibits interesting properties which we analyze. We
solve this model via the nested algebraic Bethe ansatz in the Appendix A. The other
model, B2, is already known and it is related to a deformation of Hubbard model.

• In chapter 5, we show how in some cases we can map Lindblad superoperator to
Hermitian matrix. This holds for the Hubbard model. We start from an ansatz with h
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and ℓ of both 8-Vertex type and we discover a new and intriguing model. This model
is related to an elliptic range 3 deformation of the Hubbard model. The R-matrix
has a very unusual dependence of the spectral parameter, which, to the best of our
knowledge, has not been previously accounted for. The complete classification of
models in this class is computationally very complicated and is still a work in progress.

• In chapter 7, we extend the method to higher-dimensional Hilbert spaces. Specifically,
we consider the case of C4 ⊗C4 with su(2)⊕ su(2) symmetry. We demonstrate that
our method successfully reproduces known models in this class, such as the su(4)
Heisenberg XXX spin chain [5], the Hubbard model [97], the AdS/CFT S-matrix16

[59, 98, 99] and the related Shastry R-matrix [100]. Additionally, we present some
new models that emerge from our approach.

• In chapter 8, we consider the case where the local Hilbert space has dimension two
and, consequently, the R-matrix is of size 4×4. These models satisfy the free fermion
condition which we discuss in chapter 9 and are related to integrable deformation
of the AdS/CFT S-matrix, discussed in Appendix E. Furthermore, we prove that all
Hermitian 4x4 models with 16 entries, can be brought via the identifications given
in section 2.6.1 to models of 8-Vertex type. This implies that obtaining a complete
classification of 8-Vertex type models is equivalent to finding all Hermitian integrable
models in C2 ⊗C2.

• We have also explored other ansatz that are not discussed in this thesis but can be found
in [27]. These include 9×9 Hamiltonian corresponding to spin 1 chain. We imposed
that the Hamiltonian (and also the R-matrix) commutes with the Cartan subalgebra
of su(3). These models are usually referred as 15-Vertex model and satisfy the so
called ice rule condition. They have interesting connections to the eclectic spin chain,
[101–103].

Let us point out that such restrictions are not strictly necessary to implement our approach.
In principle, the method allows to classify integrable models starting from the most general
Hamiltonian density. Unfortunately, the problem of solving a set of coupled differential
equations becomes (with the currect technique and the current computer power) very hard
and also due to the fact that our method produces huge number of dependent integrable
systems, providing a full classification of all possible R-matrices in a higher dimensional
spin chain is difficult and so we limit ourselves to a subset of models which are physically
interesting.

16This point will be clarified in the footnote 5 of section 7.3.2.



Chapter 3

Integrable open quantum systems

In this chapter, we provide a brief introduction to the properties of open quantum systems,
physical systems that interact with their surrounding environment. By introducing specific
approximations, which will be detailed later, we can characterize their behavior using the
Lindblad master equation. We present a simplified overview of the derivation, referring to
the works of Preskill and Cappellaro [28, 29]. For a more detailed and formal treatment,
references such as [104–106] are available. The dynamics can be equivalently described
by using a superoperator L that acts on a doubled Hilbert space. We focus our attention
to integrable open quantum systems, where the Lindblad superoperator L is one of the
conserved charges of an integrable spin chain. While other research groups have explored
such systems in the past [18, 17], our work represents the first systematic approach to
classify integrable open quantum systems. We demonstrate with an example how the
boost operator can be used to classify integrable open quantum systems and which are the
transformations that preserves either integrability or the structure of this superoperator. For
our specific application, we consider a spin 1/2 chain, where the Hamiltonian h governs
the evolution of the system and the jump operator ℓ represents the effective action of the
environment on the chain. We also describe the connection between the Lindblad equation
and the classical stochastic equation.

3.1 The Lindblad master equation

3.1.1 The Lindblad master equation: derivation

In introductory physics courses, for simplicity, the focus is typically on studying isolated
systems, detached from their surrounding environment. However, in quantum systems, the
influence of the environment becomes significant, and it becomes challenging to conduct
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experiments where the contributions from the environment can be disregarded.
In what follow, we use the subscripts S, E and T to refer separately to the system, the
environment and the total: system + environment.
If we consider both the system + environment as a whole, a state in the total Hilbert space
is characterized by the density matrix ρT and its unitary dynamic is governed by the Von
Neumann equation

dρT

dt
=−i[HT ,ρT ], ρT (t) = e−iHT t

ρT (0)eiHT t . (3.1)

However, in many practical application, the environmental degrees of freedom are incredibly
vast and finding a solution of this dynamical equation is an impossible task. Moreover, the
focus of interest is often on the evolution of the system itself, while the environment is
considered as an uncontrollable entity. Therefore, the main object of study is the dynamics
of the density matrix,

ρS(t) = TrEρT (t), (3.2)

where TrE is the partial trace operation over the environment degree of freedom.
We aim to understand how the environment influences the dynamics of the density matrix
ρS, specifically its time evolution. While it is not obvious that an open system’s dynamics
can be expressed by a differential equation, we proceed with the assumption that, as defined
after equation (3.5), the evolution of these dynamics is Markovian, local in time. In such cir-
cumstances, the evolution can be described by the Gorini-Kossakowski-Sudarshan-Lindblad
master equation. This equation was derived in the 70s by Lindlad [8] and independently,
around the same time, by Gorini-Kossakowski-Sudarshan [9] by using the theory of dy-
namical semigroups. In the modern literature, there are two main approaches to derive this
evolution:

• Microscopic derivation: This involves taking the partial trace TrE in equation (3.1) and
making a series of approximations to obtain the Markovian Lindblad master equation.

• CPTP map: The focus here is on answering the question: What is the most general
way to map a density matrix onto another density matrix? By assuming the evolution
to be Markovian, we arrive at the Lindblad equation.

We follow here the second approach. The density matrix represents a physical state and must
adhere to certain properties. For this reason we need to search for a CPTP map. The "CP"
refers to the requirement of complete positivity, ensuring the density matrix has non-negative



3.1 The Lindblad master equation 65

eigenvalues at any time1. The "TP" aspect refers to the preservation of the trace2, ensuring
that the total probability of finding the system in any state remains unity.
The answer to this question is the Choi-Kraus’ theorem. We only state this theorem and refer
to [106] for the proof.
Choi-Kraus’ theorem. Any linear map µ : B(HS)→ B(HS) is completely positive and
trace preserving iff it can be expressed3 as

µ : ρS(t) = ∑
k

Mk(t)ρSM†
k (t), (3.3)

where B(HS) is the space of bounded operators acting on the Hilbert space of the system,
the operators Mk ∈ B(HS) are called Kraus operator and satisfy

∑
k

M†
k Mk = I. (3.4)

The sum runs from 0 to Q, with Q ≤ N2
S , NS being the dimension of the Hilbert space HS.

To obtain the dynamic in the form of a master equation, we have to require the Markovian
approximation: the evolution is local in time. In fact, it is not immediately clear why a
first-order differential equation is sufficient to describe the system’s dynamics. Let us discuss
the reasons behind this.
Suppose that we can define the dynamics as

ρ̇S(t) = L [ρS(t)],
ρS(t +dt)−ρS(t)

dt
= L [ρS(t)], dt ≪ 1. (3.5)

We are assuming that the density matrix at the time t +dt is determined by its value only
at the time t. This is not guaranteed. In fact, the total system (system+environment) has
unitary evolution, but for part of the total system, the evolution does not necessarily remain
local in t. During the time evolution, the system and the environment are interacting and the
information flows from the system to the environment. The trouble is that, if the environment
has memory, it can retain and later releases this information, resulting in non-markovian
fluctuation of the system. In other words, if this happens, the state of the system at t +dt, is
not only affected by the time t but also by older configurations. In this case, we say that the
environment is non-markovian. Opposite, if the environment does not have memory, it is
called markovian and the evolution of the density matrix is local in time.

1Complete positivity is a more general property than positivity. In fact, it should preserve positivity also
when acting on a part of a larger system.

2In particular the trace of the density matrix should be equal to one at any time.
3We remark that the Kraus representation is not unique, [28].
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In the real word, perfectly markovian environment does not exist. However, it is a good
approximation, to allow the environment to remember the information for an interval of
time called (∆t)env. After this interval, the information is lost. However, in practice, our
measurement instruments have limitations, and we can only resolve the dynamics with
a characteristic time (∆t)coarse. If (∆t)coarse ≫ (∆t)env we can neglect the memory of the
reservoir since we are unable to resolve its effect. This approximation takes the name of
Markovian approximation and it is useful in many practical situation.
We refer to the book [107] and the work [108] for a quantitative definition of (∆t)env. The
authors explore various physical scenarios where a numerical solution of the system’s
dynamics is available and compare it to dynamics obtained through the application of
Markovian approximations. For instance, they examine a single harmonic oscillator coupled
to an environment of M harmonic oscillators. They define (∆t)env as the full width at half
height of the correlation functions involving operators that describe the environment. They
demonstrate that, when other parameters are held constant, this quantity decreases as a
function of the environmental temperature. Intuitively, at infinite temperature, quantum
correlations tend to be eliminated, leading to the emergence of Markovian properties in the
environment.
For the range of validity of the Markovian approximation, (3.5) holds and using (3.3), we
obtain

ρS(t +dt) = ∑
k

Mk(dt)ρS(t)M
†
k (dt), ρS(t +dt)∼ ρS(t)+dt L [ρS(t)]. (3.6)

If we retains only terms linear in dt, we may assume without loss of generality4 that

M0 = I+dt(−ih+K), Mk =
√

dt ℓk, k = 1,2, . . . ,Q < N2
S , (3.7)

where h and K are Hermitian operators, h, K and ℓ are zero-th order in dt and NS is the
dimension of the Hilbert space of the system. Substituting it into (3.4), we find

K =−1
2

N2
S

∑
k=1

ℓ†
kℓk, (3.8)

4In fact, if one starts from M j = I+
√

dtα j+dtβ j, with α j and β j arbitrary operators and j = 0,1, ...,Q<N2
S ,

by using (3.4), the result (3.9) remains the same. Furthermore, if in the expression for M j, we allow to have
terms dtw, 0 < w < 1, by using (3.6) it follows that only w = 1/2 contributes.
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and substituting into (3.6) and considering (3.5), we obtain the well-known Gorini-Kossakowski-
Sudarshan-Lindblad equation (GKSL) master equation [8, 9]

ρ̇S(t) =−i[h,ρS]+∑
k

[
ℓkρSℓ

†
k −

1
2
{ℓ†

kℓk,ρS}
]
. (3.9)

For brevity, in what follows, we refer to this as Lindblad equation, however it should be
mentioned that it was independently derived by the other physicists as well. The first term
represents the unitary evolution (thus h = hS is the usual Hamiltonian of the system). ℓk are
called quantum jump operators and the terms in the square bracket represent the potential
transitions ("jump") that can occur in the system as a result of its interaction with the reservoir.
If the contribution of the environment drops out, M0 = 1− ihdt and all the Mk>0 = 0, we
recover unitary dynamics. In particular, the relation between the numper of jump and Kraus
operators is

# Kraus = # jump+1, (3.10)

with the maximum number or Kraus operator being N2
S , with NS the dimension of the Hilbert

space of the system.

3.1.2 The Lindblad master equation: summary

In what follows, we restrict to the case where there are only two Kraus operators and
consequently, only one family of jump operator5, but the method can be easily generalized to
multiple families. For simplicity in the notation, we omit the subscript S in ρ(t) = ρS(t).
The Lindblad master equation is

ρ̇(t) =−i[h,ρ(t)]︸ ︷︷ ︸
von-Neumann equation

+

[
ℓρ(t)ℓ† − 1

2
{ℓ†ℓ,ρ(t)}

]
︸ ︷︷ ︸

dissipator

, (3.11)

where h is the Hamiltonian of the system and ℓ is the jump operator that describe the
interaction with the environment. The operator ℓ is not normalized. In some cases, where the
system and environment are not fine tuned, we use ℓ→

√
Uℓ, where U measures the strength

of the coupling between the system and the environment.

5This statement will be clarified in the following section. In fact, in our case, each jump operator acts on
nearest-neighbour sites of a spin chain. We refer to them as one family of jump operator since the action of the
superoperator in the chain is periodic.
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3.1.3 The Lindblad superoperator and the Fock-Liouville space

We can write the Lindblad equation (3.11) as a linear operator L acting on a state

ρ̇(t)≡ L ρ(t), (3.12)

L is the so-called Lindblad super-operator. This is possible through an operator-state
correspondence. Fixing an arbitrary basis, the density matrix ρ = ∑a,b ρab|a⟩⟨b| acting on
the space H is interpreted as a vector of the tensor product space (also called Fock-Liouville
space)6

ρ ∈ H ⊗H∗ ≡ H(1)H(2), (3.13)

H is the initial Hilbert space of the system and H∗ its dual. For finite dimensional spaces
this is not a problem, because there is a natural identification H∗ ≃ H. Since we consider
finite system, we do not encounter the problem of infinite dimensional spaces.
We write (3.11) in components

ρ̇ jk =−ih jlρlk + iρ jlhlk +

[
ℓ jlρlmℓ

†
mk −

1
2
(ℓ†ℓ) jlρlk −

1
2

ρ jl(ℓ
†ℓ)lk

]
. (3.14)

With the identification (3.13), the Lindblad superoperator takes the form

L =−ih(1)+ i(hT )(2)+

[
ℓ(1)ℓ(2)

∗
− 1

2
ℓ(1)†ℓ(1)− 1

2
ℓ(2)

T
ℓ(2)

∗
]
. (3.15)

For any operator A the notation A(1) and A(2) means that it acts only on the first space
A(1) = A⊗ I or A(2) = I⊗A. T , ∗ and † refer respectively to the transposition, complex
conjugation elementwise and transpose conjugate.

3.1.4 Lindblad superoperator as a spin chain Hamiltonian

We want to identify the Lindblad superoperator (3.15) as a nearest-neighbour operator
acting in a spin chain. We consider the case where both the h and ℓ operators act as
densities in nearest-neighbour site of a spin 1/2 chain of lenght L. The total Hilbert space is
H =

⊗
LV =

⊗
LC2 and the density operators h j, j+1 and ℓ j, j+1,

h j, j+1 ∈ B(V ⊗V ), ℓ j, j+1 ∈ B(V ⊗V ), (3.16)

6We should notice that now the vector density matrix is different from the previous one but, for simplicity of
notation, we will keep referring to it as ρ . Sometimes, in the literature, the vector ρ is indicated with |ρ⟩⟩.
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with B(W ) the space of bounded operators acting on the Hilbert space W , B : W →W .
The local Fock-Liouville space of the superoperator on a spin chain is V ⊗V ⊗V ∗⊗V ∗.
The superoperator defined in (3.15) takes the form

L j, j+1 = − ih(1)j, j+1 + ih(2)
T

j, j+1 +
(
ℓ
(1)
j, j+1ℓ

(2)∗
j, j+1 −

1
2
ℓ
(1)†
j, j+1ℓ

(1)
j, j+1 −

1
2
ℓ
(2)T
j, j+1ℓ

(2)∗
j, j+1

)
. (3.17)

It is easy to understand that the superoperator corresponding to the Lindblad equation (3.9)
with multiple families of jump operator is

L j, j+1 = − ih(1)j, j+1 + ih(2)
T

j, j+1 +∑
k

(
ℓ
(1)
k, j, j+1ℓ

(2)∗
k, j, j+1 −

1
2
ℓ
(1)†
k, j, j+1ℓ

(1)
k, j, j+1 −

1
2
ℓ
(2)T
k, j, j+1ℓ

(2)∗
k, j, j+1

)
,

(3.18)

where k identifies the family.
This system is referred to as bulk Lindbladian because the jump operators are acting in
adjacent sites in the bulk of the spin chain. For spin chain with open boundary condition,
it is also common to consider boundary Lindbladian where the jump operators act on the
boundary of the chain. We do not consider this type of system in this thesis, we refer to [15]
and reference therein, for work in this direction.
We remark an important point necessary for the construction. We want to consider the
superoperator L as acting in a quantum spin chain, so in order to do this, we need to swap
two of the middle spaces of the Fock-Liouville space, explicitly

V ⊗V ⊗V ∗⊗V ∗ → V ⊗V ∗⊗V ⊗V ∗, (3.19)

and now the interpretation of the superoperator as acting on a spin chain becomes clearer

L j, j+1 ∈ V ⊗V ∗︸ ︷︷ ︸
j

⊗V ⊗V ∗︸ ︷︷ ︸
j+1

. (3.20)

To take this into account, we identify with σs the matrices acting in V and τs matrices7

acting in V ∗ (similar to [18, 17])

V ⊗ V ∗ ⊗ V ⊗ V ∗

↓ ↓ ↓ ↓
σ j τ j σ j+1 τ j+1 (3.21)

7Sometimes in the literature τ → σ̃ or τ → σ̄ .
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This system is usually referred as two-legs (one for the "bra" and one for the "ket" of the
density matrix) spin-ladder system. And the notation A(1) and A(2) should be intepreted as
A(1) only containing σ and A(2) only τ .
Having in mind this construction, we show how to use the boost operator to find new inte-
grable Lindblad superoperators. The superoperator is associated to a nearest-neighbour
(non-Hermitian) Hamiltonian on a spin-chain with local Hilbert space V ⊗V ∗. This superop-
erator is integrable if L can be written as the derivative of an R-matrix which is a solution of
the Yang-Baxter equation.
Before showing the method with an example, we briefly mention the convention used.

3.1.5 Conventions

A state of the system is given by the density matrix ρ . The explicit matrix representation is
basis dependent. In this thesis, in the context of open quantum systems, we work with spin
1/2 chain and we use the standard basis as in (1.28). We denote a vector in the space as

ψ↑|↑⟩+ψ↓|↓⟩=

(
ψ↑
ψ↓

)
. (3.22)

We choose as reference state, a state with all spin down. Particles are spin up. The occupation
number is ni = σ

+
i σ

−
i = I+Zi

2 . For nearest-neighbour spins we apply the notation

(
ψ↑
ψ↓

)
⊗

(
ψ↑
ψ↓

)
≡


ψ↑↑
ψ↑↓
ψ↓↑
ψ↓↓

 . (3.23)

The density matrix of a two-site segment is given by

ρ
cd
ab = ψabψ

∗
cd, a,b,c,d =↑,↓ (3.24)
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and in the superoperator formalism we treat such a density matrix as a vector with 16
components ordered as ρ1,ρ2, . . . . The identification of the components is given by

ρ =


ρ
↑↑
↑↑ ρ

↑↓
↑↑ ρ

↓↑
↑↑ ρ

↓↓
↑↑

ρ
↑↑
↑↓ ρ

↑↓
↑↓ ρ

↓↑
↑↓ ρ

↓↓
↑↓

ρ
↑↑
↓↑ ρ

↑↓
↓↑ ρ

↓↑
↓↑ ρ

↓↓
↓↑

ρ
↑↑
↓↓ ρ

↑↓
↓↓ ρ

↓↑
↓↓ ρ

↓↓
↓↓

=


ρ1 ρ2 ρ3 ρ4

ρ5 ρ6 ρ7 ρ8

ρ9 ρ10 ρ11 ρ12

ρ13 ρ14 ρ15 ρ16

 . (3.25)

3.2 Finding integrable Lindblad superoperators

Now, we initiate the systematic classification of integrable open quantum systems using
the boost automorphism mechanism. The charge Q j, j+1, traditionally associated with the
Hamiltonian of the spin chain, is now the Lindblad superoperator L (3.17). We remark
that, the operator Q j, j+1 = L j, j+1 is not Hermitian by construction, the Hermitian operator
describing the closed system in the spin 1/2 chain is h in (3.17).
For clarity, we specifically apply the steps outlined in Section 2.5 to the case of an open
quantum system.

The main steps of the method are:

1. Start from an ansatz for the densities8 hi,i+1(θ) and ℓi,i+1(θ). In this thesis, we refer to
spin-1/2 chain, both h and ℓ are 4x4 matrix. They depend on some un-known functions
h1(θ), . . . , l1(θ), . . . .

2. Plug the ansatz into the superoperator Li,i+1 defined in (3.17) and identify Q2 = L .

3. Use the boost operator (2.12) to construct Q3 (given by (2.20) ).

4. Impose the integrability constraint [Q2,Q3] = 0 and solve the set of differential equa-
tions derived by it. This gives a "potentially" integrable superoperator.

5. Use H1,2 = L1,2 in the Sutherland equation (2.30) or (2.31) to find the corresponding
R-matrix.

6. Check that the R is a solution of the YBE and investigate if the model is new.

The steps 1. and 2. impose a very strong constraint: the decomposition of the density Q2

as a Lindblad superoperator holds for any value of θ . In order to have an integrable Lindblad

8It will become evident in the classification that we did not impose h to be Hermitian. However, we only
discover integrable superoperator where h has this property.
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system, it is enough to find a solution of the Yang-Baxter equation such that Q2 takes the
form of (3.17) only for some value of θ . Unfortunately, solving the general problem is more
challenging9 and we leave it for future work.
We provide further clarification on these steps by considering an example.

3.2.1 Example

Since we have already provided many details in section 2.5, here we only emphasize the
steps that differ.

1. Ansatz for h and ℓ

We start from hi,i+1, ℓi,i+1 ∈C2 ⊗ C2. We choose a very simple ansatz where ℓ only has two
elements and h is of XY-type10

ℓ j, j+1 =

 1 l1

= σ
−
j σ

+
j+1 +

l1
4
(I−Z) j(I+Z) j+1, (3.26)

h j, j+1 =

 h1

h2

= h1 σ
+
j σ

−
j+1 +h2 σ

−
j σ

+
j+1, (3.27)

where hi = hi(θ) and l1 = l1(θ). As mentioned, we did not impose that h is Hermitian since
we did not fix any constraints on h1, h2. For simplicity, we normalize one element of the ℓ to
one.
An important clarification is that, in the more general classifications considered in the
following chapter, we did not impose from the beginning that the Hamiltonian h of the closed
system is integrable. However, for all the solutions that we find, this was always the case.

9In order to fully solve this problem, one needs to classify all possible integrable models where Q2 has
components on the positions of the non-zero components of L . Only in a later stage, one can check if the
decomposition in term of superoperators hold for any value of θ .

10Usually we refer to spin chain of this type if the only non zero coefficients on the Hamiltonian are the
XiXi+1 and YiYi+1.
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2. Construction of the superoperator Li,i+1

The superoperator Li,i+1 acts on V ⊗V ∗⊗V ⊗V ∗ and using the notation (3.21), the expres-
sion (3.17) is

Li j = − i(h1 σ
+
i σ

−
j +h2 σ

−
i σ

+
j )+ i(h1 τ

−
i τ

+
j +h2 τ

+
i τ

−
j )+

+
[
σ
−
i σ

+
j +

l1
4
(I−σ

z
i )(I+σ

z
j )
][

τ
−
i τ

+
j +

l̄1
4
(I− τ

z
i )(I+ τ

z
j)
]
+

− 1
2
(l1 σ

+
i σ

−
j + l̄1 σ

−
i σ

+
j +

|l1|2

4
(I−σ

z
i )(I+σ

z
j )+

1
4
(I+σ

z
i )(I−σ

z
j ))

− 1
2
(l̄1 τ

+
i τ

−
j + l1 τ

−
i τ

+
j +

|l1|2

4
(I− τ

z
i )(I+ τ

z
j)+

1
4
(I+ τ

z
i )(I− τ

z
j)), (3.28)

where for simplicity we omitted the dependence of the spectral parameter. We identify with
l̄1 the complex conjugate of l1 and |l1|2 = l̄1l1. We remark that now σ and τ should be
interpreted as (3.21). For example σ

+
1 = σ+⊗ I⊗ I⊗ I and τ

+
1 = I⊗σ+⊗ I⊗ I.

3. Construct Q3 via the boost operator

With the help of the boost operator, we can compute Q3 (2.20), whose density is

(Q3)i,i+1,i+2 = [Li,i+1,Li+1,i+2]−
1
2

(
L̇i,i+1 + L̇i+1,i+2

)
. (3.29)

We do not write the explicit expression since it is very long, but the computation is straight-
forward.

4. Impose the integrability constraint

Plugging Q2 and Q3 in the integrability condition (2.22) then yields the following simple set
of equations

2h1 − i l1 = 0, 2h2 + i l̄1 = 0, |l1|2 = 1, (3.30)

l̇1 − l2
1 l̄1 = 0, l̇1 +3l2

1 l̄1 = 0, → l̇1 = 0. (3.31)

This implies that h1, h2 and l1 are constants and

l1 =−i eiφ , h1 =
i
2

eiφ , h2 =− i
2

e−iφ , φ ∈ R (3.32)
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or directly in matrix form

h =
1
2


0 0 0 0
0 0 eiφ 0
0 e−iφ 0 0
0 0 0 0

 , ℓ=


0 0 0 0
0 0 0 0
0 1 −i eiφ 0
0 0 0 0

 . (3.33)

Even if we did not impose it from the beginning, we find that the Hamiltonian h is
automatically Hermitian. We plug this solution in the superoperator L (3.17) and we find a
"potentially" integrable superoperator.

5. Find the R-matrix

We start from an ansatz for the R-matrix.
We consider H12 → L12 in the expansion (2.32) and we fix which entries of the R-matrix
are non-zero and which one are the same. Furthermore, since the superoperator is constant,
the R-matrix is of difference form. Explicitly, we used the ansatz

R(u) =



r1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 r3 0 0 r2 0 0 0 0 0 0 0 0 0 0 0
0 0 r7 0 0 0 0 0 r2 0 0 0 0 0 0 0
0 0 0 r8 0 0 0 0 0 0 0 0 r1 0 0 0
0 r2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 r1 0 0 0 0 0 0 0 0 0 0
0 0 0 r5 0 0 0 0 0 r4 0 0 0 0 0 0
0 0 0 0 0 0 0 r7 0 0 0 0 0 r2 0 0
0 0 r2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 r6 0 0 r4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 r1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 r3 0 0 r2 0
0 0 0 r4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 r2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 r2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r1



. (3.34)
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Plugging this ansatz into the Sutherland equation11 (2.30), with the superoperator Li,i+1

with (3.33), we obtain12

r1 = 1, r4 = e−u, r2 = e−
u
2 , r8 = 1− e−u (3.35)

r3e−iφ = ie−u (eu −1) =−r7 eiφ =−eu/2eiφ r5 = eu/2 e−iφ r6. (3.36)

6. Check YBE

With the software Mathematica, we check that the R-matrix satisfies the YBE (1.1).
We tried to map this model to known models by using the identification of the next section,
but we were not successful. Despite the simplicity of the ansatz selected, to the best of our
knowledge, this model seems to be new. We discuss it in the letter [21], where we call it
model A1.

As in 2.6.1, there are some transformations that preserve integrability and help to under-
stand if a given model can be mapped to a known one.

3.3 Identifications

The problem of finding integrable superoperators can be reformulated as finding pairs of
operators (h, ℓ) such that the corresponding superoperator (3.17) can be written as the
derivative of an R-matrix that satisfies the Yang-Baxter equation.
We distinguish between two types of identifications

• preserving the form of the superoperator;

• preserving the integrable nature of the model.

In our classification, we use both types of transformations to reduce the number of degrees
of freedom in our ansatz and make the calculation more feasible.

11It is easy to obtain the difference form version of this equation: H (u) → L , Ri j(ui,u j) → Ri j(u),
Ṙi j(ui,u j)→ ∂uRi j(u).

12In this case, we gave the expression of the R in form of a matrix. In the following chapters, we only indicate
the non-zero element of the R-matrix, with R j

i the element corresponding to j-row and i-column.
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3.3.1 Preserving the form of L

Shift in ℓ

The combination of a shift in ℓ with a transformation in h preserves the form of the superop-
erator. We derive the corresponding transformation on the h.
Consider a shift in ℓ by a term proportional to the identity

ℓ → ℓ+αI, α ∈ C. (3.37)

This changes in the ℓ will be reflected in the superoperator as

L ρ = i [ρ,h]+
(
ℓρℓ† − 1

2
{ℓ†ℓ,ρ}

)
+

(
αρℓ† +α

∗ℓρ − 1
2
{α

∗ℓ+αℓ†,ρ}
)
,

= i [ρ,h]+
(
ℓρℓ† − 1

2
{ℓ†ℓ,ρ}

)
+

1
2

(
α[ρ, ℓ†]−α

∗[ρ, ℓ]
)
, (3.38)

for simplicity we omit the sites i,i+1 where the operators act.
This is equivalent to a redefinition of the Hamiltonian

h → h− i
2
(αℓ† −α

∗ℓ). (3.39)

A simultaneous change

(h, ℓ) 7→ (h+
i
2
(αℓ† −α

∗ℓ), ℓ+α I) (3.40)

leaves the total superoperator invariant. This can generically be used to set one of the diagonal
entries of ℓ to zero.

Shift in h

Shifting the Hamiltonian of the system by a constant

(h, ℓ) 7→ (h+α I, ℓ) (3.41)

also leaves the superoperator trivially invariant. It is immediate to see it because the Hamilto-
nian contribution appears in the commutator with the density matrix.
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3.3.2 Preserving integrability of L

In this section, we show how the transformations of section 2.6.1 act on the superoperator.
To see the action on the R-matrix, we refer to section 2.6.1.

Local Basis transformations

If we consider a local basis transformation on the superoperator L , similar to (2.44), we
have

L → (B⊗B)L (B⊗B)−1 − (ḂB−1 ⊗ I− I⊗ ḂB−1) (3.42)

This is a well defined transformation that preserves integrability, however it will not always
give an interpretation in term of h and ℓ separately. If we restrict to the case B = A⊗A, at
the level of h and ℓ this implies

(h, ℓ) 7→ ((A⊗A)h(A⊗A)−1,(A⊗A)ℓ(A⊗A)−1 ), (3.43)

and to keep the structure of the superoperator13, the matrix A should be unitary, i.e.
A†A = I. In this way,

L → (A⊗A⊗A⊗A)L (A⊗A⊗A⊗A)−1, (3.44)

we omitted the telescopic terms since they cancel on a closed spin chain. So even if the
expression of the superoperator changes, integrability is preserved.

Telescopic terms on the h

As a particular case of the telescopic term, we can also consider the identification

h → h+α(σz ⊗ I− I⊗σz), α ∈ C . (3.45)

This is a particular case of identification at the level of the superoperator

L → L +A⊗ I− I⊗A (3.46)

with A =−i(σz ⊗ I− I⊗σz), that preserves the structure of the superoperator.

13This restriction is due to the terms of the form ℓ†ℓ.
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Normalization

In L , the dependence of the jump operators is quadratic in ℓ and appears as ℓ†ℓ. Any
redefinition ℓ→ eiϕℓ, ϕ ∈ R leaves L invariant. The global phases of the jump operators
are irrelevant, but relative phases within the components of a given ℓ matters.
We can also rescale the superoperator by a positive real14 element

L → αL , (h, ℓ) 7→ (αh,
√

α eiφ ℓ), α ∈ R+, φ ∈ R. (3.47)

The dependence on the spectral parameter in the normalization is discussed in section 2.6.1.

Discrete transformation

Complex conjugation If L is an integrable superoperator, then L ∗ is as well.
This transformation on the h and ℓ operator is

(h, ℓ) 7→ (−h∗, ℓ∗). (3.48)

Parity If a superoperator L is integrable, also its parity reverse is, as mentioned in 2.6.1.
This implies

L → PL P, h → ph p and ℓ→ pℓ p, (3.49)

where P and p are the permutation (or parity) operators respectively in W =V ⊗V ∗ and V .
In fact, L acts on (V ⊗V ∗)1 ⊗ (V ⊗V ∗)2, where we put the indices 1 and 2 to keep track of
the spaces. By permuting spaces, we get (V ⊗V ∗)2 ⊗ (V ⊗V ∗)1. The action of P in h(1) is

h(1) = ∑
i jkl

hi jklei j ⊗ I⊗ ekl ⊗ I
P︷︸︸︷→ ∑

i jkl
hi jklekl ⊗ I⊗ ei j ⊗ I= (php)(1), (3.50)

where here we wrote h(1) in components. ei j are unity matrices, with 1 in position (i, j) and
0 otherwise.

14α should be real, if we suppose to start from β ∈ C, h → βh and ℓ→
√

βℓ, but ℓ†ℓ→ |β |ℓ†ℓ.
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Transposition If R satisfies the Yang-Baxter equation, then the transpose does as well. As
mentioned in section 2.6.1, this translates to the superoperator

L → PL T P. (3.51)

This transformation is useful when we want to check if the model found can be mapped to a
known one and it does not have a direct connection at the level of (h, ℓ) separately.
In fact, if we want to use the mapping

(h, ℓ) 7→ (hT , ℓT ), (3.52)

to preserve integrability we have to add the additional constraint

[ℓ†, ℓ] = 0. (3.53)

In this way, it can be shown that

L T = L
(

with hT , ℓT
)
. (3.54)

Example: add a global phase to ℓ + shift in ℓ We can apply two of the transformations
to the model (3.33). First, we multiply ℓ by the phase i e−iφ and then we transform (h, ℓ) by
using (3.40) with α = 1.
An alternative representation for the same superoperator can be obtained with

h = 0, ℓ=


1 0 0 0
0 1 0 0
0 −i e−iφ 0 0
0 0 0 1

 . (3.55)

3.4 Diagonal preserving models: connection with classical
stochastic equations

Before showing the models found in the classification, we explain an important connection
between Lindblad superoperators and integrable classical stochastic equations, [109, 110].
The Lindblad equation (3.11) is capable of realizing the classical flows on the diagonal
of the density matrix. The diagonal elements of ρ (3.25) are the classical probabilities of
finding the system in the given state, and in some cases the operator space spanned by the
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diagonal elements is kept invariant by the Lindblad superoperator. We refer to these models
as diagonal preserving.
We call |n1,n2, . . . ,nL⟩, n j =↑,↓ the vectors in the computational basis and L is the length
of the spin chain. For diagonal preserving models, when we project the Lindblad equation
(3.11) to the diagonal elements we obtain

⟨n1, . . . ,nL|ρ|n1, . . . ,nL⟩ ≡ P(n1, . . . ,nL) (3.56)

and the flow equation

∂t |P⟩=W |P⟩, (3.57)

where |P⟩= P(n1, . . . ,nL)|n1, . . . ,nL⟩ and W = ∑
L
j=1 w j, j+1 is the generator of the classical

flow, with matrix elements given by the corresponding projection of L .
Even if the model is diagonal preserving, for a generic configuration, the orthogonal com-
plement of the diagonal subspace is not always conserved, so we can still expect quantum
effects in the time evolution.
We now show that the model found in the example (3.33) is diagonal preserving.

Example: the integrable Lindbladiand (3.33)

By direct computation, we show that the model in the example is diagonal preserving. In fact,
by projecting the Lindblad superoperator corresponding to (3.33), we obtain the following
differential equations

∂t |↑↑⟩= 0, ∂t |↑↓⟩=−|↑↓⟩, ∂t |↓↑⟩= |↑↓⟩, ∂t |↓↓⟩= 0, (3.58)

and the generator of the classical flow is

wi,i+1 =


0 0 0 0
0 −1 0 0
0 1 0 0
0 0 0 0

= σ
−
i σ

+
i+1 −ni(1−ni+1), (3.59)

where n j =
I+Z j

2 . This is the generator of the Totally Asymmetric Simple Exclusion Process
(TASEP) [110]: a particle can only move to the right if the neighbour site is empty. To our
best knowledge this is the first realization of the TASEP using an integrable Lindbladian. In
this case, the orthogonal complement of the diagonal subspace is not conserved.
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Diagonal conservation for a non integrable Lindbladian

The connection between Lindbladians and integrable classical stochastic equations has a rich
history by itself and it was studied before the study of integrable Lindbladians (see [109] and
reference therein).
An example of a diagonal conserving model was discussed in [111] (see also [112, 16]). Here
h j, j+1 = 0 and the model has two families of jump operators (k = 1,2 in (3.18)) identified by
the letters R or L depending on the direction of motion of the particles15

ℓR
j, j+1 =

√
ϕRσ

−
j σ

+
j+1, ℓL

j, j+1 =
√

ϕLσ
+
j σ

−
j+1, (3.60)

with ϕL,R ≥ 0. The resulting classical flow was found to be the Asymmetric Simple Exclusion
Process (ASEP), with the generator being

w j, j+1 = ϕR[σ
−
j σ

+
j+1 −n j(1−n j+1)]+ϕL[σ

+
j σ

−
j+1 − (1−n j)n j+1]. (3.61)

In this model, particles can move to the left or to the right with different probabilities. The
integrability properties of the superoperator itself were not investigated in [111, 16]. We
checked integrability16 and we found that the Lindblad system given by (3.60) is not Yang-
Baxter integrable for arbitrary ϕR and ϕL. We also studied the two limits ϕR = 0,ϕL = 1 and
ϕR = 1,ϕL = 0, for which the generators are the TASEP model and we found that in the first
case L is not integrable while in the second case it is.

15We recall that in our convenction, the particles are spin up.
16More details on how to check if a model is integrable are given in section 5.4.3 and we refer to [113] for

further details. Here, we briefly say that we checked if it exists a range 3 operator that commutes with it. In the
positive case, we argue that the model is integrable.





Chapter 4

Classification of integrable open quantum
systems

In this chapter, we present a collection of new models discovered through the application
of the boost automorphism mechanism within the realm of open quantum systems. This
provides the first systematic approach to classify integrable open quantum systems. When a
quantum system interacts with a markovian environment, its dynamics can be described by a
Lindblad superoperator. We focus on cases where this superoperator is one of the conserved
charges of an integrable model. In most cases, the environmental contribution destroys the
integrability property of the system. However, there exist some cases where integrability is
preserved and we list some of them in this chapter, along with their properties. We divide the
models that we found into two classes:

• Fine tuned models. This class is physically not very interesting. It is expected that
by placing a system in contact with an environment and fine-tuning the latter, the
integrability property is preserved.

• Coupled models. This class is physically more interesting because one can tune the
coupling constant to control the impact of the environment according to the specific
situation being studied.

One of the coupled models1 (model B3) will be deeply analysed, we study the Non Equi-
librium Steady States (NESS) and the particle current flowing through them. We found
that this is an integrable example of the pumping effect: there is a finite current even when
the coupling constant is very small. This effect was already observed in other systems, for

1The notation is explained in the next section. We follow the same names of the letter [21], where A and B
correspond to two different ansatz that we used.
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example [30], however this is the first case where it is observed in an integrable model. At
the end, we prove that up to identifications, model B3 is equivalent to the generalized Toda
system related to the non-exceptional affine Lie algebra A(2)

3 . We provide an interpretation
for model B3 as two coupled spin-1/2 XXZ chains. We solve this model using the nested
Algebraic Bethe ansatz and we report here the expressions of the eigenvalues and the Bethe
equations. The details of the computation will be given in Appendix A. Lastly, we discuss
model B2 which is an integrable deformation of the Hubbard model. Among all the models
found, except from model B2, all of them are of difference form.

4.1 Initial ansatz

To apply our method, we start from an ansatz for both h (the Hamiltonian of the system) and
ℓ (the jump operator) acting on a spin 1/2 chain C2 ⊗C2. We allow h and ℓ depending on a
spectral parameter in order to search for non-difference form models. For completeness we
report the expression of the superoperator L , given in (3.17),

L j, j+1 = − ih(1)j, j+1 + ih(2)
T

j, j+1 +
(
ℓ
(1)
j, j+1ℓ

(2)∗
j, j+1 −

1
2
ℓ
(1)†
j, j+1ℓ

(1)
j, j+1 −

1
2
ℓ
(2)T
j, j+1ℓ

(2)∗
j, j+1

)
. (4.1)

We investigate two choices:

• lower triangular ℓ operators with at most two elements below the diagonal and general
h with all the 16 elements,

• h and ℓ operators that both conserve the total Sz quantum number.

As previously stated, the classification method is applicable to any generic form of the
operators h and ℓ. However, in order to maintain manageable computational complexity,
we had to restrict their expressions. The first ansatz was maily selected for its simplicity.
Furthermore, it also contains models with a clear physical significance. For example, if we
require that the environment removes particles from the system, the jump operator takes the
simple form ℓ j, j+1 = σ

−
j and falls in this category. The second ansatz, as per Chapter 5, was

chosen because the Hubbard model can be viewed as an open quantum system and it aligns
with this ansatz.
Following the notation of the letter [21], we refer to the model of the first class as "A" and
the second one as "B". We show that models A1, A2 and B1 are fine tuned and models B2
and B3 are not. Curiously both ansatz A and B only allow for diagonal Hamiltonian densities
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h or it is given by

h j, j+1 =
1
2

[
eiφ

σ
+
j σ

−
j+1 + e−iφ

σ
−
j σ

+
j+1

]
, φ ∈ R. (4.2)

This Hamiltonian density describes a free fermionic hopping model. The angle φ can be
understood as a homogeneous twist along the chain, and the φ = 0 point corresponds to
the XX spin chain. The model can also be interpreted as the XX chain perturbed by a
Dzyaloshinskii–Moriya interaction term, [114].
We omit some models with less interesting physical properties, such as those having diagonal
h and ℓ operators for which the superoperator is trivially integrable.

4.2 Partial classification: Fine tuned models

4.2.1 Model A1

This is the model discussed in the example of the previous chapter. It is characterized by h
and ℓ (3.33) and R-matrix given in (3.34)-(3.36). By using the identifications of section 3.3,
we did not manage to map this model to a known one, so we believe that this is a new model.

4.2.2 Model A2

The h and ℓ operators are

h =
s
2


0 0 0 0
0 0 i 0
0 −i 0 0
0 0 0 0

 , ℓ=


1 0 0 0
0 0 0 0
0 s 1 0
1 0 0 0

= n j+1 + sσ
−
j σ

+
j+1 +σ

−
j σ

−
j+1, (4.3)

with s =±1. h is (4.2) with φ = sπ/2. The jump operator describes particle propagation to
the right (the term σ

−
j σ

+
j+1) and two-body loss (σ−

j σ
−
j+1).
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The non-zero entries of the R-matrix are

R16
16 = R4

13 = 1,

sR8
3 = sR12

2 =−sR7
4 =−sR10

4 = R6
1 = R11

1 = 2e−u sinh
(u

2

)
,

− sR12
12 =−sR8

8 = R4
4 = R8

9 = R12
5 = R16

1 = 1− e−u,

R2
5 = R3

9 = R8
14 = R14

8 = R12
15 = R15

12 = e−
u
2 ,

R9
3 = R5

2 = e−
3u
2 ,

R1
1 = R6

6 = R11
11 = R7

10 = R10
7 = R13

4 = e−u, (4.4)

and to the best of our knowledge it corresponds to a new integrable model.
The model is diagonal preserving with the generator being

w j, j+1 =−n j +σ
−
j σ

+
j+1 +σ

−
j σ

−
j+1. (4.5)

This corresponds to the totally asymmetric limit of the diffusion-annihilation model treated
in [115–117]. To our best knowledge, this is the first time that this generator is embedded
into an integrable Lindbladian.

4.2.3 Model B1

In this case h = 0 and the jump operator is

ℓ=


s1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 s2

 , (4.6)

where s1 = ±1, s2 = ±1. In the case of s1 = s2 = 1 the superoperator is equivalent to the
Hamiltonian of the SU(4)-invariant chain; this case was listed in [18].
The non-zero entries of the R-matrix are

R1
1 = R16

16 = e−u(u+1),

R6
6 = R11

11 = e−u(s2s1u+1),

R2
5 = R5

2 = R3
9 = R9

3 = R4
13 = R13

4 = R7
10 = R10

7 = R8
14 = R14

8 = R12
15 = R15

12 = e−u,

s1R2
2 = s1R3

3 = s1R5
5 = s1R9

9 = s2R8
8 = s2R12

12 = s2R14
14 = s2R15

15 = R4
4 = R7

7 = R10
10 = R13

13 = e−uu.
(4.7)
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As mentioned earlier, for s1 = s2 = 1

R(u) =
u
eu

(
1+

1
u

P
)
, (4.8)

which is the R-matrix of the SU(4) invariant chain.
The R-matrix has difference form for all four choices, and for s1s2 ̸= 1 it seems to be new.
The model is diagonal preserving in all four cases and the generator is

w j, j+1 = σ
+
j σ

−
j+1 +σ

−
j σ

+
j+1 −n j −n j+1 +2n jn j+1. (4.9)

This is the generator of the Symmetric Simple Exclusion Process, (SSEP) [109]. To the best of
our knowledge it is the first time that the SSEP is realized by an integrable Lindbladian. Even
though this model is very simple and its dynamics is generated just by the jump operator, the
parameters s1 and s2 have an effect on the off-diagonal sectors of the superoperator, which
in turn influences the spectrum. We verified this through direct computation for L = 3,4,5
since a Bethe ansatz solution is not yet available.

4.3 Partial classification: Coupled models

4.3.1 Model B3

Since in this model there is a coupling constant, we can tune the strength of the environment.
We analyse this model in more details due to the interesting physical properties.
Here, we use the notation of our work [31]. This notation allows for simpler expressions
compared to the notation we used in the earlier work [21]. The two notations are connected
through the parametrization γ = tanhψ . The coupling constant of the model is proportional to
γ , so this reparametrization maps strong coupling to strong coupling. Hence strong coupling
is ψ → ∞ and weak coupling corresponds to ψ → 0.
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h and ℓ

Model B3 is again characterized by the Hamiltonian h given by (4.2). For simplicity in the
notation, we renormalize it

h j, j+1

α
=


0 0 0 0
0 0 eiφ 0
0 e−iφ 0 0
0 0 0 0

= eiφ
σ
+
j σ

−
j+1 + e−iφ

σ
−
j σ

+
j+1, (4.10)

and the jump operator ℓ is

ℓ j, j+1

β
=


isinhψ 0 0 0

0 icoshψ e−ψ+iφ 0
0 eψ−iφ −icoshψ 0
0 0 0 isinhψ


= isinhψ (1+2n jn j+1)+ i(e−ψn j − eψn j+1)+ e−ψ+iφ

σ
+
j σ

−
j+1 + eψ−iφ

σ
−
j σ

+
j+1,

(4.11)

where α = cosh2
ψ sech2ψ , β =−i

√
tanhψ sech2ψ and n j =

1
2(I+Z j).

Here β (ψ) is the coupling constant.
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R-matrix

The R-matrix is of difference form, with entries

R1
1 = R6

6 = R11
11 = R16

16 = 1,

R2
2

eiφ =−eiφ R3
3 =−eiφ R8

8 =
R12

12
eiφ =

i(tanhψ +1)
coth(u−ψ)+ tanhψ

,

− eiφ R5
5 =

R9
9

eiφ =
R14

14
eiφ =−eiφ R15

15 =
i(tanhψ −1)

coth(u−ψ)+ tanhψ
,

R2
5 = R5

2 = R15
12 = R12

15 = R8
14 = R14

8 = R9
3 = R3

9 = sechucoshψ,

eiφ R4
7 =−

R4
10

eiφ =
R13

10
eiφ =−eiφ R13

7 =−isech ucoshψ sinh(u−ψ)sech(u+ψ),

− eiφ R7
4 =

R10
4

eiφ = ie2ψsech ucoshψ sinh(u−ψ)sech(u+ψ),

eiφ R7
13 =−

R10
13

eiφ = ie−2ψsech ucosh ψ sinh(u−ψ)sech(u+ψ),

R10
7 = R7

10 =
1
2

sech u(cosh ψ + cosh(3ψ))sech(u+ψ),

e2iφ R7
7 =

R10
10

e2iφ =
R4

4
e2iφ =

R13
13

e−2iφ = tanh usinh(u−ψ)sech(u+ψ),

R4
13 =−eu−ψsech ucoshψ(sinh(u−ψ)sech(u+ψ)−1),

R13
4 = eψ−usech ucoshψ(sinh(u−ψ)sech(u+ψ)+1). (4.12)

For simplicity, we omitted the dependence on the shifted spectral parameter. Explicitly

R j
i = R j

i (u−ψ). (4.13)

Diagonal preserving point

In the limit ψ → ∞, the model is diagonal preserving and it describes the TASEP model. For
generic values of ψ , the model describes a mixture of quantum and classical transport.

Particle current

The particle current Jk can be found from the continuity equation

dnk

dt
= Jk−1 − Jk (4.14)

and the Lindblad equation, [111]. It is given by
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Jk = sech2
ψ J0

k + tanhψ(tanh(2ψ)+1)nk (I−nk+1)+ tanhψ(tanh(2ψ)−1)(I−nk)nk+1,

(4.15)
with J0

k given by

J0
k =

i
1+ tanhψ2 (e

iφ
σ
+
k σ

−
k+1 − e−iφ

σ
−
k σ

+
k+1). (4.16)

J0
k is the current of the coherent time evolution dictated by (4.2), and the remaining terms

describe stochastic transport. The stochastic terms explicitly break the spatial reflection
symmetry, representing the current in the ASEP. From here, we observe that sending ψ → ∞,
the only remaining term in Jk is nk (I−nk+1), current of the TASEP.

Non Equilibrium Steady States and Pumping Effect

An object of particular relevance in the theory of open quantum systems are the Non Equilib-
rium Steady States (NESS). They correspond to fixed points in the dynamics,

ρ̇NESS = 0, L ρNESS = 0. (4.17)

From (3.11) it is easy to see that the identity density matrix is always a NESS, however,
searching for other NESS is an interesting and ongoing field of research since their stucture
may reveal information about the symmetries of the Lindblad superoperator. We motivate
this statement in chapter 6.
In the case of model B3, we have observed that for arbitrary values of φ and ψ , the NESS
is a mixed state, meaning it cannot be described by a single pure state2. However, when a
compatibility condition holds, it degenerates into a pure state. This condition is given by
ei(φ±π/2)L = 1. Specifically, the pure state takes the form of a spin-helix state

ρh = |Ψ⟩⟨Ψ|, |Ψ⟩=⊗L
j=1

1√
2

(
1

ei j(φ±π/2)

)
, (4.18)

and h|Ψ⟩= 0, for any value of ψ .
The superoperator conserves the particle number, thus the NESS’ in the sectors with fixed
spin are given by the appropriate projections of ρh. Numerical studies on small systems show
that in each spin sectors the NESS is unique. For this model, we discovered the existence of
multiple NESS and the multiplicity is attributed to the conservation of particle number. In

2The purity allows to determine if a state is pure or mixed. It is defined (for density matrix normalized such
that Tr(ρ) = 1) as Tr(ρ2) and it is equal to 1 for pure states and < 1 for mixed states.
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chapter 6, we analyse a deformation of the Hubbard model and we motivate the multiplicity
of the NESS with a hidden symmetry.
The particle current (4.15) in the projected states can be computed easily, and in the thermo-
dynamic limit we find

lim
L→∞

⟨Jk⟩= (1+ tanhψ
2)⟨n⟩

(
1−⟨n⟩

)
. (4.19)

We conjecture that this formula holds generally, even if the compatibility condition is not
met. The coupling constant β is zero in the limit ψ → 0. In this case, there is still a finite
particle current. This phenomenon is understood as a pumping effect. The jump operators
are coupled to the coherent current, thus they build up its mean value over time. The current
itself is conserved, thus it cannot decay. Eventually a current carrying state is produced no
matter how small the coupling is. This phenomenon was discussed in [30, 118], and our
model is an integrable example of it.

Is this model new?

In this section, we show3 that model B3 is not new since it is related to the Generalized Toda
System connected to the non-exceptional affine Lie algebras A(2)

3 discussed by Jimbo in [56].
More details can be found in [119]. The R-matrix of A(2)

3 is

RA(2)
3 (u,v) = I+P(u,v)+Q(u,v), (4.20)

with

P(u,v) = ∑
1≤i, j≤N

pi j(u,v)ei j ⊗ e ji , Q(u,v) = ∑
1≤i, j≤N

qi′ j′(u,v)ei′ j′ ⊗ e ji , (4.21)

pi j(u,v) =


f (u,v)−1, i = j
g̃(u,v), i < j
g(u,v), i > j

, qi j(u,v) = qī− j̄


f (vξ ,u)−1, i = j
g(vξ ,u), i < j
g̃(vξ ,u), i > j

. (4.22)

In this case N = 4, ξ = q−4, i′ = N +1− i, 1 ≤ i ≤ N and ī = 3− i for i ≥ 3 and ī = 2 for
i < 3 and similar expressions for j′ and j̄ with i ↔ j,

f (u,v) =
qu− vq−1

u− v
, g(u,v) =

qu−uq−1

u− v
, g̃(u,v) =

qv− vq−1

u− v
. (4.23)

3We thank A. Hutsalyuk and A. Liashyk for pointing out this connection.
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To show that this R-matrix is equivalent to the R-matrix of model B3, we perform in series
some of the transformations given in section 2.6.1

1. normalization RA(2)
3 → q(u−v)

q2u−v RA(2)
3 = R̃A(2)

3

2. twist (F ⊗F−1)R̃A(2)
3 (u2,v2)(F ⊗F−1) = ˜̃RA(2)

3 (u,v) , with F a diagonal matrix with
entries

{
eψ/2, ie

iφ
2 ,e

−iφ
2 , ie−

ψ

2

}
3. LBT (K(u)⊗K(v)) ˜̃RA(2)

3 (u,v)(K(u)⊗K(v))−1, with
K(u) = 1

4

(
1
u2 +1

)
(Z1 +Z2)+

1
4

(
1− 1

u2

)
(I+Z1 Z2) .

It follows that the R-matrix of model B3 is equivalent to the Generalized Toda System A(2)
3 if

q = ie−ψ .
We conclude that this model is not new, however the interpretation in term of open quantum
system is new. This opens an interesting question whether all the R-matrices of the non-
exceptional quantum affine Lie algebras can be mapped (after some identifications) to an
open quantum system.
The difficulty in the discovery of this equivalence is the following: when we begin with the
R-matrix (4.20) and derive the associated density charge Q2 = P∂uRA(2)

3 (u,v)v→u, we attempt
to determine the values of h and ℓ that would yield the superoperator L . However, we
discover that this correspondence does not occur. The twist F is the key object that allowed
this identification.

4−D interpretation of the model

In light of (3.21) and of the discussion in the related section, we can also interpret model B3
as acting on a Hilbert space of local dimension 4. We rewrite the superoperator (3.17) by
separating the part containing only σ ((1)) or τ ((2)) operators

L j, j+1 =
(
− ih(1)j, j+1 −

1
2
ℓ
(1)†
j, j+1ℓ

(1)
j, j+1

)
+
(

ih(2)
T

j, j+1 −
1
2
ℓ
(2)T
j, j+1ℓ

(2)∗
j, j+1

)
+ ℓ

(1)
j, j+1ℓ

(2)∗
j, j+1, (4.24)

we obtain

Hi, j = Ji, j
(1)+ J̃(2)i, j + ℓi, j

(1)ℓ̃
(2)
i, j , (4.25)

where

Ji, j =−ihi, j −
1
2
ℓ†

i, jℓi, j, (4.26)
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and J̃i j is related to Ji j by taking the complex conjugate elementwise.
The decomposition of the superoperator in term of h and ℓ is not unique, as discussed in
section 3.3. By using the transformation (3.40) with α =−sinh2

ψ
√

csch(4ψ), one gets

J(1)i, j = ieiφ (tanhψ −1)σ+
i σ

−
j − ie−iφ (tanhψ +1)σ−

i σ
+
j − tanhψ (ni −n j)

2, (4.27)

J̃(2)i, j =−ie−iφ (tanhψ −1)τ+i τ
−
j + ieiφ (tanhψ +1)τ−i τ

+
j − tanhψ(ñi − ñ j)

2, (4.28)

where we refer to ni =
I+σ

z
i

2 and ñi =
I+τ

z
i

2 . The term ℓ
(1)
i j ℓ̃

(2)
i j in (4.25) is

ℓ
(1)
i j ℓ̃

(2)
i j =

tanhψ

cosh2ψ
(2sinhψ nin j + e−ψni − ie−ψ+iφ

σ
+
i σ

−
j − ieψ−iφ

σ
−
i σ

+
j − eψ n j)(c.c)

(4.29)

where (c.c) has the τ operators and the coefficients are complex conjugate.
Interestingly, the expression (4.27) of Ji, j corresponds, up to a twist4 and a normalization
defined in 2.6.1, to the Hamiltonian of the XXZ chain

UiJi, jU−1
i = (hXXZ)i, j ∼ σ

x
i σ

x
j +σ

y
i σ

y
j +∆σ

z
i σ

z
j , (4.30)

where ∆ = ±isinhψ . When we send ψ → 0, the Hamiltonian H simply decomposes into
two independent XX spin chains.
To summarize, we see that the model B3 corresponds to two coupled XXZ chains with
interaction terms given by the ℓs (4.11). Applying the same twist U on ℓ we get

Uiℓi, jU−1
i =


0 0 0 0
0 1− tanhψ ∓isechψ 0
0 ∓isechψ − tanhψ −1 0
0 0 0 0

 . (4.31)

In chapter 5, we give 4-D interpretation for the Hubbard model, as two XX spin chains
coupled. Here, in contrast to the Hubbard model, the coupling constant between the two
independent chains is related to the inhomogeneity ∆ in the individual XXZ-spin chains.

What are the eigenvalues of this model?

In light of this interpretation, we can consider the Lindblad superoperator as an operator in
a four dimensional Hilbert space. To solve this model, we employed the nested algebraic

4The twist is Ui =

(
1 0
0 ±e−ψ+iφ

)
.
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Bethe ansatz technique, which is a more advanced version of the Algebraic Bethe ansatz
discussed in chapter 1, see [26, 120] for recent reviews. After discovering that this model
can be mapped to the Lie algebra A(2)

3 , one could consider to adapt the solution obtained for
that particular model (for example in [121] for periodic boundary condition and [122] for
open) for the model B3. However, implementing the twist at the level of the Bethe equations
proves to be a highly challenging task. Therefore, we present an independent solution [31]
that we have derived specifically for this model (4.12). Taking into account the considerable
length of the calculation, we have chosen to include it in Appendix A, while presenting the
main results here. In the appendix, we revisit the definitions provided in section 1.1.1, but
this time in a higher-dimensional Hilbert space. We define the monodromy, transfer matrix,
and reference state, and we establish the commutation relations between the entries of the
monodromy matrix based on the RTT relation. We explain how for model B3 this method
closely mirrors the ones for the Hubbard model, [123, 124] and the AdS5 ×S5 for bound
states, [125]. However, we observe a distinct feature in our case, as we obtain a twisted
transfer matrix for the nested spin chain. Finally, we give the expression of the eigenvalues
of the transfer matrix and the Bethe equations.
Similar to [123, 124], we identify three types of creation operators B1, B2 and B3. The first
two operators create electrons with spin up and down respectively, while the third operator
creates an electron pair. The concept of nesting arises from our two-step procedure: initially
considering the entire Hilbert space and subsequently focusing on the smaller Hilbert space
C2.
Unlike in section 1.3, where we only needed to know the length of the spin chain L and the
number of particles M to identify a state, here we also need to specify the types of particles
involved. A state is characterized by the length L of the spin chain as well as

M = #electrons

N = #number of electrons with spin up

To simplify the expressions, we consider a shift in ui, vi and ψ , in particular

ψ → Ψ+
iπ
2
, ui → ui +

iπ
2
, vi → vi −

ψ

2
, (4.32)

and we find the eigenvalue of the transfer matrix,
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ΛM(u)
N

=
M

∏
i=1

sinh
(
u−vi +

3Ψ

2

)
sinh

(
u−vi +

Ψ

2

) +
λ6V (u)

(−e2iφ )
L−M−N

M

∏
i=1

sinh
(
u−vi − Ψ

2

)
sinh

(
u−vi +

Ψ

2

) L

∏
j=1

sinh
(
u−u j +ψ

)
i eΨ+iφ sinh

(
u−u j

)+
M

∏
i=1

cosh
(
u−vi − 3Ψ

2

)
cosh

(
u−vi − Ψ

2

) L

∏
i=1

coth(u−ui)sinh(u−ui +Ψ)

e2Ψ cosh(u−ui −Ψ)
, (4.33)

N =
(
−e2iφ)M−N (−eΨ−iφ)M and

λ6V (u)

(−e2iφ )
L−M =

M

∏
i=1

−sinh(2(u−wi +Ψ))

e2iφ sinh(2(u−wi))
+ (4.34)

(
−e2iφ

)L−M N

∏
i=1

−sinh(2(u−wi −Ψ))

e2iφ sinh(2(u−wi))

M

∏
i=1

−e2iφ sinh(2u−2vi +Ψ)

sinh(2u−2vi −Ψ)
.

The "nested" structure is manifest, ΛM (the eigenvalue of the main spin chain) depends
on λ6V (the eigenvalue of the nested chain). The rapidities {v} and {w} of the particles in
the model obey the sets of Bethe equations, for j = 1, . . . ,M

M

∏
i=1,i̸= j

sinh
(
vi −v j −Ψ

)
sinh

(
vi −v j +Ψ

) = L

∏
i=1

1
i eΨ+iφ

sinh
(
ui −v j − Ψ

2

)
sinh

(
ui −v j +

Ψ

2

) N

∏
i=1

sinh
(
2v j −2wi +Ψ

)
sinh

(
2v j −2wi −Ψ

) (4.35)

and the auxiliary Bethe equations, for j = 1, . . . ,N

N

∏
i=1,i̸= j

sinh
(
2
(
wi −w j −Ψ

))
sinh

(
2
(
wi −w j +Ψ

)) = (−e2iφ
)L M

∏
i=1

sinh
(
2vi −2w j −Ψ

)
sinh

(
2vi −2w j +Ψ

) . (4.36)

We checked explicitly5 that by numerically solving the Bethe Equations for the rapidities,
and substituting to the eigenvalues ΛM(u), we find the same eigenvalues as by directly
diagonalizing the transfer matrix. We checked for spin chains of small length and up to three
particles state. Such validations are typically sufficient to ensure the accuracy and correctness
of the results obtained using the nested Bethe ansatz method.

5We thank Rafael Nepomechie for providing the code for the numerical computation of the Bethe equations.
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We present the result by using the standard Baxter Q-functions

Q[a]
u (x) =

L

∏
i=1

sinh[x−ui −aΨ], Q̃[a]
u (x) =

L

∏
i=1

cosh[x−ui −aΨ], (4.37)

Q[a]
v (x) =

M

∏
i=1

sinh[x−vi −aΨ], Q̃[a]
v (x) =

M

∏
i=1

cosh[x−vi −aΨ], (4.38)

Q[a]
w (x) =

N

∏
i=1

sinh[x−wi −aΨ], Q̃[a]
w (x) =

N

∏
i=1

cosh[x−wi −aΨ]. (4.39)

The eigenvalue is

ΛM(u)
N

=
Qv

[−3/2]

Qv
[−1/2]

+ e−2ΨL Q̃[3/2]
v

Q̃[1/2]
v

Q̃[0]
u

Qu
[0]

Qu
[−1]

Q̃[1]
u

+

(
−ie−Ψ−iφ)L

(−e2iφ )
L−M−N

Qv
[1/2]

Qv
[−1/2]

Qu
[−1]

Qu
[0]

λ6V (u),

(4.40)

λ6V (u)
e2iφN

(−e2iφ )
L−M =

Q[−1]
w Q̃[−1]

w

Q[0]
w Q̃[0]

w

+
(
−e2iφ

)L Q[1]
w Q̃[1]

w

Q[0]
w Q̃[0]

w

Q[−1/2]
v Q̃[−1/2]

v

Q[1/2]
v Q̃[1/2]

v

(4.41)

where for simplicity we used Q[a]
t (u) = Q[a]

t .
The Bethe equations for the main chain take the simple form

Qv
[−1]

Qv
[1]

=−
(

−i
eΨ+iφ

)L Qu
[−1/2]

Qu
[1/2]

Qw
[−1/2]

Qw
[1/2]

Q̃[−1/2]
w

Q̃[1/2]
w

, (4.42)

j = 1, . . . ,M and for the nested chain

Qw
[−1]Q̃[−1]

w

Qw
[1]Q̃[1]

w

=−
(
−e2iφ

)L Qv
[−1/2]Q̃[−1/2]

v

Qv
[1/2]Q̃[1/2]

v

. (4.43)

where Q[a]
t (w j) = Q[a]

t and j = 1, . . . ,N.

The obtained expression for the eigenvalues opens up opportunities to investigate various
properties of this model. One interesting avenue is to apply the thermodynamic Bethe ansatz
and examine the behaviour of the eigenvalues on an infinite spin chain. Of particular interest
is also the study of the scaling of the eigenvalue with the second largest real part (with the
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smallest being 0) with the dimension L, which corresponds to the Liouville gap. In a finite
system, this quantity is equivalent to the inverse of the relaxation time, as discussed in [126].

4.3.2 Model B2

Similar to the previous model, Model B2 possesses a coupling constant and exhibits intriguing
physical properties. We first provide the expressions of h and ℓ. Next, we analyse the NESS
and we give the expression of the particle current. This model serves as a bridge to the next
chapter, as it corresponds to an integrable deformation of the Hubbard model (correspondence
that will be clarified in the next chapter). Additionally, this is the only model among the ones
in the ansatz presented in section 4.1 that does not possess the non-difference form property.

h and ℓ

The Hamiltonian is given by (4.2) and the jump operator is

ℓ(u)
β (u)

=


ch(u) 0 0 0

0 1 ish(u)eiφ 0
0 −ish(u)e−iφ −1 0
0 0 0 −ch(u)

 , (4.44)

with β (u) = (γ/(2γ ch(2u)+2))1/4 and γ ≥ 0 being a fixed coupling constant.

R-matrix

When u = φ = 0, this system is equivalent to the XX model with dephasing noise6, as
discussed in [17], which, in turn, corresponds to the Hubbard model with an imaginary
coupling [97]. We provide further clarification on this point in chapter 5 section 5.3.1. When
u ̸= 0, the model can be understood as a twisted version of the inhomogeneous Hubbard
model [18, 127]. The corresponding R-matrix can be found in [127], for this reason we do
not provide it here.

Diagonal preserving model

For generic values of u, φ , and β (u), the model is not diagonal preserving. However,
when β (u) is set to 2sinh(u), the model becomes diagonal preserving, and its generator

6Explicitly, the jump operator takes the form ℓ j = Z j. This is called a dephasing noise because the dissipation
destroys the quantum coherence of the states, i.e. off-diagonal density matrix elements in the diagonal basis of
Z j in the super operator space decay exponentially.
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corresponds to the SSEP model. It is worth noting that model B1, described in section 4.2.3,
is also diagonal preserving with the SSEP as its generator. This is because model B2 includes
model B1 as a special case. Further discussion on this topic can be found in section 5.7.2.

Particle current and NESS

The particle current Jk can be determined using the continuity relation (4.14), and its expres-
sion is given by

Jk = (1−2β
2(u)sh(u))J0

k +β
2(u)sh2(u)(nk −nk+1). (4.45)

Here
J0

k =
i
2
(eiφ

σ
+
k σ

−
k+1 − e−iφ

σ
−
k σ

+
k+1), (4.46)

is the current of the coherent time evolution dictated by (4.2), and the remaining terms
describe stochastic transport.
By analyzing the spectrum of the superoperator L and in particular the zero eigenvalues, we
found that for a given length L, there are L+1 NESS in the system. One of these NESS is
the identity operator, and due to the conservation of particle number in this model, we can
obtain the remaining one by projecting into each subsector with a specific particle number.
Each subsector possesses a unique NESS.



Chapter 5

The Hubbard model and its deformation

In this chapter, we introduce the Hubbard model, a toy model used to describe the motion
of electrons in the conduction band of a solid. We begin by presenting its definitions in
both fermionic and bosonic formulations. Additionally, we explore the existing connection
between the Hamiltonian of the Hubbard model and the Lindblad superoperator, which
describes the evolution of open quantum systems. Building upon this connection, we present
all the cases in which this mapping is possible. Furthermore, we introduce a new nearest-
neighbour integrable model characterized by an R-matrix that contains an unusual functional
dependence on the Jacobi functions (we refer to it as not quite elliptic) and we show how
to use the bond-site transformation to relate it to a range 3 integrable deformation of the
Hubbard model. We believe that this is the first range 3 integrable deformation of the Hubbard
model. This deformation manifestly breaks the u(1) symmetry of the Hubbard model. To
validate the significance of our findings, we prove the integrability of the 3 site model and
highlight the unusual functional dependence of the R-matrix.

5.1 Introduction

The Hubbard model [97] describes the physics of interacting electrons in the lattice. It
was introduced by John Hubbard in the sixties in a series of papers "Electron correlations
in narrow energy bands", [128–133] and has since become an important model in physics
because it can be solved exactly. In 1968, Lieb and Wu solved it by using the coordinate
Bethe ansatz [134]. In one dimension, the Hubbard model is Yang-Baxter integrable, but
finding the associated R-matrix was challenging. It was realized by Kulish and Reshetikhin
[135] that the R-matrix could not be constructed as a fundamental model of difference form
type. In 1986, B. S. Shastry [100] found the non difference form R-matrix associated to the



100 The Hubbard model and its deformation

spin-model correspondent to the Hubbard model1. The proof that this R-matrix actually
solves the Yang-Baxter equation was later established by Shiroishi and Wadati [136] and it
is based on the work of Korepanov [137]. The R-matrix was subsequently used to built the
algebraic Bethe ansatz [124, 123].
The integrability property makes the Hubbard model a playground for different field of
research.
In condensed matter, for instance, solving the Hubbard model has provided a theoreti-
cal laboratory for studying non-perturbative effects in strongly correlated electron systems.
This is important because describing the microscopic behaviour of solids is extremely chal-
lenging. The Hubbard model has been instrumental in investigating phenomena such as
ferromagnetism, different forms of antiferromagnetism, unconventional superconductivity,
charge-density waves, electronic liquid crystalline phases, and topologically ordered phases
(such as "spin liquids") [138]. By studying the Hubbard model in specific instances, re-
searchers have been able to explore properties that were previously not accessible. Transport
properties of the model have been a subject of interest for many decades (see for example
[139]). Recently, the so-called integrable quantum quenches have also been considered in
the 1D Hubbard model [140], using information about exact overlaps [141, 142].
The Hubbard model finds also application in the context of AdS/CFT [143]. In fact, the
S-matrix relevant for the AdS/CFT correspondence [144, 145] is related to the Shastry’s
R-matrix. This remarkable relation sheds some new light on the symmetry algebra of the
Hubbard model. It was known for a long time that the Hubbard model exhibits su(2)⊕su(2)
symmetry [146, 147]. By using the map to string theory these could be seen as coming from
a centrally extended superalgebra from which the Hubbard model can be obtained in a certain
limit [148]. Moreover, this observation recently leads to the formulation of the quantum
spectral curve for the Hubbard model [149].
Over the years, many integrable generalizations of the Hubbard model have appeared, the
models of Bariev and Alcaraz [150, 151], the Essler-Korepin-Schoutens model [152], and
multi-component generalizations [153–155].
In recent times, the Hubbard model has found applications in the field of open quantum
systems. This model can be formulated as two interacting XX spin chains connected by a de-
phasing term. In 2016, taking this into account, Medvedyeva, Essler and Prosen [17] mapped
the Hubbard model with complex interaction strength to a Lindbladian: a superoperator
generating the dynamics of an open quantum system.

1The Hubbard model was discovered as a fermionic model; however, it can be mapped to a spin model via a
Jordan-Wigner transformation.
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5.2 Generalities

5.2.1 Fermionic and bosonic formulations

The Hamiltonian of the Hubbard model [97] in the fermionic formulation is

H= ∑
j

[
(c↑j)

†c↑j+1 +(c↑j+1)
†c↑j +(c↓j)

†c↓j+1 +(c↓j+1)
†c↓j +Un↑jn

↓
j

]
, (5.1)

where U ∈R is the coupling constant of the model. (c↑,↓j )†, c↑,↓j are the standard creation and
annihilation operators which satisfy the canonical anti-commutation relations

{cα
j ,c

β

k }= {(cα
j )

†,(cβ

k )
†}= 0, (5.2)

{cα
j ,(c

β

k )
†}= δ

α,β
δ j,k, (5.3)

where j,k refer to the local Hilbert spaces , α,β =↑,↓ and n is the local particle number
operator nα

j = cα†
j cα

j .
The local Hilbert space is spanned by the four vectors

| /0⟩= e1, |↑⟩= (c↑)†| /0⟩= e2, |↓⟩= (c↓)†| /0⟩= e3, |↕⟩= (c↓)†(c↑)†| /0⟩= e4, (5.4)

with ei the standard basis.
The Hamiltonian H commutes with

N = ∑
j
(n↑j +n↓j), Sz = ∑

j
(n↑j −n↓j), (5.5)

where N is the total particle number and Sz the magnetization. We can add two magnetic
fields so that the interaction term becomes particle/hole symmetric. This choice preserves
the integrability of the model and its explicit form is

H′ = ∑
j

[
(c↑j)

†c↑j+1 +(c↑j+1)
†c↑j +(c↓j)

†c↓j+1 +(c↓j+1)
†c↓j +

U
4
(1−2n↑j)(1−2n↓j)

]
. (5.6)

This Hamiltonian enjoys su(2)⊕ su(2) symmetry.
Since the main result in this chapter is a new integrable deformation of the Hubbard model,
it is convenient to give the definition in the spin chain context, working with the “bosonic”
version of the model.
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The local Hilbert space is the tensor product

Vj = C2 ⊗C2 (5.7)

with the full Hilbert space being the tensor product

V =⊗L
j=1Vj, (5.8)

with L the length of the spin chain. With the same notation of (3.21), the (inverse)-Jordan
Wigner transformation is

σ
−
j =

[
j−1

∏
k=1

(−1)n↑k

]
c↑j , τ

−
j =

[
j−1

∏
k=1

(−1)n↓k

]
c↓j , (5.9)

σ
+
j = (c↑j)

†

[
j−1

∏
k=1

(−1)n↑k

]
, τ

+
j = (c↓j)

†

[
j−1

∏
k=1

(−1)n↓k

]
, (5.10)

σ
z
j = 1−2n↑j , τ

z
j = 1−2n↓j . (5.11)

In this way, the Hubbard model Hamiltonian (5.6) takes the expression2

H′′ = ∑
j

[
σ
+
j σ

−
j+1 +σ

−
j σ

+
j+1 + τ

+
j τ

−
j+1 + τ

−
j τ

+
j+1 +

U
4

σ
z
j τ

z
j

]
, (5.12)

where U is still the coupling constant of the model. At U = 0, the model describes two XX
spin chains which do not interact with each other. For U ̸= 0, the two chains are coupled by
a dephasing term3.
If we perform a twist transformation4, the Hamiltonian is transformed into

H1 = ∑
j

[
h(1)j, j+1 +h(2)j, j+1 +

U
4

σ
z
j τ

z
j

]
, (5.14)

2We remark that we consider the (inverse)-Jordan Wigner transformation for the terms acting on the
bulk ( j, j+ 1). Only afterward, we consider periodic boundary conditions on the spin chain. Applying the
(inverse)-Jordan Wigner transformation to the boundary term will make unwanted string appear.

3The interaction is given by the diagonal matrix Zi. "dephasing" is related to the fact that this term changes
the relative phase between different spin states.

4We use H1 = B1H′′B−1
1 with the diagonal twist B given by

B =


−1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

 . (5.13)

This is allowed since the condition (2.55), [B1B2,H ′′] = 0 is satisfied.
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where

h(1)j, j+1 ≡ i
(
σ
+
j σ

−
j+1 −σ

−
j σ

+
j+1
)
, h(2)j, j+1 ≡ i

(
τ
+
j τ

−
j+1 − τ

−
j τ

+
j+1
)
. (5.15)

We use the notation (1) and (2) to identify operators only containing σ or only τ , respectively,
as given by (3.21). The reason of doing the twist will be explained in section 5.3. In fact,
without the twist, the condition (5.29) is not met and we cannot interpret the Hubbard model
as an open quantum system.
Here and in the following, we use the notation Hk with k = 1,2,3 to identify the number k of
sites of the spin chain spanned by the interaction term. The kinetic term above is the same
as (4.2) and it corresponds to a XX chain perturbed by a Dzyaloshinskii-Moriya interaction
term [114],

h j, j+1 =
1
2

[
σ

x
j σ

y
j+1 −σ

y
j σ

x
j+1

]
. (5.16)

5.2.2 Symmetries

Now we discuss the symmetries of the Hubbard model in more detail, focusing on the
Hamiltonian (5.14). The Hubbard model has both discrete and continuous symmetries.

Discrete A Shiba transformation is defined on a chain of even length L by

S (1) = σ
y
Lσ

x
L−1 . . .σ

y
2σ

x
1 ,

S (2) = τ
y
Lτ

x
L−1 . . .τ

y
2τ

x
1 .

(5.17)

This transformation acts on the total number of particles operator N and on the total magneti-
zation Sz as

S (2)S (1)NS (1)S (2) = 2L−N, S (2)S (1)SzS
(1)S (2) = Sz. (5.18)

The combination of two Shiba transformations (see [97]) is a discrete symmetry. A
similarity transformation with either S (1) or S (2) preserves the kinetic term of H1, while
changing the sign of the interaction term. Explicitly,

S(1)H1S(1) = S(2)H1S(2) = ∑
j

[
h(1)j, j+1 +h(2)j, j+1 −

U
4

σ
z
j τ

z
j

]
, (5.19)

and
S (2)S (1)H1S

(1)S (2) =H1. (5.20)
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Continuous The Hubbard model Hamiltonian enjoys invariance under the continuous
group su(2)⊕ su(2), [146, 147]. The first su(2) corresponds to rotations in spin space,
which can be interpreted also as a mixing of the σ and τ operators. The generators are local
in space if we express them using the original fermionic variables. However, when we work
with the spin variables, the Jordan-Wigner strings appear. Formally we have

Az = ∑
j

σ
z
j − τ

z
j

2
(5.21)

and

A+ = ∑
j

[(
∏
k< j

σ
z
kτ

z
k

)
σ
+
j τ

−
j

]
, A− = ∑

j

[(
∏
k< j

σ
z
kτ

z
k

)
σ
−
j τ

+
j

]
, (5.22)

that satisfy the standard su(2) algebra

[A+,A−] = Az, [Az,A±] =±2A±. (5.23)

For both periodic and open boundary conditions, the following condition holds

[Az,H1] = 0, (5.24)

while for the off-diagonal generators the symmetry relations

[A±,H1] = 0 (5.25)

hold only in the case of open boundary conditions, or formally in the infinite chain limit.
The second su(2) follows from the Shiba transformation. The idea is to perform a similarity
transformation with either S (1) or S (2), construct the su(2) generators of the modified
Hamiltonian, and then transform them back to the original H1. In this way, we obtain the
su(2) generators (also called η-pairing generators)

Bz = ∑
j

σ
z
j + τ

z
j

2
, (5.26)

and

B+ = ∑
j

[(
∏
k< j

σ
z
kτ

z
k

)
σ
+
j τ

+
j

]
, B− = ∑

j

[(
∏
k< j

σ
z
kτ

z
k

)
σ
−
j τ

−
j

]
. (5.27)
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Similarly to the As, the Bz operator commutes with H1 (5.14) for both periodic and open
boundary conditions and B± only in the open boundary case. All A operators commute with
all B operators, therefore the symmetry algebra is indeed su(2)⊕ su(2). In chapter 7, we
explicitly show how to construct the most general Hamiltonian that exhibits this symmetry.
We would like to mention that the fact that A± and B± only commute with H1 in the open
boundary case comes from the non-periodicity of the A± and B± operators defined in (5.22)
and (5.27).

5.3 Relation between Lindblad superoperator and Hermi-
tian Hamiltonians

In [17], the authors mapped the Hubbard model to a Lindblad superoperator in presence of
dephasing noise. We present their findings here and further explore the conditions under
which this correspondence holds. Considering as starting point the Hubbard Hamiltonian
(5.14), we can then identify

h j, j+1 = i
(

σ
+
j σ

−
j+1 −σ

−
j σ

+
j+1

)
, ℓ j, j+1 = Z j. (5.28)

The operators in (5.28) satisfy

h =−hT , ℓ= ℓ∗ = ℓT , ℓ2 = ℓ†ℓ= I. (5.29)

These properties allow to rewrite the expression of the Hamiltonian (5.14)

H = ∑
j

h(1)j, j+1 −h(2)Tj, j+1 +
U
4
ℓ
(1)
j, j+1ℓ

(2)
j, j+1. (5.30)

We can add a term proportional to the identity5, complexify the coupling constant U → iU
and then multiply H by i, in this way we obtain

L j, j+1 = − ih(1)j, j+1 + ih(2)Tj, j+1 +
U
4

(
ℓ
(1)
j, j+1ℓ

(2)
j, j+1 − I

)
, (5.31)

which is equivalent to the expression of the superoperator (3.17) by using (5.29) and where
the dependence on the coupling constant U is explicit. This proves how to map the Hubbard
Hermitian Hamiltonian to a Lindblad superoperator.
More generally, we emphasize that if the conditions (5.29) are met, a Lindblad superoperator

5This term only shift all the energy levels by a constant and do not alter the integrability property.
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can be always mapped to an Hermitian operator. It is easy to see that under the conditions
(5.29), the map also works in the other directions: allowing to write the Hermitian version of
the Lindblad superoperator.

5.3.1 Model B2

Now we clarify why model B2 of section 4.3.2 is related to the Hubbard model. The
h of model B2 coincides6 with (5.28) for φ = π/2 and the ℓ can be written as (up to
renormalization)

ℓ12 = Z1 +η(X1X2 +Y1Y2)+η
2Z2, (5.32)

where η =− tanh
(u

2

)
. η is the deformation parameter and for η = 0 (or equivalently u = 0)

it reconducts to the Hubbard model (5.28). This deformation was found in [127] and we
presented it in the letter [21] in the context of open quantum systems.

5.4 Toward a new integrable deformation of the Hubbard
model

In this section, we outline the procedure that leads us to discover a novel integrable deforma-
tion of the Hubbard model, characterized by interaction terms spanning three consecutive
sites of the spin chain.
We identify this deformation within the framework of open quantum systems, starting from
the Lindbladian L (3.17) as the initial ansatz for the Boost automorphism mechanism. We
started from an ansatz for both h and ℓ of 8-Vertex type7. The complete classification of inte-
grable models using this ansatz is still a work in progress8. Nonetheless, this model already
holds considerable interest on its own. Initially, its connection to the Hubbard model may
not be apparent. However, we demonstrate how to perform a bond-site transformation that
preserves integrability and transforms it into a next-to-nearest neighbor model, representing

6In section 4.3.2 we stated that the point φ = 0 coincides with two XX spin chains and dephasing interaction.
We now consider the point φ = π/2 to have the open quantum system interpretation, in particular to have the
conditions (5.29) satisfied. It is clear that the two models are related by a twist.

7We give more details on this type of models in section 8.1. In these 4×4 models the only non-zero entries
may be in positions: 11, 14, 22, 23, 32, 33, 41, 44 of the matrix.

8This ansatz is more intricate than the ones employing a 6-vertex model for both h and ℓ as done in chapter 4.
The complexity arises from the two additional entries in the ℓ operator (quadratic in the Lindblad superoperator),
which results in highly intricate equations for the integrability constraints [Q2,Q3] = 0.
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a new integrable deformation of the Hubbard model. To the best of our knowledge, this is
the first range 3 integrable deformation of Hubbard.

5.4.1 h and ℓ of the two site model

Although we discovered this model in the context of open quantum systems, we noticed
that the h and ℓ operators meet the conditions described in equation (5.29) of section 5.3.
As a result, we chose to present its Hermitian version to make the connection with the
Hubbard model more transparent. We refer to this model as two site model indicating that
the interaction term spans two sites of the chain.
The integrable Hamiltonian that we found is

H2 = ∑
j

[
h(1)j, j+1 +h(2)j, j+1 + l(1)j, j+1l(2)j, j+1

]
, (5.33)

where

h =
dn
k
(σ+

j σ
−
j+1 −σ

−
j σ

+
j+1) l =


i sn 0 0 1
0 0 −cn 0
0 −cn 0 0
1 0 0 −i sn

 , (5.34)

sn, cn and dn are the Jacobi functions sn
(2iu

k |k2) , cn
(2iu

k |k2) and dn
(2iu

k |k2). The models
depend on two parameters k and u. H2 is integrable if k and u are chosen such that the entries
of l are real.
To clarify the meaning of k and u, we use a different normalization and reparametrization
that bring the kinetic term to (5.15) (independent from the parameters) and the l term to ℓ:

ℓ j, j+1 =
sinθ

2
(Z j +Z j+1)+ cosθ(σ−

j σ
−
j+1 +σ

+
j σ

+
j+1)+(σ−

j σ
+
j+1 +σ

+
j σ

−
j+1)

=


sinθ 0 0 cosθ

0 0 1 0
0 1 0 0

cosθ 0 0 −sinθ

 . (5.35)

This new reparametrization is related to the old one by

u =−
ik sec2 θcn−1 (−secθ

∣∣k2 )
4U

, k =
2iU cos2 θ√

U2 sin2(2θ)+1
. (5.36)
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The advantage is that now the dependence on the coupling constant U is factorized, and we
obtain

H2 = ∑
j

[
h(1)j, j+1 +h(2)j, j+1 +2Uℓ

(1)
j, j+1ℓ

(2)
j, j+1

]
. (5.37)

H2 depends on both U (coupling constant) and θ , a parameter. We remark that this model
does not contain the Hubbard model for any value of U and θ . However, in section 5.5.2 we
will show how to use a bond site transformation to bring it to a range 3 model which contains
the Hubbard model. The parameter θ is related to the deformation of the Hubbard model. In
order for H2 to be Hermitian, both parameters need to be real. We restrict the range of θ to
the fundamental domain of [−π,π].
The ℓ operator is of 8-vertex type9 [39]: particle number is not conserved, but particle
creation and annihilation only happen in pairs (due to the terms σ

+
j σ

+
j+1 and σ

−
j σ

−
j+1). ℓ

obeys the properties (
ℓ j, j+1

)2
∝ 1, (5.38)

[ℓ j, j+1, ℓ j+1, j+2] ̸= 0 (5.39)

and it is free fermionic. This property can be understood from the representation (5.35):
performing a Jordan-Wigner transformation we find terms which are only bilinear in the
fermionic operators. This point will be clarified in section 6.3.1.
The spin-1/2 model obtained by considering only the Hamiltonian ∑ j ℓ j, j+1 are known in
the literature as the XYh models [156]. They correspond to a XY spin chain coupled to
a magnetic field Zi. However, our model involves the coupling ℓ

(1)
j, j+1ℓ

(2)
j, j+1, therefore it is

interacting.

5.4.2 Symmetries

Let us now discuss the symmetries of (5.37) for a generic value of θ . First of all, we do
not find any continuous symmetries. However, there are discrete symmetries. In particular,
similar to the Hubbard model, the Shiba transformations (5.17) preserve the kinetic terms
and both of them negate the sign of the coupling constant U . Therefore their combination is
a discrete symmetry:

S (2)S (1)H2S
(1)S (2) =H2. (5.40)

9More details on this type of models are given in section 8.1.
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Because both interaction matrices (ℓ(1) and ℓ(2)) create/annihilate particles in pairs, the
“fermionic parity” is conserved for both sub-chains

[Zσ ,H2] = [Zτ ,H2] = 0 (5.41)

where

Zσ =
L

∏
j=1

σ
z
j , Zτ =

L

∏
j=1

τ
z
j . (5.42)

This property also holds for the three site spin chain given in (5.60).

5.4.3 Why is this model integrable?

To establish the integrability of this model, we derived the expression of the R-matrix
associated with (5.34), which is presented in Appendix B. The R-matrix satisfies the Yang-
Baxter equation10 and its properties are of particular interest. Firstly, it is of non-difference
form, evident from its dependence on both the sums and differences of Jacobi elliptic
functions. Secondly, it has a very non-trivial functional dependence on the spectral
parameters, containing terms that cannot be completely expressed in terms of the usual
Jacobi elliptic functions, as they involve expressions such as

sin
1
2

[
am(u|k2)− am(v|k2)

]
, sec

1
2

[
am(u|k2)− am(v|k2)

]
, (5.43)

where am is the Jacobi amplitude. The product of this two functions can be expressed in
term of Jacobi functions, in fact

tan
1
2

[
am(u|k2)− am(v|k2)

]
=csc

[
am(u|k2)− am(v|k2)

]
− cot

[
am(u|k2)− am(v|k2)

]
=

cn
(
u|k2)cn

(
v|k2)+ sn

(
u|k2)sn

(
v|k2)−1

cn(u|k2)sn(v|k2)− cn(v|k2)sn(u|k2)
, (5.44)

but still one of the two functions in (5.43) escapes the elliptic property. In particular, it can
only be expressed in the Jacobi elliptic functions sn,cn,dn by introducing square roots.

10If the reader is interested in showing this, we would like to remark that by using version 12.3 of Mathematica
the check is straightforward. However, using version 12.0 particular attention should be paid to the choice of
the sign of the branch-cut.
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Explicitly

sin
1
2

[
am(u|k2)− am(v|k2)

]
=s1

√
1− cn(u|k2)

2

√
1+ cn(v|k2)

2
+ (5.45)

s2

√
1− cn(v|k2)

2

√
1+ cn(u|k2)

2
, (5.46)

with s1 and s2 signs that depend on the choice of the branch cut.
To the best of our knowledge, this R-matrix is new and we have also not encountered before
a model with functional dependence on the square root of Jacobi function.
Let us clarify some points about the integrability of the model (5.37). If we take the expression
(5.37) and write U =U(u) and θ = θ(u) and construct Q3 via the boost operator (2.16), the
condition [Q2,Q3] = 0 gives a set of differential equations for U and θ that are satisfied by
(5.36). However, it is important to note that from (5.37), with U and θ kept constants, we
cannot obtain the R-matrix using the Sutherland equation (as demonstrated in section 2.5).
This raises a broader question, discussed in [113, 42]: how can we determine if a constant
Hamiltonian belongs to an integrable model? In fact, suppose we take an Hamiltonian H(u)
dependent on the spectral parameter u and we fix u = constant. We construct Q3 via the
boost method. But if we compute [Q2,Q3] we won’t obtain zero since we are missing the
derivative term in (2.16). In such cases, to verify the integrability of the model, we need
to investigate whether it exists a range 2 charge that plays the role of the derivative term in
Q3, resulting in a vanishing commutator [Q2,Q3]. If such a charge exists, the model may be
integrable and to prove it, we need to construct the Lax operator.
To prove integrability of H2 (5.37) we also need to use the Lax operator, a more fundamental
object than the R-matrix. The Lax operator is used to construct the conserved charges, as
explained in section 1.1.1. To generate the correct Hamiltonian, the Lax operator should be
related to the R-matrix in the following way11

L (u,µ)≡ R(α u,µ), (5.47)

where

α =
2

dn(µ |k2 )
, µ = cn−1 (−secθ

∣∣k2 ) , k =
2iU cos2 θ√

1+U2 sin2(2θ)
. (5.48)

This is analogous to the reparametrization (5.36).
11We would like to remark that the regularity condition for the R-matrix in this new parametrization

corresponds to consider u = µ/α(µ), while for the standard parametrization used in the Appendix B to u = v.
Same choices of u should be used to reproduce the correct Hamiltonian.
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5.5 The bond-site transformation

Here we use the bond-site transformation to bring the nearest-neighbour model (5.37) into
a form where the Hamiltonian is three site interacting. We then show how this model is a
deformation of the Hubbard model.
The bond-site transformation has its origin in the Kramers-Wannier duality [157], which can
be used to determine the critical point of the Ising model on the square lattice. It can also be
applied to the 1D quantum Ising chain, where it acts as a self-duality [157]. More recently
the same transformation was also used in the “folded XXZ model” [158, 159].

5.5.1 Generalities

To understand the transformation, it is enough to first consider just one copy of the local
space C2, on which our previous σa act (in light of (3.21)). The same argument can be
repeated for the τa acting on the second copy of C2.
There are two ways to introduce the bond-site transformation: either formally on the level of
the operators acting on the Hilbert space or via a real space description of the states. We
treat both formulations. We first consider models with open boundary conditions.
On the level of operators, the duality transformation is a particular Clifford transformation
[160], a mapping between operators with the following two requirements:

• Products of Pauli matrices are mapped to products of Pauli matrices (including possible
multiplication with phases, but without producing linear combinations).

• The operator algebra is preserved.

The transformation is then defined by the mapping

Z j → X j− 1
2
X j+ 1

2
, X j →

j

∏
k=1

Zk− 1
2

(5.49)

and we can use the operator algebra of the Pauli matrices to extend this mapping to all
operators. For example, a product of two X operators in nearest-neighbour sites is mapped to
a single Z matrix, in this way we obtain a symmetric formulation for the elementary steps12

Z j → X j− 1
2
X j+ 1

2
, X jX j+1 → Z j+ 1

2
. (5.50)

12As stated in [160], this bond-site transformation can be recognised as the Kramers-Wannier duality of the
Ising model.
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The half shift that we introduced can be understood in the real space interpretation of this
transformation: working in the computational basis, we perform a rotation and afterwards we
put spin-1/2 variables on the bonds13 between the original sites, such that the new variables
measure the presence or the absence of a domain wall (kink or anti-kink). This is why we
call these steps a “bond-site transformation”.
To be more precise, let us assume that the model in question has spin reflection symmetry.
Then we can map the Hilbert space of a chain of length L to that of another chain of length
L−1, such that for each bond we put an up spin if the two neighbouring sites have the same
orientation, and a down spin if they have different orientation. Symbolically↑↑

↓↓
→ ↑,

↑↓

↓↑
→ ↓ . (5.51)

The original spin pattern can be reconstructed from the bonds up to a global spin reflection
step, which preserves all values of the bonds14. Denoting the new variables with space
positions at half shifts, the mapping on the operatorial level becomes simply

Z jZ j+1 → Z j+ 1
2
. (5.52)

A single spin flip on the original chain necessarily changes the values on two bonds, thus we
obtain the other elementary transformation rule

X j → X j− 1
2
X j+ 1

2
. (5.53)

These are not yet identical to the steps (5.49)-(5.50). In order to achieve the same formulas,
one needs to perform a global rotation before the bond-site transformation, which maps

Z → X , X → Z, Y →−Y. (5.54)

Combining this rotation with (5.52)-(5.53) we obtain the transformation rules (5.49)-(5.50).
In Appendix C, we give an explicit expression of the bond-site transformation in a matrix
form.
The advantage of using the formulas (5.49)-(5.50) is that they describe an involutive transfor-
mation, so that applying the transformations twice will produce the initial model. However,
the transformation is non-local: a subset of local operators remains local after the mapping,

13For example, the bond between the sites j and j+1 is j+1/2.
14We remark that if the model does not have spin reflection, those statements remain true with the addition

that we need to know the state of the first site. Furthermore, in this case the Hamiltonian becomes non-local.
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but the remaining subset (including Xi by the definition (5.49)) becomes truly non-local. In
[161], the authors give a lists of the terms in the Hamiltonian that remain local after the
bond-site transformation. We refer to [160] for the classification of translation invariant
Clifford group transformations that preserve locality of all the Hamiltonian and those that
lead to non-local terms but preserve locality of certain Hamiltonians. The bond-site trans-
formation belongs to the second class. In the cases when the local Hamiltonian density is
mapped to local operators, it is possible to define the bond-site transformed model also with
periodic boundary conditions. However, in this case the two models are strictly speaking not
equivalent. This can be seen on the level of the real space transformation: in the periodic case
any state has an even number of domain walls, therefore it is mapped to a state with an even
number of down spins. The sectors of the new model with odd down spins do not correspond
to the states of the original model. This difference should not affect the thermodynamic
properties of the models, but it is crucial for the comparison of finite volume quantities.

5.5.2 From two site to three site model

Now we apply the bond-site transformation to map the two site model to a three site model.
In our case, the transformation preserves locality, so we can consider the model with periodic
boundary condition.
We apply the transformation to both σ and τ matrices. For simplicity, we again use the
notation of the Pauli Matrices as X ,Y,Z with the remark that, when considering them acting
on the local Hilbert space C2 ⊗C2 they will be either σ or τ , respectively, if they act on the
first or in the second copy of C2, as in (3.21).

Kinetic term (5.16) To use the transformation (5.50), first we need to use the rewriting
Yi → iXi Zi and then the rotation (5.54)

Y jX j+1 −X jY j+1 = i(Z j+1 −Z j)X jX j+1 →
i(X j+ 1

2
X j+ 3

2
−X j− 1

2
X j+ 1

2
)Z j+ 1

2
= Yj+ 1

2
X j+ 3

2
−X j− 1

2
Y j+ 1

2
.

(5.55)

The kinetic term is now localized on three sites15. However, summing over these contributions
for the sites of the periodic chain and redefining j → j+ 1

2 , we see that the integrated kinetic
term is self-dual. For this particular model, the bond-site transformation will only change the
interaction terms.

15This is evident by considering j → j+1/2. It correspond to consider a new spin chain where the "bonds"
now become "sites".
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Interaction (5.35) We transform separately the different terms.
First we use the rewriting

σ
−
j σ

+
j+1 +σ

+
j σ

−
j+1 =

1
2
(
X jX j+1 +YjYj+1

)
,

σ
−
j σ

−
j+1 +σ

+
j σ

+
j+1 =

1
2
(
X jX j+1 −YjYj+1

)
,

(5.56)

and then the rotation and the transformation (5.50)

Z j +Z j+1 → X j− 1
2
X j+ 1

2
+X j+ 1

2
X j+ 3

2
,

X jX j+1 → Z j+ 1
2
,

YjYj+1 =−Z jZ j+1X jX j+1 → −X j− 1
2
Z j+ 1

2
X j+ 3

2
,

(5.57)

and after j → j+1/2

Z j +Z j+1 → X jX j+1 +X j+1X j+2,

X jX j+1 → Z j+1,

Y jYj+1 → −X jZ j+1X j+2,

(5.58)

we obtain a term that spans three sites of the spin chain.
In the next section, we give a summary of the model obtained with the bond-site transforma-
tion.

5.6 The first range three deformation of the Hubbard model

5.6.1 h and l of the three site model

We put together the results found in the previous section and we introduce a different
parametrization (υ , κ) with the coupling constants U and θ such that

U =
1
8
(
κ

2 +1
)2

υ , θ =−2i log
(

1+ iκ√
κ2 +1

)
. (5.59)

The Hamiltonian (5.33) is now

H3 = ∑
j

[
h(1)j, j+1 +h(2)j, j+1 +

υ

4
l(1)j, j+1, j+2l(2)j, j+1, j+2

]
, (5.60)
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where h is (5.15) and

l j, j+1, j+2 = Z j+1 +κ (X j +X j+2)X j+1 −κ
2 X jZ j+1X j+2, (5.61)

H3 acts on the Hilbert space V =⊗L
i=1Vi =⊗L

i=1
(
C2 ⊗C2 ⊗C2) and the notation h(1), l(1)

or h(2), l(2) identify respectively whether the operators appearing in h and l are respectively
σ or τ . H3 signals that the density of the Hamiltonian acts on 3 sites of the spin chain, as
it is clear from the subscript j, j+1, j+2. The parameters υ and κ are the two independent
parameters of the model; the model is Hermitian if they are both real.
This model is a deformation of the Hubbard model. In fact, by sending κ = 0 we recover
the Hamiltonian (5.14) (with U = υ).
Similarly to (5.38), the operator (5.61) satisfies

(l j, j+1, j+2)
2 = (1+κ

2)2I, [l j, j+1, j+2(κ), l j+1, j+2, j+3(κ
′)] ̸= 0, (5.62)

the last equality only holds for the case of the Hubbard model κ = κ ′ = 0.
Furthermore, similarly to (5.39), l j, j+1, j+2 are non-commuting for generic values of κ ,

[l j, j+1, j+2(κ), l j, j+1, j+2(κ
′)] ̸= 0. (5.63)

The equality holds only if κ = κ ′ (trivial) or if κκ ′ =−1.
We also checked that the commutation relation [l j, j+1, j+2(κ), l j+2, j+3, j+4(κ

′)] = 0 is valid
for any κ and κ ′. The reason is that l j, j+1, j+2 is the bond-site transformation of a range two
model for which [ℓi,i+1, ℓi+2,i+3] = 0 since the operators act on different sites.

5.6.2 Integrability

The model given by H3, found by performing a bond-site transformation of H2, is integrable:
it has an infinite family of commuting local charges.
The integrability property can be proved in two ways:

• Using the recently developed formalism of [162] for medium range spin chains. It can
be checked that the charges can be obtained from the transfer matrix construction. We
use this method in the following section and we explicitly find the R-matrix.

• Showing that the higher charges of the two site Hamiltonian H2 remain all local16 if
we perform the duality transformation to the three site family.

16We remark that with locality we do not mean nearest-neighbour. Higher conserved charges will be
characterized by a range of interaction that remains finite even if L → ∞.
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The second proof is very easy. In fact, it follows from the fact that H2 commutes with Zσ

and Zτ given in (5.42). Therefore, it can contain an even number of Pauli matrices which
cause a spin flip. The duality transformation (5.50) produces non-local operators only for an
odd number of spin flipping Pauli matrices. Consequently, all charges of the two site models
remain local after the transformation.
Before discussing the first proof, we give a brief review of the medium range spin chain
formalism and comment on how to apply it for model H3.

Medium range spin chain – Short summary of [162] - Difference form

This section is based on the result of the work [162]. This is a generalization of the known
Quantum Inverse Scattering Method and it is used to describe models with medium range
interactions. They use the word "medium" to indicate models where the range of interaction
is r ≥ 3, but finite. “medium” is used to distinguish these models both from the nearest-
neighbor and the long range cases. The key idea is to enlarge the so-called “auxiliary space”
(which is typically a tensor product of copies of the elementary spaces) and to use special
Lax operators to allow for the embedding of multi-site (medium range) Hamiltonians into
this framework.
We generalize the definitions of some of the quantities given in chapter 1 for this particular
case.
For an integrable spin chain with three site interactions, the auxiliary space is a tensor product
of two copies of the fundamental vector space. Therefore, the Lax matrix is an operator
which acts on three spaces, one physical space and two auxiliary spaces. It is denoted as
La,b, j(u), where a and b are the two auxiliary spaces, and j refers to a physical space. The
transfer matrix is defined as

t(u) = Tra,b
[
La,b,L(u) . . .La,b,2(u)La,b,1(u)

]
, (5.64)

where the partial trace is taken over both the auxiliary spaces.
As for the two site model, in particular see (1.18), the conserved charges are defined by
taking the logarithmic derivative of the transfer matrix. The Hamiltonian (range 3) is related
to the transfer matrix by

H3 =Q3 = ∂u log t(u)|u=0 = t−1(0)∂ut(u)|u=0, (5.65)
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and similarly the higher conserved charges

Qr = ∂
r−2
u log t(u)|u=0. (5.66)

These charges are local if the Lax operator satisfies the initial condition

La,b, j(0) = Pa, jPb, j, (5.67)

where P stands again for the permutation operator acting respectively (as specified) on one
of the auxiliary space and the physical one. This is the equivalent of the regularity condition
for medium range chain.
We introduce the "check" operator as

Ľa,b, j(u) = Pb, jPa, jLa,b, j(u). (5.68)

and the condition (5.67) translates to

Ľa,b, j(0) = I. (5.69)

The transfer matrices form a commuting family, which is established from the fundamen-
tal intertwining relation:

Ř23,45(u1,u2)Ľ123(u1)Ľ345(u2) = Ľ123(u2)Ľ345(u1)Ř12,34(u1,u2). (5.70)

Here Ř(u,v) is the checked version of the R-matrix which is related to the usual ones by

Řab,cd(u,v) = Pa,cPb,dRab,cd(u,v), (5.71)

it depends on two spectral parameters, and it acts on a four-fold tensor product space.
Consistency requires the Yang-Baxter equation for the Ř-matrix:

Ř34,56(u1,u2)Ř12,34(u1,u3)Ř34,56(u2,u3) = Ř12,34(u2,u3)Ř34,56(u1,u3)Ř12,34(u1,u2).

(5.72)
In order to prove the integrability of a three site Hamiltonian, one needs to provide an explicit
solution of eq. (5.70); relation (5.72) follows automatically.
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Medium range spin chain – Application to H3

We obtained H3 as a bond-site transformation of H2, so it is reasonable to assume that the
Lax matrix is given by the bond-site transformed version of the 2-site one. We follow the
steps of Section V.A of [162] summarized in the previous section, but since here the Lax
operator will also depend on two spectral parameters, we present the details of this procedure.
The starting point is the R-matrix for the 2 site model given in Appendix B, in particular we
work with

Řa,b(u,v) = Pa,bRa,b(u,v). (5.73)

We first perform the rotation (5.54) followed by the transformations (5.52)-(5.53). We obtain
a range-three operator that we will identify as the "checked" Lax matrix

Ř j, j+1(u,v) → Ľ j, j+1, j+2(u|v), (5.74)

the Lax will also depend on two parameters.
The intertwining relation takes the form

Ř23,45(u1,u2)Ľ123(u1|u3)Ľ345(u2|u3) = Ľ123(u2|u3)Ľ345(u1|u3)Ř12,34(u1,u2). (5.75)

In all of the computations of this section, the second spectral parameter of the Lax operator is
seen as an outer (spectator) parameter, for which we do not introduce intertwining relations.
This special structure for the three site Lax operator is generic for models obtained via a
bond-site transformation from a two site model.
Note that in (5.75) the Lax operators on either sides overlap only on three site. The construc-
tion of the bond-site transformation implies for example

[Ľ123(u1|u3), Ľ345(u2|u3)] = 0. (5.76)

This relation comes from the fact that for the two site model, R-matrices acting on non-
overlapping sites commute, in particular [Ř12(u1,u3), Ř34(u2,u3)] = 0.
In order to prove that a solution exists, we take the checked version of (1.1) that is

Ř12(u2,u3)Ř23(u1,u3)Ř12(u1,u2) = Ř23(u1,u2)Ř12(u1,u3)Ř23(u2,u3) (5.77)

and we take the bond-site transformation, that is

Ľ123(u2|u3)Ľ234(u1|u3)Ľ123(u1|u2) = Ľ234(u1|u2)Ľ123(u1|u3)Ľ234(u2|u3). (5.78)
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Now multiplying with Ľ123(u2|u3)
−1 from the left, and with Ľ234(u2|u3)

−1 from the right we
get

Ľ234(u1|u3)Ľ123(u1|u2)Ľ234(u2|u3)
−1 = Ľ123(u2|u3)

−1Ľ234(u1|u2)Ľ123(u1|u3). (5.79)

This makes possible to define the four-site Ř matrix via two different equations

Ř12,34(u1,u2) = Ľ123(u2|u3)
−1Ľ234(u1|u2)Ľ123(u1|u3) (5.80)

and
Ř23,45(u1,u2) = Ľ345(u1|u3)Ľ234(u1|u2)Ľ345(u2|u3)

−1. (5.81)

Note that in the second case, we applied a shift to the indices. Substituting these formulas
into (5.75) we see immediately that the intertwining works as expected. It can be noticed
that formulas (5.80)-(5.81) depend on u3. Hence, to be precise, one would have to write
Ř(u1,u2,u3). However, if we consider the Yang-Baxter equation (5.72) and relabel the
spectral parameters to avoid potential ambiguity, we obtain

Ř34,56(u,v)Ř12,34(u,w)Ř34,56(v,w) = Ř12,34(v,w)Ř34,56(u,w)Ř12,34(u,v). (5.82)

By direct calculation, this equation is solved for any value of the parameter u3. The Yang-
Baxter equation will depend on the usual three spectral parameters (u,v,w) and an additional
one u3. In models where the R-matrix is of difference form, this freedom actually drops out.
However, in our case it does not drop out, therefore the intertwining can be performed by a
one-parameter family of R-matrices.
We explicitly checked the expressions (5.78) and (5.72), so the integrability of the three site
model is also proven.

5.6.3 Why is this a new deformation?

The Hamiltonian H3 is the first integrable range 3 deformation of the Hubbard model. In this
normalization, the original Hubbard model is restored for κ = 0.
However, for κ ̸= 0, there are two crucial differences:

1. The interaction term spans 3 consecutive sites.

2. Particle number conservation is broken.

The terms including the σ x and τx operators, that are linear or quadratic in the deformation
parameter κ , manifestly break the u(1) symmetries of the Hubbard model; they describe
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correlated particle creation and annihilation processes. In this respect, the model is a XYZ
deformation of Hubbard.
Given the extensive research conducted on the Hubbard model and its various generalization
over the years, it is natural to question whether this model is truly new or if it has been
previously documented in the literature. To address this concern, we conducted a compre-
hensive search of existing literature, but we did not managed to find this model in any of its
formulations (see also next Sections). All the previous extensions and deformations of the
Hubbard model had in fact two common properties [150, 152]:

1. The fundamental Hamiltonian was always nearest-neighbour interacting.

2. The model had (at least) two local u(1) charges.

Although our Hamiltonian (5.60) may seem to deviate from these common properties, there
is a possibility that it can be seen as a rotated version of a linear combination of two site and
three site charges from a known model. In order to exclude this possibility we performed a
search for a generic two site charge A which would commute with our H3. Explicitly

[H3,A] = [H3,∑
j

a j, j+1] = 0. (5.83)

We found that, for generic coupling constants υ and κ , the only possibility for the operator
density a j, j+1 is to be of the form a j, j+1 = b j −b j+1 +α 1, which (after summation over j)
lead to a trivial global charge. Thus our model does not have any conserved charges with
range less than three. This calculation allowed us to conclude that our model is not a rotated
version of a two site Hamiltonian.
Furthermore, similar to the two site model, also the R-matrix of the three site model has the
unusual functional dependence (5.43), so it cannot be expressed in terms of Jacobi elliptic
functions sn, cn and dn without introducing square roots.

5.7 Special points and strong coupling

5.7.1 Special points

Two site model

In section 5.4.2 we analysed the symmetry of the Hamiltonian (5.37) for any values of the
parameters U and θ . In this paragraph we analyse some points where there are additional
symmetries, which are θ = 0,±π/2.
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θ = 0 In this point, the interaction operator ℓ j, j+1 (5.35) is

ℓ j, j+1 = X jX j+1 (5.84)

which is represented by an anti-diagonal matrix. This particular model is the bond-site
transformation of the Hubbard model. Accordingly, it possesses two u(1)-charges given by
Q(1)

2 and Q(2)
2

Q(1)
2 = ∑

j
σ

x
j σ

x
j+1, Q(2)

2 = ∑
j

τ
x
j τ

x
j+1, (5.85)

which can be extended to two su(2) algebras.
The known coordinate Bethe Ansatz solution of the Hubbard model [134] can be used to
construct eigenstates of the model (5.37) with ℓ j, j+1 given in (5.84). The approach involves
performing a bond-site transformation on the eigenstates. However, it should be noted that
this computation will only generate states that exhibit an even number of down spins for
both the σ and the τ sub-lattices. It follows from the commutation relations (5.41) that this
“parity” is indeed consistent with the Hamiltonian. At present it is not known how to treat the
odd sub-sectors. Another motivation to see this is given at the end of section 5.5.1: in the
periodic case, every state is characterized by an even number of domain walls, which implies
that it is mapped to a state with an even number of down spins. As a result, states with an
odd number of down spins do not have a corresponding representation in the original model.

θ =±π/2 For θ = π/2, we find the Hamiltonian (5.37) with the interaction matrix

ℓ j, j+1 =


1

1
1

−1

= σ
+
j σ

−
j+1 +σ

−
j σ

+
j+1 +

1
2
(
Zi +Zi+1

)
. (5.86)

The case with θ =−π/2 is not independent from the one just shown: one can apply a unitary
off-diagonal local basis transformation and a re-definition of the coupling constant U to
relate the two models. These cases are special because they enjoy two u(1)-symmetries due
to the particle conservation: the Hamiltonian H2 now commutes with N and Sz given by
(5.5). More generally, it formally commutes with the all the generators (5.21) up to boundary
terms.
Interestingly, this model can be related to model B2 given in section 4.3.2, that corresponds
to a known deformation of the Hubbard model [127]. Model B2 obeys the conditions (5.29),
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consequently we can map to an Hermitian model.
By fixing φ = π/2 in the Hamiltonian (4.2) and the jump operator ℓ (4.44), we obtain the h
of (5.16) and

ℓ j, j+1 =


chu 0 0 0

0 1 −shu 0
0 −shu −1 0
0 0 0 −chu

 . (5.87)

By rescaling the coupling constant β of model B2 to β →
√

2Ueu and sending u →−∞, ℓ
reduces to (5.86) and the two models are equivalent.
It is remarkable that two special points of the model B2 are reproduced by two very different
versions of our models: the actual Hubbard model (u = 0) is found as a special point of our
three site Hamiltonian H3, whereas the u →−∞ limit of can be found in our two site family
H2. This fact may be a hint that perhaps there is a larger family of integrable models which
contains all these special points.

Three site model

In this section, we repeat for the three site model the analysis just done for the two site
model. Inverting (5.59), we obtain κ = tan θ

2 . The special points of the three site model
are κ = 0,±1. We also checked that indeed these points are the only ones that admit a
commuting charge which is at most of range17 2.

κ = 0 In this point the model becomes the Hubbard model, whose properties were already
discussed.

κ =±1 In this case, (5.61) becomes

l j, j+1, j+2 =±(X j +X j+2)X j+1 +Z j+1
(
I−X jX j+2

)
. (5.88)

This model possesses exactly two u(1) charges,

Q(1)
2 = ∑

j
σ

x
j σ

x
j+1, Q(2)

2 = ∑
j

τ
x
j τ

x
j+1. (5.89)

17We remark that in this formalism, a density operator of range 2 can be written in term of σ and τ matrices as
Ai,i+1 =∑

3
q1,q2,q3,q4=0 cq1q2q3q4σ

q1
i σ

q2
i+1τ

q3
i τ

q4
i+1, with σ0 the identity operator and σ1,2,3 the set of Pauli matrices.
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In fact, it can be shown that [Q(1)
2 ,H3] = [Q(2)

2 ,H3] = 0, if H3 is computed from (5.60) with
the three site interaction given by (5.88).
Furthermore, Q(µ)

2 also commutes with ∑ j h(µ)j, j+1 and ∑ j l(µ)j, j+1, j+2, for µ = 1,2. This makes
Q2 a strong symmetry of the model. We give more details about strong symmetries and their
meaning in chapter 6.

5.7.2 Large coupling limits

Here we investigate the large coupling limits of the models, by considering both the two site
and the three site versions. The idea is to take the limit U → ∞ of the two site Hamiltonian
(5.37) and υ → ∞ of the three site Hamiltonian (5.60). In these limits the interaction term
between the two sub-chains dominate, which is equivalent to setting the kinetic terms equal
to zero.
For a generic coupling κ and θ , the non-commutativity in (5.39) and (5.63) imply that the
interaction terms generate dynamics in the system. In this way, the strong coupling limit
models are also non-trivial

H∞
2 = ∑

j
ℓ
(1)
j, j+1ℓ

(2)
j, j+1, H∞

3 = ∑
j

l(1)j, j+1, j+2l(2)j, j+1, j+2, (5.90)

with ℓ j, j+1 and l j, j+1, j+2 given by (5.35) and (5.61), respectively.
The two models are the bond-site transformations of each other. To our best knowledge,
these models are also new.
Their integrability follows directly from the constructions of the R-matrices for the general
cases. For the two site model, the Hamiltonian H∞

2 is obtained via the substitutions

L (u,µ)≡ R(α u,µ), (5.91)

α =
2icos2 θ

k
, µ =

1
k

K
(

1
k2

)
, k = icotθ , (5.92)

where K is the elliptic integral of the first kind18. For the three site model, the R-matrix can
be obtained in the same way as explained above at the end of Section 5.6.2.
In the case of the Hubbard model (κ = 0) and its bond-site transformed model (θ = 0), the

18In order to get this result, we used the relations of [163],

dn
(
v
∣∣k2 )= cn

(
vk
∣∣∣∣ 1
k2

)
, cn

(
v
∣∣k2 )= dn

(
vk
∣∣∣∣ 1
k2

)
, sn

(
v
∣∣k2 )= 1

k
sn
(

vk
∣∣∣∣ 1
k2

)
, (5.93)

and we chose the branch cut
√

sec2 θ cosθ =−1.
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situation is different because the commutators (5.39) and (5.63) vanish. Both H∞
3 and H∞

2

become a sum of commuting operators:

H∞
3 →︸︷︷︸

κ→0
∑

j
σ

z
j τ

z
j H∞

2 →︸︷︷︸
θ→0

∑
j

σ
x
j σ

x
j+1τ

x
j τ

x
j+1 (5.94)

and do not generate non-trivial dynamics.
Furthermore, we noticed that in the case θ = π/2 and in the strong coupling limit, the two
site Hamiltonian is equivalent to model B1 given in section 4.2.3.

5.8 Summary of the new models

The connections among the different integrable models found is summarized with the graph
given in Fig. 5.1. Interestingly, we noticed that two special points of the model B2 are
reproduced by both the two site and the three site models. Furthermore, the range 3 model
and model B2 are also related via a non-local transformation T (κ) which we explain in the
next chapter, after (6.39). These observations hint at the possible existence of a larger family
of integrable models that includes all these special points.

Fig. 5.1 Summary of the connections between the different models we found.



Chapter 6

Hidden strong symmetries in the
Hubbard deformation

In this chapter, we investigate the symmetry of the Lindblad superoperator associated with
the range 3 deformation of the Hubbard model introduced in chapter 5. We begin with a
short introduction on the difference between conserved quantities and symmetries in non-
Hermitian models. We show that in the context of non-Hermitian systems, these two notions
become equivalent when a strong symmetry is present. The meaning of it will be discussed in
the following. Later, we analyze the range 3 model and we discover the presence of multiple
NESS. The multiplicity is related to some hidden strong symmetries in the form of quasi-local
charges. We compute the NESS exactly in the form of Matrix Product Operators with fixed
bond dimensions and we use this to compute the mean values of some local observables.
Furthermore, we prove that the dynamics leads to the emergence of the Gibbs ensemble
constructed from the hidden quasi-local charge.

6.1 Conserved quantities and symmetries

Isolated systems exhibit distinct behaviors depending on whether they are integrable or not.
In general, an isolated system tends to rapidly relax toward an equilibrium state. However,
integrable systems behave differently due to the presence of additional conserved quantities.
This was demonstrated in the pioneering work of Kinoshita, Wenger, and Weiss, a Quantum
Newton’s Cradle experiments, [164]. These experiments investigated the non-equilibrium
dynamics of Bose gases driven out of equilibrium in one, two, and three dimensions. While
the two and three-dimensional systems were observed to quickly relax towards an equilibrium
state, the behavior of the one-dimensional system was different. This difference can be
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attributed to the presence of approximate conservation laws, which makes the system not
ergodic, and prevent it from reaching the thermal equilibrium. Driven in part by this
motivation, the non-equilibrium dynamics of integrable quantum many-particle systems has
been the subject of intense theoretical efforts over the past 20 years, [165–167]. Ergodicity
breaking in isolated systems may be due to different mechanisms, all related with symmetries
of the system. The symmetries will constraint the dynamics of the system and the ergodicity
property is not satisfied anymore.
For open quantum systems with Markovian environment, the evolution is dictated by the
Lindblad equation. In a generic Lindblad system, there is typically a unique non equilibrium
steady state NESS: the properties of the initial states are eventually lost during time evolution.
The equivalent of ergodicity breaking for open quantum systems is the emergence of multiple
NESS. Examples of this phenomenon are known [168, 169]. In such cases, the system retains
memory of the initial state, as different initial density matrices evolve into distinct NESS in
the long time limit. This raises the important question: what are the possible mechanisms
that give rise to multiple NESS in a many-body Lindblad system? Similar to the isolated
system, non-uniqueness of the NESS is associated with the presence of extra conservation
laws. In Lindblad systems, these conserved quantities may arise when the model exhibits
what is known as strong symmetries. In fact, as we show in the following, in the context of
open quantum systems, conserved charges and symmetries are different objects. However, if
a system possesses a strong symmetry, this is also a conserved charge.
In Hermitian quantum mechanics, an explicit time-independent observable J = J† is a
conserved quantity (i.e. constant of motion) if and only if it commutes with the Hamiltonian
H of the model. The Noether’s theorem holds: to each conserved charge we can associate
a continuous symmetry by exponentiating the charge U = eiφJ , with φ real. The three
statements are then equivalent

[J,H] = 0, J̇ = 0, U†HU = H. (6.1)

The situation is very different in the case of a Lindbladian, since the Lindblad superoperator
(given in (3.17)) is not Hermitian. In these systems, a symmetry operation might or might
not lead to a conserved quantity, and not all conserved quantities originate in symmetries,
[33]. To obtain the expectation value of an operator J (Tr(Jρ)), one can use the cyclicity
propery of the trace and obtain the dynamics in the Heisenberg picture by using the Lindblad
equation,

J̇ = L †(J) = i[h,J]+ ℓ†Jℓ− 1
2
{ℓ†ℓ,J}, (6.2)
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J is a conserved quantities if L †(J) = 0. To analyze the symmetry, we employ the superop-
erator formalism. In this context, we introduce J , which is the superoperator associated
with the Hermitian operator J and satisfies J = J †. The continuous symmetry generated
by J is U = eiφJ . J is the generator of the symmetry if

[J ,L ] = 0, (6.3)

with L the Lindblad superoperator and1 J = J⊗1−1⊗JT . By substituting the expression
of the superoperator L into the commutation relation (6.3), we obtain that one possible way
to realize (6.3) is

[J,h] = 0, [J, ℓ] = αℓ, α ∈ R . (6.4)

In this case, J is a so-called strong symmetry and L †(J) = L (J) = 0.
These symmetries have been extensively studied in various systems [170, 33, 169, 171].
To summarize, for open quantum systems, the following implications hold

if [J,h] = 0, [J, ℓ] = 0 then J̇ = L †(J) = 0, (J is conserved), (6.5)

if [J,h] = 0, [J, ℓ] = 0 then U †L U = L , (U is a symmetry). (6.6)

Consequently, for Lindbladian systems, the following outcomes can arise:

• There may exist a conserved quantity which does not commute with everything in L

but is conserved “as a whole”

• The U generated by such conserved quantities are not always symmetries of the system

• A symmetry generator J does not necessarily correspond to a conserved quantity

• Symmetry generator does not have to commute with everything in L .

However, if one can find a non-trivial operator that commutes with everything in L , then
the operator is both a symmetry and a conserved quantity of the system and we refer to it as
a strong symmetry. It is then natural to ask what conserved quantities and symmetries are
useful for. In brief, conserved quantities are associated with the NESS of the system, while
symmetries can be utilized to block diagonalize the superoperator L .
Of particular interest are strong symmetries that are represented by extensive operators, i.e.

1The expression of J can be understood if one consider the expression [·,A] in the superoperator space
A = A⊗ I− I⊗AT . The reason of the transposition can be understood by writing in components the action of
A on the right of another operator.
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Q = ∑ j q( j), where q( j) is a quasi-local operator density2. Previously, these operators were
investigated within the framework of the Generalized Gibbs Ensemble, [172, 174]. Our work
is the first one to uncover quasi-local charges in a Lindblad system with local driving in the
bulk.

6.2 A simple example to warm up: Hubbard Lindbladian

In section 5.3, we reviewed the result of [17] where they show how to find the superoperator
L corresponding to the Hubbard model. This model has an extensive strong symmetry given
by

Q0 = ∑
j

Z j, (6.7)

which is the global magnetization. In fact, this commutes with both the Hamiltonian and the
jump operators given in (5.28). Accordingly, the degeneracy of the NESS is L+1, with L
being the length of the spin chain. Each NESS corresponds to a distinct sector of the Hilbert
space characterized by a specific magnetization. These sectors can be identified using the
L+1 projectors PN , which project onto the different magnetization sectors. Alternatively, an
over-complete basis for the null-space can be chosen as

ρ(α)∼ eαQ0 = ∏
j

eαZ j , α ∈ R. (6.8)

These density matrices are linear combinations of PN . By setting α = 0, the NESS corre-
sponds to the infinite temperature state ρ ∝ I, while for α =±∞ we obtain the states with
particles of all spin up or all down.

6.3 Our model: Hubbard deformation

Now, we examine the Lindbladian counterpart of the range three integrable Hermitian model
discussed in chapter 5.

2Suppose to have a general translational invariant operator A = ∑ j a( j). A is quasi-local [172, 173] if the
following conditions hold

• The Hilbert-Schmidt norm satisfies ||A||2HS ∝ L,

• For any operator b acting on k site of the spin chain, the overlap (b,A) is independent on L, for L → ∞,

• If we write a = ∑
L
r=1 a[1,r], in the thermodynamic limit ||a||2HS = ∑

∞
r=1 ||a[1,r]||2 is convergent and, in

particular ||a[1,r]||2HS <Ce−ξ r,ξ > 0.
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Since the h and l-operator of the range three Hamiltonian (5.60) satisfies the condition (5.29),
we are allowed to construct the equivalent Lindbladian. Here, we provide the expressions for
completeness.

L j, j+1 = − ih(1)j, j+1 + ih(2)
T

j, j+1+

U
(

l(1)j, j+1, j+2l(2)∗j, j+1, j+2 −
1
2

l(1)†j, j+1, j+2l(1)j, j+1, j+2 −
1
2

l(2)Tj, j+1, j+2l(2)∗j, j+1, j+2

)
, (6.9)

where h is (5.15) and l is (5.61):

l j, j+1, j+2 = Z j+1 +κ (X j +X j+2)X j+1 −κ
2 X jZ j+1X j+2, (6.10)

and satisfy

l†
j, j+1, j+2 = l j, j+1, j+2, (l j, j+1, j+2)

2 = I. (6.11)

In this chapter, we consider the regime 0 < κ < 1. In fact, other regimes can be treated by
special similarity and duality transformations. Furthermore, for the special points κ =±1,
as explained in section 5.7.1, the model possesses two extra u(1)-charges, which enlarge the
null space of the Lindbladian. Those points deserve a separate study and we do not consider
them in this thesis.

6.3.1 Fermionic formulation

The model can alternatively be expressed using fermion operators, with the introduction
of Majorana operators3 ψ2 j−1 = X j ∏l< j Zl , ψ2 j = Yj ∏l< j Zl . These operators satisfy
{ψa,ψb}= 2δa,b. Consequently, the Hamiltonian is given by

h = ∑
k

ψk−1ψk+1 , (6.13)

where the summation is now extended to twice the number of sites in the original spin
model. When considering a spin chain with periodic boundary conditions on L sites, this
can be translated into the Majorana language as ψL+k = Z ψk, where Z ≡ (−1)F ≡ ∏ j Z j

3Those are related to the usual Jordan-Wigner transformation

c j =
(

∏
k< j

Zk

)
σ
−
j , c†

j = σ
+
j ∏

k< j
Zk, (6.12)

by ψ2 j−1 = c†
j + c j and ψ2 j−1 = i(c j − c†

j).
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represents the fermion number parity. The jump operators (5.61) take the form

l =
i

1+κ2

(
ψ2 j+2 −κ ψ2 j

)(
ψ2 j+1 −κ ψ2 j+3

)
. (6.14)

The jump operators break the U(1) symmetry of the original model: they induce particle
creation and annihilation, but due to conservation of Z , creation an annihilation happens in
pairs.
While the Hamiltonian (6.13) is bilinear in terms of the Majorana operators and can therefore
be diagonalized using free-fermion techniques [175], the jump operators (6.14) introduce
quartic terms in the Lindblad equation, and our model is therefore truly interacting.

6.3.2 Strong symmetry and NESS

It is worth to remember that the range 3 deformed model possesses Yang-Baxter integrability.
It is interesting to observe that in the following analysis we do not utilize this property.
However, we use the “superintegrability” property of the Hamiltonian (5.15): h has a non-
abelian families of conserved charges, which commute with it but not necessarily with one
another [176, 177].

Conserved charges of the Hamiltonian h We label the set of charges as [ab]m, where a
and b can take the label X or Y , and for m ≥ 0,

[ab]m ≡
L

∑
j=1

a j

(
∏

1≤k<m
Z j+k

)
b j+m , (6.15)

where X j, Yj and Z j are the Pauli matrices acting on site j of the spin chain and L is the
length of the spin chain.
Considering the fermionic formulation of the model (6.13), the corresponding charges are the
set of all possible translationally invariant fermion bilinears. The presence of an extensive set
of local charges often indicates integrability. In this case, the Hamiltonian (5.15) is related
to the XX spin chain through a homogeneous twist along the chain. Notably, it exhibits a
"superintegrable" nature, where the charges [ab]m form distinct families that do not commute
with each other. For instance, the sets of charges {[XY ]m} and {[Y X ]n} commute with one
another, but only the combinations {[XY ]m − [Y X ]m} commute with the charges {[XX ]n} or
{[YY ]n}. We also introduce the charge

Z =
L

∏
j=1

Z j , (6.16)
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which commutes with the Hamiltonian as well as with all the charges [ab]m.

Null space of the Lindladian By analyzing numerically the spectrum of the Lindblad
superoperator for different value of the length L, we find that the degeneracy4 of the 0
eigenvalue is L+ 1. We motivate this multiple NESS by an unexpected strong symmetry
in the system. This symmetry and the associated conserved charge are obtained from the
original Q0 of the un-deformed Hubbard model via a non-local transformation, which is
performed by a Matrix Product Operator (MPO).
More specifically, we define the transfer matrix T (κ) corresponding to the Hamiltonian
(5.15) of our system

T (κ) = Tr0(AL(κ)AL−1(κ) . . .A1(κ)) , (6.17)

where "0" is a two-dimensional auxiliary space and A(κ) takes the form

A j(κ) =
1
2

(
g−+g+Z j g+X j − ig−Yj

g−X j + ig+Yj g+−g−Z j

)
, (6.18)

where g± =
√

1±κ . The tranfer matrix T (κ) forms a mutually commuting family, namely
[T (κ),T (κ ′)] = 0. This property arises from the fact that the Hamiltonian corresponds to the
transfer matrix of the XX spin chain5. It can in fact be recast as a series expansion in powers
of κ , whose coefficients are the mutually commuting conserved charges of H. Specifically, it
has the following series expansion around κ = 0:

T (κ) = U exp(G (κ)) , (6.19)

where U is the one-site discrete translation operator, and

G (κ) = i ∑
m≥1

κm

2m
[Y X ]m , (6.20)

with [Y X ]m given in (6.15).
The expansion (6.20) holds at all orders, even for a system with finite size L, as can be
checked by computing explicitly the successive logarithmic derivatives of T (κ) at κ = 0.
For L → ∞, the series (6.20) defines a quasi-local operator for |κ| < 1, [173]. For finite
L, it can be further rearranged using the properties: [Y X ]m+L =−Z [Y X ]m for m ≥ 1, and

4We refer here to the values of κ ̸=±1. As mentioned, those two points deserve special attention due to the
enlarged symmetries.

5More specifically, to the transfer matrix based on cyclic representations of the quantum group Uq(sl2) at
q = i.
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[Y X ]L =−iLZ . A practical expression is

G (κ) =
1
2

log(I+κ
LZ )+ i ∑

m≥1
m/∈LZ

κm

2m
[Y X ]m, (6.21)

which splits between a first term which is Hermitian, and an anti-Hermitian part. From there,
we can obtain

T (κ)T (κ)† = T (κ)†T (κ) = I+κ
LZ (6.22)

and equivalently

T (κ)−1 =
I−κLZ

1−κ2L T (κ)† . (6.23)

Hence, in the L → ∞ limit they become inverse of each other. It is useful to also derive this
expression using the Matrix Product Operator (MPO) formalism. We can write T (κ)T (κ)†

as a MPO of bond dimension 4, with auxiliary space 0⊗0, namely

T (κ)T (κ)† = Tr0⊗0

(
ML(κ)ML−1(κ) . . .M1(κ)

)
, (6.24)

where

M j(κ) =
1
2


I+

√
1−κ2Z j

√
1−κ2X j + iYj

√
1−κ2X j − iYj I−

√
1−κ2Z j

−κX j κZ j κZ j κX j

−κX j κZ j κZ j κX j

I+
√

1−κ2Z j
√

1−κ2X j + iYj
√

1−κ2X j − iYj I−
√

1−κ2Z j

 .

(6.25)
The MPO is invariant under any change of basis performed in the auxiliary space. We can
chose a transformation such that the MPO takes an upper triangular form. In particular,
we define V0 = e

iπ
4 Y⊗X , where X and Y are now Pauli matrices acting in each copy of the

auxiliary space 0. (6.24) can therefore be recovered by replacing the matrices M j(κ) by(
V0M j(κ)V−1

0

)
, which takes the form

V0M j(κ)V−1
0 =


1

√
1−κ2X j −iYj −

√
1−κ2Z j

0 κZ j 0 κX j

0 0 0 0
0 0 0 0

 . (6.26)

From the block-diagonal form of (6.26), it is evident that when taking the trace in (6.24), only
the two diagonal terms make a contribution. These terms give rise to the two corresponding
terms in (6.22).
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Strong symmetry Next, we define the deformation of Q0 as

Qκ = T (κ)†Q0T (κ), (6.27)

which in the L → ∞ limit corresponds to a conjugation relation. This conjugation can
be understood as a quasi-local deformation of Q0, involving the non-abelian conserved
charges of the Hamiltonian (5.15). Qκ remains an extensive operator, but its operator density
qκ( j) = T (κ)†Z jT (κ) becomes quasi-local.
By using the MPO formalism, we prove that the operator Qκ is a strong symmetry of the
Lindbladian: it commutes with the Hamiltonian (5.15) and also with all the jump operators
(5.61). Explicitly, we have to show that

[hi,i+1,Qκ ] = 0, [li,i+1,i+2,Qκ ] = 0, (6.28)

which is equivalent to show, by using the relation (6.22) and the fact that [Q0,Z ] = 0,

[T (κ)hi,i+1T (κ)†,Q0] = 0, [T (κ)li,i+1,i+2T (κ)†,Q0] = 0. (6.29)

The first commutation relation trivially holds since T (κ)hi,i+1T (κ)† = hi,i+1. For the second
one, we use the MPO technique. In particular, we define

T (κ)B jT (κ)† = Tr0⊗0(ML(γ) . . .M
B
j (κ) . . .M1(κ)) , (6.30)

where B ∈ {X ,Y,Z}. We find similarly6

V0M
X
j (κ)V

−1
0 =


0 κZ j 0 κX j

1
√

1−κ2X j −iYj −
√

1−κ2Z j

0 0 0 0
0 0 0 0

 , (6.31)

V0M
Y
j (κ)V

−1
0 =


0 0 0 0
0 0 0 0

i
√

1−κ2 iX j
√

1−κ2Yj −iZ j

κYj 0 −iκ 0

 , (6.32)

6For simplicity, we did not report the expressions of M X
j , MY

j and M Z
j , but if needed, the readers can

recover them by undoing the rotation.
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V0M
Z
j (κ)V

−1
0 =


0 0 0 0
0 0 0 0

iκYj 0 κ 0
−
√

1−κ2 −X j i
√

1−κ2Y j Z j

 . (6.33)

For any three consecutive sites j, j+1, j+2, we then have for the jump operator

T (κ)l j, j+1, j+2T (κ)† = Tr0⊗0(ML(κ) . . .M
l
j, j+1, j+2(κ) . . .M1(κ)) , (6.34)

where

M l
j, j+1, j+2(κ)≡

1
1+κ2

(
M j+2M

Z
j+1M j +κ(M X

j+2M
X
j+1M j +M j+2M

X
j+1M

X
j )−

κ
2M X

j+2M
Z
j+1M

X
j
)
, (6.35)

which can be brought to the following form after rotation in the auxiliary space:

V0M
l
j, j+1, j+2(κ)V

−1
0 =


l̃ j, j+1, j+2 . . . . . . . . .

0 κ3Z jZ j+1Z j+2l̃ j, j+1, j+2 0 . . .

0 0 0 0
0 0 0 0

 . (6.36)

Here we have defined

l̃ j, j+1, j+2 ≡
1

1+κ2

(
Z j+2 +κ(X j+1X j+2 +Yj+1Yj+2)+κ

2Z j+1
)
, (6.37)

and the . . . denote other combinations of the Pauli matrices which we do not need to consider.
Indeed, from the triangular structure of (6.36), we see again that only the two non-zero
diagonal entries give a non-zero contribution to the trace (6.34). As a result we find

T (κ)l j, j+1, j+2T (κ)† = (I+κ
LZ )l̃ j, j+1, j+2 , (6.38)

or, equivalently,

T (κ)l j, j+1, j+2T (κ)−1 = l̃ j, j+1, j+2 . (6.39)

It is important to notice that the jump operator l̃ j, j+1, j+2 acts non-trivially on two site of the
spin chain and, up to normalization and identification κ =−coth

(u
2

)
, φ = π/2, corresponds

to the jump operator of model B2 given in (4.44). This point clarifies the diagonal connection
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in the Figure 5.1, "Global transformation".
It is easy now to see that all the modified jump operators l̃ commute with the global charge
Q0 = ∑ j Z j.
Since we proved that Qκ commutes with both h and l, it is a strong symmetry of the
Lindbladian. This implies that it is a conserved charge for the Lindbladian time evolution.

NESS This result also proves that all powers of Q0, or equivalently, all exponentials of the
form eαQ0 are conserved charges for the Lindbladian characterized by h and the generalized
jump operator l̃. In particular, since

L (eαQ0) = L †(eαQ0) = 0 (6.40)

they are (un-normalized) NESS and form a basis for a L+1-dimensional space, including
the identity.
Equivalently, undoing the similarity transformation, we find that T (κ)−1eαQ0T (κ) are (un-
normalized) NESS for the Lindbladian characterized by h and jump operator l. Furthermore,
considering (6.23) and the fact that Z commutes with h and l, we can replace T (κ)−1 with
T (κ)† and obtain

ρκ(α) = T (κ)†eαQ0T (κ) = T (κ)†

[
∏

j
eαZ j

]
T (κ). (6.41)

The states under consideration are density matrices, specifically Hermitian and positive
definite. They are also strong symmetries. These states are the NESS of the Lindbladian
with fixed deformation parameter κ and arbitrary coupling strength U . The operators ρκ(α),
α ∈R form an overcomplete basis for the null space of the Lindbladian, which has dimension
L+1 in a finite volume L. This fact can be demonstrated by expanding ρκ(α) into a power
series in α : which yields the powers of Qκ (up to corrections to the order κL). Together with
the identity operator, these powers span a space of dimension L+1.
Previous studies in the literature have identified steady states represented in MPO form. These
instances primarily focused on systems with boundary driving, [15, 169, 178, 179]. Our
results are unique because we treat a system locally driven in the bulk, and the bond dimension
of the MPO is a fixed small number (4 in our case). The operator space entanglement satisfies
an area law.

Frustration free property Remarkably, the ρκ(α) are related to frustration-free Hamilto-
nians. To illustrate this point, we introduce an auxiliary Hermitian superoperator that acts on
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ρ as follows
Mρ = ∑

j
l j, j+1, j+2ρl†

j, j+1, j+2 . (6.42)

In our case, considering l given in (5.61), the strong symmetry and the relations (6.11) imply
that ρκ(α) are eigenvectors of M with eigenvalue L, and that L is the maximal possible
eigenvalue of M. By definition, this means that the superoperator M is frustration-free.
A related model with the frustration free property was investigated in [180] (see also [181]).
Their Hamiltonian acts on the spin-1/2 Hilbert space and it can be written as

K = ∑
j

l j, j+1, j+2, (6.43)

where l j, j+1, j+2 is (5.61). This operator has two extremal states |Ψ±⟩ satisfying the frustration
free condition l j, j+1, j+2|Ψ±⟩=±|Ψ±⟩. It follows that the density matrices ρ± = |Ψ±⟩⟨Ψ±|
are frustration free eigenstates of M. Furthermore, they are (pure) NESS for our Lindbladian,
and they are reproduced by ρκ(α) in the α → ±∞ limit. Our procedure to obtain the
density matrices ρκ(α) can be seen as a generalization of the methods of [180, 181] to the
Lindbladian setting.

Lindbladian scars The Hamiltonian H3 discussed in the previous chapter is related to the
Lindbladian we considered here. In particular, we can equivalently write H3 as

L̃ ρ ≡ (U−1L +L)ρ = Mρ + iU−1[ρ,H]. (6.44)

L̃ is Hermitian7 for U = iu, u ∈ R. In such a case ρκ(α) are still eigenoperators of
L̃ , they have low spatial entanglement, and they are in the middle of the spectrum for a
generic real u. For Hermitian operators, states that exhibit such properties are called quantum
many body scars, [167, 182]. We propose8 to call them Lindbladian scars for our original
superoperator L .

7We would like to clarify that we are referring to the Hermiticity property of the action of the superoperator
L̃ . This is not the same as Hermiticity or anti-Hermiticity of the commutator [ρ,H].

8We would like to point out that we are the first to introduce the term "Lindbladian scars". We chose this
name because our model arises in the context of open quantum systems, for which the dynamics is governed by
the Lindbladian L . As discussed in section 5.3, L can be mapped to an Hermitian operator (L̃ ). The NESS
for L become Lindbladian scars for L̃ . These states are characterized by low spatial entanglement and they
are in the middle of the spectrum.
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Mean values The physical properties of ρκ(α) can be demonstrated by computing the
mean values of local observables in these states, which can be done using standard MPO
techniques. In particular, we are interested in computing the mean value of two operators

• the magnetization operator Z j

• the operator X jX j+1 −YjYj+1 = 2(σ+
j σ

+
j+1 +σ

−
j σ

−
j+1) (a measure of the breaking of

the U(1) symmetry).

We start by computing the following objects

G (α,β ) = Tr(eαQ0T (κ)†eβQ0T (κ)), (6.45)

G̃ (α,β ) = Tr(eαQ0T (κ)−1eβQ0T (κ)) . (6.46)

All the quantities of interests can be expressed in term of them.
Let us start with G (α,β ). Using the MPO formalism above, we can rewrite:

G (α,β ) = Tr0⊗0

1

∏
j=L

Tr j

(
M

(α,β )
j (κ)

)
, (6.47)

where M
(α,β )
j (κ)≡ M

(α)
j (κ)eβZ j and M

(α)
j = coshαM j + sinhαM Z

j . After rotation

V0M
(α)
j (κ)V−1

0 =
coshα coshα

√
1−κ2X j −icoshα Yj −coshα

√
1−κ2Z j

0 κ coshα Z j 0 κ coshα X j

iκ sinhα Yj 0 κ sinhα 0
−sinhα

√
1−κ2 −sinhα X j i sinhα

√
1−κ2Y j sinhα Z j

 ,

(6.48)

and

Tr j

(
V0M

(α,β )
j (κ)V−1

0

)
=

2coshα coshβ 0 0 −2
√

1−κ2 coshα sinhβ

0 2κ coshα sinhβ 0 0
0 0 2κ sinhα coshβ 0

−2
√

1−κ2 sinhα coshβ 0 0 2sinhα sinhβ

 .

(6.49)
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The computation of G (α,β ) can be performed by diagonalizing (6.49) in the auxiliary
space, leading to:

G (α,β ) = (λ1(α,β ))L +(λ2(α,β ))L +(λ3(α,β ))L +(λ4(α,β ))L , (6.50)

where

λ1(α,β ) = cosh(α +β )+

√
cosh2(α +β )−κ2 sinh(2α)sinh(2β ) ,

λ2(α,β ) = cosh(α +β )−
√

cosh2(α +β )−κ2 sinh(2α)sinh(2β ) ,

λ3(α,β ) = 2κ sinhα coshβ ,

λ4(α,β ) = 2κ coshα sinhβ , (6.51)

are the eigenvalues of (6.49). For later use, we evaluate the function G (α,β ) and its
derivatives at particular points:

G (0,β ) = 2L(coshβ
L +(κ sinhβ )L),

1
L

∂αG (α,β )|α=0 =
(
1−κ

2)2L tanhβ coshL
β ,

G (−iπ/2,β ) = (−2i)L (
κ

L coshL
β + sinhL

β
)
,

1
L

∂αG (α,β )|α=−iπ/2 =
(
1−κ

2)(−2i)L cothβ sinhL
β . (6.52)

We now turn to G̃ (α,β ). Using (6.23), we have

G̃ (α,β ) = Tr
(

eαQ0
I−κLZ

1−κ2L T (κ)†eβQ0T (κ)
)
=

G (α,β )− (iκ)LG (α − iπ/2,β )
1−κ2L ,

(6.53)

where in the last equality we have used the identity Z jeαZ j = ie(α−iπ/2)Z j . We can now use
these quantities to compute the mean values of Z j and X jX j+1 −YjYj+1.
Using translation invariance, we find that the mean value of the operator Z j in the state ρκ(β )

is

⟨Z j⟩β ≡
Tr(Z jT (κ)†eβQ0T (κ))
Tr(T (κ)†eβQ0T (κ))

=
1
L∂αG (α,β )|α=0

G (0,β )
=

(1−κ2) tanhβ

1+(κ tanhβ )L . (6.54)
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In the large volume limit9, this gives〈
Z j
〉

L→∞
=
(
1−κ

2) tanhβ . (6.55)

In the un-deformed model (κ = 0) the mean value is tanhβ , thus the transformation (6.41)
decreases the mean value by a factor that depends only on κ .
The mean value of X jX j+1 −YjYj+1 could be similarly obtained from suitably defined
generating functions, but we compute it directly here:

Tr(X jX j+1T (κ)†eβQ0T (κ)) =

Tr
(

Tr0⊗0(M
(0,β )
L (κ) . . .M

(X ,β )
j+1 (κ)M

(X ,β )
j (κ) . . .M

(0,β )
1 (κ))

)
, (6.56)

where M
(X ,β )
j = X jM

(0,β )
j = M X

j eβZ j . A similar formula holds with X → Y .
Using

Tr j(V0M
(0,β )
j V−1

0 ) =


2coshβ 0 0 −2

√
1−κ2 sinhβ

0 2κ sinhβ 0 0
0 0 0 0
0 0 0 0

 , (6.57)

Tr j(V0M
(X ,β )
j V−1

0 ) =


0 2κ sinhβ 0 0

2coshβ 0 0 −2
√

1−κ2 sinhβ

0 0 0 0
0 0 0 0

 , (6.58)

Tr j(V0M
(Y,β )
j V−1

0 ) =


0 0 0 0
0 0 0 0

2i
√

1−κ2 coshβ 0 0 −2isinhβ

0 0 −2iκ coshβ 0

 , (6.59)

we find

⟨X jX j+1 −YjYj+1⟩β =
Tr((X jX j+1 −YjYj+1)T (κ)†eβQ0T (κ))

Tr(T (κ)†eβQ0T (κ))
(6.60)

=
κ
(
2−κ2) tanhβ +(κ tanhβ )L−1

κL tanhL
β +1

. (6.61)

9We recall that we restricted to the case 0 < κ < 1.



140 Hidden strong symmetries in the Hubbard deformation

The infinite volume limit becomes〈
X jX j+1 −YjYj+1

〉
L→∞

= κ(2−κ
2) tanh(β ). (6.62)

Having a non-zero mean value for κ ̸= 0 is a clear sign of the breaking of the original U(1)
symmetry.

6.3.3 Dynamics and Gibbs ensemble

Now, we consider the real time evolution from selected initial states,

ρ(t = 0) = ρ0(β )≡
eβQ0

(2coshβ )L . (6.63)

These are the (normalized) steady states (6.8) of the undeformed model (κ = 0). They are
product operators in real space and in the limit β →±∞ they also include pure states obtained
from the reference states with all spins up/down.
We have confirmed that Qκ acts as a strong symmetry: both as a symmetry and a conserved
charge. As a result, the system retains memory, implying that the long-term dynamics
of observables will be affected by the initial state. Additionally, since the resulting non-
equilibrium steady states (NESS) are strong symmetries of the model, they are unaffected by
the coupling parameter U . Thus, we expect that U only influences the rate at which the system
converges towards these NESS. This expectation is supported by numerical simulations of
real-time dynamics for small system sizes, as shown in Fig. 6.1.

In our Lindblad system, we have a single extensive conserved charge Qκ . In analogy
with thermalization in isolated systems, we postulate that in large volumes, the resulting
steady states can be characterized by a Gibbs ensemble of the following form:

ρG ∼ e−λQκ . (6.64)

The conservation of Qκ implies that if a Gibbs ensemble ρG ∼ e−λQκ emerges during
time evolution, then it has to satisfy

Tr
(

ρ0Qκ

)
Tr(ρ0)

=
Tr
(

e−λQκ Qκ

)
Tr
(

e−λQκ

) . (6.65)
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Fig. 6.1 Time evolution of ⟨Z1(t)⟩ from a selected initial density matrix ρ0(β ) (6.63) with
β = 0.5, in a finite volume L = 7. We choose two different deformation parameters κ and
three coupling strengths U . It is seen that the asymptotic values depend only on κ and not on
U , which influences only the speed of convergence. The asymptotic values agree with those
predicted by the exact formula (6.67), therefore they also confirm our postulate about the
emergence of the Gibbs ensemble.

This equation can be used to fix λ using knowledge of the initial state.
For the initial density matrix (6.63), this computation can be performed easily in the infinite
volume limit, yielding Tr(ρ0Qκ) = tanhλ = −(1−κ2) tanhβ . This result can be used to
compute mean values of local observables in the Gibbs Ensemble. We obtain for example
the prediction

lim
t→∞

〈
Z j(t)

〉
= Tr

(
ρGZ j

)
=−

(
1−κ

2) tanhλ = (1−κ
2)2 tanhβ . (6.66)

Remarkably, we also performed an exact finite volume computation to find the asymptotic
mean values. For the observable Z j we find

lim
t→∞

⟨Z j⟩=
(κ2 −1)2 tanhβ (1−2κL tanhL−2

β +κ2L)

(1−κ2L)2 . (6.67)

Due to the extensive nature of this calculation, we report the details in the Appendix D.
We also confirm these values by numerical computation for finite L. Furthermore, by
considering the large volume limit, and 0 < κ < 1, we recover (6.66), thus confirming our
postulate about the Gibbs Ensemble.
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6.4 Summary

In this chapter, we have demonstrated that a system with local jump operators can exhibit
quasi-local symmetries, which have a profound impact on the real-time dynamics. Our
discovery reveal that the NESS of our model can be derived from the NESS of the "Hubbard
Lindbladian" through a similarity transformation using a Matrix Product Operator. Notably,
this transformation is surprisingly compatible with the local jump operators. It is intriguing
to note that the integrability property of the Lindbladians was not utilized in computing the
analytical expression of the NESS. However, the superintegrability of the Hamiltonian played
a crucial role. One possible place where the role of integrability is hidden is in the derivation
of the equation (6.67) to compute the exact finite volume computation of the magnetization.



Chapter 7

Four dimensional Local Hilbert space and
su(2)⊕ su(2) symmetry

In this chapter, we apply the boost automorphism method to classify integrable models where
the local Hilbert space is of dimension 4. A priori, the Hamiltonian ansatz involves 256 free
functions, making it a challenging task to solve the coupled systems of differential equations
using current methods. To overcome this, we limit our focus to models with su(2)⊕ su(2)
symmetry and with a non-difference form R-matrix. The reason for this ansatz is that many
interesting known physical models such as the Hubbard model (discussed in chapter 5),
exhibit this symmetry. We discover five models which, based on our current knowledge,
are new. Furthermore, we demonstrate that the Hubbard model can be classified within our
framework.

7.1 Different embedding

To start, we explain how to construct the ansatz for the Hamiltonian. In this section, we
closely follow the discussion of the paper [35]. In their work, the authors classified models
exhibiting su(2)⊕ su(2) symmetry but characterized by R-matrix of difference form. In the
work [27], we extended it to the non-difference form case.
Our interest lies in models where the Hamiltonian exhibits a su(2)⊕ su(2) symmetry. Given
that our analysis is limited to a local Hilbert space with dimension four, we need to systemat-
ically classify all four-dimensional representations of this semi-simple Lie algebra.
First, we consider the first copy of su(2). There are 5 possible four dimensional representa-
tion of su(2), that are 1⊕1⊕1⊕1,2⊕1⊕1,2⊕2,3⊕1,4. Here, the numbers indicate the
dimensions of each representation within the direct sum. As we are focusing on non-trivial
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representations, we exclude 1⊕1⊕1⊕1.
After having found the explicit matrix representations of the remaining four cases, we focus
on the second copy of su(2). For each of these cases, we consider three general 4× 4
matrices and impose two conditions: firstly, that these matrices form an su(2) algebra, and
secondly, that they commute with the representation of the first su(2) factor. This is enough,
up to some trivial similarity transformations, to uniquely fix the representation of the second
su(2) factor. For this reason, it is enough to label the representation of su(2)⊕ su(2) by the
representation of only one of the factor.
If we fix the representation 3⊕1 for the first factor, we find that the representation of the
second one is 1⊕1⊕1⊕1, hence trivial. We do not consider this case.
Furthermore, due to the isomorphism so(4)∼ su(2)⊕ su(2), we can discard the representa-
tion 4 since it is not independent from 2⊕2. We are only left with 2⊕2 and 2⊕1⊕1, that
are independent and non-trivial. The Hubbard model falls into the second class. We remark
that in chapter 5, we have shown that the Hubbard model has this symmetry. In the current
context, we aim to construct the most general form of the Hamiltonian dependent on one
spectral parameter that exhibits the same symmetry.

We label tL/R
i the first (L) and the second (R) set of generators in su(2)⊕ su(2). They

satisfy

[tL/R
i , tL/R

j ] = εi jktL/R
k . (7.1)

We denote with ρn(t
L/R
i ) the n-dimensional irreducible representation of the generators

tL/R
i . We obtain the following representations.

2⊕1⊕1 The two dimensional representation is embedded as a direct sum, in particular

ρ2⊕1⊕1(tL
i ) = ρ2(tL

i )⊕0 =

(
ρ2(tL

i ) 0
0 0

)
(7.2)

and consequently,

ρ2⊕1⊕1(tR
i ) = 0⊕ρ2(tR

i ) =

(
0 0
0 ρ2(tR

i )

)
. (7.3)

This translates to

ρ2⊕1⊕1(tL
i × tR

i ) = ρ2(tL
i )⊕ρ2(tR

i ). (7.4)
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We fix our ansatz by imposing that for each A ∈ su(2)⊕ su(2), the Hamiltonian density H

satisfies

[H ,ρ2⊕1⊕1(A )⊗1+1⊗ρ2⊕1⊕1(A )] = 0. (7.5)

The Hubbard model belong to this class and the left and right factors correspond to the spin
and charge su(2) symmetries.

2⊕2 In this case, the two dimensional representation is embedded diagonally

ρ2⊕2(tL
i ) = 1⊗ρ2(ti), (7.6)

ρ2⊕2(tR
i ) = ρ2(ti)⊗1. (7.7)

This representation is isomorphic to so(4) via the basis transformation

U =


−i 0 0 i
1 0 0 1
0 i i 0
0 1 −1 0

 . (7.8)

Since the two representations are isomorphic, we only consider 2⊕2.

We start now to illustrate the integrable models of non-difference form type that we found
for the two cases 2⊕2 (we refer to them as so(4) type) and 2⊕1⊕1 (2-D representations).

7.2 so(4) type models

Fixing

[H12,ρ2⊕2(A)⊗1+1⊗ρ2⊕2(A)] = 0, (7.9)

the most general Hamiltonian density underlying this symmetry takes the form

H (θ) = h1(θ)I+h2(θ)P+h3(θ)K +h4(θ)εi jklEik ⊗E jl, (7.10)

where I is the 16×16 identity matrix, P is the permutation operator and K = Ei j ⊗Ei j with
(Ei j)αβ = δi,αδ j,β . Summation over repeated indices is assumed and i, j,k, l = 1, ...,4.



146 Four dimensional Local Hilbert space and su(2)⊕ su(2) symmetry

Integrable Hamiltonian

Using the boost mechanism, we found only one possible integrable Hamiltonian of non-
difference form characterized by

H (θ) = h1(θ)I+h2(θ)(P−K)+h4(θ) εi jkl Eik ⊗E jl. (7.11)

For h4(θ) = 0, this is the non-difference form model corresponding to the usual so(n) spin
chain with n= 4, but here the constant coefficients become functions of the spectral parameter.
The term proportional to h4(θ) is related to the fact that for n = 4 there is an extra invariant
contraction where all indices are contracted with the Levi-Civita symbol. The difference
form model corresponding to this one is model 13 of [35]. For that model, h1, h2, h4 are
constants. However, we remark that if we start from a difference form integrable model
and we promote the coefficient to be functions, integrability via the boost method is not
guaranteed, see discussion in section 5.4.3.

7.2.1 R-matrix

The R-matrix corresponding to (7.11) can be found by following section 2.5 and it is given
by

R = eH1(u,v)
[(

H2(u,v)−
H4(u,v)2

H2(u,v)+1

)
I+P−

H2(u,v)K −H4(u,v)εi jklEik ⊗E jl

H2(u,v)+1

]
, (7.12)

where Hi(u,v) =
∫ u

v hi. Notice that this model is indeed manifestly of non-difference form.
Here, we did not use any of the freedom given by the identification (see section 2.6.1). One
function can be absorbed into a normalization (H1), and one can be used in a reparametriza-
tion, leaving us with one additional free function. Since the dependence of the spectral
parameters always appear in the form Hi(u,v) = Hi(u)−Hi(v), we can refer to this model as
quasi-difference form.

7.3 su(2)⊕ su(2) symmetry with 2-D representations

In this class of model, we consider the four-dimensional representation of su(2)⊕ su(2) in
which both su(2)’s have two-dimensional representation. This class includes the characteris-
tic spin and charge su(2) symmetry of the Hubbard model.



7.3 su(2)⊕ su(2) symmetry with 2-D representations 147

7.3.1 Ansatz for the Hamiltonian and R-matrix

It is straightforward to show that an su(2)⊕ su(2) invariant Hamiltonian density takes the
form

H |φaφb⟩= h1|φaφb⟩+h2|φbφa⟩+h3εabεαβ |ψαψβ ⟩, (7.13)

H |φaψβ ⟩= h4|φaψβ ⟩+h5|ψβ φa⟩, (7.14)

H |ψαφb⟩= h6|ψαφb⟩+h7|φbψα⟩, (7.15)

H |ψαψβ ⟩= h8|ψαψβ ⟩+h9|ψβ ψα⟩+h10εabεαβ |φaφb⟩, (7.16)

where a,b,α,β = 1,2; φ1,2 and ψ1,2 span the two independent su(2) fundamental represen-
tations. If we use the canonical basis ei, i = 1, . . . ,4, with 1 in position i of the vector, and 0
otherwise, and we identify

|φ1⟩= e1, |φ2⟩= e4, |ψ1⟩= e3, |ψ2⟩= e2, (7.17)

the Hamiltonian is

H =



h1 +h2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 h4 0 0 h7 0 0 0 0 0 0 0 0 0 0 0
0 0 h4 0 0 0 0 0 h7 0 0 0 0 0 0 0
0 0 0 h1 0 0 −h10 0 0 h10 0 0 h2 0 0 0
0 h5 0 0 h6 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 h8 +h9 0 0 0 0 0 0 0 0 0 0
0 0 0 −h3 0 0 h8 0 0 h9 0 0 h3 0 0 0
0 0 0 0 0 0 0 h6 0 0 0 0 0 h5 0 0
0 0 h5 0 0 0 0 0 h6 0 0 0 0 0 0 0
0 0 0 h3 0 0 h9 0 0 h8 0 0 −h3 0 0 0
0 0 0 0 0 0 0 0 0 0 h8 +h9 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 h6 0 0 h5 0
0 0 0 h2 0 0 h10 0 0 −h10 0 0 h1 0 0 0
0 0 0 0 0 0 0 h7 0 0 0 0 0 h4 0 0
0 0 0 0 0 0 0 0 0 0 0 h7 0 0 h4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h1 +h2


, (7.18)

where the hi’s are dependent on the spectral parameter θ .
Similarly, since the R-matrix carries the same symmetry of the Hamiltonian, we write

R|φaφb⟩= r1|φaφb⟩+ r2|φbφa⟩+ r3εabεαβ |ψαψβ ⟩, (7.19)

R|φaψβ ⟩= r4|φaψβ ⟩+ r5|ψβ φa⟩, (7.20)

R|ψαφb⟩= r6|ψαφb⟩+ r7|φbψα⟩, (7.21)

R|ψαψβ ⟩= r8|ψαψβ ⟩+ r9|ψβ ψα⟩+ r10εabεαβ |φaφb⟩, (7.22)

where ri = ri(u,v). The matrix representation can be easily obtained by substituting in (7.18)
hi → ri.
We remark that in chapter 5, we wrote the Hubbard model Hamiltonian in terms of σ
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and τ matrices. The two approaches are in fact equivalent. One can explicitly write the
Hamiltonian (7.18) in terms of σ and τ matrices by using (3.21) and perform a Jordan-Wigner
transformation to map to the basis of fermionic oscillators cα

j ,(c
α
j )

† for each lattice site j
with α =↑,↓, satisfying the anti-commutation relations. The Jordan-Wigner transformation
implements the grading on the Hilbert space. In this basis, each 4-dimensional Hilbert space
is spanned by

|φ1⟩= |0⟩, |φ2⟩= (c↑j)
†(c↓j)

†|0⟩= |↕⟩, |ψ1⟩= (c↑j)
†|0⟩= |↑⟩, |ψ2⟩= (c↓j)

†|0⟩= |↓⟩,
(7.23)

with |0⟩ the vacuum state satisfying cα
j |0⟩ = 0. We can then identify |φ1⟩ and |φ2⟩ as

even basis vectors and |ψ1⟩ and |ψ2⟩ as odd basis. So for example, the terms h5 and h7 in
the Hamiltonian are responsible of the propagation of electrons along the chain. Working
with a graded Hilbert space, the Yang-Baxter equation and also the definition of the tensor
product and the trace should be modified accordingly to the graded structure. We do not use
the graded formalism in this chapter, but we refer to chapter 12 of [97] and Appendix A of
[35] for more details.

7.3.2 Integrable Hamiltonians

Following the step of section 2.5, we start from the ansatz for the Hamiltonian (7.18) and
we compute the corresponding density Q3. We then impose the integrability constraint
[Q2,Q3] = 0 and, after solving the set of equations and eliminating the equivalent models
related by the identifications of section 2.6.1, we find a total of eight integrable models of
non-difference form. Six of them have h3 = 0 and two have h3 ̸= 0.

Models with h3 = 0 These models are listed in Table 7.1.
To our best knowledge, except from model 5, all the models are new and we discuss some

of their physical properties. Model 5 is a quadruple embedding of model 6-vertex B given in
the next chapter 8.1.1. This can be seen by applying a constant local basis transformation1

to the Hamiltonian of model 6-V B after the redefinition h5 → 1
2h4h5, and by making the

identifications at the level of the 6-V B model

h3 → g, h4 → h, h4h5 →− f . (7.24)

1The local basis transformation is Vj = X j, with X j the first Pauli matrix
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H h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1
2(θ 2−1)

1
2 0 θ

1−θ 2
±1
2

√
θ+1
θ−1

θ

θ 2−1
±1
2

√
θ−1
θ+1

1
2(1−θ)2

−1
2 c

2 f h 0 g ch
e2F −g he2F

c − f ±h 0

3 f ±h 0 g ch
e2F −g he2F

c h− f 0 0

4 (c1 +2) f 0 0 c1( f −g) c1(c1+2)g
c2e2F (c1 +2) ( f −g) c2e2Fg c1 f 0 0

5 f 0 0 0 g 0 h − f 0 0

6 f −h 0 0 f +h 2h
c e2F h− f 2che2F h− f ±2h 0

Table 7.1 All non-difference models with h3 = 0. c,c1,c2, are constants, f ,g,h,F are θ

dependent functions and F ′ = f .

We notice that, except from model 1, all the others have h10 = 0, so electrons in nearbly
sites of the chain cannot merge.
Furthermore, we analysed for which choices of the free functions and constants, models
1-6 are Hermitian. We found that model 1 can only be made Hermitian if c = 0 and
the dependence on the spectral parameter drops out, models 2 to 6 are Hermitian if we
impose some conditions on the functions, see Table 7.2. More generally, we analysed for
which choice of the functions and constants, the Hamiltonians and their Hermitian conjugate
commutes2. As expected, the conditions in this second case are more general than the
previous case and are given in Table 7.3.

Models with h3 ̸= 0

Model 7 This model is the most general of non-difference form with h3 ̸= 0. In fact,
model 8 can be obtained from this one by performing a double limit. In order to solve this
model, we fix the normalization of the Hamiltonian such that3 h10 = 1. We set h4 = h6 = 0
by using the identifications described in 2.6.1, after which we get the following set of coupled

2The reason for this choice is the following. If [H ,H †] = 0, we can define an Hermitian operator
A = H +H †. Although it is not guaranteed that A is integrable, since H is integrable, we can employ
one of the integrability techniques to identify a set of eigenvectors. Subsequently, we can form a linear
combination of these eigenvectors in such a way that they remain eigenvectors of A. This is only possible since
[A,H ] = [A,H †] = 0.

3This choice is not restrictive. The only case in which h10 cannot be normalized to 1 is when it is equal to
zero. Suppose that h10 = 0 from the beginning, we call H̃ the integrable Hamiltonian corresponding to this
initial ansatz. H̃ is equivalent to model 1 under the transformation

(
P H̃ P

)T . For this reason, h10 = 1 is not
restrictive.
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Model Reality conditions

1 θ = 0, c = 0

2, 3 e4F(r)
= |c|2, f , h ∈ R

4
(

e4F(r)
= c1

(r)(c1
(r)+2)

|c2|2
or e4F(r)

= 1
|c2|2

,c1
(r) =−1

)
, c1, f , g ∈ R

5 g = h∗, f ∈ R

6 e−4F(r)
= |c|2, f , h ∈ R

Table 7.2 Conditions required to make models 1-6 Hermitian. We use the superscript (r) to
indicate the real part of the functions and constants.

Model Unitarity conditions

1 θ (r) = 0, c = 0

2, 3 e4F(r)
= |c|2

4 e4F(r)
= c1

(i)2
+1

|c2|2
,c1

(r) =−1 or e4F(r)
= c1

(r)(c1
(r)+2)

|c2|2
,c1

(i) = 0 or c1 =−1

5 ∀ f ,g,h

6 e−4F(r)
= |c|2

Table 7.3 Conditions required to make the full Hamiltonian H of models 1-6 satisfy
[H ,H †] = 0. We use the superscripts (r) and (i) to indicate the real and the complex
part of the functions and constants.

differential equations

h1 +h8 = h2 +h9 = 0, h8 =
(h5 +h7)

2

4h9
−h9, h3 = h5h7 −h2

9, (7.25)

ḣ5 = 2h7h9 −
h5(h5 +h7)

2

2h9
, ḣ7 =

h7(h5 +h7)
2

2h9
−2h5h9, ḣ9 = h2

7 −h2
5. (7.26)

Summing the first two equations of (7.26) and taking into account the third one, substituting4

h5 =

√
ξ1

(
ξ2

2 −1
)

√
2 ξ2

, h7 =

√
ξ1

(
ξ2

2 +1
)

√
2 ξ2

, (7.27)

4For simplicity, we omit the dependence of ξ1,ξ2,Ξ1 and Ξ2 on the spectral parameter.
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we find that

h9 = 2Ξ1, ξ2 = σ

√
Ξ1

√
8Ξ1 + c1√
ξ1

, (7.28)

where Ξi =
∫

ξi, σ =±1 and c1 is a constant. To find ξ1, we made the substitution (7.27) in
the differential equation for h7 and we get

Ξ1(8Ξ1 + c1)
(

2ξ̇1 − c1Ξ1(8Ξ1 + c1)
)
= ξ

2
1 (16Ξ1 + c1). (7.29)

For general c1, the equation (7.29) can be solved by performing the substitutions Ξ1(u)→
w(u), ξ1(u) → ẇ(u) and ξ̇1(u) → ẅ(u) and we find that the corresponding differential
equation is solved by elliptic functions

ξ1(u) =
i
8

c2
1cs(z|m)ds(z|m)ns(z|m), (7.30)

where z = i
2c1(u+ c2) and m = 8c3

c2
1

, c2,3 are constants. To summarize, we then get (7.25)
together with

h5 −h7 = i
σ

2
c1ds(z|m), h5 +h7 =

σ

2
c1nc(z|m)

(
1−ns(z|m)2) , (7.31)

h9 =−1
4

c1ns(z|m)2. (7.32)

The Hamiltonian found does not depend on any free functions. Since we know that the
Hubbard model exhibits the same symmetry, we should prove that model 7 contains it. In
order to prove this, we compared the Hamiltonian that we found with the one derived from
requiring5 centrally extended su(2|2) symmetry [59]. This spin chain have its origin in the
planar AdS/CFT correspondence, and it contains the one-dimensional Hubbard model as a
special case.

After using an appropriate normalization and shift, the entries of the Hamiltonian of
AdS/CFT are

h1 =−h8, h2 =−h9, h3 =− 1
α2 , h4 = h6 = 0, h10 = 1, (7.33)

5To be precise, we started by considering the S-matrix given in [99]. This satisfies the Yang-Baxter equation.
We constructed the Hamiltonian corresponding to it by using H12 = P12∂uS12(u,v)|u→v, with S12 the ungraded
version of the S-matrix given in [99]. From the point of view of the YBE, all normalizations are equally valid.
In some cases, we can fix the right normalization by requiring some physical properties, for example crossing
symmetry. For this reason, when we compared the two Hamiltonians, we find the match between the matrix
part. The dressing factor (normalization) cannot be found with the boost method and the analytic expression of
it is a very active field of studies of the last decades.
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h5 =
1− x−2

α(x−− x+)

√
x+

x−
, h7 =

x+ẋ−

ẋ+x−
h5, h8 =

(h5 +h7)
2

4h9
−h9, h9 =

1− x−x+

α(x−− x+)
,

(7.34)

where α is a free constant and x+ and x− the Zhukovksy variables. x± can be conveniently
parametrized using elliptic functions [98] as6

x± =−1
4

iℏ(dn(ζ |k)+1)(cs(ζ |k)± i) , k =
16
ℏ2 , (7.35)

we indeed see that the two Hamiltonian densities are the same under

ℏ→ α c1, α
2 → 2

c3
, ζ → i

2
c1(c2 +u), σ = 1. (7.36)

The other choice of σ =−1 is not independent, in fact it can be related to the previous one
by a twist7. There is no extra freedom in our model, the constant c2 can be reabsorbed by
shifting u. Remarkably, our method naturally leads to the elliptic parameterization of the
AdS/CFT S-matrix.

Model 8 Model 8 is not independent from model 7, but it can be obtained as a special
limit of it. However, this limit is somewhat singular, so we explicitly present this case. If we
solve (7.29) for c1 = 0, we get ξ1(u) = c2ec3u and so

h1 = h4 = h6 = h8 = 0, h2 =−2c2ec3u

c3
, h3 =−c3

2

16
, h9 =

2c2ec3u

c3
, (7.38)

h5 −h7 =−σ
c3

2
, h5 +h7 = σ

4c2ec3u

c3
, h10 = 1. (7.39)

It is interesting to notice that the limit c1 → 0 in the Hamiltonian of model 7 is not well
defined because some of the Jacobi functions are divergent in this limit. To find the correct
result, we should take the result for general c1 and then follow the steps below

6The parameter ℏ here is related to the parameter g of [98] as ℏ= 2i
g .

7One can easily see that to make the changes h5 →−h5 and h7 →−h7 in (7.18) we can use the following
constant twist

V =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 , W =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , Hσ=1 = (V ⊗W )Hσ=−1(V ⊗W )−1. (7.37)
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1. Use the relations that relate the Jacobi functions of modulus k with the ones with
modulus 1− 1

k like: ns(i x|k) =−i
√

kcs
(

x
√

k|1− 1
k

)
2. Expand for small c1

3. Rescale c3 → c1

4. Perform a second limit for large u

5. Relabel the constants c1 and c2 to obtain (7.38) and (7.39).

7.3.3 Integrable R-matrices

After solving the Sutherland equations, we successfully found a unique regular R-matrix
corresponding to each integrable Hamiltonian. Most of the equations were straightforward to
solve and we do not explicitly write them here. For model 5, the second-order version of the
Riccati equation appears, similar to the 6-vertex model B discussed in section 8.1.1.
We now present the entries ri given in (7.19)-(7.22) of the R-matrices corresponding to the
different integrable Hamiltonians.
In the following c,c1,c2 are constants, F± = F(u)±F(v) and similarly for G and H, ri =

ri(u,v) and σ =±1. Explicitly, the entries of the R-matrices that we got are

Model 1

r1 =
−r10

√
1+ v

2c
√

r5
√

1+u
, r2 =

−r1r9

r8
, r3 = 0, r4 =±r1

√
u+1
u−1

, r5 =

√
1− v2

√
1−u2

,

(7.40)

r6 =±r1

√
v−1
v+1

, r7 =
1
r5
, r8 =−r4r6

r1
, r9 =

2r8

v−u
, r10 = c(v−u);

(7.41)

Model 2

r1 = H−eF−, r2 = eF−, r3 = 0, r4 = cH−e−F+, r5 = eG−, (7.42)

r6 =
H−eF+

c
, r7 = e−G−, r8 =±H−e−F−, r9 = e−F−, r10 = 0; (7.43)
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Model 3

r1 =±H−eF−, r2 = eF−, r3 = 0, r4 =
c H−
eF+

, r5 = eG−, (7.44)

r6 =
H−eF+

c
, r7 = e−G−, r8 = 0, r9 =

(H−+1)
eF−

, r10 = 0; (7.45)

Model 4

r1 = r3 = r8 = r10 = 0, r2 =

(
(c1 +2)e2G− − c1

)
r7

2
, r4 =

c1(c1 +2)(e2G− −1)r7

2c2e2F(u)
,

(7.46)

r5 = ec1(F−−G−), r6 =
c2

2e2F+r4

c1(c1 +2)
, r7 = e(2+c1)(F−−G−), (7.47)

r9 = e−2F−r2; (7.48)

Model 5

r1 = 0, r2 =
H− f (v)

h(v)
+1, r3 = 0, r4 =

1
H−

− r2r9

H−
, r5 = 1, (7.49)

r6 = H−, r7 = 1, r8 = 0, r9 = 1− H− f (u)
h(u)

, r10 = 0; (7.50)

To solve this model we introduced a reparameterization of the spectral parameter, for which

u 7→ x(u) =
∫ u f ḣ−h ḟ

h( f 2 −gh)
. (7.51)

Only taking this into account, the R-matrix satisfies the YBE and the boundary conditions.
The appearance of a Riccati type equation is not a surprise, in fact this model is a quadruple
embedding of the 6-vertex B type model given in the next chapter.

Model 6

r1 = r3 = r10 = 0, r2 = eF−+H−(1−2H−), r4 =
2H−eH−

c eF+
, r5 = eF−+H−, (7.52)

r6 = 2cH−eF++H−, r7 =
eH−

eF−
, r8 =±2H−

eH−

eF−
, r9 =

eH−

eF−
; (7.53)

Model 7 The R-matrix for this model is the AdS/CFT S-matrix derived in [59, 99] in
the string frame. We can recover the R-matrix for our model by the mapping (7.36).
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Model 8

r1 =
e−

1
4 c3(u+v)

(
c3

2
(

e
c3u

2 − e
c3v
2

)
2 −16c2ec3(u+v) sinh

(1
2c3(u− v)

))
2c32

(
e

c3u
2 + e

c3v
2

) , (7.54)

r2 =
1

cosh
(1

4c3(u− v)
) , r3 =

1
4

c3 tanh
(

1
4

c3(u− v)
)
, r5 = r7 =

r2

r9
=−c3

2r10

16r3
= 1,

(7.55)

r4 =−
e−

1
4 c3(u+v)

(
e

c3u
2 − e

c3v
2

)(
c3

2 −8c2e
1
2 c3(u+v)

)
2c32σ

, (7.56)

r6 =
8c2e

1
4 c3(u+v)

(
e

c3u
2 − e

c3v
2

)
c32σ

− r4, r8 = (r4 + r6)σ + r1. (7.57)

7.4 Comparison between difference and non-difference form
models

su(2)⊕ su(2) symmetry

In order to have a complete classification of the models with su(2)⊕ su(2) symmetry with
local Hilbert space with dimension 4, we compare the models in Table 7.1 with the ones
in Table 1 of [35], using the allowed identifications, i.e. normalization, shift, rescaling and
twists. With this, one can see which non-difference form models constructed here reduce to
the difference form given in [35]. By doing this comparison, we found the correspondence
listed in Table 7.4. We should mention that to verify that model 3 of difference form can
be obtained from model 4 of non-difference form one needs to perform a limit because the
solution is found for c2 = 0 (pole for h5) and c1 =−2. Furthermore, we notice that models 2,
4 and 7 of non-difference form generate more than one independent difference form models
and that models 1 and 3 do not have a difference form version. Finally, models 9, 10 and 11
of [35] cannot be obtained from any non-difference form version, so if we want a complete
classification of 16×16 matrices with su(2)⊕ su(2) symmetry we should add those three
models.
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Difference form Non-difference form

1 4

2 4, 5

3 4

4 3 (h2 = h)

5 2 (h9 = h)

6 6

7 2 (h9 =−h)

8 7

12 7, 8

Table 7.4 Correspondence between difference form models in Table 1 of [35] and non-
difference form of Table 7.1.

so(4) type models

Similar analysis can be repeated for the models of so(4) type. We notice that model 13 of
[35] is the difference form version of model (7.11). However, model 14 (H12 = K) is very
simple and cannot be recovered as a limit of (7.11). To have a complete classification, we
should include it.

7.5 Summary

We give here the full classification of integrable models with su(2)⊕ su(2) symmetry and
non-difference form type. To our best knowledge, five of the discovered models are new.
The Hamiltonian corresponding to them can be made Hermitian for some choices of the
parameters. Furthermore, we showed that the matrix part of the S-matrix of AdS5 × S5

integrable system derived in [59, 99] requiring centrally extended su(2|2) symmetry, can also
be found within our classification. However, we remark that with the boost method, it is not
possible to reproduce the normalization of the S-matrix, known as the dressing factor8. Our
method leads to the elliptic parameterization of it. This model includes the one-dimensional
Hubbard model as a special case, as shown in [144]. To achieve a complete classification of

8In fact, as mentioned in section 2.6.1, the normalization is a transformation that preserves the Yang-Baxter
equation and consequently, for the purpose of the classifications, we considered models related by different
normalizations as the same ones.
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both difference and non-difference form integrable models with this specified symmetry, we
should add to the models that we found in this chapter, also models 9, 10, 11, and 14 from
[35].





Chapter 8

Two-dimensional local Hilbert space and
8-vertex type model

In this chapter, we apply the boost automorphism method to classify integrable models where
the local Hilbert space is C2. Our specific focus is on the ansatz that employs Hamiltonians
of 8-vertex type or lower. We start with a short introduction on vertex models and then we
list the models that we found. Among these models, two can be reduced to a difference form
type and are equivalent to the well-known XXZ and XYZ spin chains. The remaining two
are of non-difference form: the 6-vertex B can be mapped to the solution A of the paper
[36] while the 8-vertex B (to the best of our knowledge) is a new model. We do not list
integrable models of 7-vertex type, as we have proven that they are always a particular case
of the ones of 8-vertex type. Furthermore, we demonstrate that any 4x4 Hermitian integrable
Hamiltonian can be transformed, using the identification outlined in section 2.6.1, into an
8-vertex model. In the Appendix E, we show that the two models of non-difference form
type contain the AdS2 and AdS3 integrable models as special case.

8.1 Few words on vertex model

There is a correspondence between statistical mechanical lattice models in D+1-dimension
and D-dimensional quantum mechanical models, [37]. In a vertex model, each vertex
represents an atom or a particle. In 2-D, every particle is connected to four others. These
connections are represented by edges, and the direction of an arrow on each bond signifies
two possible states for each connected particle. We associate a letter (a,b,c,d) to each of
the four edges of the lattice, and these letters can assume values 1 or 2. The associated
probabilities, denoted as Boltzmann weights, are expressed as Rcd

ab. These weights can be
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represented as entries in a 4x4 matrix, the R-matrix. The integrability of the lattice model
is determined by whether the R-matrix satisfies the Yang-Baxter equation. The problem
of finding Yang-Baxter integrable models can be reformulated as finding which Bolzman
weight corresponds to a solvable lattice. Solving the corresponding integrable model with
one of the integrability techniques, for example the Bethe ansatz, corresponds to calculate
the partition function of the vertex model.
In higher dimensions, it is also possible to define vertex models. However, in this chapter,
our focus is specifically on cases where each edge can have only two possible configurations,
distinguished by the orientation of an arrow pointing either inward or outward from the
vertex. The number of possibilities is 24, that corresponds to an R-matrix with 16 entries.
In this chapter, we restrict to models of 8-vertex type. In this case, there is an even number
of arrow pointing toward the vertex and outward it. The 6-vertex models are included into
the 8-vertex type and for them, the number of arrow pointing inwards and outwards of each
vertex is 2, see figure 8.1.

Fig. 8.1 Graphical representation of the vertices in a 8-Vertex model

The condition to have a model of 6-vertex type is also called ice-rule condition

Rcd
ab = 0 unless c+d = a+b . (8.1)

This condition is inspired by the hydrogen-bond configurations observed in a two-
dimensional sample of ice, which serves as a prototypical example, [183]. When water
freezes, local electrical neutrality requires that each oxygen atom is surrounded by four
hydrogen ions such that two hydrogen atoms are closer to the oxygen atom, and two are
further away. The arrows in the models identify the proximity or distance of the hydrogen
atoms.
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The matrix representation of the vertex given in Figure 8.1 is

R =



r1 0 0 r8

0 r2 r6 0

0 r5 r3 0

r7 0 0 r4


, (8.2)

where ri = ri(u,v).
We start our search of integrable models having the R-matrix of 8-vertex type and conse-
quently also the Hamiltonian, the starting point of the boost automorphism method.

8.1.1 8-and-lower-vertex models

Ansatz for H

The initial ansatz for the Hamiltonian density is

H =h1 I+h2(Z ⊗ I− I⊗Z)+h3σ+⊗σ−+h4σ−⊗σ+

+h5(Z ⊗ I+ I⊗Z)+h6Z ⊗Z +h7σ−⊗σ−+h8σ+⊗σ+ =

h1 +2h5 +h6 0 0 h8

0 h1 +2h2 −h6 h3 0

0 h4 h1 −2h2 −h6 0

h7 0 0 h1 −2h5 +h6


,

(8.3)

where hi = hi(θ).
By using the boost automorphism mechanism, we found four different types of 4×4 Hamil-
tonians that solve the integrability constraints [Q2(θ),Q3(θ)] = 0. We separate these models
in two classes according to their nature: 6 or 8-vertex and we identify with A or B depending
if the model can be reduced to difference form (A) or if it is of non-difference form type
(B). Before applying the method, we are allowed to remove some of the freedom from the
Hamiltonian by using the identification1. In particular

• h1 = 0, corresponds to a shift in the Hamiltonian and it does not affect the commutation
relation

1The classification remains general since those terms can be added later. However, in this way, the set of
equations coming from the integrability constraint [Q2,Q3] = 0 is simpler.
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• h2 = 0, it is the coefficient of a telescopic term that vanishes for closed spin chain.

We list the solutions of the integrability constraint [Q2,Q3] = 0.

6-vertex A

A potentially integrable Hamiltonian is given by

h7 = h8 = 0, h3 = c3h6e4H5, h4 = c4h6e−4H5, (8.4)

where c3,4 are constants and ∂θ H5(θ) = h5.
The given Hamiltonian can be transformed into the XXZ spin chain through a series of
transformations. As follows:

H → H̃ = H +a1I+a2(Z ⊗ I− I⊗Z) → ˜̃H = B1H̃ B−1
1 + Ḃ1B−1

1 → α
˜̃H ,

(8.5)

with

a1 =−2h5 −h6, a2 = h5, α =− 1
2h6

, B1 =

 1 0

0
√

c3e4A5
√

c4

 , (8.6)

recalling c =
√

c3
√

c4, we obtain

α
˜̃H =



0 0 0 0

0 1 c 0

0 c 1 0

0 0 0 0


, (8.7)

which is the Hamiltonian density (2.59) of the example. The corresponding R-matrix is
(2.61).

6-vertex B

By considering

h6 = h7 = h8 = 0, (8.8)
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the Hamiltonian satisfies [Q2,Q3] = 0 for any choice of h1, . . . ,h5. Three out of these five
free functions can be absorbed in the identifications. Specifically, we can set h1 and h2 to
zero as mentioned earlier. We can also redefine h5 as 1

2h4h5 for convenience. After these
transformations, we are left with the following form of the Hamiltonian

H =



h4 h5 0 0 0

0 0 h3 0

0 h4 0 0

0 0 0 −h4 h5


=

h4h5

2
(Z1 +Z2)+h3σ

+
1 σ

−
2 +h4σ

−
1 σ

+
2 (8.9)

We normalize the R-matrix (8.2) such that r5 = 1 and then it follows from the Sutherland
equations (2.30) that

r7 = r8 = 0, r6 = 1, ṙ2 = h4(r1 −h5r2), ṙ4 =−h4(r3 +h5r4), r1r4 + r2r3 = 1,
(8.10)

while r4 satisfies the second order version of the Riccati equation

r̈4 −
ḣ4

h4
ṙ4 +h4r4

[
h3 + ḣ5 −h4h2

5

]
= 0. (8.11)

Since we have not yet utilized the freedom associated with reparameterization, we can
eliminate the linear term in r4 as follow

ui 7→ xi =
∫ ui ḣ5

h4h2
5 −h3

. (8.12)

This reparametrization removes the explicit dependence on h3. It is then straightforward to
solve our system of differential equations to find

r1(x,y) = 1+h5(x)H4(x,y), r2(x,y) = H4(x,y), (8.13)

r3(x,y) = h5(x)h5(y)H4(x,y)−h5(x)+h5(y), r4(x,y) = 1−h5(y)H4(x,y), (8.14)
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where again Hi(x,y) =
∫ x

y hi.
The R-matrix corresponding to this model can be also expressed as

R = H4(x,y)



h5(x) 0 0 0

0 1 0 0

0 0 h5(x)h5(y) 0

0 0 0 −h5(y)


+



1 0 0 0

0 0 1 0

0 1 h5(y)−h5(x) 0

0 0 0 1


. (8.15)

In this way, it is clear that h5 gives rise to the non-difference nature of this solution. This R-
matrix satisfies the Yang-Baxter equation with the correct boundary conditions. In particular,
when h5 is constant the R-matrix reduces to an R-matrix of XXZ type.
This R-matrix is not new because it can be mapped by a twist into the solution A of the pure
colored Yang-Baxter equation considered in [36].

8-vertex A

In the case h6 ̸= 0, the integrability constraint gives that

h3 = h4 = c3h6, h5 = 0, h7 = c7h6, h8 = c8h6, (8.16)

where ci are constants. The resulting Hamiltonian, under our identifications, corresponds to
the XYZ spin chain [5, 83]. In particular, we can apply the following transformation

H → H̃ = (A⊗A)H (A⊗A)−1 → 1
h6

H̃ =



1 0 0
√

c7c8

0 −1 c3 0

0 c3 −1 0
√

c7c8 0 0 1


, (8.17)

where

A =

 4
√

c7
c8

0

0 1

 . (8.18)
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In this way we obtain

1
h6

H =
1
2
(c3 +

√
c7c8)XiXi+1 +

1
2
(c3 −

√
c7c8)YiYi+1 +ZiZi+1, (8.19)

that is the XYZ spin chain.
The R-matrix is more commonly known in the form

R(z) =



q1(z) 0 0 q2(z)

0 q3(z) q4(z) 0

0 q4(z) q3(z) 0

q2(z) 0 0 q1(z)


, (8.20)

with

q1(z) = sn
(
γ + z

∣∣k2 ) , q2(z) = ksn
(
γ
∣∣k2 )sn

(
z
∣∣k2 )sn

(
z+ γ

∣∣k2 ) , (8.21)

q3(z) = sn
(
z
∣∣k2 ) , q4(z) = sn

(
γ
∣∣k2 ) , (8.22)

related to our model (up to a shift by the identity) by the mapping

c3 =
4

cn(γ |k2 )
2 dn(γ |k2 )

2 ,
√

c7c8 =
4ksn

(
γ
∣∣k2 )2

cn(γ |k2 )
2 dn(γ |k2 )

2 , h6 =
1
2

cn
(
γ
∣∣k2 )dn

(
γ
∣∣k2 ) .
(8.23)

8-vertex B

In the case when h6 = 0, we find the following differential equations

ḣ7

h7
=

ḣ3 + ḣ4

h3 +h4
+4

h3 −h4

h3 +h4
h5, (8.24)

ḣ8

h8
=

ḣ3 + ḣ4

h3 +h4
+4

h3 −h4

h3 +h4
h5, (8.25)

ḣ5

h5
=−

h2
3 −h2

4
4h5

+
ḣ3 + ḣ4

h3 +h4
+4

h3 −h4

h3 +h4
h5, (8.26)
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that are solved by

h5 =−1
4
(h3 +h4) tanh(H3 −H4 + c5), (8.27)

h7 = c7
h3 +h4

cosh(H3 −H4 + c5)
, (8.28)

h8 = c8
h3 +h4

cosh(H3 −H4 + c5)
, (8.29)

with ci constant and ∂θ Hi = hi. Without loss of generality2, we can set c5 = 0.
By using the same diagonal local basis transformation (8.18), we can set c8 = c7. We can
also reparametrize the remaining function with

h3 =
1
2

csc(η(θ))(2− η̇(θ)), (8.30)

h4 =
1
2

csc(η(θ))(2+ η̇(θ)), (8.31)

where η is a free function. In this way

H3 −H4 = log
(

cot
(

η(θ)

2

))
. (8.32)

This further results in h7 = h8 = 2c7 := k. To summarize, we get

H =



−cot(η(θ)) 0 0 k

0 0 −1
2 (η̇(θ)−2)csc(η(θ)) 0

0 1
2 (η̇(θ)+2)csc(η(θ)) 0 0

k 0 0 cot(η(θ))


=

− 1
2

cotη(v)(Z1 +Z2)+ k(σ+
1 σ

+
2 +σ

−
1 σ

−
2 )+

η ′(v)+2
2

csc(η(v))σ−
1 σ

+
2

− η ′(v)−2
2

csc(η(v))σ+
1 σ

−
2 . (8.33)

As mentioned in the example, we can use the expansion of R (2.32) in term of the Hamiltonian
to restrict the ansatz for the R-matrix. In particular, we set r5 = r6 = 1 and r7 = r8 for the
R-matrix. The remaining functions are determined from the Sutherland equations and we

2For example we can absorb it into the definition of H4



8.1 Few words on vertex model 167

find

r8(u,v) = k
sn(u− v,k2)cn(u− v,k2)

dn(u− v,k2)
, (8.34)

where sn,cn,dn are the usual Jacobi elliptic functions and

r1 =
1√

sinη(u)
√

sinη(v)

[
sinη+

cn
dn

− cosη+sn
]
, (8.35)

r2 =
1√

sinη(u)
√

sinη(v)

[
cosη−sn+ sinη−

cn
dn

]
, (8.36)

r3 =
1√

sinη(u)
√

sinη(v)

[
cosη−sn− sinη−

cn
dn

]
, (8.37)

r4 =
1√

sinη(u)
√

sinη(v)

[
sinη+

cn
dn

+ cosη+sn
]
, (8.38)

where η± = η(u)±η(v)
2 and where for simplicity we omitted the dependence on u− v of the

Jacobi functions and on the modulus k2, i.e. for all of them sn = sn(u− v,k2).
It can be checked that this solution satisfies the Yang-Baxter equation and has the correct
boundary conditions. To the best of our knowledge, this model is new for arbitrary function
η and constant k and the R-matrix is of proper non-difference form type. In the case where
η is constant, η− vanishes and the model becomes of difference form and reduces to the
well-known solution found in [184, 185, 83].

Off-diagonal model As can be seen from (8.24)-(8.26), the cases where h5 = 0 and
h3 =−h4 need special attention due to possible singularities. In this paragraph, we demon-
strate that we have not overlooked any solutions, and that model 8-vertex B includes these
two models as limiting cases.
We can set h5 = 0 from the beginning and it follows that the Hamiltonian is constant unless
h3 =−h4. We can also see this result by considering the solution found in the general case

h5 =−1
2

cot(η(θ)). (8.39)

h5 = 0 corresponds to take η(θ) = π

2 and as mentioned in the previous case, if η is constant,
the Hamiltonian becomes of difference form type.
Also the case where h3 =−h4 can be recovered from 8-v B, however the procedure is less
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trivial. By applying the method, we found that the entries of the Hamiltonian are

h1 = h2 = h5 = h6 = 0, h7 = c8 h8, h3 =−h4, (8.40)

so the Hamiltonian for this model only has off-diagonal entries. It is possible to recover this
model from the Hamiltonian of 8-vertex B by following the steps:

1. We can apply the off-diagonal constant twist to the Hamiltonian density H8V B with
entries (8.27)-(8.29),

U =

0 a

b 0

 (8.41)

to obtain H̃8V B →U1H8V BU−1
1 . This twist does not satisfy (2.55), so we had to make

sure that the integrability condition [Q2,Q3] = 0 continued to hold also after the twist.
This fixes one entry of the twist as a → s1

√
c8
c7b, with s1 =±1,±i. We selected s = i,

but we remark that to get the correct sign we could have chosen also s =−i, but not
s =±1, as will be clarified in the following. Furthermore, we also had to impose the
following relations between the entries of the Hamiltonian

h3 +h4 =
g(θ)√

1+ sech2(G(θ))
, h3 −h4 = g(θ), (8.42)

with g(θ) an arbitrary function.

2. We apply a diagonal local basis transformation V (θ). In particular by using (2.44),
we first fix V̇V−1 to eliminate the elements in the (2,2) and (3,3) positions of the
Hamiltonian. Then by solving the differential equations, we fixed the matrix V (θ).

3. We get an off-diagonal Hamiltonian density and we checked that the sum of the
elements at position 2,3 and 3,2 is zero3. Moreover the ratio between elements in 1,4
and 4,1 is constant. We can then chose a normalization for example element 3,2 equal
to 1 and then the element 1,1 and 4,4 are equal and are function of g(θ). We then
choose a proper reparametrization and bring this to H8V B.

By doing so, we have recovered model (8.40) from H8V B. Since the twist that we used is
non-standard, it is unclear how to easily lift it to the level of the R-matrix. Nevertheless, it is

3This is the point where the choice of s =±i was done.
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easy to solve the Sutherland equations for this model directly and we obtain

Roff-diag =



coshH3(u,v) 0 0 sinH7(u,v)

0 −sinhH3(u,v) cosH7(u,v) 0

0 cosH7(u,v) sinhH3(u,v) 0

sinH7(u,v) 0 0 coshH3(u,v)


. (8.43)

We see that it is of quasi-difference form, meaning all of the dependence on the spectral
parameters is of the form H3(u)−H3(v) and H7(u)−H7(v).

8.1.2 Hermitian solutions

In this chapter, we gave the classification of integrable models by starting from an Hamilto-
nian of 8-vertex type. However, it is interesting to notice that the 8-vertex models analysed
include also all the possible integrable Hermitian Hamiltonians of 4x4 type.
To clarify this statement, we start from a Hamiltonian density 4x4,

H = h(r)+ ih(i), (8.44)

where h(r) and h(i) are the real and imaginary parts of the entries of the Hamiltonian. All
the functions are now real-valued and the Hamiltonian depends on 32 independent real
functions, which reduces to 16 if we require Hermiticity. We can start from this ansatz for the
Hamiltonian and require [Q2,Q3] = 0. By brute force, we can solve these equations for the
entries of h(r) and h(i) and we can discard all solutions that have complex numbers in them.
In this way, we find all the potentially integrable Hermitian Hamiltonians of 4x4 type. At
this point, we would have to find the R-matrices corresponding to them. However, this was
not necessarily. In fact, we prove that all the solutions that we got are related to the 8-vertex
form under the identifications of section 2.6.1.
The classification of models with 8-vertex type is broader than it may initially appear because
it includes also all 4x4 Hermitian Hamiltonians. However, it is important to note that this
does not imply that the corresponding 8-vertex models themselves are Hermitian.
We can show a simple example to understand better this statement. One of the simplest
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integrable Hermitian Hamiltonian beyond 8-Vertex is

H =



1 α + iβ α + iβ 0

α − iβ 0 0 −α − iβ

α − iβ 0 0 −α − iβ

0 −α + iβ −α + iβ 1


. (8.45)

Applying a local basis transformation and then a twist, this Hamiltonian can be brought into
a non-Hermitian one of 6-V type.

8.2 Summary

In this chapter, we gave a classification of integrable models starting from an ansatz for
the Hamiltonian of 8-vertex type. We discovered four models: two of them were found
to be equivalent to the XXZ and XYZ spin chains, while the other two models exhibited
a non-difference form. Among them, the 6-vertex B can be mapped to the solution A of
the paper [36], whereas the 8-vertex B (to the best of our knowledge) is a new model. In
Appendix E, we show that the two models of non-difference form type contain the AdS2 and
AdS3 integrable models as special case. Additionally, we demonstrate that any 4x4 Hermitian
integrable Hamiltonian can be transformed into an 8-vertex model using the identification
outlined in section 2.6.1. Consequently, the classification we gave, includes all possible 4x4
Hermitian Hamiltonians.



Chapter 9

Free fermion conditions

In this chapter, we demonstrate that the integrable models discussed in chapter 8 exhibit an
interesting relation. Specifically, two of these models satisfy a Baxter relation, while the
other two satisfy a free fermion condition. The latter condition is particularly significant as it
enables us to express the transfer matrix associated with these models in a diagonal form,
simplifying the process of computing eigenvalues and eigenvectors. We explicitly show it for
model 6-Vertex B. Moreover, we find the equivalent of the free-fermion condition for some
of the models with su(2)⊕ su(2) symmetry, discussed in chapter 7.

9.1 Free fermion conditions

The R-matrix corresponding to the models of chapter 8 is (8.2) and satisfies the condition

(r1r4 + r2r3 − r5r6 − r7r8)
2

r1r2r3r4
= const. (9.1)

In particular, models 6-V A and 8-V A are characterized by

const ̸= 0, Baxter condition (9.2)

while 6-V B and 8-V B by

const = 0, Free fermion condition. (9.3)

This last one can be expressed as

r1r4 + r2r3 = r5r6 + r7r8. (9.4)
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One difference about those two classes of models is that: those of class A are of difference
form type while those of class B are not. Another property is that, at the level of the
Hamiltonian, class A models contain the term Z ⊗Z, while class B models do not.
We prove the Baxter and the free fermion conditions both directly and by using the Sutherland
equation, which enables potential generalizations of them to other model types.

9.1.1 Direct computation

Class A: Baxter condition

Up to basic identifications, models from class A correspond to the XXZ and XYZ integrable
spin chain. The R-matrix associated to the 6-V A model is (2.61) and it is easy to check that

(r1r4 + r2r3 − r5r6 − r7r8)
2

r1r2r3r4
=

4
c2 . (9.5)

For 8-V A the R-matrix is (8.20) and we find

(r1r4 + r2r3 − r5r6 − r7r8)
2

r1r2r3r4
= 4cn2(γ,k2)dn2(γ,k2). (9.6)

Therefore, we have demonstrated the validity of the Baxter condition.

Class B: Free Fermion condition

For 6-V B, the R-matrix is (8.15), and the entries obey

r1 r4 + r2 r3 = 1 = r5 r6 + r7 r8. (9.7)

The entries of the R-matrix for the 8-V B model are defined in (8.34)-(8.38). As these
equations involve Jacobi elliptic functions, we provide a detailed calculation. First, we begin
by examining the right-hand side of the equation (9.4)

r5r6 + r7r8 = 1+ k2 sn2 cn2

dn2 . (9.8)

For the left-hand side, the term r1 r4 is

r1r4 =
sin2

η+
cn2

dn2 − cos2 η+sn2

sinη(u)sinη(v)
, (9.9)
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and r2 r3 is

r2r3 =
cos2 η−sn2 − sin2

η−
cn2

dn2

sinη(u)sinη(v)
. (9.10)

This leads us to the expression

r1r4 + r2r3 =
1

sinη(u)sinη(v)

[(
sin2

η+− sin2
η−
) cn2

dn2 −
(
cos2

η+− cos2
η−
)

sn2
]

=
cn2

dn2 + sn2. (9.11)

By using the identities 1− k2sn2 = dn2 and 1 = cn2 + sn2, we can establish the equality
between the two expressions.

9.1.2 Prove using the Sutherland equation

In this section, we prove that any integrable R-matrix of 8-vertex1 type satisfies the gener-
alised condition (9.1). We will prove this by using the Sutherland equations (2.30)-(2.31).
We assume that the Hamiltonian associated to the R-matrix is also general and it is given by
(8.3). In this section, the integrability property is included in the fact that the R-matrix and
the Hamiltonian corresponding to a given model obey the Sutherland equations.
We consider the R-matrix to be of non-difference form and we use the shortcuts ri = ri(u,v)
and hi = hi(u).
To prove the relation (9.1), we follow the steps

1. Substitute (8.2) and (8.3) into the Sutherland equations.

2. Solve for the derivatives ṙi and r′i in terms of hi and ri (without actually solving the
differential equations).

3. Then, solve for some of the hi’s in terms of ri.
1By saying 8-vertex, we refer to models which contain up to 8-vertex.
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Remarkably, by doing this, one obtains the following set of conditions on the coefficients of
the R-matrix

r1r4 + r2r3 − r5r6 − r7r8

r2r4
= f (u), (9.12)

r1r4 + r2r3 − r5r6 − r7r8

r1r3
= g(u) (9.13)

r1r4 + r2r3 − r5r6 − r7r8

r3r4
= g(v), (9.14)

r1r4 + r2r3 − r5r6 − r7r8

r1r2
= f (v), (9.15)

where f (u) and g(u) are functions of hi(u).
By multiplying (9.12) and (9.13) and then also (9.14) and (9.15), we can see that

(r1r4 + r2r3 − r5r6 − r7r8)
2

r1r2r3r4
= f (u)g(u) = f (v)g(v), (9.16)

and hence proving that equation (9.1) holds. Since the Sutherland equations (2.30)-(2.31) are
obtained as a derivative of the Yang-Baxter equation, we proved that all integrable R-matrices
of the form (8.2) belong to one of the two classes A and B.

9.2 Why is the free fermion condition important?

We have proven that all the 8-V type models found in the previous section satisfy either the
Baxter condition or the free fermion condition. Specifically, the non-difference form models
satisfy the free fermion condition.
In this section, we explain the importance of this condition and why it is highly useful. It
also become evident how the name free fermion originated.
Many examples of models following the free fermion condition can be found in the literature.
For instance in [186, 187], the Hamiltonians and transfer matrices of the XY chain and of
Ising-type chain were written in a form that manifestly displays their free fermion nature. To
achieve this, a particular transformation of the canonical spin-chain operators is performed.
In this section, we follow these ideas and find the appropriate canonical transformation to
make the transfer matrices of our models explicitly of free fermion type.
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9.2.1 6-Vertex B

We begin with the 6-vertex B model and examine an R-matrix of the form (8.2) with
r7 = r8 = 0. We choose a basis for the Hilbert space given by one boson |φ⟩ and one fermion
|ψ⟩,

|φ⟩ ≡ |0⟩, |ψ⟩ ≡ c†|0⟩, c|0⟩= 0, (9.17)

where we introduce canonical fermionic creation and annihilation operators c† and c, respec-
tively, such that

{c,c†}= 1, {c,c}= {c†,c†}= 0, (9.18)

or whenever we work with multiple spaces

{ci,c
†
j}= δi j, {ci,c j}= {c†

i ,c
†
j}= 0. (9.19)

We have to consider the fermionic nature of this operator. There are two equivalent approaches
to do this. The first involves employing the Jordan-Wigner transformation2 (5.9). The second
approach, which we adopt in this section, involves considering the graded vector space.
In vector representation, we can associate

|φ⟩= |1⟩= e1, |ψ⟩= |2⟩= e2, (9.20)

and for the creation operator

c† = E21, c = E12, m ≡ cc† = E11, n ≡ c†c = E22, (9.21)

where n is the usual number operator and Ei j are matrices with only one non-zero entry 1
in position (i, j).
The grading operates in such a way that the anticommutator relations are satisfied. In
particular, we can identify |0⟩= |φ⟩⊗ |φ⟩

c†
1c†

2|0⟩=−c†
2c†

1|0⟩, (9.22)

which is the equivalent to

[E21 ⊗1][1⊗E21]|φ⟩⊗ |φ⟩=−[1⊗E21][E21 ⊗1]|φ⟩⊗ |φ⟩. (9.23)

2In this case, as we are dealing with a spin 1/2 chain, we consider the transformation of the σ matrices only.
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The R-matrix can be written in terms of oscillators in the following form3

R(osc)
i j (u,v) = r1mim j + r2nim j + r3min j − r4nin j − r5cic

†
j + r6c†

i c j, (9.24)

where we suppressed the explicit dependence of ri on (u,v) and i and j indicate the spaces in
which the operators are acting. Suppose the R-matrix is regular, i.e. R(u,u) = P, with P being
the graded permutation operator, then the Hamiltonian density is given by the logarithmic
derivative of the R-matrix

H
(osc)

i j = Pi j∂uR(osc)
i j (u,v)

∣∣∣
v=u

. (9.25)

It is convenient to associate, for simplicity, hi = ∂uri|u→v. In the oscillator formalism, the
Hamiltonian is4

H
(osc)

12 = h1 +(h6 −h1)n2 − (h1 +h5)n1 − (h1 +h4 −h5 −h6)n1n2 +h3c†
2c1 +h2c†

1c2.

(9.26)

On the level of the Hamiltonian, the free fermion condition (9.4) imposes that5

h1 +h4 −h5 −h6 = 0, (9.27)

which eliminates the n1n2 term.

9.2.2 Solving homogeneous spin-chains with Free Fermions

We consider the Hamiltonian (9.26) for a spin-chain of length L. We apply our non-local free
fermion transformation to diagonalize this Hamiltonian. We note that it is enough to consider
the one-particle sector since this will induce a canonical map between the oscillators c,c†

and a new set of operators. The purpose of this mapping is to recast the Hamiltonian in a
manifest free fermion form. We denote these new operators as χ,χ† and they will still satisfy
canonical anticommutation relations. Restricted to this subsector, our Hamiltonian takes the

3Notice that this R-matrix satisfies the graded YBE. For explicit expressions, we recall Appendix A of [35].
4Notice that here we use for convenience a difference ansatz for the Hamiltonian compared to (8.3). Now,

we label the entries of the Hamiltonian exactly as the R-matrix up to identification ri → hi.
5The extra signs come from grading, since grading was not considered in (9.4).
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simple form

H(1pt) =



h6 +h5 h2 0 0 . . . 0 h3

h3 h6 +h5 h2 0 . . . 0 0

0 h3 h6 +h5 h2 . . . 0 0

0 0 h3 h6 +h5 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . h6 +h5 h2

h2 0 0 0 . . . h3 h6 +h5



. (9.28)

The eigenvalues and eigenvectors of H(1pt) can now be easily computed. By considering
spin chains of different lengths, it is easy to convince ourself that the eigenvectors ℓ⃗ and
eigenvalues λ are of the form

λ = h6 +h5 +h2z+h3z−1, ℓ⃗= (1,z,z2, . . .zL−1), (9.29)

with zL = 1. This means that there are exactly L eigenvectors parameterised by the Lth roots
of unity and we can write the canonical transformation using z = e

2πik
L for k = 1, ...,L

ck =
1√
L

L

∑
n=1

e2πi kn
L χn, c†

k =
1√
L

L

∑
n=1

e−2πi kn
L χ

†
n . (9.30)

By considering these transformations into (9.26) and summing over all the sites of the spin
chain, we obtain the Hamiltonian6

H= h1L+
L

∑
n=1

[
(h2 +h3)cos

2πn
L

+ i(h2 −h3)sin
2πn

L
−h1 +h4

]
χ

†
n χn, (9.31)

which is now manifestly diagonal. Moreover, we can show that this canonical transformation
also diagonalizes the full transfer matrix.
For a graded model, the trace should be substituted with the supertrace and the transfer matrix
is

t(θ0, θ⃗) = str0
[
R01(θ0,θ1) . . .R0L(θ0,θL)

]
. (9.32)

6We recall that we are working with periodic boundary conditions.



178 Free fermion conditions

The parameters θi are the local inhomogeneities and θ0 is the spectral parameter associated
with the auxiliary space. In case all the rapidities coincide θi = θ , then the first logarithmic
derivative corresponds to the nearest-neighbour Hamiltonian (9.26). For generic inhomo-
geneities, all the conserved charges have interaction range L. In this paragraph, we consider
only the homogeneous case and we refer to the paper [38] for the inhomogeneous one.
We computed the expression of the transfer matrix for different values of the length of the
chain and we recognized the general structure for any L. We observe that the free fermion
condition was needed only from L = 4. By computing the transfer matrix for different values
of L, we recognize the following structure

tL =−
L−1

∏
k=0

[
(r1 − r3e

2πik
L )Mk+1 +(r2 + r4e

2πik
L )Nk+1

]
, (9.33)

where

Ni = χ
†
i χi, Mi = χiχ

†
i . (9.34)

This transfer matrix is now manifestly diagonal in the new operators χ and χ† and takes
a factorised form, which reminds us of separation of variables. Because of this factorised
form, we can exponentiate it and read off the conserved charges

tL =−exp
[
iψL +∑

k
iωkNk

]
, (9.35)

where

iψL = log(rL
1 − rL

3), iωk = log
[

r2 + e
2πik

L r4

r1 − e
2πik

L r3

]
. (9.36)

Since all the number operators commute, the exponent is well-defined. By using the free
fermion transformation, we saw that the expression of the transfer matrix is very compact
and elegant. Furthermore, it is very intuitive to solve the eigenvalue problem.
We show this with an example. For simplicity, we consider the case of L = 2. Even if the
AdS/CFT models are not the primary focus of this thesis, in Appendix E we show that 6-V B
model is related to AdS3. For the case of pure Ramond-Ramond massless AdS3,

ω1 = π, ω2 = 0, (9.37)
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and we obtain

t2 =−eiψ2eiω1N1 = eiψ2
[
1+N1

∞

∑
n=1

(iω1)
n

n!

]
= eiψ2

[
1+N1(eiω1 −1)

]
= eiψ2

[
1−2N1

]
,

(9.38)

by using the standard property N†
i = Ni. For AdS3, eiψ2 = cosh θ12

2 .
This makes the eigenvalue problem very easy since it is a matter of adding free fermion
energy. The additive structure of the transfer matrix is now manifest, while it was previously
hidden in the standard formalism. Note that we could have added the piece "0N2" inside the
square bracket to show that the transformation we have introduced completely diagonalises
the transfer matrix on the two physical spaces.
Furthermore, also the eigenvector problem has an intuitive solution. In fact, from (9.30)

χ1 =
1√
2
(−c1 + c2), χ2 =

1√
2
(c1 + c2), (9.39)

it is clear that both η1 and η2 still annihilate the state |0⟩ = |φ⟩ ⊗ |φ⟩. This state is an
eigenstate of the transfer matrix t2 with eigenvalue eiψ2 .
The other eigenstates are

χ
†
1 |0⟩=

1√
2

(
|φ⟩⊗ |ψ⟩+ |ψ⟩⊗ |φ⟩

)
, eigenvalue, −eiψ2 (9.40)

χ
†
2 |0⟩=

1√
2

(
|φ⟩⊗ |ψ⟩− |ψ⟩⊗ |φ⟩

)
, eigenvalue eiψ2, (9.41)

χ
†
1 χ

†
2 |0⟩= |ψ⟩⊗ |ψ⟩, eigenvalue − eiψ2. (9.42)

Generalize this results for any L is straightforward.
In the paper [38], we comment on the application of the free fermion technique to the 8-Vertex
B model. However,we did not find a closed expression for the transfer matrix that works for
any length L, so we will not report this result here.

9.3 Free fermion condition for AdS5 sector

In this section, we apply the approach discussed in Section 9.2 to obtain a free fermion
condition for the case of a 4-dimensional Hilbert space. We focus on the class of model
whose Hamiltonian and R-matrix exhibit su(2)⊕ su(2) symmetry [35, 27], in particular
where both su(2) have a two dimensional representation. We discussed these models in
chapter 7. This class of models is particularly important because it contains some non-
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difference form model like the AdS5 ×S5 superstring sigma model7, the one-dimensional
Hubbard model and some difference form one like the su(4) spin chain.
To achieve this, we follow the procedure outlined in Section 9.1.2. We use the ansatz (7.18)
for the Hamiltonian density, and similarly for the R-matrix we replace the hs with rs. We first
substitute them in the Sutherland equations (2.30)-(2.31) and we solve for the derivatives ṙi

and r′i without explicitly solving the differential equations. By carefully choosing the order
of solutions, we ensure that divergences are properly handled. To accomplish this, we used
the list of models in [27] as test. In particular, if those models did not exhibit a singular point
for the specific variable considered, we consider that variable always different from zero.
In this way, we can keep the divergences under control and choose the correct branch of
solutions8. Specifically, we obtain the following simple conditions

h3(v)r10r5 = h10(v)r3r7, (9.43)

h3(u)r10r7 = h10(u)r3r5. (9.44)

Now, we can proceed by considering the two cases r3 ̸= 0 and r3 = 0. These two cases
correspond to the analyses conducted in chapter 7, with h3 ̸= 0 and h3 = 0.

9.3.1 Case r3 ̸= 0

This class of models includes the one-dimensional Hubbard model and the S-matrix derived
from requiring centrally extended su(2|2) symmetry of the AdS5 × S5 superstring sigma
model [59, 98, 99]. We find

r2
4 − r1(r1 + r2)

r3r7
=

h2(v)
h3(v)

, (9.45)

r2
6 − r8(r8 + r9)

r3r7
=

h9(v)
h3(v)

, (9.46)

r2
6 − r1(r1 + r2)

r3r5
=

h2(u)
h3(u)

, (9.47)

r2
4 − r8(r8 + r9)

r3r5
=

h9(u)
h3(u)

. (9.48)

We remark that since r3 ̸= 0, h3 is also non-zero, which avoids the problem of divergences.
Furthermore, in all the models from [27] that fall into this category, r5 and r7 are non-zero.

7This statement is clarified in the footnote 5 of section 7.3.2.
8Some equations in fact can be factorised in the form f g = 0, with f and g functions of the ris. We used the

test model of [27] to select whether the solution was f = 0 or g = 0. By choosing different classes of models,
some choices would probably have been different.
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After solving some of the equation obtained from the first Sutherland equation (2.30) for the
hs and plugging the solutions into the others, we are left with four conditions

r4r6 + r1r8 = r3r10, (9.49)

r5r7 − r4r6 = (r1 + r2)(r8 + r9) , (9.50)

r3r10 + r5r7 = r2r9, (9.51)

(r1 + r8)(r1 + r2 + r8 + r9) = (r4 − r6)
2 . (9.52)

It can be shown that these four conditions could have been similarly derived from the second
Sutherland equations. We notice that (9.49)-(9.51) were obtained also in [188]. However,
we find the additional condition (9.52).
By using the regularity condition R(u,u) = P and from the definition of the Hamiltonian, we
can derive that (9.49)-(9.52) impose some very simple constraints on the Hamiltonian

h1 +h8 = h4 +h6, (9.53)

h2 =−h9, (9.54)

h5h7 +h2h9 = h3h10. (9.55)

Specifically, (9.53) and (9.54) were derived by differentiating (9.51) and (9.52), (9.55) by
differentiating (9.49) twice. Furthermore, differentiating two times and combining (9.49)-
(9.52), in order to get rid of the second derivatives, we also got

(h5 +h7)
2 = (h2 −h9)(h1 +h2 −h8 −h9) .

9.3.2 Case r3 = 0

One can check that the case r3 = 0 and r10 ̸= 0 satisfies (9.49)-(9.52) as well. Hence, we can
restrict to the case where r10 = 0. Analyzing this case leads to a set of factorised equations

r1

r6
=

h2(v)
h7(v)

,
r8

r4
=

h9(v)
h5(v)

,
r1r5r7

r2
2r4

=
h2(v)
h5(v)

, (9.56)

r1

r4
=

h2(u)
h5(u)

,
r8

r6
=

h9(u)
h7(u)

,
r1r5r7

r2
2r6

=
h2(u)
h7(u)

. (9.57)

Plugging the solutions for the hs into the Sutherland equations, we should consider four
possible subcases separately: r1 ̸= 0r8 ̸= 0, r1 ̸= 0r8 = 0, r1 = 0r8 ̸= 0 and r1 = 0r8 = 0.
We observe that the subcase r1 = 0r8 ̸= 0 can be recovered from r1 ̸= 0r8 = 0 by performing
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an off-diagonal basis transformation9 on the R-matrix and on the Hamiltonian.
The subcases to be considered are then

Subcase r1 ̸= 0,r8 ̸= 0

We obtain

r5r7 = r2r9, (9.58)

r4r6r9 = r2r2
8, (9.59)

r2
1r2

9 = r2
2r2

8. (9.60)

These imply (9.53) on the entries of the Hamiltonian, along with the additional conditions
h2

2 = h2
9, h2

5h2
7 = h2

9.

Subcase r1 ̸= 0,r8 = 0

In this case, the entries of the R-matrix satisfy

r2
2r4r6 = r2

1r5r7, (9.61)

r4r5r6r7 = (r5r7 − r2r9)
2. (9.62)

On the Hamiltonian

h5h7 = h2
2, (9.63)

h5h7 = (h1 −h4 −h6 +h8)
2. (9.64)

Subcase r1 = 0,r8 = 0

There are two possibilities. If

h5(v)r6r9 = h7(v)r2r4 and h7(u)r4r9 = h5(u)r2r6 (9.65)

there are no additional conditions on the entries of the R-matrix. If (9.65) are not verified,
we obtain the condition

r4r6 − r5r7 + r2r9 = 0 (9.66)

9The action of this off-diagonal basis transformation is to swap g1 ↔ g8,g3 ↔ g10,g2 ↔ g9,g4 ↔ g6,g5 ↔
g7, where g is either h or r.
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that implies on the Hamiltonian (9.53).
In the following section, we show how to rewrite the Hamiltonian to make the free fermion
nature explicit.

9.3.3 Towards a free fermion Hamiltonian

Here we mainly follow section 9.2 and [186, 187]. As for the chapter 7, the Hilbert space
is four dimensional and is spanned by two bosons |φ1,2⟩ and two fermions |ψ1,2⟩. Like in
(7.23), we introduce two sets of canonical fermionic creation and annihilation operators
c†

α, j,cα, j where α =↑,↓ is the spin and j is the site of the chain (running from 1 to the chain
length L). If we denote the vacuum by |0⟩ such that cα, j|0⟩= 0, then our local Hilbert space
is spanned by

|φ1⟩= |0⟩, |φ2⟩= c†
↑, jc

†
↓, j|0⟩, |ψ1⟩= c†

↑, j|0⟩, |ψ2⟩= c†
↓, j|0⟩. (9.67)

These oscillators satisfy the usual anti-commutation relations

{c†
α,i,cβ , j}= δαβ δi j, {cα,i,cβ , j}= 0, {c†

α,i,c
†
β , j}= 0, (9.68)

where α and β can be either ↑ and ↓. The R-matrix (7.19)-(7.22) can be written completely
in term of oscillators

R(osc)
12 = ∑

{α,β}={↑,↓},
{↓,↑}

[
(c†

α,1cα,2 + cα,1c†
α,2)(C1 +C2(nβ ,1 −nβ ,2)

2)+

(c†
α,1cα,2 − cα,1c†

α,2)(C3(nβ ,1 −
1
2
)+C4(nβ ,2 −

1
2
))
]

+(c†
↑,1c†

↓,1c↑,2c↓,2 + c↑,1c↓,1c†
↑,2c†

↓,2)C5 +(c†
↑,1c↓,1c†

↓,2c↑,2 + c†
↓,1c↑,1c†

↑,2c↓,2)C6

+C7(n↑,1 −
1
2
)(n↓,1 −

1
2
)+C8(n↑,2 −

1
2
)(n↓,2 −

1
2
)

+C9(n↑,1 −n↓,1)2(n↑,2 −n↓,2)2+

+(C5 −C6)(n↑,1n↓,1 +n↑,2n↓,2 −1)(n↑,1 −n↑,2)(n↓,1 −n↓,2)

+
1
2

C5((n↑,1 −n↓,2)2 +(n↓,1 −n↑,2)2)+C0, (9.69)
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where nα,k ≡ c†
α,kcα,k, C0, . . . ,C9 are functions dependent on the parameters (u,v) and

related to the ri in the following way

C0 =
1
2
((r4 + r6)s2 + r2) ,C1 =

1
2
(r7 − r5) ,C2 =

1
2
(r5 − r7 − s1(r3 + r10)) ,

C3 =
1
2
(s1(r3 − r10)+ r5 + r7) ,C4 =

1
2
(r5 + r7 − s1(r3 − r10)) ,C5 =−r2,C6 =−r9,

C7 =−2r6s2 +2r1 + r2,C8 =−2r4s2 +2r1 + r2,C9 =−(r4 + r6)s2 + r1 + r2 − r8 − r9,

(9.70)

s1 and s2 are arbitrary signs10.
By taking the logarithmic derivative of the R-matrix, we get the following expression for the
Hamiltonian

H
(osc)

12 = (h2 +h9)

[
∑

α={↑,↓}
nα,2nα,1 −

(
n↑,1 +n↓,1

)
n↑,2n↓,2 −

(
n↑,2 +n↓,2

)
n↑,1n↓,1+

2n↓,1n↑,1n↓,2n↑,2
]
+(h1 −h4 −h6 +h8)

[(
n↑,2 +n↓,2

)(
n↑,1 +n↓,1

)
−

2
(
n↑,1 +n↓,1

)
n↓,2n↑,2 −2

(
n↑,2 +n↓,2

)
n↓,1n↑,1 +4n↓,1n↑,1n↓,2n↑,2

]
+H

(1pt)
12 +

H
(2pt)

12 − [(h5 +h7)s2 +(h10 −h3)s1]H
(3pt)

12 , (9.71)

where we explicitly separate H
(k pt)

12 as subsectors with k-particles. This is possible since

[nTOT ,H
(osc)

12 ] = 0, nTOT = ∑
α={↑,↓}

nα,1 +nα,2, (9.72)

so the total number of particles is conserved. The k-particle subsectors are represented by

H
(1pt)

12 =
((

c†
↑,1c↑,2 + c†

↓,1c↓,2
)

h5 +
(

c†
↑,2c↑,1 + c†

↓,2c↓,1
)

h7

)
s2 +h6

(
n↑,1 +n↓,1

)
+h4

(
n↑,2 +n↓,2

)
− (h1 +h2)(−1+nTOT ) ,

H
(2pt)

12 = f (↑,↓)+ f (↓,↑)−
(

c†
↓,1c†

↑,1c↓,2c↑,2 + c†
↓,2c†

↑,2c↓,1c↑,1
)

h2

+n↓,2n↑,2(2h1 +h2 −2h4)+n↓,1n↑,1(2h1 +h2 −2h6),

H
(3pt)

12 = n↑,1n↑,2
(

c†
↓,1c↓,2 − c†

↓,2c↓,1
)
+n↓,1n↓,2

(
c†
↑,1c↑,2 − c†

↑,2c↑,1
)
,

(9.73)

10Interestingly, using oscillators, the arbitrariness of s1 and s2 naturally emerges. s1 and s2 can be understood
as a local basis transformation (s1) and a twist (s2).
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with f defined

f (α,β ) = (h10s1 −h5s2)nα,1c†
β ,1cβ ,2 − (h3s1 +h5s2)nβ ,2c†

α,1cα,2 − (h10s1 +h7s2)nα,2c†
β ,2cβ ,1

+(h3s1 −h7s2)nβ ,1c†
α,2cα,1 +h9c†

α,1c†
β ,2cα,2cβ ,1 +h2nβ ,2nα,1.

(9.74)
We focus on the case where r3 ̸= 0 (section 9.3.1) since it contains the one-dimensional
Hubbard model and the S-matrix of AdS5 × S5. By using (9.53) and (9.54), we should
diagonalise

H
(osc)

12 = H
(1pt)

12 +H
(2pt)

12 − ((h5 +h7)s2 +(h10 −h3)s1)H
(3pt)

12 . (9.75)

Similarly to (9.30), we can write the canonical transformation

cα,k =
1√
L

N

∑
n=1

e2πi kα n
L χα,n, c†

α,k =
1√
L

L

∑
n=1

e−2πi kα n
L χ

†
α,n. (9.76)

This is again the natural map since for periodic chains the one-particle eigenstates are simple
plane waves. Then, considering H(k pt) = ∑

L
i=1 H

(k pt)
i,i+1 ,

we arrive at

H(1pt) = (h1 +h2)L+L
L

∑
n=1

(h4 +h6 −2(h1 +h2))Nn

+ s2L
L

∑
n=1

(
(h5 +h7)cos

(
2πn

L

)
+ i(h5 −h7)sin

(
2πn

L

))
Nn,

(9.77)

where Nn = ∑α={↑,↓}Nα,n, Nα,n = χ
†
α,nχα,n and

H(2pt) =
L

∑
n,m=1

(
2h2 cos

(
2π(m+n)

L

)
+(2(2h1 +h2)−2(h4 +h6))

)
N↓,nN↑,m

+
L

∑
n,m=1

4h2 cos2
(

π(n−m)

L

)(
N↓,nN↑,m +N↑,nN↓,m

)
−

L

∑
n,m=1

2
(

s2 (h5 +h7)cos
(

2πm
N

)
+ isin

(
2πm

N

)
((h3 −h10)s1 +(h5 −h7)s2)

)
(
N↓,nN↑,m +N↑,nN↓,m

)
.

(9.78)
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We are left with finding H(3pt). After applying the canonical transformation (9.76), we were
able to get a closed expression for L = 4,5 and we generalized it for arbitrary L,

H(3pt) = i ∑
{α,β}={↑,↓},

{↓,↑}

[ L

∑
n=1

Nα,n sin
(

2πn
L

)][
ψ

L

∑
i=1

(
A(β )

i,i+1,i+L−1,i+2 +A(β )
i+2,i+L−1,i+1,i

)

+

(
S1

L

∑
i=1

Nβ ,iNβ ,i+1 +S2

L

∑
i=1

Nβ ,iNβ ,i+2

)]
,

(9.79)
where A(β )

a,b,c,d = χ
†
β ,a χ

†
β ,b χβ ,c χβ ,d , ψ , S1 and S2 are constants dependent on L. We can see

that H(3pt) is not diagonal. The coefficient of H
(3pt)

12 in (9.71) is −((h5 + h7)s2 +(h10 −
h3)s1). Since H(3pt) is not diagonal, if this coefficient is zero, our Hamiltonian will be
explicitly of free fermion type. We evaluated it for the various models of [27], in particular
for model 7 (AdS5 × S5) and model 8 (which can be obtained from model 7 by taking a
double limit). We found that for model 7, ((h5 +h7)s2 +(h10 −h3)s1) is not 0. For model 8,
it can be easily shown that ((h5 +h7)s2 +(h10 −h3)s1) = k, where k is a constant. With a
constant diagonal local basis transformation on the Hamiltonian, we can send h10 → ζ h10

and h3 → h3
ζ

, with ζ constant, so the coefficient of the term H(3pt) can be put to zero. In this
case the Hamiltonian is diagonal and we obtained that a double limit of the Hamiltonian11

AdS5 ×S5 is manifestly free fermion type.
Furthermore, we can notice that also the Hamiltonians of model 8 and 12 of the difference
form classification [35] verify the conditions12 (9.53) and (9.54) and with a diagonal local
basis transformation the coefficient of H(3pt) can be set to zero. In these two cases the
Hamiltonians are also of free fermion type. For model 12 this is not surprising since it
corresponds to the free Hubbard model (i.e. with only the kinetic term) [97]. However,
model 8 is a new model of difference form type in which electrons can only propagate when
they are in pair. We believe that the free fermion nature of this model may help to analyze
the spectrum and we reserve this analysis for future studies.

9.4 Summary

In this chapter, we have established that the models 6-V A and 8-V A, discussed in chapter
8, satisfy the Baxter relation. On the other hand, models 6-V B and 8-V B exhibit a free
fermion condition. The difference between those two classes of model is that class A are of

11We refer to the footnote 5 of section 7.3.2 for the meaning of the Hamiltonian of AdS5 ×S5.
12We mention that (9.53) and (9.54) together with ((h5 +h7)s2 +(h10 −h3)s1) = 0 are the only conditions

used to make the Hamiltonian (9.71) free fermion type.
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difference form and their Hamiltonian has the term Z ⊗Z, while models of class B are of
non difference form. We have demonstrated that the free fermion condition enables us to
express the transfer matrix associated with the 6-V B model in a diagonal form, simplifying
the computation of eigenvalues and eigenvectors. This was previously hidden in the standard
formalism. We have explicitly shown this for the case of AdS3 massless sector of the
pure Ramond-Ramond flux. Furthermore, we have identified the equivalent free fermion
conditions for certain models with su(2)⊕ su(2) symmetry discussed in chapter 7. We
obtained that the Hamiltonian of model 8 (corresponding to a limit of the ones obtained by
requiring centrally extended su(2|2) symmetry, [98, 99]) exhibits a free fermion nature and
can be made explicitly diagonal. Additionally, we have discovered that a new integrable
model of difference form type presented in [35] (model 8), also possesses this property. We
believe that these findings may provide an intuitive approach to performing the nesting Bethe
ansatz, although we reserve these considerations for future studies.





Conclusions and open questions

In this thesis, we used the boost operator to establish a systematic methodology for classifying
quantum integrable spin chains characterized by a regular R-matrix of non-difference form.
As mentioned, traditional approaches to classifying integrable models focus on the search
of the R-matrix, which is a solution to the Yang-Baxter equation, and utilize it to construct
the transfer matrix. The transfer matrix generates all the conserved charges of the integrable
model. However, our approach differs in that we start with an ansatz for the Hamiltonian Q2

and impose constraints to ensure its compatibility with an integrable model. The crucial step,
as explained in chapter 2, consists in using the boost operator to construct Q3, which depends
on Q2. The integrability constraints impose that [Q2,Q3] = 0. We impose the results of this
constraint on Q2 and subsequently use it to derive the corresponding R-matrix. In this way,
the integrability of the models found is guaranteed.
The primary strength of this method lies in its versatility and wide-ranging applicability
across various contexts. The selection of the ansatz depends on several factors, such as the
focus on Hamiltonians with specific symmetries or particular properties.

In chapter 3, we present one of the main result of this thesis: the application of the boost
automorphism method to classify integrable open quantum systems. These correspond to
physical systems in contact with Markovian environments. The dynamic of the system is
described via the Lindblad Master equation. This evolution may be realized by the action
of a Lindblad superoperator on the states of the system. Specifically, our focus is on the
finding of integrable Lindblad superoperator. Consequently, our ansatz begins by selecting
the Hamiltonian (h) of the system and the jump operator (ℓ) that characterizes the effects
that the environment has on the system. We establish the first systematic classification of
integrable Lindblad superoperator.

Through the application of our method, we have discovered interesting new integrable
models. Specifically, in chapter 4, by imposing the 6-V type conditions on both h and
ℓ, we have identified two integrable models that do not require fine-tuning of the system-
environment interaction. We call them model B3 and B2. For model B3, we have examined
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the physical properties. For a choice of the parameters, the Non Equilibrium Steady States
(NESS) are pure spin helix states. Furthermore, our analysis reveals that this is an integrable
example of the pumping effect: there is a finite particle current flowing through the system
even when the coupling constant with the environment is really small. Additionally, we have
established the equivalence of model B3 to the generalized Toda system associated with the
non-exceptional affine Lie algebra A(2)

3 . Moreover, we provide a 4-D interpretation of this
model as two coupled spin-1/2 XXZ chains. To solve this model, we employ the nested
algebraic Bethe ansatz.

By recalling some known results, in chapter 5, we demonstrate that the Hubbard model
can be expressed in a superoperator form by complexifying the spectral parameter. Specifi-
cally, it can be represented as an XX spin chain with dephasing noise. In this thesis, we have
expanded upon this existing understanding by identifying all the potential scenarios where
the mapping between Hermitian models and Lindblad superoperators is applicable.
In our classification, we encounter the Hubbard model itself, along with an integrable defor-
mation (model B2) of it that was previously discovered.
Starting from a more general ansatz, in particular imposing the 8-V conditions for both
h and ℓ, we have derived a novel elliptic model that can be attributed to a new integrable
deformation of the Hubbard model. To the best of our knowledge, this deformation is new
because the entries of the R-matrix depend on the square root of the Jacobi function. We
believe that this functional dependence has not been encountered previously. Additionally,
we are not aware of any integrable deformation of the Hubbard model that span three site of
the spin chain.

In chapter 6, we analyzed this deformation from the point of view of open quantum
systems. We calculated the NESS of the model and we discovered that there exists L+1
NESS. This implies that the system retains memory of its initial state. Different initial
density matrices evolve into distinct NESS in the long-time limit. Investigating the origin
of this multiplicity, we discover the presence of hidden strong symmetries in the form of
quasi-local charges. We compute the NESS exactly as a Matrix Product Operator with fixed
bond dimensions. Furthermore, we established that the system’s dynamics give rise to the
emergence of the Gibbs ensemble through the influence of these hidden quasi-local charges.

An intriguing avenue for further investigation involves applying integrability techniques
to analyze the range 3 model. However, the fact that the number of particles is not conserved
makes the application of the standard nested Bethe ansatz technique ineffective. We expect
that some combination of the nested Bethe Ansatz with methods used to solve the XYZ spin
chain needs to be used. A perhaps more promising approach consists in finding the nested



191

Bethe ansatz solution associated to a model connected to it by a global transformation and
characterized by h to be the XX spin chain and l̃ given in (6.37). For this model, the u(1)
symmetry is preserved and therefore the standard nested Bethe ansatz can be applied.
Another important aspect is that, while the integrability property of the superoperator L did
not directly influence the analytical computation of the NESS, the superintegrability property
of the Hamiltonian h describing the system played a crucial role. Understanding the potential
role of other conserved charges in the dynamical evolution of the model would be significant.
Since we were able to precisely compute the magnetization for a finite volume chain, we
believe that integrability played a role in this computation, even if not explicitly manifested.
Furthermore, in table 5.1 we have summarized the diverse connections between the obtained
models, in particular between the range 3 model and three NN-type models. This observation
suggests the possible existence of a broader family of integrable models that encompass these
distinctive points. Investigating this proposition further and employing the boost operator to
identify the models that encompass all these limits holds particular interest.
Another significant aspect to consider is that, in some of the models, the diagonal subsector
of the superoperator is preserved and it is the generator of a classical Markovian process.
Interestingly, we have demonstrated that multiple models can possess the same diagonal
subsector, such as those generated by the ASEP model. It would be interesting to explore
whether models sharing the same diagonal subsector exhibit common characteristics, for
example in the spectrum of their eigenvalues.
As for the application of the boost operator in the context of open quantum systems, an
ongoing work focuses on classifying models characterized by an 8-vertex type Hamiltonian,
denoted as h and ℓ. We hope that this search gives rise to other new interesting integrable
models.
An interesting observation emerges from our findings: in all the integrable models we have
discovered, the Hamiltonian of the system is always of XY-type. However, a formal proof of
this statement is currently unavailable.

Moreover, in chapter 7, we applied our method to classify models with a local Hilbert
space of dimension 4, focusing specifically on models with su(2)⊕ su(2) symmetry. Within
this class, we recovered the matrix part of the S-matrix of AdS5× S5, derived by imposing
centrally extended su(2|2) symmetry using the elliptic parametrization. This model includes
the Hubbard model as a special case. To the best of our knowledge, five of the new models
that we obtained are new. The properties of these models are worth exploring in future
research.
One possible direction to explore is to generalize the ansatz for the density Hamiltonian by
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relaxing the requirement of having su(2)⊕ su(2) symmetry. This approach may lead to new
deformations of the Hubbard model.

In addition, in chapter 8 we investigated the cases where the local Hilbert space is C2 and
the Hamiltonian is of 8-vertex type. In fact, we demonstrated that all Hermitian integrable
Hamiltonians can be classified within this class. We discovered four models, two of which
are of difference form and are equivalent to the XYZ and XXZ spin chains. The other two
models are of non-difference form, namely 6-vertex B and 8-vertex B. While 6-vertex B is
already known and corresponds to the solution A of [36], 8-vertex B is a newly discovered
model. Interestingly, we showed that those two models are integrable deformation of the
blocks with the same chirality of the matrix part of the S-matrix of AdS2 and AdS3 integrable
models.

Furthermore, in chapter 9, we established that the two non-difference form 8-vertex
models satisfy the free-fermion condition. This condition allowed us to express the transfer
matrix associated with the 6-vertex B model in a diagonal form, simplifying the calculation
of its eigenvalues and eigenvectors. We explicitly demonstrated this for the case of the pure
Ramon-Ramon AdS3 massless sector.
Moreover, we derived an equivalent free-fermion condition for certain models with su(2)⊕
su(2) symmetry. For some of these models, similar to the 6-vertex B, we found that their
transfer matrix can also be explicitly diagonalized. An intriguing question arises regarding
whether these free-fermion conditions for higher-dimensional Hilbert spaces can provide an
intuitive approach to performing the nested Bethe ansatz.

Another interesting feature shared by all the ansatz is the fact that constructing integrable
models only required imposing the constraint [Q2,Q3] = 0. Based on this constraint alone,
we were consistently able to find the corresponding R-matrix that ensures the integrability of
the model. This observation relates to an old conjecture [95] and to the best of our knowledge,
it remains unproven.
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The complete worldsheet S matrix of superstrings on AdS3 × S3 × T 4 with mixed
three-form flux. Nucl. Phys. B, 891:570–612, 2015.

[64] B. Hoare, A. Pittelli, and A. Torrielli. Integrable S-matrices, massive and massless
modes and the AdS2×S2 superstring. JHEP, 11:051, 2014.

[65] Juan Miguel Nieto García, Alessandro Torrielli, and Leander Wyss. Boost generator
in AdS3 integrable superstrings for general braiding. JHEP, 07:223, 2020.



REFERENCES 197

[66] Juan Miguel Nieto García, Alessandro Torrielli, and Leander Wyss. Boosts superalge-
bras based on centrally-extended su(1|1)2. 9 2020.

[67] V.F.R. Jones. On knot invariants related to some statistical mechanical models. Pacific
J. Math., 137:311–334, 1989.

[68] V.G. Turaev. The Yang-Baxter equation and invariants of links. Invent. Math., 92:527–
553, 1988.

[69] F.Y. Wu. The Yang-Baxter Equation in Knot Theory. International Journal of Modern
Physics B, 07(20n21):3737–3750, 1993.

[70] VFR Jones. Baxterization. International Journal of Modern Physics B, 4(05):701–713,
1990.

[71] A.P. Isaev. Quantum groups and Yang-Baxter equations. Sov. J. Part. Nucl., 26:501–
526, 1995.

[72] Michio Jimbo. A q Analog of u (Gl (n+1)), Hecke Algebra and the Yang-Baxter
Equation. Lett. Math. Phys., 11:247, 1986.

[73] Y Cheng, ML Ge, and K Xue. Yang-baxterization of braid group representations.
Communications in mathematical physics, 136(1):195–208, 1991.

[74] RB Zhang, MD Gould, and AJ Bracken. From representations of the braid group to
solutions of the Yang-Baxter equation. Nuclear Physics B, 354(2-3):625–652, 1991.

[75] You-Quan Li. Yang baxterization. Journal of mathematical physics, 34(2):757–767,
1993.

[76] D. Arnaudon, A. Chakrabarti, V.K. Dobrev, and S.G. Mihov. Spectral Decomposition
and Baxterisation of Exotic Bialgebras and Associated Noncommutative Geometries.
Int. J. Mod. Phys. A, 18:4201, 2003.

[77] P.P. Kulish, N. Manojlovic, and Z. Nagy. Symmetries of spin systems and Birman-
Wenzl-Murakami algebra. J. Math. Phys., 51:043516, 2010.

[78] N. Crampé, L. Frappat, E. Ragoucy, and M. Vanicat. A New Braid-like Algebra for
Baxterisation. Commun. Math. Phys., 349(1):271–283, 2017.

[79] N Crampé, E Ragoucy, and M Vanicat. Back to baxterisation. Communications in
Mathematical Physics, 365(3):1079–1090, 2019.

[80] N. Crampé and L. Poulain d’Andecy. Baxterisation of the fused Hecke algebra and
R-matrices with gl(N)-symmetry. 4 2020.

[81] E. K. Sklyanin. Boundary conditions for integrable equations. Funct. Anal. Appl.,
21:164–166, 1987. [Funkt. Anal. Pril.21N2,86(1987)].

[82] Luca Mezincescu and Rafael I. Nepomechie. Integrable open spin chains with non-
symmetric R-matrices. J. Phys. A: Math. Gen., 24:L17, 1991.



198 REFERENCES

[83] R. S. Vieira. Solving and classifying the solutions of the Yang-Baxter equation through
a differential approach. Two-state systems. JHEP, 10:110, 2018.

[84] R. S. Vieira. Fifteen-vertex models with non-symmetric R matrices. 8 2019.

[85] N. Crampé, L. Frappat, and E. Ragoucy. Classification of three-state Hamiltonians
solvable by the coordinate Bethe ansatz. J. Phys. A, 46:405001, 2013.

[86] T. Fonseca, L. Frappat, and E. Ragoucy. R-matrices of three-state Hamiltonians
solvable by Coordinate Bethe Ansatz. J. Math. Phys., 56(1):013503, 2015.

[87] N. Crampé, L. Frappat, E. Ragoucy, and M. Vanicat. 3-state Hamiltonians associated
to solvable 33-vertex models. J. Math. Phys., 57(9):093504, 2016.

[88] Makoto Idzumi, Tetsuji Tokihiro, and Masao Arai. Solvable nineteen vertex models
and quantum spin chains of spin one. J. Phys. I(France), 4:1151–1159, 1994.

[89] M.J. Martins. Integrable three-state vertex models with weights lying on genus five
curves. Nucl. Phys. B, 874:243–278, 2013.

[90] M.J. Martins. An integrable nineteen vertex model lying on a hypersurface. Nucl.
Phys. B, 892:306–336, 2015.

[91] M. de Leeuw, A. Pribytok, and P. Ryan. Classifying integrable spin-1/2 chains with
nearest neighbour interactions. J. Phys., A52(50):505201, 2019.

[92] Paul Ryan. Integrable systems, separation of variables and the Yang-Baxter equation.
arXiv:2201.12057, 2022.

[93] Anton Pribytok. Automorphic symmetries, string integrable structures and deforma-
tions. arXiv:2210.16348, 2022.

[94] M.G. Tetelman. Lorentz group for two-dimensional integrable lattice systems. Sov.
Phys. JETP, 55(2):306–310, 1982.

[95] M. P. Grabowski and P. Mathieu. Integrability test for spin chains. Journal of Physics
A: Mathematical and General, 28(17):4777–4798, sep 1995.

[96] Vladimir Gershonovich Drinfeld. Constant quasiclassical solutions of the Yang–Baxter
quantum equation. In Doklady Akademii Nauk, volume 273, pages 531–535. Russian
Academy of Sciences, 1983.

[97] Fabian HL Essler, Holger Frahm, Frank Göhmann, Andreas Klümper, and Vladimir E
Korepin. The one-dimensional Hubbard model. Cambridge University Press, 2005.

[98] Gleb Arutyunov and Sergey Frolov. Foundations of the AdS5 ×S 5 superstring: I.
Journal of Physics A: Mathematical and Theoretical, 42(25):254003, 2009.

[99] Gleb Arutyunov, Sergey Frolov, and Marija Zamaklar. The Zamolodchikov-Faddeev
algebra for AdS5 ×S 5 superstring. JHEP, 04:002, 2007.

[100] B. Sriram Shastry. Exact Integrability of the One-Dimensional Hubbard Model. Phys.
Rev. Lett., 56:2453–2455, Jun 1986.



REFERENCES 199

[101] Juan Miguel Nieto García and Leander Wyss. Jordan blocks and the Bethe Ansatz I:
The eclectic spin chain as a limit. Nuclear Physics B, 981:115860, 2022.

[102] Juan Miguel Nieto García. Jordan blocks and the Bethe Ansatz II: The eclectic spin
chain beyond K= 1. Journal of High Energy Physics, 2022(12):1–30, 2022.

[103] Luke Corcoran. Conformal Feynman Integrals and Correlation Functions in Fishnet
Theory. PhD thesis, Humboldt Universitaet zu Berlin (Germany), 2022.

[104] Heinz-Peter Breuer, Francesco Petruccione, et al. The theory of open quantum systems.
Oxford University Press on Demand, 2002.

[105] D Manzano and PI Hurtado. Harnessing symmetry to control quantum transport.
Advances in Physics, 67(1):1–67, 2018.

[106] Daniel Manzano. A short introduction to the Lindblad master equation. Aip Advances,
10(2):025106, 2020.

[107] Howard Carmichael. Statistical methods in quantum optics 1: master equations and
Fokker-Planck equations, volume 1. Springer Science & Business Media, 1999.

[108] Angel Rivas, A Douglas K Plato, Susana F Huelga, and Martin B Plenio. Markovian
master equations: a critical study. New Journal of Physics, 12(11):113032, 2010.

[109] G.M. Schütz. Integrable Stochastic Many-body Systems. Berichte des Forschungszen-
trums Jülich. Forschungszentrum, Zentralbibliothek, 1998.

[110] Matthieu Vanicat. An integrabilist approach of out-of-equilibrium statistical physics
models. PhD thesis, Laboratoire d’Annecy-le-Vieux de Physique Théorique, France,
2017.

[111] Kristan Temme, Michael M. Wolf, and Frank Verstraete. Stochastic exclusion pro-
cesses versus coherent transport. New Journal of Physics, 14(7):075004, 2012.

[112] Viktor Eisler. Crossover between ballistic and diffusive transport: the quantum
exclusion process. J. Stat. Mech., 2011(6):06007, 2011.

[113] Marius de Leeuw and Ana. L. Retore. Lifting integrable models and long-range
interactions. 6 2022.

[114] F. C. Alcaraz and W. F. Wreszinski. The Heisenberg XXZ Hamiltonian with
Dzyaloshinsky-Moriya interactions. J. Stat. Phys., 58(1):45–56, 1990.

[115] A.A. Lushnikov. Binary reaction 1+1→0 in one dimension. Phys. Lett. A, 120(3):135
– 137, 1987.

[116] A.A. Lushnikov. Binary reaction 1+1→0 in one dimension. Sov. Phys. JETP,
64(4):1376, 1986.

[117] J. E. Santos, G. M. Schütz, and R. B. Stinchcombe. Diffusion–annihilation dynamics
in one spatial dimension. The Journal of Chemical Physics, 105(6):2399–2407, 1996.



200 REFERENCES

[118] Kazuki Yamamoto, Yuto Ashida, and Norio Kawakami. Rectification in nonequi-
librium steady states of open many-body systems. Physical Review Research,
2(4):043343, 2020.

[119] A Liashyk and SZ Pakuliak. Recurrence relations for off-shell Bethe vectors in
trigonometric integrable models. Journal of Physics A: Mathematical and Theoretical,
55(7):075201, 2022.

[120] N. A. Slavnov. Introduction to the nested algebraic Bethe ansatz. SciPost Phys. Lect.
Notes, 19:1, 2020.

[121] A Lima-Santos. On the algebraic Bethe ansatz: periodic boundary conditions. Journal
of Statistical Mechanics: Theory and Experiment, 2006(07):P07003, 2006.

[122] Guang-Liang Li and Kang-Jie Shi. The algebraic Bethe ansatz for open vertex models.
Journal of Statistical Mechanics: Theory and Experiment, 2007(01):P01018, 2007.

[123] PB Ramos and MJ Martins. Algebraic Bethe ansatz approach for the one-dimensional
Hubbard model. Journal of Physics A: Mathematical and General, 30(7):L195, 1997.

[124] MJ Martins and PB Ramos. The quantum inverse scattering method for Hubbard-like
models. Nuclear Physics B, 522(3):413–470, 1998.

[125] Gleb Arutyunov, Marius de Leeuw, Ryo Suzuki, and Alessandro Torrielli. Bound
state transfer matrix for AdS5× S5 superstring. Journal of High Energy Physics,
2009(10):025, 2009.
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Appendix A

Nested Algebraic Bethe ansatz for model
B3

In this appendix, we apply the Nested Algebraic Bethe ansatz method to model B3 given in
section 4.3.1. As discussed in chapter 1, the aim of the Algebraic Bethe ansatz is to find the
eigenvalues of the transfer matrix [44]. From this, in a systematic way, one can construct the
eigenvalues of the tower of the conserved charges characterizing the integrable model.
Similar to section 1.3, here we define the monodromy, the transfer matrix and the reference
state specifically for model B3. By using the RTT relation, we give the commutation relations
between the entries of the monodromy matrix and their interpretation. Then, we explicitly
compute the eigenvalues of the transfer matrix and the Bethe equations, used to determine
the momenta of the particles involved in the theory. We do it explicitly for a state of one and
two magnons and explain how to generalize the result to an arbitrary number of particles.
Since the Hilbert space dimension is bigger than the ones used in chapter 1, we emphasize
the main difference between the Nested Algebraic Bethe ansatz and the standard one.

A.1 Diagonalization of the transfer matrix

Monodromy and transfer matrix. Definitions

To define the monodromy matrix Ta(u) for a spin chain of length L, we need to introduce an
auxiliary Hilbert space Va

Ta(u) =
L

∏
i=1

Rai(ui −u−b), Ta(u) ∈Va ⊗V ⊗·· ·⊗V︸ ︷︷ ︸
L−times

, (A.1)
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ui is the set of inhomogeneities of the chain and b is a constant. The constant is added in a
way that makes the resulting expression simpler1. The transfer matrix is defined as the partial
trace (Tra) over the auxiliary space of the monodromy matrix,

t(u) = TraTa(u), t(u) ∈V ⊗·· ·⊗V︸ ︷︷ ︸
L−times

. (A.2)

This matrix generates all the conserved charges characterizing the integrable models, in
particular the charge Q2 ≡ L which will be identified as the first logarithmic derivative of
the transfer matrix, see (1.26).

Monodromy and transfer matrix. Constructions

The monodromy matrix (A.1) in the auxiliary space takes the form of a 4×4 matrix

Ta(u) =



T00 B1 B2 B3

C1 T11 T12 T13

C2 T21 T22 T23

C3 T31 T32 T33


, (A.3)

where the entries of this matrix are operators acting on the physical space V ⊗·· ·⊗V︸ ︷︷ ︸
L−times

. For

simplicity, we omitted the (u) dependence from all the entries. We notice that since the
auxiliary Hilbert space is now bigger than the ones we considered in section (1.3), the
corresponding monodromy matrix is also bigger. In fact, in (1.42), we wrote the monodromy
matrix as a 2×2 matrix.
The transfer matrix (A.2) is then

t(u) =
3

∑
i=0

Tii(u). (A.4)

The monodromy matrix and the R-matrix satisfy the fundamental commutation relations,
also known as the RTT-relations,

Rab(v−u)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(v−u). (A.5)

1We mention that this constant was also added in the section 1.3, where we fixed b = i/2
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The space where this matrix acts is Va ⊗Vb ⊗V ⊗·· ·⊗V︸ ︷︷ ︸
L times

, with Va and Vb auxiliary spaces.

By plugging the expression of the R-matrix and the monodromy matrices given respectively
in section 4.3.1 and (A.3), it follows that

[Bi(u),Bi(v)] = 0, i = 1,2,3, (A.6)

which gives the immediate interpretation: B1 and B2 (and also B3) are the creation operators
for our theory.

A.1.1 The reference states and the action of the transfer matrix

Since model B3 commutes with the spin operator Sz, a good choice for the reference state is

|0⟩=
L⊗

i=1



1

0

0

0


. (A.7)

The action of the elements of the transfer matrix on the reference state |0⟩, by fixing the
constant b = ψ is

T00(u)|0⟩= |0⟩, (A.8)

T11(u)|0⟩=
L

∏
i=1

sinh(u−ui +ψ)

i eψ+iφ cosh(u−ui)
|0⟩, (A.9)

T22(u)|0⟩=
L

∏
i=1

i sinh(u−ui +ψ)

eψ−iφ cosh(u−ui)
|0⟩, (A.10)

T33(u)|0⟩=
L

∏
i=1

e−2ψ sinh(u−ui +ψ)

cosh(u−ui −ψ)
tanh(u−ui) |0⟩, (A.11)

and the following annihilation identities hold

C1|0⟩=C2|0⟩=C3|0⟩= 0, Tab|0⟩= 0 (a ̸= b = 1,2). (A.12)

{ui}, already introduced in (A.1), are the set of inhomogeneities2 of the spin chain. From
now on, we refer to it as main spin chain, for a reason that will be clear in the following.

2We remark that for simplicity in the section 1.3, we fixed all the inhomogeneities of the chain to be zero.
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The action of the transfer matrix on the vacuum is

t(u)|0⟩=
L

∏
i=1

[
e−2ψ sinh(u−ui +ψ)

(
tanh(u−ui)

cosh(u−ui −ψ)
− 2eψ sinφ

cosh(u−ui)

)
+1
]
|0⟩.

(A.13)

Due to the commutation relations (A.6), an excited state can be constructed by acting with
the operators B1, B2 and B3 on the vacuum. As an example, a state of two particles with
rapidities3 v1 and v2 is

B1(v1)B2(v2)|0⟩. (A.14)

In what follows, we explicitly construct states of one and two magnons in order to be
eigenstates of the transfer matrix.
To understand if a state is an eigenstate of the transfer matrix, we need to find the commutation
relations between Tii(u) and the Bs operators and then act with them on the vacuum via
(A.8)-(A.11). The commutation relations can be found from the RTT (A.5) and we explicitly
give them in what follows. Furthermore, the condition that a state is an eigenstate (Bethe
vector) fix a constraint on the rapidities vi of the particles, the Bethe equations.

A.1.2 Commutation relations: here comes the nesting

Before giving the commutation relations between Tii(u) and the Bs, we focus on the meaning
of the operator B3.

Commutation relation between Bs

We now write the RTT-relations (A.5) in components, it follows that

Bα(u)Bβ (v) = Bδ (v)Bγ(u)r
γ δ

α β
(v−u)−εα,β η(u−v)(B3(v)T00(u)−B3(u)T00(v)) , (A.15)

where α,β = 1,2 and

η(u) = ie2ψ coshψ csch(u−ψ), ε = (ε11,ε12,ε21,ε22) = (0,e−iφ ,−eiφ ,0). (A.16)

3We clarify the notation used in this appendix with the one used in section 1.3. Here, {ui} are the
inhomogeneities of the main spin chain, u is the spectral parameter of the R-matrix and {vi} are the rapidities
of the particles. In the section 1.3, we set all the inhomogeneities to 0, λ is the spectral parameter and {λi} are
the rapidities of the particles.
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The elements rγ δ

α β
(u) can be written in matrix form,

r(u) = rγ δ

α β
(u)eα

γ ⊗ eβ

δ
, r(u) =



1 0 0 0

0 b(u)e−2iφ a(u) 0

0 a(u) b(u)e2iφ 0

0 0 0 1


, (A.17)

where a(u) = sinh(2ψ)
sinh(2(u+ψ)) and b(u) = sinh(2u)

sinh(2(u+ψ)) .
It is easy to show that r(u) satisfies the YBE (1.1) for a spin-1/2 chain. We can consider it as
an R-matrix of twisted 6-vertex type.
This is the first insight of why the Bethe ansatz is called nested: in the commutation relations
involving different type of particles, the r-matrix of a lower dimensional spin chain appears.
The same r also appears from the RTT relations involving T and B operators.
The commutation relation (A.6) between the B operators can also be written in components
as (A.15) with α = β . In this way, we can give an interpretation for B1, B2 and B3. The
commutation relations between two fields of type B1 and B2 generate the operator B3. One
can consider the operators B1 and B2 as creation of a particle of spin up and down respectively,
while B3 is responsible for the creation of a pair.
The r-matrix (A.17) is a twisted version of the ones that appear in the nesting of the Hubbard
model and in AdS5 ×S5, [123–125].

Commutation relations between Tii and Bs

As mentioned, we need to solve the eigenvalue problem

t(u)|M{v}⟩=
3

∑
i=0

Tii(u)|M{v}⟩= ΛM(u)|M{v}⟩, (A.18)

where |M{v}⟩ is a generic state of M excitations with rapidities {v}. In what follows, for
simplicity, we sometimes refer to it as |M⟩. First, we need to find the commutation relations
between Tiis and Bs.
From the RTT relation, by a brute force calculation, one gets 256 relations, but not all of
them are already in a usable form. In particular, we want the right hand side to be normal
ordered and have annihilation and diagonal operators on the right most side. In this way, we
can apply the same logic as in section 1.3 and remove the unwanted terms. In other words,
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we want that the commutation relations are of the form

Tii(u)Bα(v) = a1Bα(v)Tii(u)+a2Bα(u)Tii(v)+ . . . , (A.19)

the dots (” . . .”) contains terms that either annihilate the reference state (for example in the
right there is Ci) or acts diagonally on it.
We can realize this structure by considering linear combinations of some of the 256 relations
that we obtained.
Instead of trying the most general linear combination, we first impose that the structure of
our commutator relations is the same as the ones in [123–125]. This drastically simplifies
the problem and we find

T00(u)Bα(v) = θαBα(v)T00(u)+ραBα(u)T00(v) (A.20)

Tαα ′(u)Bβ (v) = ααBγ(v)Tατ(u)r
τγ

α ′β (v−u)−ψαBα ′(u)Tαβ (v)−

(υTα3(u)T00(v)+βαB3(u)Cα(v)+ γαB3(v)Cα(u))εα ′β (A.21)

T33(u)Bα(v) = ζ1,αBα(v)T33(u)+ζ2B3(v)T3α(u)+ζ3B3(u)T3α(v)+ηεγηTγ3(u)Tηα(v),
(A.22)

for simplicity we omitted the spectral dependence of the coefficients θα ,ρα ,αα ,ψα , . . . ,
which is (u− v) for all of them.
Remarkably, in (A.21) we again notice the r-matrix of twisted 6-vertex type given in (A.17).
This is another strong insight of why the Bethe ansatz is called nested and the role played by
this matrix will be clear in the next paragraph. In fact, in order to solve the Bethe ansatz for
model B3, we first need to solve the Bethe ansatz for the integrable model characterized by
the r-matrix of twisted 6-vertex type.
The coefficients in the commutation relations4 are

θ1 =− ieψ+iφ cosh(u+ψ)

sinhu
, ρ1 =

icoshψeψ+iφ

sinhu
, θ1 =−e2iφ

θ2, ρ1 =−e2iφ
ρ2,

(A.23)

α1 = ieψ+iφ coshψ (cothu− tanhψ), ψ1 = ieψ+iφ coshψ cschu,

υ = ie2ψ coshψ csch(u−ψ), β1 =−e3ψ+iφ cosh2
ψ cschucsch(u−ψ),

γ1 = e3ψ+iφ coshψ cschu coth(u−ψ) (A.24)

4We mention that the commutation relations found here are independent on the choice of the constant b in
(A.1). This choice will be manifest when we act with the transfer matrix on the reference state.



A.1 Diagonalization of the transfer matrix 211

α1 =−e2iφ
α2, ψ1 =−e2iφ

ψ2, β1 =−e2iφ
β2, γ1 =−e2iφ

γ2 (A.25)

ζ1,1 =
ieψ+iφ cosh(u−2ψ)

sinh(u−ψ)
, ζ2 =

e2ψ coshψ cosh(u−2ψ)

sinhusinh(u−ψ)
,

ζ3 =−eu+2ψ coshψ

sinh(u−ψ)

(
cosh(u−2ψ)

sinhu
−1
)
, ζ1,1 =−e2iφ

ζ1,2, (A.26)

where the dependence on the spectral parameter is ω = ω(u). We notice that η and ε in
(A.22) are the same as the ones in (A.16).

A.1.3 One particle state

This section and the next one will help to understand the general derivation for arbitrary
number of particles.
One magnon can be created either by B1 or B2, so the one particle state is a linear combination
of these two with weight Fa

|1{v}⟩= FaBa(v)|0⟩, (A.27)

where we sum over the repeated index (a = 1,2), and {v} = v1 = v is the rapidity of the
magnon.
By using (A.20)-(A.22) and (A.8)-(A.11), the action of the transfer matrix on one-particle
state is

T00(u)|1{v}⟩= θa(u− v)FaBa(v)T00(u)|0⟩+ · · ·= θa(u− v)FaBa(v)|0⟩+ . . . , (A.28)

and similarly for T33(u)

T33(u)|1{v}⟩= ζ1,a(u− v)
L

∏
i=1

e−2ψ sinh(u−ui +ψ)

cosh(u−ui −ψ)
tanh(u−ui)Fa Ba(v)|0⟩+ . . . .

(A.29)
The terms T11 and T22 require particular analysis. First, it is convenient to write the relations
(A.9) and (A.10) in the form

Tατ(u)|0⟩= δατ

L

∏
i=1

(−e2iφ )α−1 f (u,{ui})|0⟩, (A.30)
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where f (u,{ui}) = sinh(u−ui+ψ)
i eψ+iφ cosh(u−ui)

.
The action of T11 +T22 is

Tαα(u)|1⟩=FaTαα(u)Ba(v)|0⟩= Fa
αα(u− v)Bγ(v)r

τγ

αa(v−u)Tkτ(u)|0⟩+ · · ·=

Fa
α2(u− v)(−e2iφ )2−LBγ(v)

L

∏
i=1

f (u,{ui})(−e2iφ )α(L−1)rαγ

αa(v−u)|0⟩+ . . . ,

(A.31)

where in the last line we used αk = (−e2 iφ )2−kα2 from (A.25).
By neglecting the . . . terms for the moment, we see that |1⟩ is an eigenstate of the transfer
matrix if

Fa
2

∑
α=1

(−e2iφ )α(L−1)rαγ

αa(v−u)∼ Fγ (A.32)

and expanding the sum we get

Fa(−e2iφ )L−1(r1γ

1a +(−e2iφ )L−1r2γ

2a)∼ Fγ , (A.33)

so Fa needs to be an eigenvector of the combination of r given in (A.33). This will be
more clear in the case of M particles, but the contractions of the indices in the r define the
transfer matrix of the 6-vertex model for a spin chain of length 1. To summarize, if F is an
eigenstate of this transfer matrix, Tαα acts diagonally on |1⟩. The initial problem of finding
the eigenvalues of the transfer matrix built from the R-matrix of our model, reduces to the
auxiliary problem to diagonalize the transfer matrix of 6-vertex type and here comes the
nesting. The Bethe ansatz for this spin chain is known (for example see Appendix B of
[125]), however we repeat the analysis with our notation and twist in section A.3.
During all the discussion, we ignored the terms . . . in (A.31). We now understood that those
terms can be removed by imposing some relations for the rapidity v. This condition is called
Bethe equation. For the case of one and two particles, this calculation is still doable5, but
becomes very tedious for the states of more magnons. We followed here the standard shortcut
of the residue that gives the same Bethe equations as the explicit calculation. The eigenvalue
of the transfer matrix obtained by summing (A.28), (A.29) and (A.30) is

t(u)Ba|0⟩= Λ1,a(u)Ba|0⟩, (A.34)

5In section 1.3, to take confidence with the methods, we explicitly did for the state of one and two magnons
and compare with the results obtained by using the shortcut of imposing that the residue at the pole of the
eigenvalue is zero.
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where N = 1 if the particle is created by B2 and N = 0 otherwise,

Λ1,a(u)
σeψ+iσφ

=
icosh(u− v+ψ)

sinh(v−u)
+

icosh(u− v−2ψ)

sinh(u− v−ψ)

L

∏
i=1

tanh(u−ui)sinh(u−ui +ψ)

e2ψ cosh(u−ui −ψ)
+

(A.35)

i
(
−e2iφ

)N−L+1 cosh(u− v−ψ)

sinh(u− v)
λ6V (u)

L

∏
j=1

sinh
(
−u j +u+ψ

)
ieψ+iφ cosh

(
u−u j

) , (A.36)

where σ = 1 for a = 1 (N = 0) and σ =−1 for a = 2 (N = 1).
The expression of λ6V (u) is given by (A.112) in section A.3, for completeness we will also
write here the one for one particle

λ6V (u)

(−e2iφ )
L−N−1 =

(
−e2iφ

)L
(

sinh(2(u−w−ψ))

sinh(2(w−u))

)N sinh(2(v−u))
sinh(2(u− v−ψ))

+ (A.37)(
sinh(2(w−u−ψ))

sinh(2(u−w))

)N

. (A.38)

As we mentioned, we use the shortcut to remove the unwanted terms. The eigenvalue
should be regular, the residue at the pole should vanish. In this case, the eigenvalue (A.35) of
the transfer matrix has two poles, for u → v and u → v+ψ . In what follows we require the
cancellation of the residue at u → v, but it can be proved that analysing the residue around
the second pole give a set of equation that can be mapped to the ones we are giving.
This leads to the following results. The rapidities should satisfy the following condition(

sinh(2(w− v−ψ))

sinh(2(v−w))

)N L

∏
j=1

sinh
(
v−u j +ψ

)
i eiφ+ψ cosh

(
v−u j

) = 1 (A.39)

and (
−e2iφ)L sinh(2(v−w))

sinh(2(w− v−ψ))
= 1. (A.40)

Let us clarify the meaning of all the parameters appearing in the expressions. The ui are the
set of inhomogeneities of the main chain. v is the rapidity of the one magnon state we are
considering and satisfies the Bethe equation (A.39). v is also the inhomogeneity in the nested
chain. If the magnon is created by B2, N = 1, there is also the parameter w. This latter is
the rapidity of the particle in the nested chain and can be calculated via the auxiliary Bethe
equation (A.40).
The block structures of the eigenvalue and the Bethe equations suggest a way to generalize
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this result to M magnons. Furthermore, one can get the explicit expression of the eigenstate
recursively by following the derivation given in [124].
To understand how this result can be generalized for the M magnons state and where the
difficulties emerge, we first explicitly derive the expression for 2 magnons.

A.1.4 Two particle state

The explicitly computation for the state of two magnons is particularly relevant to understand
the generalization for the M magnons case. In fact, the general steps here are slightly different
than the one for the one-particle state. The state of two-magnons is composed by two parts

|2{v}⟩= Ba1(v1)Ba2(v2)Fa1a2|0⟩+B3(v1)g(v1,v2)εa1a2Fa1a2T00(v2)|0⟩, (A.41)

the first one takes into account that the two particles are created by the operators B1 and
B2. In a state of two particles there may also be a pair, created by B3. The fermionic
nature of the particle is manifest in the ε which accounts the Pauli exclusion principle. The
operator T00(v2) in the second part is put for dimensionality, in fact the monodromy matrix
is normalized such that the action of it on the vacuum is 1, as we see in (A.8).
We now derive the expression of g(u) and we interpret Fa1a2 as the eigenvector on the transfer
matrix in the nested chain.

Action of T00

In order to evaluate the action of T00 on |2{v}⟩ we need an additional commutation relation.
In particular

T00(u)B3(v) = q1B3(v)T00(u)+q2B3(u)T00(v)+q3B1(u)B2(v)+q4B2(u)B1(v), (A.42)

where we omitted the dependence ω = ω(u− v) on the coefficients.

q1(u) =
1
2

e2ψcschu(cosh(2u+3ψ)+ cosh(ψ))csch(u+ψ), (A.43)

q2(u) =−eu+2ψ coshψ csch(u+ψ)(csch ucosh(u+2ψ)−1), (A.44)

q3(u) = i eiφ cosh ψ csch(u+ψ), q4(u) =−i e−iφ coshψ csch(u+ψ). (A.45)
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By using this relation and (A.20), we imposed that

T00(u)|2{v}⟩= λ0(u)|2{v}⟩, (A.46)

and uniquely fix the form of g(v1,v2). We got

g(v1,v2) =
θa1(u− v1)ρa2(u− v2)η(u− v1)

λ0(u)−q1(u− v1)
, (A.47)

where η(u) was defined in (A.16). g(v1,v2) does not depend on u, in fact plugging all the
expressions we got

g(v1,v2) = ie2ψ coshψcsch(v1 − v2 −ψ) = η(v1 − v2). (A.48)

This fix the expression of the ansatz for the 2 magnons state. The eigenvalue is

λ0(u) = θ1,a1(u− v1)θ1,a2(u− v2). (A.49)

This eigenvalue factorizes as a product of one particle eigenvalue. This gives a strong hint on
how to generalize the calculation to the case of M magnons.

Action of T33

Similarly, to confirm our result, we can act with T33 on |2{v}⟩. In this case, the commutation
relations that we need are

T33(u)B3(v) = η1B3(v)T33(u)+η2B3(u)T33(v)+η3T13(u)T23(v)+η4T23(u)T13(v),
(A.50)

where we omitted the dependence ω = ω(u− v) and

η1(u) =
1
2

e2ψcsch ucsch(u−ψ)(cosh(2u−3ψ)+ coshψ), (A.51)

η2(u) = eu+2ψ coshψ csch(u−ψ)(1− csch ucosh(u−2ψ)), (A.52)

η3(u) = icoshψ e2ψ−iφ csch(u−ψ), η4(u) =−e2iφ
η3(u) (A.53)
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and

T3a(u)Bb(v) = Γ1abBa(v)T3b(u)+Γ2abBb(v)T3a(u)+Γ3εab(B3(v)C3(u)−T00(v)T33(u)),
(A.54)

2Γ1ab(u)
e2ψcschucsch(u−ψ)

=

{
cosh(2u−3ψ)+ coshψ, if a=b=1,2

coshψ + cosh(3ψ), if a ̸= b=1,2

Γ2ab(u) =


0, if a=b=1,2

e2ψ+2iφ , if a=1, b=2

e2ψ−2iφ , if a=2, b=1

Γ3(u) = i e2ψ coshψ csch(u−ψ). (A.55)

By using (A.50) and (A.54) and the fact that C3(u)|0⟩= T3α(u)|0⟩= 0, imposing that

T33(u)|2⟩= λ3(u)|2⟩, (A.56)

uniquely fix the form of g(v1,v2). We got

g(v1,v2) =
−ζ2(u− v1)Γ3(u− v2)

ζ1,a1(u− v1)ζ1,a2(u− v2)−η1(u− v1)
, (A.57)

where η(u) was defined in (A.16). Also in this case, g(v1,v2) is independent on u and
coincides with (A.48).
The eigenvalue of T33(u) is

λ3(u) = ζ1,a1(u− v1)ζ1,a2(u− v2)
L

∏
i=1

e−2ψ sinh(u−ui +ψ)

cosh(u−ui −ψ)
tanh(u−ui) . (A.58)

We can notice that also in this case the eigenvalue factorizes as a product of one particle
eigenvalue.

Action of T11 +T22

This calculation is really important because it makes clear the appearance of the twisted
transfer matrix.
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The additional commutation relations that we need are

Cα(u)Bβ (v) = καβ e2ψBβ (v)Cα(u)+ z1αT00(v)Tαβ (u)+ z2αT00(u)Tαβ (v), (A.59)

where the dependence of the zs on the spectral parameter is z = z(u− v) and

κ11 = e2iφ = κ
∗
22, κ12 =−1 =−κ21, (A.60)

iz11(u)
eiφ =−iz12(u)eiφ = iz22(u)eiφ =− iz21(u)

eiφ =
csch u

tanhψ −1
(A.61)

and

Taa(u)B3(v) =sB3(v)T11(u)+ s2 (B3(u)Taa(v)−B3(v)Taa(u))+ (A.62)

s3,aBa(u)Ta3(v)+ s4,aTa3(u)Ba(v)+ s5B3(v)Taa(u), (A.63)

where si = si(u− v) and

s =−(tanh(ψ)−1)−2, s2(u) = csch2 u, s5 = tanh2
ψ (A.64)

s3,1(u)
ieiφ =

s4,1(u)
ie−iφ =

s3,2(u)
ie−iφ =

s4,2(u)
ieiφ = (tanhψ −1) csch u. (A.65)

As in the previous cases, we can identify the nested problem

2

∑
α=1

Tαα(u)|2{v}⟩= λ12(u)|2{v}⟩. (A.66)

After a very long calculation, one can separate the terms with two Bs operators and the part
with B3. From the second part, one can derive the expressions of g(v1,v2) already derived in
the previous two cases.
From the first part, we get

αα(u− v1)αα(u− v2)r
τγ

αa1(v1 −u)rηk
τa2(v2 −u)Bγ(v1)Bk(v2)Tαη(u)Fa1a2 |0⟩ (A.67)

∼ λ12(u)FγkBγ(v1)Bk(v2)|0⟩, (A.68)
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which can be simplified by considering that αk = (−e2iψ)2−kα2 and

Tαη(u)|0⟩= δαη

L

∏
i=1

(−e2iφ )α−1 f (u)|0⟩, (A.69)

and f (u) = sinh(u−ui+ψ)
i eψ+iφ cosh(u−ui)

,

α2(u− v1)α2(u− v2)(−e2iφ )2(2−α)rτγ

αa1(v1 −u)rαk
τa2

(v2 −u)Bγ(v1)Bk(v2) (A.70)
L

∏
i=1

(−e2iφ )α−1 f (u)Fa1a2|0⟩ ∼ λ12(u)FγkBγ(v1)Bk(v2)|0⟩, (A.71)

similarly to the case for one particle, we found that the vector Fab should be an eigenvector
of

(−e2iφ )2(2−α)rτγ

αa1(v1 −u)rαk
τa2

(v2 −u) (A.72)

which is the twisted transfer matrix of a chain of length 2. If this happens, the action of

∑
2
α=1 Tαα on |2{v}⟩ is diagonal. From this result, it is now straightforward to generalize it

for the case of M magnons, as done in expression6 (A.98).
We found that the eigenvalue of T11(u)+T22(u) is

λ12(u) =
(
−e2iφ

)4−L
α2(u− v1)α2(u− v2)λ6V (u)

L

∏
i=1

sinh
(
u−u j +ψ

)
i eψ+iφ cosh

(
u−u j

) . (A.73)

Eigenvalue of the transfer matrix

By summing the results (A.49), (A.58), (A.73), we got the eigenvalue of the transfer matrix
for the two magnon state and it is

Λ2(u) =θa1(u− v1)θa2(u− v2)+

ζ1,a1(u− v1)ζ1,a2(u− v2)
L

∏
i=1

sinh(u−ui +ψ)

cosh(u−ui −ψ)

tanh(u−ui)

e2ψ
+

(
−e2iφ

)4−L
α2(u− v1)α2(u− v2)λ6V (u)

L

∏
i=1

sinh
(
u−u j +ψ

)
i eψ+iφ cosh

(
u−u j

) . (A.74)

The structure of this eigenvalue appears in the form of factorized products of single-
excitations terms. In section A.1.5, we will start from it to find the general expression

6For the expression in matrix form, see (A.99).
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for the eigenvalue of the M particle state and, by using the shortcut of the residue, we will
find the Bethe equations.

A.1.5 M-particles state

As already stressed, the eigenvalue of the transfer matrix for the M particle states can be
derived by generalizing the expressions for one and 2 magnons respectively in sections A.1.3
and A.1.4. The expression of the eigenstate for the M particle will involve a combinatorial
expression due to the fact that B1 and B2 generate particles, but B3 generates a pair.
However, we now show that to find the expression of the eigenvalues and the Bethe equations
we do not need to know the M particle state explicitly.
Let us consider more closely the eigenvalue (A.74) for the case of two particles. The meaning
of this eigenvalue is clear:

• the terms with θ , ζ are the coefficients in the commutation relations T00 and T33 with
each Ba,

• the terms α and λ6v are in the commutator T11 +T22 with the Ba,

• the terms with the product ∏
L
i=1 comes from the action of Tii on the vacuum.

The eigenvalues appears as factorized products of single-excitations terms, so this strongly
suggest that, even if the exact eigenstate of two particle state is (A.41), the eigenvalues can
be obtained very naively just considering

|2{v}⟩ ∼ FabBa(v1)Bb(v2)|0⟩. (A.75)

With this in mind, we generalize the result to arbitrary number M of magnons. To do this, we
act with the transfer matrix on the state

|M{v}⟩ ∼ Fa1a2...aM Ba1(v1) . . .BaM(vM)|0⟩, (A.76)

where N magnons are generated by B2 and we get the following eigenvalue

ΛM(u)
N

=
M

∏
i=1

cosh(u− vi +ψ)

sinh(vi −u)
+

λ6V (u)

(−e2iφ )
L−M−N

M

∏
i=1

cosh(u− vi −ψ)

sinh(u− vi)

L

∏
j=1

sinh
(
u−u j +ψ

)
i eiφ+ψ cosh

(
u−u j

)+
M

∏
i=1

cosh(u− vi −2ψ)

sinh(u− vi −ψ)

L

∏
i=1

tanh(u−ui)sinh(u−ui +ψ)

e2ψ cosh(u−ui −ψ)
, (A.77)



220 Nested Algebraic Bethe ansatz for model B3

where N = iM
(
−e2iφ)M−N (−eψ−iφ)M and λ6V (u) is the eigenvalue of the auxiliary prob-

lem given in (A.112). For completeness we will also report it here

λ6V (u)

(−e2iφ )
L−M =

N

∏
i=1

sinh(2(u−wi +ψ))

e2iφ sinh(2(u−wi))
+

(
−e2iφ

)L−M N

∏
j=1

sinh
(
2
(
u−w j −ψ

))
e2iφ sinh

(
2
(
u−w j

)) M

∏
j=1

e2iφ sinh
(
2
(
u− v j

))
sinh

(
2
(
u− v j −ψ

)) . (A.78)

To find the Bethe equation, we use the same shortcut of the one particle case. We impose
that the eigenvalue of the transfer matrix is regular, so that the spurious pole cancels. We
derived the Bethe equation by requiring that the residue at the pole u = v cancels. Another
set of Bethe equations can be derived from u = v+ψ , but those are not independent to the
ones found here, but can be mapped to them.
We found that the rapidities {v} of the main chain should satisfy the constraint

M

∏
i=1,i ̸= j

−
cosh

(
v j − vi +ψ

)
cosh

(
v j − vi −ψ

) = L

∏
i=1

sinh
(
v j −ui +ψ

)
i eψ+iφ cosh

(
v j −ui

) N

∏
i=1

sinh
(
2
(
wi − v j −ψ

))
sinh

(
2
(
v j −wi

)) (A.79)

for j = 1, . . . ,M, while the w’s satisfy the auxiliary Bethe equations (A.114),

N

∏
i=1,i ̸= j

sinh
(
2
(
w j −wi +ψ

))
sinh

(
2
(
w j −wi −ψ

)) = (−e2iφ
)L M

∏
k=1

sinh
(
2
(
w j − vk

))
sinh

(
2
(
vk −w j +ψ

)) , (A.80)

for j = 1, . . . ,N.

A.2 General result

The Bethe equations that we found before take a bit of a unusual form due to the presence of
both cosh and sinh. However, we can rewrite both the Bethe equations and the eigenvalue by
considering a shift in ui, vi and ψ ,

ψ → Ψ+
iπ
2
, ui → ui +

iπ
2
, vi → vi −

ψ

2
. (A.81)

We remark, as mentioned in section 4.3.1, that the coupling constant of the theory is γ =

tanhψ while under this shift γ → cothΨ. This means that under this map the strong and
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weak coupling regimes are interchanged. The eigenvalue of the transfer matrix now becomes

ΛM(u)
N

=
M

∏
i=1

sinh
(
u−vi +

3Ψ

2

)
sinh

(
u−vi +

Ψ

2

) +
λ6V (u)

(−e2iφ )
L−M−N

M

∏
i=1

sinh
(
u−vi − Ψ

2

)
sinh

(
u−vi +

Ψ

2

) L

∏
j=1

sinh
(
u−u j +ψ

)
i eΨ+iφ sinh

(
u−u j

)+
M

∏
i=1

cosh
(
u−vi − 3Ψ

2

)
cosh

(
u−vi − Ψ

2

) L

∏
i=1

coth(u−ui)sinh(u−ui +Ψ)

e2Ψ cosh(u−ui −Ψ)
, (A.82)

with N =
(
−e2iφ)M−N (−eΨ−iφ)M and for the nested chain

λ6V (u)

(−e2iφ )
L−M =

M

∏
i=1

−sinh(2(u−wi +Ψ))

e2iφ sinh(2(u−wi))
+

(
−e2iφ

)L−M N

∏
i=1

−sinh(2(u−wi −Ψ))

e2iφ sinh(2(u−wi))

M

∏
i=1

−e2iφ sinh(2u−2vi +Ψ)

sinh(2u−2vi −Ψ)
.

(A.83)

Under the same shift, the Bethe equations become

M

∏
i=1,i̸= j

sinh
(
vi −v j −Ψ

)
sinh

(
vi −v j +Ψ

) = L

∏
i=1

1
i eΨ+iφ

sinh
(
ui −v j − Ψ

2

)
sinh

(
ui −v j +

Ψ

2

) N

∏
i=1

sinh
(
2v j −2wi +Ψ

)
sinh

(
2v j −2wi −Ψ

)
(A.84)

for j = 1, . . . ,M and for the nested chain

N

∏
i=1,i̸= j

sinh
(
2
(
wi −w j −Ψ

))
sinh

(
2
(
wi −w j +Ψ

)) = (−e2iφ
)L M

∏
i=1

sinh
(
2vi −2w j −Ψ

)
sinh

(
2vi −2w j +Ψ

) , (A.85)

for j = 1, . . . ,N.

Let us introduce the standard Baxter Q-functions

Q[a]
u (x) =

L

∏
i=1

sinh[x−ui −aΨ], Q̃[a]
u (x) =

L

∏
i=1

cosh[x−ui −aΨ], (A.86)

Q[a]
v (x) =

M

∏
i=1

sinh[x−vi −aΨ], Q̃[a]
v (x) =

M

∏
i=1

cosh[x−vi −aΨ], (A.87)

Q[a]
w (x) =

N

∏
i=1

sinh[x−wi −aΨ], Q̃[a]
w (x) =

N

∏
i=1

cosh[x−wi −aΨ]. (A.88)
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The eigenvalue is

ΛM(u)
N

=
Qv

[−3/2]

Qv
[−1/2]

+ e−2ΨL Q̃[3/2]
v

Q̃[1/2]
v

Q̃[0]
u

Qu
[0]

Qu
[−1]

Q̃[1]
u

+

(
−ie−Ψ−iφ)L

(−e2iφ )
L−M−N

Qv
[1/2]

Qv
[−1/2]

Qu
[−1]

Qu
[0]

λ6V (u),

(A.89)

λ6V (u)
e2iφN

(−e2iφ )
L−M =

Q[−1]
w Q̃[−1]

w

Q[0]
w Q̃[0]

w

+
(
−e2iφ

)L Q[1]
w Q̃[1]

w

Q[0]
w Q̃[0]

w

Q[−1/2]
v Q̃[−1/2]

v

Q[1/2]
v Q̃[1/2]

v

(A.90)

where for simplicity we used Q[a]
t (u) = Q[a]

t .
The Bethe equations for the main chain are

Qv
[−1]

Qv
[1]

=−
(

−i
eΨ+iφ

)L Qu
[−1/2]

Qu
[1/2]

Qw
[−1/2]

Qw
[1/2]

Q̃[−1/2]
w

Q̃[1/2]
w

, (A.91)

j = 1, . . . ,M and for the nested chain

Qw
[−1]Q̃[−1]

w

Qw
[1]Q̃[1]

w

=−
(
−e2iφ

)L Qv
[−1/2]Q̃[−1/2]

v

Qv
[1/2]Q̃[1/2]

v

. (A.92)

where Q[a]
t (w j) = Q[a]

t and j = 1, . . . ,N.

A.3 Bethe Ansatz for the nested chain

In the previous sections, we showed how to diagonalize the transfer matrix via the nested
Algebraic Bethe ansatz approach. In this model, the nesting is manifest from the appearance
of the transfer matrix for the twisted 6-vertex model. While the 6-vertex model also appears
in the Hubbard model [123, 124] and in the AdS5 × S5 S-matrix for bound states [125],
model B3 is different. In fact, the r-matrix (A.17) is a twisted version of the standard one
and the transfer matrix is also twisted as will be explained in the following.
In principle, we can solve the nested problem as an independent one, for a spin chain of
a given length and with arbitrary number of excitations. What we actually have to use is
that the length of the chain is equal to M (total number of magnons) and that the number of
excitations of the nested chain is equal to N, number of excitation of type B2. The rapidities
of the particles of the main chain are the inhomogeneities of the nested chain.
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To summarize

M = #B1 +#B2 = Lnested, N = #B2 = #B, (A.93)

where B will be defined in the following as the creator operator of the nested chain.
The r-matrix of (A.17) is

r(u) = rγ δ

α β
(u)eα

γ ⊗ eβ

δ
, r(u) =



1 0 0 0

0 b(u)e−2iφ a(u) 0

0 a(u) b(u)e2iφ 0

0 0 0 1


, (A.94)

where a(u) = sinh(2ψ)
sinh(2(u+ψ)) , b(u) = sinh(2u)

sinh(2(u+ψ)) and φ ∈ R.
φ is the twisting and if e2iφ = 1, one finds the standard 6-vertex r-matrix7.
To construct the transfer matrix, we recall the results for one, two and 3 magnons

one magnon: (−e2iφ )α(L−1)rαγ

αa(v−u) (A.95)

two magnons: (−e2iφ )α(L−2)rτ γ

α a1(v1 −u)rα γ2
τ a2 (v2 −u) (A.96)

3 magnons: (−e2iφ )α(L−3)rτ1γ1
α a1(v1 −u)rτ2 γ2

τ1 a2(v2 −u)rα γ3
τ2 a3(v3 −u) (A.97)

which can be easily generalized to the case of M magnons

(−e2iφ )α(L−M)rτ1γ1
α a1(v1 −u)rτ2 γ2

τ1 a2(v2 −u) . . .rα γM
τM−1 aM(vM −u) (A.98)

and in matrix form

T (1)(u) = traGa

M

∏
i=1

rai(ui −u), (A.99)

Ga =
(
−e2iφ

) 3
2 (M−L)

 (
−e2iφ)M−L

2 0

0
(
−e2iφ) L−M

2

 . (A.100)

T (1)(u) is the twisted transfer matrix and Ga is a su(2) element. An example of twisted
transfer matrix can be found in [189]. It is easy to check that the RTT is satisfied also with
this new definition of transfer matrix.

7See for example Appendix B of [125]
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We use the notation (1) to identify objects in the nested chain. Since the model preserves
spin, as for the XXX spin chain analyzed in section 1.3, the reference state is defined as a
state with all spin up

|0⟩(1) =
M⊗

i=1

|↑⟩=
M⊗

i=1

 1

0

 . (A.101)

The monodromy matrix is

T (1)
a (u) = Ga

M

∏
i=1

rai(vi −u) =

 A(u) B(u)

C(u) D(u)

 , (A.102)

A(u)|0⟩(1) =
(
−e2iφ

)L−M
|0⟩(1), (A.103)

C(u)|0⟩(1) = 0, (A.104)

D(u)|0⟩(1) =
(
−e2iφ

)2(L−M) M

∏
i=1

e2iφ b(vi −u) |0⟩(1). (A.105)

It is easy to check that the reference state (A.101) is an eigenstate of the transfer matrix with
eigenvalue

(
−e2iφ

)L−M
[

1+
(
−e2iφ

)L−M M

∏
i=1

e2iφ b(vi −u)
]
. (A.106)

From the RTT relations8

[B(u),B(v)] = 0, (A.107)

A(v)B(u) =
e−2iφ

b(v−u)
B(u)A(v)− e−2iφ a(v−u)

b(v−u)
B(v)A(u), (A.108)

D(v)B(u) =
e−2iφ

b(u− v)
B(u)D(v)− e−2iφ a(u− v)

b(u− v)
B(v)D(u). (A.109)

The eigenstate of N particles is given by

|N{w}⟩(1) = B(w1) . . .B(wN) |0⟩(1). (A.110)

8We can notice that the following commutation relations are very similar to the ones obtained in section
(1.3). However, here we used a different normalization. The map a → 1, b → be2iφ , c → a will allow to find
(A.108) from (1.44)-(1.45).
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By applying the transfer matrix to a state of N particles we found the following eigenvalue:

λ6V (u)

(−e2iφ )
L−M =

N

∏
i=1

e−2iφ

b(u−wi)
+
(
−e2iφ

)L−M N

∏
i=1

e−2iφ

b(wi −u)

M

∏
j=1

e2iφ b
(
v j −u

)
(A.111)

and considering the expression for a(u) and b(u)

λ6V (u)

(−e2iφ )
L−M =

N

∏
i=1

sinh(2(u−wi +ψ))

e2iφ sinh(2(u−wi))
+

(
−e2iφ

)L−M N

∏
i=1

sinh(2(u−wi −ψ))

e2iφ sinh(2(u−wi))

M

∏
j=1

e2iφ sinh(2(u− vi))

sinh(2(u− vi −ψ))
. (A.112)

This eigenvalue has a simple pole if u = wi. We can require that the residue at the single pole
vanishes and we get the set of Bethe equations for the rapidities w

N

∏
i=1,i̸= j

b
(
wi −w j

)
b
(
w j −wi

) = (−e2iφ
)L−M M

∏
k=1

e2iφ b
(
vk −w j

)
, j = 1, . . . ,N (A.113)

or explicitly

N

∏
i=1,i ̸= j

sinh
(
2
(
w j −wi +ψ

))
sinh

(
2
(
w j −wi −ψ

)) = (−e2iφ
)L M

∏
k=1

sinh
(
2
(
w j − vk

))
sinh

(
2
(
vk −w j +ψ

)) . (A.114)





Appendix B

The R-matrix for the site two model
related to Hubbard

The R-matrix corresponding to the model given in (5.33) is

Ri,i+1 =
1
8
(r8 + r2 + r3 + r10)

(
1+σ

z
i σ

z
i+1τ

z
i τ

z
i+1

)
+

1
8
(r8 − r2 − r3 + r10)

(
σ

z
i σ

z
i+1 + τ

z
i τ

z
i+1

)
+

1
8
(r8 − r2 + r3 − r10)

(
σ

z
i τ

z
i+1 +σ

z
i+1τ

z
i

)
+

1
8
(r8 + r2 − r3 − r10)

(
σ

z
i τ

z
i +σ

z
i+1τ

z
i+1

)
+

r6

4

(
σ

z
i + τ

z
i −σ

z
i σ

z
i+1τ

z
i+1 −σ

z
i+1τ

z
i τ

z
i+1

)
+

r5

4

(
σ

z
i σ

z
i+1τ

z
i +σ

z
i τ

z
i τ

z
i+1 −σ

z
i+1 − τ

z
i+1

)
+

1
4
(r1 + r4)

(
σ

x
i σ

x
i+1τ

x
i τ

x
i+1 +σ

y
i σ

y
i+1τ

y
i τ

y
i+1

)
+

1
4
(r4 − r1)

(
σ

x
i σ

x
i+1τ

y
i τ

y
i+1 +σ

y
i σ

y
i+1τ

x
i τ

x
i+1

)
+

1
4
(r9 + r12)

(
σ

z
i+1τ

y
i τ

y
i+1 −σ

x
i σ

x
i+1τ

z
i +σ

y
i σ

y
i+1τ

z
i+1 −σ

z
i τ

x
i τ

x
i+1

)
+

1
4
(r9 − r12)

(
σ

z
i+1τ

x
i τ

x
i+1 +σ

x
i σ

x
i+1τ

z
i+1 −σ

y
i σ

y
i+1τ

z
i −σ

z
i τ

y
i τ

y
i+1

)
+

1
4
(r7 + r11)

(
τ

x
i τ

x
i+1 +σ

x
i σ

x
i+1 +σ

y
i σ

y
i+1τ

z
i τ

z
i+1 +σ

z
i σ

z
i+1τ

y
i τ

y
i+1

)
+

1
4
(r7 − r11)

(
σ

y
i σ

y
i+1 + τ

y
i τ

y
i+1 +σ

x
i σ

x
i+1τ

z
i τ

z
i+1 +σ

z
i σ

z
i+1τ

x
i τ

x
i+1

)
(B.1)

where

r1 =−
2ikgu,v

dnu +dnv
, r4 = fu,v, r7 = 1,

i r9 =
cnu − cnv

snu + snv
, i k r11 =

dnu −dnv

snu + snv
,

r12

k
=

cnu − cnv

dnu +dnv
,
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r5 + r6 =−2igu,v, k (r5 − r6) = (dnv −dnu) fu,v,

r3 + r10 + r8 − r2 = 2 fu,v, r3 + r10 + r2 − r8 =
4 i k(cnu − cnv)

(dnu +dnv)(snu + snv) fu,v
,

r10(dnu + i k cnusnu)+ r8(dnu − i k cnusnu)

r4
= sn2

u(dnv −dnu)+
2dnu

f 2
u,v

+
2k2snu(cnu − cnu)gu,v

(dnu +dnv) fu,v
,

r3(dnu + i k cnusnu)+ r2(dnu − i k cnusnu)

r4
=

r12

( 4dnu

(snu + snv) f 2
u,v

+ snu (dnv −dnu)
)
+

fu,vgu,v

k

(2k2sn2
u

f 2
u,v

−dnudnv +dn2
u

)
,

we defined the shorthand notations for the Jacobi functions:

cnu = cn
(
u|k2) , snu = sn

(
u|k2) , Amu = am

(
u|k2) , (B.2)

dnu = dn
(
u|k2) , (B.3)

and we defined for simplicity

gu,v = sin
(

1
2
(Amu −Amv)

)
, fu,v = sec

(
1
2
(Amu −Amv)

)
. (B.4)

These two functions are related by the following expression

fu,vgu,v =csc
[
Amu −Amv

]
− cot

[
Amu −Amv

]
=

cnucnv + snusnv −1
cnusnv − cnvsnu

, (B.5)

however keeping both the f and g, the expressions for the entries of the R-matrix become
more concise.
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The actual matrix form reads

R =



r8 0 0 0 0 −r12 0 0 0 0 −r12 0 0 0 0 r1

0 r6 0 0 r7 0 0 0 0 0 0 r11 0 0 0 0

0 0 r6 0 0 0 0 r11 r7 0 0 0 0 0 0 0

0 0 0 r2 0 0 −r9 0 0 −r9 0 0 r4 0 0 0

0 r7 0 0 −r5 0 0 0 0 0 0 0 0 0 r11 0

−r12 0 0 0 0 r10 0 0 0 0 r1 0 0 0 0 r12

0 0 0 −r9 0 0 r3 0 0 r4 0 0 r9 0 0 0

0 0 r11 0 0 0 0 r5 0 0 0 0 0 r7 0 0

0 0 r7 0 0 0 0 0 −r5 0 0 0 0 r11 0 0

0 0 0 −r9 0 0 r4 0 0 r3 0 0 r9 0 0 0

−r12 0 0 0 0 r1 0 0 0 0 r10 0 0 0 0 r12

0 r11 0 0 0 0 0 0 0 0 0 r5 0 0 r7 0

0 0 0 r4 0 0 r9 0 0 r9 0 0 r2 0 0 0

0 0 0 0 0 0 0 r7 r11 0 0 0 0 −r6 0 0

0 0 0 0 r11 0 0 0 0 0 0 r7 0 0 −r6 0

r1 0 0 0 0 r12 0 0 0 0 r12 0 0 0 0 r8



,

(B.6)

where we suppressed the dependence on two spectral parameters, i.e. ri = ri(u,v).
This matrix is written in the standard basis ei where {e1,e2,e3,e4}= {| /0⟩, |↑⟩, |↓⟩, |↕⟩}, see
also (5.4).
The R-matrix given in this appendix satisfies the Yang-Baxter equation. By using version
12.3 of Mathematica the check is straightforward. However, when using version 12.0, special
attention should be given to the choice of the sign of the branch-cut.
To the best of our knowledge, this R-matrix is new and we have not encountered before a
model with this functional dependence. In fact, the entries can only be expressed in terms of
the Jacobi functions sn,cn and dn by introducing square roots.





Appendix C

Bond-site transformation

In this appendix, we show that the action of the bond site transformation can be obtained by
acting with a unitary transformation on the Pauli matrices. We consider the transformation
on the spin 1/2 chain, keeping in mind that the Hilbert space we are considering is H ⊗H∗.
We apply the transformation separately to σ and τ as in (3.21).
As before, we use the notation: X ,Y,Z, to identify the Pauli matrices.
We take the bond-site transformation (5.52)-(5.53) and we shift by half integer the right hand
side:

X j → X jX j+1, Z jZ j+1 → Z j+1. (C.1)

We can check explicitly what is the action of this transformation when it acts on a basis
of Pauli Matrices. In particular, we start from a spin chain of L = 2. We obtain:

L = 2

The Hilbert space is C2 ⊗C2. We seach for the expression of a 4x4 matrix U12 such that

U12X1U−1
12 = X1X2, (C.2)

U12Z1U−1
12 = Z1, (C.3)

U12Z2U−1
12 = Z1Z2. (C.4)
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Additionally, we require that U12X2U−1
12 = X2. This last choice is motivated by the fact that

we are restricting to the case of L = 2. By explicit computation we find

U12 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (C.5)

L = 3

For L = 3, we can repeat the argument and we have now

U123X1U−1
123 = X1X2, (C.6)

U123X2U−1
123 = X2X3, (C.7)

U123Z1U−1
123 = Z1, (C.8)

U123Z2U−1
123 = Z1Z2, (C.9)

U123Z3U−1
123 = Z1Z2Z3, (C.10)

and similarly to before,

U123X3U−1
123 = X3. (C.11)

The matrix U123 is now
U123 =U12U23, (C.12)

with U12 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


⊗ I and U23 = I⊗



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


.

We did a similar calculation for L = 4 and we obtain

U1234 =U12U23U34, (C.13)
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where Ui j are constructed from the operator



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, acting in the sites i, j of the

chain.
We can generalize this result for arbitrary L, in particular

U12...L =U12U23 . . .UL−1,L. (C.14)

Our model

For the model we analyzed in chapter 5, we applied the bond site transformation to the
densities operator h12 and ℓ12 of the spin 1/2 chain given in (5.15) and (5.35). We applied
the bond-site transformation to the densities and then we checked that the new operator
H3 remains integrable. In this way, we did not have to specify the action of the bond-site
transformation at the boundary of the spin chain.
In particular

U12U23(ℓ12 ⊗ I)U−1
23 U−1

12 = l123, (C.15)

and for the Hamiltonian part

U12U23(Y1X2 −X1Y2)U−1
23 U−1

12 = (Y2X3 −X1Y2). (C.16)

The Hamiltonian part h is self dual after the transformation, so we continue to refer to it is
h12. The ℓ operator becomes of range 3 and we refer to it as l123.





Appendix D

Exact computation of late time
expectation values

In this section, we detail the computation of the late-time expectation values of local observ-
ables following from the state

ρ(t = 0) = ρ0(β )≡
eβQ0

(2coshβ )L . (D.1)

In particular we focus on the local observable ⟨Z j⟩. Let us start by recalling that an over-
complete basis of the L+1-dimensional space of NESS can be generated by the ρ̃κ(α) =

T (κ)−1eαQ0T (κ). Since Q0 = ∑ j Z j has L + 1 distinct eigenvalues of the form 2n− L
with n = 0, . . . ,L, we can alternatively define a basis of the space of NESS in terms of the
projectors P̃n = T (κ)−1PnT (κ), where

Pn =
1

L+1

L

∑
k=0

ei 2πk
L+1 (

L+Q0
2 −n), (D.2)

is the projector onto the subspace where Q0 has eigenvalue 2n−L.
As a consequence, any density matrix in the space of NESS can be decomposed as :

ρNESS =
L

∑
n=0

Tr(ρNESSP̃n)

Tr(P̃n)
P̃n. (D.3)

Starting from an arbitrary ρ(t = 0), we therefore have at late times

lim
t→∞

eL t
ρ(t = 0) =

L

∑
n=0

Tr(ρ(t = 0)P̃n)

Tr(P̃n)
P̃n (D.4)
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and therefore, for any observable O ,

lim
t→∞

⟨O⟩=
L

∑
n=0

Tr(ρ(t = 0)P̃n)

Tr(P̃n)
Tr(P̃nO) . (D.5)

All the traces involved in (D.5) can be computed using the matrix product operator techniques.
Focusing on the observable Z j we need to compute :

lim
t→∞

⟨Z j⟩=
L

∑
n=0

Tr(ρ(t = 0)P̃n)

Tr(P̃n)
Tr(P̃nZ j) . (D.6)

The first trace Tr(P̃n) = Tr(Pn) can easily be computed without resorting to MPO techniques,
as it corresponds to the dimension of the eigenspace of Pn with eigenvalue 2L−n, however
as a warm-up we present its computation using the previously computed function G̃ (α,β ).
Using the decomposition (D.2) of the projector Pn, we have

Tr(P̃n) =
1

L+1

L

∑
k=0

ei 2πk
L+1 (

L
2−n)Tr

(
T (κ)−1ei πk

L+1 Q0T (κ)
)

=
1

L+1

L

∑
k=0

ei 2πk
L+1 (

L
2−n)G̃ (0,

ikπ

L+1
) =

2L

L+1

L

∑
k=0

ei 2πk
L+1 (

L
2−n)(cos

kπ

L+1
)L

=

(
L
n

)
. (D.7)

The second trace can be similarly evaluated as :

Tr(P̃nZ j) =
1

L+1

L

∑
k=0

ei 2πk
L+1 (

L
2−n) 1

L
∂α G̃ (α,

ikπ

L+1
)|α=0

= i2L 1−κ2

1−κ2L
1

L+1

L

∑
k=0

ei 2πk
L ( L

2−n)(sin
kπ

L+1
(cos

kπ

L+1
)L−1 +(iκ)L cos

kπ

L+1
(sin

kπ

L+1
)L−1)

=− 1−κ2

1−κ2L (1− (−1)L−n
κ

L)
L−2n

n

(
L−1
n−1

)
. (D.8)

We now move to the third trace, Tr(ρ(t = 0)P̃n). Taking the normalized density matrix
ρ(t = 0) = eαQ0/(2coshα)L,

Tr(ρ(t = 0)P̃n) =
1

(2coshα)L
1

L+1

L

∑
k=0

ei 2πk
L+1 (

L
2−n)G̃ (α,

ikπ

L+1
)

=
1

(2coshα)L
1

L+1
1

1−κ2L

(
Fn(α)− (iκ)LFn(α − iπ/2)

)
(D.9)
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where in the last line we have used the expression (6.53) of G̃ in terms of G , and introduced
the functions

Fn(α)≡
L

∑
k=0

ei 2πk
L+1 (

L
2−n)G̃ (α,

ikπ

L+1
)

=
L

∑
k=0

ei 2πk
L+1 (

L
2−n)

(
λ1(α,

ikπ

L+1
)L +λ2(α,

ikπ

L+1
)L +λ3(α,

ikπ

L+1
)L +λ4(α,

ikπ

L+1
)L
)

≡ F
(1)
n (α)+F

(2)
n (α)+F

(3)
n (α)+F

(4)
n (α). (D.10)

Using the expressions (6.51) of the eigenvalues λi, the contributions F (3) and F (4) are
easily evaluated. We find :

1
(2coshα)L

1
L+1

1
1−κ2L F

(3)
n (α) =

1
2L

(κ tanhα)L

1−κ2L

 L

n

 , (D.11)

1
(2coshα)L

1
L+1

1
1−κ2L F

(4)
n (α) =

1
2L

κL

1−κ2L (−1)L−n

 L

n

 . (D.12)

We now move to the contribution F (1)+F (2). Using the expression (6.51),

λ1(α,β )L +λ2(α,β )L =

2
L

∑
j=0

j even

(
L
j

)
(cosh(α +β ))L− j (cosh2(α +β )−κ

2 sinh(2α)sinh(2β )
) j/2

. (D.13)
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Hence,

F
(1)
n (α)+F

(2)
n (α) =

2
2L

L

∑
k=0

L

∑
j=0

j even

(
L
j

)
e−αLe

−2inkπ

L+1

(
1+ e

2ikπ

L+1 e2α

)L− j(
(1+ e

2ikπ

L+1 e2α)2 −κ
2(1− e

4ikπ

L+1 )(1− e4α)
) j/2

=
e−αL

2L−1

L

∑
k=0

L/2

∑
l=0

L−2l

∑
a=0

∑
b1,b2≥0
b1+b2≤l

(
L
2l

)(
L−2l

a

)(
l

b1,b2, l −b1 −b2

)
e

2i(a+b1+2b2−n)kπ

L+1 e2aα(2e2α)b1

(e4α(1−κ2)+κ2)b2

(1−κ2(1− e4α))b1+b2−l =
L+1
eαL

2
2L

L/2

∑
l=0

∑
b1,b2≥0
b1+b2≤l

L!e2nα(1−κ2(1− e4α))l−b12b1

(2l)!(n−b1 −2b2)!(L−2l −n+b1 +2b2)!

(
l

b1,b2, l −b1 −b2

)(
1−κ2(1− e−4α)

1−κ2(1− e4α)

)b2

.

(D.14)

We further expand this expression to write it as a polynomial in κ (the deformation
parameter) and we obtain (after proper re-arranging the sum)

(L+1)L!e2αn

2L−1eαL

∑
l!2l−b3

(
e−4α −1

)t (e4α −1
) f−t

(2l)! t!(b2 − t)!(l −b3)!( f − t)!(t −b2 +b3 − f )!(n−2b2 +b3 − l)!(2b2 −b3 − l +L−n)!
κ

2 f ,

(D.15)

where we used the shortcut

∑ →
L/2

∑
f=0

L/2

∑
l= f

l

∑
b3= f

b3

∑
b2=0

b2

∑
t=0

. (D.16)

We used the software Mathematica 12.3 to further simplify this expression and we obtained

F
(1)
n (α)+F

(2)
n (α) =κ

L/2

∑
f=0

(
e4α −1

) f
κ2 f (L− f )!

f !n!eα(L−2n) 2L−n

3F̃2

(
− f ,

1−n
2

,−n
2

;
L−n−2 f +1

2
,
L−n−2 f +2

2
;

1
e4α

)
,

(D.17)
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where κ = (L+1)
√

πL and 3F̃2 is the hypergeometric function regularized.
Reporting the results (D.11), (D.12) and (D.17) into (D.9) (where the terms Fn(α − iπ/2)
can just be obtained by shifting the argument), we get :

Tr(ρ(t = 0)P̃n) =
1
2L

(−1)nκL

κ2L −1

(
L
n

)(
(−κ tanh(α))L − (−1)n tanhL(α)+(−1)n

κ
L − (−1)L)+

1
(2coshα)L

1
1−κ2L

L/2

∑
f=0

√
πL
(
1− e4α

) f
κ2 f (−1) f+n2n−L(L− f )!e−α(L−2n) ((−1)L+1κL +(−1)n)

f !n!

3F̃2

(
− f ,

1−n
2

,−n
2

;
L−n−2 f +1

2
,
L−n−2 f +2

2
;

1
e4α

)
. (D.18)

The three factors (D.7), (D.8) and (D.18) can now be gathered in the initial expression
(D.6) for lim⟨Z j⟩. Performing the sum over n, we find that the contributions coming from
F

(3)
n and F

(4)
n vanish. It remains to compute

lim
t→∞

⟨Z j⟩=
√

π
(
1−κ2)e−αL

2L (κ2L −1)2
(sinh(2α)csch(α))L

L

∑
n=0

L/2

∑
f=0

2n (e4α −1
) f

κ2 f (2n−L)e2αn(L− f )!
(
(−1)n − (−κ)L)2

( f +1)!(n+1)!

3F̃2

(
− f ,

1−n
2

,−n
2

;
L−n−2 f +1

2
,
L−n−2 f +2

2
;

1
e4α

)
. (D.19)

This expression looks complicated at first sight, but we will now see that it is equivalent to
the expression (6.67) in the main text. Both expressions contain a prefactor 1−κ2

(1−κ2L)2 which
we therefore omit in the following, and compare the remaining polynomials in κ order by
order. Starting from (6.67), the remaining polynomial takes the form(

1−κ
2) tanh(α)

(
1+κ

2L −2κ
L tanhL−2

α
)
, (D.20)

in particular the exponents of κ that gives a contribution different from 0 are 0,2,L,2L,L+

2,2L+2. We shall now demonstrate that all other powers indeed vanish in the polynomial
associated with expression (D.19). In (D.19), the coefficients are 2 f ,2 f +L,2 f +2L, so the
only non-zero contribution should come from f = 0,1,L/2, the last one only for L even.
By direct computation, we found that to obtain (D.20) it is enough to sum the contribution of
f = 0 and f = 1. Let us show that the other terms vanish. First, we consider the contribution
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of f = L/2 in (D.19). This is proportional to

L

∑
n=0

(L−2n)e2αn ((−1)n − (−κ)L)2 sin(πn)
n 2F1

(
−L

2
,−n

2
;1− n

2
;

1
e4α

)
. (D.21)

Since the function 2F1
(
−L

2 ,−
n
2 ;1− n

2 ;e−4α
)

is finite for n odd, (D.21) vanishes due to
sin(nπ), while for n even:

2F1

(
−L

2
,−n

2
;1− n

2
;x
)
=

L/2

∑
k=0

(−1)kn
(L/2

k

)
xk

n−2k
, (D.22)

and if we substitute this into (D.21), we get

L/2

∑
k=0

L

∑
n=0

(−1)k(L−2n)sin(πn)
( L

2
k

)
e2α(n−2k)

n−2k
=

L

∑
n=0

in(L−2n)
(L

2
n
2

)
= 0, (D.23)

where since sin(nπ) is zero, we need to only keep the singular term.
It remains to show that all the terms with f > 1 do not contribute. Removing the irrelevant
terms and considering e−α = z, we should prove that the following term vanishes

L

∑
n=0

(L−2n)zL−2n

(n+1)!(1−2 f +L−n)!3F2

(
− f ,

1−n
2

,−n
2

;
L−n−2 f +1

2
,
L−n−2 f +2

2
;z4
)
.

(D.24)

Expanding as a series in z and re-shifting the sum over n we obtain

∞

∑
m=0

L−2m

∑
n=−2m

(−1)m( f
m

)
(L−4m−2n)zL−2n

(n+1)!(1−2 f +L−n)!
=

∞

∑
m=0

L

∑
n=0

(−1)m( f
m

)
(L−4m−2n)zL−2n

(n+1)!(1−2 f +L−n)!
.

(D.25)

We can now sum over m and we are left with

L

∑
n=0

(L−2n)1F0(− f ; ;1)+4 f 1F0(1− f ; ;1). (D.26)

Considering that

1F0(a; ;x) = (1− x)−a, (D.27)
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each terms of (6.67) are zero for f > 1 as stated at the beginning.
To summarize, we proved that (D.6) is equivalent to the expression (6.67) given in the main
text.





Appendix E

Integrable deformations of AdS

In this appendix, we show that the models 6-vertex B and 8-vertex B obtained in chapter 8
(by starting from an ansatz of 8-Vertex type) correspond to integrable deformations of the
AdS2 and AdS3 models.
The S-matrices of AdS2 and AdS3 integrable models contain separate same chirality 4×4
blocks that satisfy the Yang-Baxter equation by themselves. We proved that the matrix part
of these blocks fit into our classification. Rather than compare R-matrices, we will compare
the Hamiltonians. The dependence on the spectral parameter u (rapidity) of the AdS/CFT
Hamiltonians is in the Zhukovski variable x± defined by

u =
1
2

[
x++

1
x+

+ x−+
1

x−

]
,

x+

x−
= eip. (E.1)

AdS3

For AdS3, the Hamiltonian of particles with the same chirality [190, 60] can be embedded into
both the 6-vertex B and 8-vertex B models. For the spin chain frame [191], the Hamiltonian
can be found substituting in the general ansatz (8.3)

h2 = h6 = h7 = h8 = 0, (E.2)

h3 =
ẋ−

x−− x+
, h4 =

ẋ+

x−− x+
, (E.3)

h1 =−1
2
(h3 +h4), h5 =

1
4
(h3 +h4), (E.4)

and we take the positive sign in the square root in h3, h4.
We now see that there are two possible types of deformation. First, we can match this model
with our 6-vertex B type, which leaves us with a continuous family of deformations since we
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can add arbitrary functions of the spectral parameter to all of the components. An interesting
fact is that we can deform independently the blocks with the same chirality. Second, we can
also embed the AdS3 Hamiltonian in our 8-vertex B model (8.33). This gives a one-parameter
elliptic deformation of the AdS3 model. The embedding is given, for the spin chain frame, by

cotη =
1
2

ẋ++ ẋ−

x+− x−
, k = 0. (E.5)

This is a novel elliptic deformation.

AdS2 The massive sector of the AdS2 × S2 × T 6 string sigma model [64, 192] is of 8-
vertex B type. To make this explicitly, we should use a local basis transformation to make
h8 =−h7 = k, and the non-zero components of the Hamiltonian are parametrized as

cotη =
k
2

e
−ip

2

(
x+− 1

x−

)
1+ e

ip
2

1− e
ip
2

. (E.6)

We conclude that this integrable model only admits a one-parameter deformation by taking k
to be non-zero.
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