
Accelerating Neural Field Training via Soft Mining

Shakiba Kheradmand1, Daniel Rebain1, Gopal Sharma1, Hossam Isack2,
Abhishek Kar2, Andrea Tagliasacchi3, 4, 5, Kwang Moo Yi1

1 University of British Columbia, 2 Google Research,
3 Google DeepMind, 4 Simon Fraser University, 5 University of Toronto

Figure 1. Teaser: we introduce “soft mining” to accelerate neural field training. When applied to Neural Radiance Field (NeRF) training,
our method significantly improves convergence. We visualize the error maps (blue denotes low error and red denotes high error) and the
rendered novel views for uniform sampling and our method. We plot the convergence showing the Peak Signal-to-Noise Ratio (PSNR)
for the corresponding scene. We render both images at 1k iterations of training, specified by the red dashed line in the (right) graph. Our
method achieves the same PSNR significantly faster than the baselines.

Abstract
We present an approach to accelerate Neural Field train-

ing by efficiently selecting sampling locations. While Neu-
ral Fields have recently become popular, it is often trained
by uniformly sampling the training domain, or through
handcrafted heuristics. We show that improved convergence
and final training quality can be achieved by a soft mining
technique based on importance sampling: rather than ei-
ther considering or ignoring a pixel completely, we weigh
the corresponding loss by a scalar. To implement our idea
we use Langevin Monte-Carlo sampling. We show that by
doing so, regions with higher error are being selected more
frequently, leading to more than 2x improvement in conver-
gence speed. The code and related resources for this study
are publicly available at project page.

1. Introduction
Neural fields [45] have recently become popular due to
their versatile nature, and their ease of integration with

popular workloads like novel view synthesis [22]. Neu-
ral fields map input coordinates to output values and are
typically implemented as variants of multi-layer percep-
trons (MLP) [19, 35, 39]. They have demonstrated impres-
sive capabilities in representing signals for 1D audio [35],
2D images [23, 39], 3D shapes [22, 26], and 4D light fields
[37, 48]. Beyond modeling and compressing signals, they
have also been utilized to simulate physics [6, 27].

While neural fields provide impressive results, training
them can be lengthy, e.g. on modern GPUs training the
original Neural Radiance Field (NeRF) [22] for a single
scene can take hours. Researchers have since improved
the training process through alterations to network archi-
tectures [9, 23], and through better loss functions [2].

An angle that none of the papers above consider is how
training batches are formed. That is, which pixels in the 2D
image, or which rays in the radiance field are used for each
optimization step. These methods typically rely on simple
uniform sampling, which may lead to sub-optimal training

ar
X

iv
:2

31
2.

00
07

5v
1 

 [
cs

.C
V

] 
 2

9 
N

ov
 2

02
3

https://ubc-vision.github.io/nf-soft-mining/


Figure 2. Convergence: we show the relative number of iterations
compared to uniform sampling required to reach PSNR value of
35 dB for 2D image fitting, 30 dB for the NeRF Synthetic dataset,
and 25 dB for the NeRF LLFF dataset. Our method requires sig-
nificantly less number of iterations, specifically less than half of
what is required with uniform sampling.

performance. For example, as shown for the NeRF train-
ing example in Figure 1, if the signal has smooth regions
such as walls, we can expect diminishing returns when sam-
pling from those smooth areas as training progresses. There
have been some very recent attempts to address this prob-
lem either through a heuristic that focuses training to image
edges [14], or by analyzing images through quad-trees [50].
However, these methods are hand-designed for NeRF and
do not generalize to other neural field training. Moreover,
the gains that these methods provide are marginal, espe-
cially with real-world data, as we will show empirically.

In this work, we propose a principled method to im-
prove the convergence of neural field training by improv-
ing the sampling mechanisms. Akin to core research in im-
age classification that introduced the concept of hard min-
ing [32, 33], we propose to focus on ‘hard’ samples within a
neural field workload. However, we empirically discovered
that straightforward hard mining does not improve train-
ing. We thus re-formulate neural field training as impor-
tance sampling and derive a relaxed ‘soft’ hard mining for-
mulation, analogous to the soft mining heuristic introduced
for metric learning [41]. To implement our idea, inspired
by the rich literature on Bayesian optimization for efficient
sampling of distributions [3, 12, 43], we opt to use Langevin
Monte Carlo (LMC) sampling [5, 25].

To verify the efficacy of our method, we apply it to two
common use cases of neural fields: 2D image fitting and
NeRF. As shown in Fig. 2, our method at least doubles the
convergence speed for all tasks. Compared to the edge-
based heuristic [14] for NeRF, our method approximately
doubles the convergence speed for both synthetic and real-
world data.

2. Related Works
Neural fields have gained substantial popularity as a rep-
resentation method for various types of signals in a wide
variety of applications [46]. This paradigm was first pop-

ularized as a way of representing 3D scenes and objects,
beginning with Scene Representation Networks [34] in the
form of learnable ray marching, which was soon followed
by Neural Radiance Fields [22] and Implicit Differentiable
Renderer [47], which adopted volumetric and distance field
representations respectively. Initially, work on neural scene
representations focused on architectures where the field co-
ordinate is a spatial position, but later works generalized
this to cases where the parameters of a viewing ray are used
to define the field [30, 36]. These methods share a com-
mon photometric reconstruction strategy for supervision in
which the network is trained to reproduce pixel values of the
training images when rendered. Due to the computational
expense of rendering, this supervision is implemented as a
stochastic approximation in which mini-batches of pixels
are sampled from the training images to be used as supervi-
sion at each step. It is this pixel sampling process that we
aim to improve, so to achieve better training convergence
and higher accuracy.

Accelerating neural fields. Neural scene representa-
tions, particularly those based on volume rendering, quickly
gained a reputation for being very computationally expen-
sive and therefore slow to train. Consequently, a number
of methods have been proposed for accelerating both train-
ing and inference by modifying the model architecture to be
less expensive. The majority of these approaches have tried
to achieve their speed-ups by reducing the number of times
the underlying field needs to be evaluated [20, 23, 31, 48],
by altering the memory-computation trade-off of the neu-
ral architecture [15, 28, 29, 31, 38], and/or by optimizing
their implementations to take maximum advantage of ac-
celeration hardware with efficient compressed field repre-
sentations [7–10, 13, 23]. While these methods are largely
aligned with our goal of improving efficiency, and thereby
quality achievable within a given compute budget, their
methods are complementary to ours, which is compatible
with a wide variety of efficient architectures. We note
also that none of these methods focus on choosing which
rays (queries) to use for training, which is the primary fo-
cus of our work.

Efficient selection of queries. Some prior works have ex-
plored modified ray sampling schemes for training NeRF
models. Gai et al. [14], which we refer to as Edge, samples
rays based on detected edges in training images, taking ad-
vantage of the fact that rendering error tends to be higher
in these regions. Zhang et al. [50] adopts a strategy that in-
corporates a prior probability derived from local color vari-
ance, and further tracks photometric error throughout train-
ing with an adaptive quadtree structure, allocating more
samples to regions with higher error. Unlike these hand-
crafted techniques, our method seeks to improve training
by allocating samples in a principled manner, and in a way
that is not tightly coupled to a specific task. By doing so we



show that a significant speed up in convergence is achiev-
able compared to existing methods.

3. Method

Let us start by formalizing neural field training (Sec. 3.1).
We will then introduce our soft mining approach (Sec. 3.2)
as well as how to create batches effectively with minimal
overhead via LMC sampling (Sec. 3.3).

3.1. Neural field training

A neural field fψ with learnable parameters ψ defines a
mapping from a bounded set of coordinates R ⊂ RD to
outputs O ∈ RF as fψ : RD → RF , where for ex-
ample fψ : R3 → R1 maps positions to signed distance
in [26, 35], and fψ : R5 → R4 maps positions to view-
dependent radiance and density in [22]. These neural fields
are typically trained with a loss function that is associated
with the error that the neural field function is making while
predicting a ground-truth signal fgt(x). Formally, we define
an error function that takes a neural field fψ(x) at the co-
ordinates x and outputs a value representing some disparity
metric between the prediction and ground truth fgt(x) as

err(x) = err(fψ(x), fgt(x)) ∈ R. (1)

We can then write the loss function that is minimized for
training to be the Monte Carlo estimate of the expectation
of this error err(x):

L =
1

N

N∑
n=1

err(xn) ≈ Ex∼P (x) [err(x)]

=

∫
err(x)P (x) dx , (2)

where N is the number of training samples in a batch and P
is the distribution of the sampled data points xn. In (2), it is
important to note that P affects the outcome of the integral
and the expectation, and changes in the sampling scheme
effectively result in changes in the loss—naively choosing
a batch construction scheme can therefore be harmful and
requires care. Typically, a uniform distribution is employed
as P for most neural field applications; e.g., in Mildenhall
et al. [22]. Let us now discuss how to perform (soft) hard
mining with importance sampling and how it tightly relates
to the original objective in (2).

3.2. Soft mining with importance sampling

We first start by introducing importance sampling for neural
field training. To allow for different strategies to be used
for batch construction in (2), we introduce an importance

distribution Q(x) and create training batches as:∫
err(x)P (x) dx =

∫
err(x)P (x)

Q(x)
Q(x) dx

= Ex∼Q(x)

[
err(x)P (x)

Q(x)

]
. (3)

When P is a uniform distribution, which is reasonable to
assume given that we typically want the signal to be well-
represented everywhere, the Probability Density Function
(PDF) of the uniform distribution is constant, and we can
remove P (x) from (3) and rewrite it as:

Ex∼Q(x)

[
err(x)

Q(x)

]
. (4)

We can thus further rewrite (2) as:

L =
1

N

N∑
n=1

err(xn)

Q(xn)
, where xn ∼ Q(x). (5)

Note that training with (5) is impractical for an arbitrary
distribution Q(x) as one must differentiate through the sam-
pling process. Hence, we simply add a stop gradient opera-
tor sg(·) as in van den Oord et al. [40]:

L ≈ Ex∼sg(Q(x))

[
err(x)

sg(Q(x))

]
. (6)

Note that this effectively amounts to simple sample
reweighing. Without affecting the initial training objective,
equation (6) now allows us to focus our training efforts by
choosing an appropriate Q(x). Note also that this loss scal-
ing is not accounted for in methods that employ heuristics
for constructing training batches [14, 50].

To focus our training on regions with high error we sim-
ply define Q(x) to be proportional to err(x). Among var-
ious possibilities, for our experiments, we opt for squared
error for err(x), which is the typical choice for training neu-
ral fields, and set Q(x) to be the L1 norm of the error, so to
avoid focusing too much on outliers:

err(x) = ∥fψ(x)− fgt(x)∥22, (7)
Q(x) = ∥fψ(x)− fgt(x)∥1. (8)

Soft mining. While importance sampling mathematically
allows us to optimize the original objective with poten-
tially more effective samples at hard regions, our experi-
ments in Sec. 4.3 show that purely relying on it does not
improve performance drastically. We also show that ignor-
ing the importance weight Q(x)

−1, which is equivalent to
the commonly-used hard mining [32, 33], is sub-optimal as
well. While more emphasis should be given to the samples
that are ‘hard’ to learn, focusing exclusively on the hard



samples biases the training too far away from the original
training objective. To address this issue, we propose an al-
ternative that strikes a middle-ground, and write:

L =
1

N

N∑
n=1

[
err(xn)

sg(Q(xn))α

]
, where α ∈ [0, 1], (9)

where α controls the ‘softness’ of the mining, with α=0
corresponding to (pure) hard mining, and α=1 correspond-
ing to (pure) importance sampling. In our experiments we
typically utilize α ∈ [0.6, 0.8], thus behaving as soft min-
ing. We ablate our choice in Sec. 4.3.

3.3. Sampling via Langevin Monte Carlo

To implement our method we require that we can sample
from an arbitrary distribution Q(x). This is non-trivial,
and we thus rely on Markov Chain Monte Carlo (MCMC).
Among the family of MCMC methods, we specifically use
Langevin Monte Carlo (LMC) [5, 25] thanks to its simplic-
ity and effectiveness. Its deterministic nature, driven by
the gradient of the log posterior distribution, steers the ex-
ploration effectively towards regions of higher probability.
Meanwhile, its stochastic nature facilitates a comprehensive
exploration of the parameter landscape, aiding in evading
local minima and promoting convergence to the target dis-
tribution. Formally, to sample from Q(x), denoting a sam-
ple location at sampling step t as xt we write:

xt+1 = xt + a∇ logQ(xt) + bηt+1, (10)

where a>0 is a hyperparameter defining the step size for the
gradient-based walks, and b>0 is a hyperparameter defining
the step size for the random walk ηt+1∼N (0,1). Note that
for simplicity in notation, we have folded the two hyperpa-
rameters associated with the random walk in Brosse et al.
[5, Eq. 2] into a single parameter b. Critically, note here
that (10) depends only on the local gradient of the sam-
pling distribution Q(x) and random noise ηt+1. Because
the method is local, we can perform sampling with mini-
mal overhead as we already compute the backward pass for
training our neural field.
Sample (re-)initialization. While LMC eventually con-
verges to the desired distribution, it is well known that
MCMC methods require careful (re-)initialization for effec-
tive sampling [16]. We first initialize the sampling distribu-
tion to be uniform over the domain of interest as x0∼U(R).
We further re-initialize samples that either move out of R
or have too low error value causing samples to get ‘stuck’.
We use uniform sampling as well as edge-based sampling
for 2D workloads.
Warming up soft mining. We empirically noticed that in
very early training iterations (≤1k iterations) LMC requires
warm-up time, which is commonly the case for MCMC

Figure 3. 2D image fitting examples: We show 2D image fitting
example for our method and uniform sampling for (top) the two
regions on the Tokyo image and (bottom) the two regions on the
Pluto image. The (left) column shows results for the batch size
of 256 trained for 10k iterations and the (right) column shows
the result for the batch size of 4096 trained for 1k iterations. As
shown, our results are sharper, especially noticeable around the
texts and finer details.

methods [16]. This makes applying the corrections in (9)
unreliable as our samples are not yet exactly following
Q(x). We thus start with α=0, i.e., no correction, then lin-
early increase it to the desired α value at 1k iterations.
Alternative: multinomial sampling. For many neural
fields use cases [22, 35], the modeling space is discrete –
e.g. pixels. In this case, Q(x) would be a multinomial distri-
bution that could be explicitly modeled and sampled from.
While we show in Sec. 4 that this approach indeed provides
an improvement, it is computationally impractical. To use
multinomial sampling, one needs to do a forward pass of
all data points to build a probability density function, which
is computationally expensive. Even a naive strategy to pre-
vent these forward passes, such as bookkeeping a moving
average of error can be costly in a large dataset. Hence an
alternative strategy, such as those based on Markov Chain
Monte Carlo (MCMC) is required.

4. Results
To validate the effectiveness of our method we focus on two
popular applications: 2D image fitting and Neural Radiance
Fields (NeRF). We first present results for these two appli-
cations and then provide ablation studies. We note that in
all of our experiments, to account for the randomness of
neural field training, all reported results are the average out-



batch size 28 29 210 211 212 213 214 215 216 217 218

Pluto Uniform 30.01 32.34 35.27 38.50 41.19 43.22 45.00 46.29 47.47 48.28 48.79
Ours 32.85 35.60 38.55 41.16 43.42 45.33 46.88 47.99 48.88 49.43 49.97

Eiffel Uniform 29.32 31.96 34.59 37.21 39.87 42.11 44.07 45.12 45.45 46.00 46.14
Ours 34.65 37.81 40.90 44.00 46.21 48.31 49.62 50.79 51.72 52.33 52.67

Tokyo Uniform 25.30 26.95 28.87 30.95 33.41 36.07 38.56 40.19 41.46 42.15 42.66
Ours 27.55 29.51 31.73 34.18 36.86 39.39 41.57 43.52 45.05 45.99 46.62

Figure 4. Convergence – image fitting: we report the PSNR values for the Pluto, Eiffel Tower, and Tokyo images, with different batch
sizes, for both our method and uniform sampling. We also show the convergence graphs for two representative batch sizes. Regardless of
the batch size, our method provides faster convergence.

comes of three runs. We will release the code to ensure full
reproducibility.

4.1. 2D image fitting

We first apply our method to the task of fitting a neural field
to an image, that is, the task of image memorization. We
compare our method to uniform sampling, with the same
Instant-NGP [23] backbone. We implement our framework
based on the official Instant-NGP implementation [23, 24].
Dataset and metrics. We use three high-resolution
images for evaluation: Eiffel Tower (3024×4032),
Pluto (8000×8000) and Tokyo (6144×2324). Pluto image
is a high-resolution image of Pluto.1 The latter two were
used to benchmark methods in previous works [23, 44]. We
compare each method using PSNR.
Hyperparameters. We keep the same hyperparameter set-
ting for all our 2D image-fitting experiments. We use a
learning rate of 0.01 and a multi-step learning rate sched-
uler (decaying at 20k and 30k iterations) following the base
implementation [23]. We set α=0.6 in (9). We leverage
image edges for re-initialization (see Sec. 3.3). We exe-
cute Sobel edge detection and normalize the edge scores to
turn them into a probability distribution. We then randomly
choose pixels from this distribution to re-initialize our LMC
samples, those that are the bottom 10% of the LMC sam-
pling pool according to Q(x). We further keep 10% of our
training batch to be sampled uniformly to avoid completely

1Image courtesy of NASA’s Photojournal (Image ID: PIA19952). The
image is in the public domain.

ignoring some pixels. Finally, for (10), we choose a=1e−5
and b=1e − 3 via hyperparameter search, which we found
to work well for most images.

Results. As shown in Fig. 3, our method provides signif-
icantly higher reconstruction quality for the same number
of iterations, i.e., our method converges faster. We further
show convergence graphs in Fig. 4 along with the quantita-
tive results for different batch size configurations. Notably,
our method not only leads to faster convergence but also
to higher PSNR at the end. We emphasize once more that
the only difference between the baselines is the sampling
strategy for constructing batches. Yet, there is a signifi-
cant gap, demonstrating the importance of choosing which
points to sample. As depicted in Fig. 2, we converge al-
most four times faster than uniform sampling to a PSNR of
35dB (averaged over all three images and all batch sizes)—
it takes ≈2,400 iterations with our method and ≈10,600
with uniform sampling.

4.2. Neural radiance fields

We further experiment on learning NeRF [22], arguably
one of the most popular applications for neural fields.
NeRF [22] takes a 3D position and a direction vector and
outputs radiance and density values used to volume ren-
der an image. NeRF training involves sampling light rays
that correspond to each pixel to construct training batches,
which are then used to train neural fields with a pixel-wise
color reconstruction loss. We defer the exact details of
NeRF to Mildenhall et al. [22], as here we are interested



Figure 5. Qualitative examples – NeRF: we show example rendering for each sampling method after 1k training iterations. Our renderings
are significantly sharper than other methods, demonstrating faster convergence. Best viewed when zoomed in.

only in evaluating how our sampling of the light rays for
constructing batches helps convergence. We compare our
method to two baselines: uniform sampling, and Edge [14].
As no public implementation exists, we re-implement Gai
et al. [14] faithfully following the paper.

Dataset and metrics. We experiment with the NeRF Syn-
thetic dataset [22] consisting of 8 object-centric scenes with
white background, as well as the LLFF dataset [21, 22]
consisting of 8 real-world forward-facing scenes. For the
NeRF framework, we use NerfAcc [18], a popular repos-
itory which is known to closely reproduce the results of
Instant-NGP [23] (as the public implementation of [23]
does not reproduce the results in the paper for NeRF ex-
periments). We keep all aspects the same except for the
sampling process. We use the standard image quality met-
rics: PSNR, SSIM [42], and LPIPS [49].

Hyperparameters. We train each method with a learn-
ing rate of 0.01, a cosine annealing learning rate scheduler.
We use α=0.6 for NeRF Synthetic scenes and α=0.8 for
the LLFF dataset, as we found that real and synthetic scenes

exhibit different characteristics. We keep all other hyperpa-
rameters the same for all experiments. We use the same
sample re-initialization as in Sec. 4.1, and use a=2e1 and
b = 2e− 2 for (10).
Computation time. Before we dive into the results, we first
measure the computation time with and without our method
with the NeRF application. We measure the computation
time on a system equipped with an Intel Core i7-11700K @
2.50GHz CPU and NVIDIA GeForce RTX 3090 GPU, with
a batch size of 300 rays, with three different runs, each run-
ning 20k iterations. With our pure PyTorch implementation,
running 20k iterations takes 248 seconds, whereas with our
method 257 seconds. This amounts to a less than 4% in-
crease in processing time. Given the more-than-twice in-
crease in convergence speed, we argue that the 4% increase
is negligible. Furthermore, examination with a GPU profiler
reveals that the majority of the increase is due to CPU over-
head in the backward pass, suggesting that an implemen-
tation using a pre-compiled graph such as TorchScript [1]
or JAX [4] would eliminate this slowdown. In other words,
a more optimized implementation should be able to reduce



Figure 6. Convergence – NeRF: PSNR vs. the number of iterations for the test views of (left) the LLFF dataset and (right) the NeRF
Synthetic dataset, with the (middle) zoomed-in rendering (fern and trex scenes) for selected iterations. Our method significantly speeds up
convergence for both datasets, whereas edge-based heuristic [14] only works well for the synthetic dataset.

1k iterations (PSNR / SSIM / LPIPS) 5k iterations (PSNR / SSIM / LPIPS) 10k iterations (PSNR / SSIM / LPIPS)

Uniform Edge [14] Ours Uniform Edge [14] Ours Uniform Edge [14] Ours

Orchids 19.03 / 0.56 / 0.44 19.14 / 0.56 / 0.45 19.66 / 0.59 / 0.41 20.01 / 0.64 / 0.34 20.06 / 0.63 / 0.36 20.14 / 0.66 / 0.31 20.13 / 0.65 / 0.31 20.18 / 0.64 / 0.33 20.09 / 0.67 / 0.28
Trex 21.38 / 0.75 / 0.41 21.52 / 0.76 / 0.41 23.89 / 0.81 / 0.37 25.46 / 0.87 / 0.28 26.01 / 0.87 / 0.28 26.67 / 0.90 / 0.23 26.57 / 0.89 / 0.24 26.83 / 0.89 / 0.24 27.55 / 0.91 / 0.20
Leaves 18.87 / 0.60 / 0.44 18.81 / 0.58 / 0.47 19.33 / 0.61 / 0.42 20.51 / 0.68 / 0.33 20.40 / 0.66 / 0.37 20.63 / 0.71 / 0.30 20.85 / 0.71 / 0.30 20.73 / 0.69 / 0.34 20.82 / 0.72 / 0.26
Horns 20.19 / 0.71 / 0.42 20.49 / 0.71 / 0.43 23.74 / 0.75 / 0.39 26.21 / 0.82 / 0.29 26.18 / 0.81 / 0.30 27.20 / 0.85 / 0.24 27.04 / 0.85 / 0.25 26.99 / 0.84 / 0.26 27.94 / 0.88 / 0.20
Fern 15.91 / 0.62 / 0.49 16.02 / 0.61 / 0.51 23.52 / 0.72 / 0.40 24.49 / 0.78 / 0.31 24.35 / 0.76 / 0.34 25.14 / 0.81 / 0.29 25.00 / 0.80 / 0.27 24.82 / 0.79 / 0.30 25.42 / 0.82 / 0.26
Fortress 21.98 / 0.70 / 0.41 23.13 / 0.72 / 0.39 28.49 / 0.78 / 0.34 29.37 / 0.83 / 0.27 29.11 / 0.82 / 0.28 30.40 / 0.86 / 0.22 29.92 / 0.85 / 0.23 29.78 / 0.84 / 0.24 30.71 / 0.88 / 0.19
Flower 24.07 / 0.75 / 0.34 24.19 / 0.74 / 0.35 25.49 / 0.77 / 0.31 26.75 / 0.81 / 0.25 26.67 / 0.80 / 0.27 27.26 / 0.83 / 0.21 27.39 / 0.83 / 0.22 27.42 / 0.83 / 0.23 27.66 / 0.85 / 0.18
Room 26.57 / 0.87 / 0.39 25.77 / 0.87 / 0.39 28.22 / 0.90 / 0.34 29.33 / 0.92 / 0.28 30.01 / 0.93 / 0.26 31.19 / 0.94 / 0.21 30.48 / 0.94 / 0.23 30.98 / 0.94 / 0.22 32.05 / 0.95 / 0.18

Average 21.00 / 0.70 / 0.42 21.13 / 0.69 / 0.43 24.04 / 0.74 / 0.37 25.27 / 0.79 / 0.29 25.35 / 0.79 / 0.31 26.08 / 0.82 / 0.25 25.92 / 0.81 / 0.26 25.97 / 0.81 / 0.27 26.53 / 0.83 / 0.22

Mic 28.29 / 0.95 / 0.08 29.55 / 0.96 / 0.08 30.90 / 0.97 / 0.06 31.16 / 0.97 / 0.05 32.79 / 0.98 / 0.04 33.94 / 0.98 / 0.03 32.61 / 0.98 / 0.03 33.96 / 0.98 / 0.03 34.66 / 0.99 / 0.03
Ship 24.78 / 0.80 / 0.28 25.28 / 0.80 / 0.30 25.99 / 0.83 / 0.26 27.61 / 0.85 / 0.20 27.96 / 0.85 / 0.20 28.33 / 0.87 / 0.18 28.66 / 0.86 / 0.18 28.81 / 0.86 / 0.18 29.06 / 0.87 / 0.17
Lego 27.04 / 0.90 / 0.14 27.81 / 0.91 / 0.15 29.58 / 0.94 / 0.09 30.44 / 0.95 / 0.08 31.69 / 0.95 / 0.08 32.70 / 0.97 / 0.04 32.06 / 0.96 / 0.06 32.90 / 0.96 / 0.06 33.85 / 0.97 / 0.03
Chair 28.62 / 0.93 / 0.10 29.50 / 0.94 / 0.10 31.12 / 0.96 / 0.07 31.41 / 0.96 / 0.06 32.42 / 0.97 / 0.06 33.46 / 0.98 / 0.04 32.60 / 0.97 / 0.05 33.31 / 0.97 / 0.05 34.15 / 0.98 / 0.03
Materials 24.21 / 0.88 / 0.16 24.34 / 0.87 / 0.19 25.22 / 0.90 / 0.14 26.13 / 0.91 / 0.12 26.69 / 0.91 / 0.12 27.29 / 0.93 / 0.10 27.17 / 0.93 / 0.10 27.60 / 0.92 / 0.10 27.87 / 0.94 / 0.09
Hotdog 31.02 / 0.95 / 0.12 31.73 / 0.95 / 0.12 33.44 / 0.96 / 0.10 33.76 / 0.97 / 0.07 34.57 / 0.97 / 0.08 35.59 / 0.98 / 0.06 34.85 / 0.97 / 0.06 35.41 / 0.97 / 0.06 36.12 / 0.98 / 0.05
Drums 22.83 / 0.89 / 0.15 23.01 / 0.88 / 0.20 23.31 / 0.91 / 0.15 23.93 / 0.91 / 0.12 24.08 / 0.91 / 0.13 24.23 / 0.92 / 0.12 24.43 / 0.92 / 0.10 24.44 / 0.92 / 0.11 24.44 / 0.93 / 0.12
Ficus 25.19 / 0.92 / 0.15 26.71 / 0.93 / 0.19 28.97 / 0.95 / 0.11 28.80 / 0.95 / 0.06 30.09 / 0.96 / 0.06 30.51 / 0.97 / 0.06 29.81 / 0.96 / 0.05 30.76 / 0.97 / 0.05 30.85 / 0.97 / 0.06

Average 26.50 / 0.90 / 0.15 27.24 / 0.90 / 0.17 28.57 / 0.93 / 0.12 29.16 / 0.93 / 0.10 30.04 / 0.94 / 0.10 30.76 / 0.95 / 0.08 30.27 / 0.94 / 0.08 30.90 / 0.94 / 0.08 31.38 / 0.95 / 0.07

Table 1. Convergence – NeRF: for (top rows) LLFF dataset [21, 22] and the (bottom rows) the Synthetic dataset [22]. Our method
provides best results for all cases for early iterations, and almost every case at 10k iterations, when training nearly converges.

the computation load even further. The only computation
time that is added is the LMC update rule and the back-
ward step of the last layer that computes the gradients w.r.t
the input coordinates. Both of these should be insignificant
compared to the actual neural field training.

Results. Fig. 6 and Tab. 1 shows the PSNR, SSIM, and
LPIPS values for both the NeRF Synthetic and the LLFF
datasets. As shown, our method is able to speed up con-
vergence in almost all cases, significantly. Note especially
the gap in performance in the earlier iterations. As depicted
in Fig. 2, we more than double the convergence speed com-
pared to uniform sampling and approximately double that of
Edge [14]. More specifically, to reach a PSNR of 25 dB on
the LLFF dataset our method takes ≈1,700 iterations, uni-
form sampling takes ≈3,800 iterations, and Edge [14] takes
≈3,300 iterations. On the NeRF Synthetic dataset to reach a
PSNR of 30 dB it takes ≈2,400 iterations using our method,
≈8,500 iterations with uniform sampling, and ≈4,800 iter-
ations with Edge [14]. Note that in the case of [50], another
method based on image contexts and quadtree subdivision,

their relative convergence gain with respect to uniform sam-
pling is 18% and 15% for the NeRF Synthetic and the LLFF
dataset with a final gain of 0.4 PSNR, which we comfort-
ably outperform.

It is worth noting that while the Edge [14] baseline
provides significantly improved results for the synthetic
dataset, it does not perform as well on the LLFF scenes. We
suspect that this is because the synthetic dataset is highly
particular in that it is object-centric, with a flat white back-
ground, while the LLFF scenes are of natural images, thus
with a rich background that can have much texture. We note
here that our findings are different from what is reported
in Edge [14], as they report ≈1 dB improvement on aver-
age, mostly coming from the ‘Horns’ sequence (21.24 dB
with uniform sampling vs 25.45 dB with Edge [14]). How-
ever, with our NerfAcc implementation, uniform sampling
already provides 27.04 dB at 10k iterations for this scene,
and Edge [14] provides 26.99 dB. This difference could be
due to implementation details, but we believe the gap in
convergence speed between our method and uniform sam-



(a) NeRF Synthetic Dataset (b) LLFF Dataset

Figure 7. Ablation – soft mining parameter α: we report the
effect of different α in terms of PSNR gain compared to uniform
sampling for various training iterations. In both cases, the optimal
choice of α is within (0,1). Note that simple hard mining, α=0
does not improve convergence for the LLFF dataset, whereas with
α=0.8, our choice, it does.

pling is large enough, even when considering the reported
difference. Further, our method improves convergence re-
gardless of the data type.

4.3. Ablation studies

Effect of the soft mining parameter α. To examine the
effect of the soft mining parameter α in (9), we look at
the gain in PSNR values compared to that of uniform sam-
pling for varying α in Fig. 7. As shown, neither complete
hard mining nor pure importance sampling is optimal. Our
method provides an effective compromise. Also note that
the gains are more substantial in earlier stages of training
as expected, as they both converge to similar solutions, but
ours converges much faster. It is also important to notice
that with α=0, which is equivalent to hard mining, results
for the LLFF dataset do not improve—rather it degrades. As
already discussed theoretically in Sec. 3.2, this hard mining
would be a change of the actual objective being minimized,
which could cause this performance degradation.
How effective is Langevin Monte Carlo? While we pro-
pose to use Langevin Monte Carlo (LMC) to sample with
minimal sampling overhead, we also investigate how effec-
tive this is compared to the impractical multinomial sam-
pling discussed in Sec. 3.3. Instead of LMC, at each batch
construction step, we evaluate all pixels and form the train-
ing batch by sampling according to the true importance dis-
tribution Q(x), via multinomial sampling. This is very
costly, e.g., increasing the training time to hours or days
from minutes depending on the dataset, which destroys any
practical gains. Nonetheless, it can be understood as the
upper bound for what can be achieved when infinite com-
pute and resource is available. Due to heavy computational
demand, we only performed this experiment for the Room
scene in the LLFF dataset. We report our results in Fig. 8.
For both multinomial sampling and LMC, we keep the same
hyperparameters as in other experiments, that is, α=0.8. As

Figure 8. Soft Mining with LMC vs ideal sampling of Q(x): we
replace LMC sampling in our method with Multinomial Sampling,
which, while computationally heavy, samples directly from Q(x).
Due to the heavy compute of Multinomial Sampling, we only re-
port PSNR curves for the Room scene in the LLFF dataset. Our
method provides an effective compromise with improved conver-
gence with minimal increase in compute.

w/o Uniform w/o Re-initialization with both (Ours)

23.91 23.57 24.04

Table 2. Uniform sampling and re-initialization: We report
PSNR of our method on LLFF dataset after 1k iterations of train-
ing, with either uniform sampling or re-initialization disabled.

shown, by exactly sampling from Q(x) convergence is even
higher compared to LMC, as, while samples from LMC the-
oretically converge to Q(x), with finite samples there is
approximation error. Regardless, even with this error, our
LMC sampling performs better than uniform sampling, and
provides an effective compromise given the small amount
of compute it requires.
How important is (re-)initialization? We also validate the
importance of uniform samples and re-initialization. As we
report in Tab. 2, both help improve reconstruction quality.
We found them to be particularly useful for achieving good
final converged performance.

5. Conclusions
We presented how to accelerate neural field training by
introducing soft mining in the construction of training
batches, which we implement via Langevin Monte Carlo.
We have demonstrated on 2D image fitting and NeRF, that
our method leads to a two-fold+ improvement in conver-
gence speed.
Limitations and future work. While our methods signifi-
cantly improve results, we still rely purely on the loss func-
tion, which may not directly correlate with the application
at hand. In NeRF, for example, training losses may not di-



rectly correlate with the novel-view rendering quality. As
our framework does not depend on the choice of Q(x), it
could be possible to perhaps choose a different distribution
to sample from, e.g., depending on ray uncertainties [17] or
based on active learning [11]. Our method sets a framework
that allows easy exploration of such design choices, which
was not possible before.

6. Acknowledgments
The authors would like to thank Ivan Krasin and David Fleet
for their constructive feedback and support of this work.
This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC)
Discovery Grant, NSERC Collaborative Research and De-
velopment Grant, Google, Digital Research Alliance of
Canada, and Advanced Research Computing at the Univer-
sity of British Columbia.

References
[1] TorchScript Documentation. https://pytorch.org/

docs/stable/jit.html, 2023. Accessed: 2023-11-
16. 6

[2] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Zip-NeRF: Anti-Aliased
Grid-Based Neural Radiance Fields. arXiv preprint
arXiv:2304.06706, 2023. 1

[3] Antoine Blanchard and Themistoklis Sapsis. Bayesian Opti-
mization with Output-weighted Optimal Sampling. Journal
of Computational Physics, 425:109901, 2021. 2

[4] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: Composable
Transformations of Python+NumPy Programs, 2018.
Version 0.3.13. 6

[5] Nicolas Brosse, Éric Moulines, and Alain Durmus. The
Promises and Pitfalls of Stochastic Gradient Langevin Dy-
namics. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, 2018. 2, 4

[6] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin,
and George Em Karniadakis. Physics-Informed Neural Net-
works (PINNs) for Fluid Mechanics: A Review. Acta Me-
chanica Sinica, 37(12):1727–1738, 2021. 1

[7] Ang Cao and Justin Johnson. Hexplane: A Fast Representa-
tion for Dynamic Scenes. arXiv preprint arXiv:2301.09632,
2023. 2

[8] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient Geometry-aware
3D Generative Adversarial Networks. In IEEE Conf. Com-
put. Vis. Pattern Recog., 2022.

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. TensoRF: Tensorial Radiance Fields. In Eur. Conf.
Comput. Vis., 2022. 1

[10] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. MobileNeRF: Exploiting the Polygon
Rasterization Pipeline for Efficient Neural Field Rendering
on Mobile Architectures. arXiv preprint arXiv:2208.00277,
2022. 2

[11] Jongwon Choi, Kwang Moo Yi, Jihoon Kim, Jincho Choo,
Byoungjip Kim, Jin-Yeop Chang, Youngjune Gwon, and
Hyung Jin Chang. VaB-AL: Incorporating Class Imbalance
and Difficulty with Variational Bayes for Active Learning. In
IEEE Conf. Comput. Vis. Pattern Recog., 2021. 9

[12] Alain Durmus, Eric Moulines, and Marcelo Pereyra. Ef-
ficient Bayesian Computation by Proximal Markov Chain
Monte Carlo: When Langevin Meets Moreau. SIAM Journal
on Imaging Sciences, 11(1):473–506, 2018. 2

[13] Sara Fridovich-Keil, Giacomo Meanti, Frederik Warburg,
Benjamin Recht, and Angjoo Kanazawa. K-planes: Explicit
Radiance Fields in Space, Time, and Appearance. arXiv
preprint arXiv:2301.10241, 2023. 2

[14] Zhenbiao Gai, Zhenyang Liu, Min Tan, Jiajun Ding, Jun Yu,
Mingzhao Tong, and Junqing Yuan. EGRA-NeRF: Edge-
Guided Ray Allocation for Neural Radiance Fields. Image
and Vision Computing, 134:104670, 2023. 2, 3, 6, 7

[15] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity Neu-
ral Rendering at 200fps. In Int. Conf. Comput. Vis., pages
14346–14355, 2021. 2

[16] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter.
Markov chain Monte Carlo in Practice. CRC press, 1995. 4

[17] Lily Goli, Cody Reading, Silvia Sellán, Alec Jacobson,
and Andrea Tagliasacchi. Bayes’ Rays: Uncertainty Quan-
tification for Neural Radiance Fields. In arXiv preprint
arXiv:2309.03185, 2023. 9

[18] Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo
Kanazawa. NerfAcc: Efficient Sampling Accelerates
NeRFs. arXiv preprint arXiv:2305.04966, 2023. 6

[19] David B Lindell, Dave Van Veen, Jeong Joon Park, and Gor-
don Wetzstein. Bacon: Band-limited Coordinate Networks
for Multiscale Scene Representation. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 16252–16262, 2022. 1

[20] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural Sparse Voxel Fields. In Adv. Neu-
ral Inform. Process. Syst., 2020. 2

[21] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local Light Field Fusion: Practical View
Synthesis with Prescriptive Sampling Guidelines. ACM
Trans. Graph., 2019. 6, 7

[22] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Ravi
Ramamoorthi, and Ren Ng. NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis. In Eur. Conf.
Comput. Vis., 2020. 1, 2, 3, 4, 5, 6, 7

[23] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant Neural Graphics Primitives with a Mul-
tiresolution Hash Encoding. ACM Trans. Graph., 2022. 1, 2,
5, 6

[24] Müller, Thomas. tiny-cuda-nn, 2021. Version 1.7, BSD-3-
Clause License. 5

https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html


[25] Radford Neal. MCMC using Hamiltonian dynamics. Hand-
book of Markov Chain Monte Carlo, 2012. 2, 4

[26] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
Continuous Signed Distance Functions for Shape Represen-
tation. In IEEE Conf. Comput. Vis. Pattern Recog., 2019. 1,
3

[27] Akarsh Pokkunuru, Pedram Rooshenas, Thilo Strauss, Anuj
Abhishek, and Taufiquar Khan. Improved Training of
Physics-Informed Neural Networks Using Energy-Based
Priors: a Study on Electrical Impedance Tomography. In
The Eleventh International Conference on Learning Repre-
sentations, 2022. 1

[28] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decom-
posed Radiance Fields. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 14153–14161, 2021. 2

[29] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up Neural Radiance Fields with
Thousands of Tiny MLPs. In Int. Conf. Comput. Vis., pages
14335–14345, 2021. 2

[30] Mehdi S. M. Sajjadi, Henning Meyer, Etienne Pot, Urs
Bergmann, Klaus Greff, Noha Radwan, Suhani Vora,
Mario Lucic, Daniel Duckworth, Alexey Dosovitskiy, Jakob
Uszkoreit, Thomas Funkhouser, and Andrea Tagliasacchi.
Scene Representation Transformer: Geometry-Free Novel
View Synthesis Through Set-Latent Scene Representations.
In IEEE Conf. Comput. Vis. Pattern Recog., 2022. 2

[31] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance Fields without Neural Networks. In IEEE Conf.
Comput. Vis. Pattern Recog., 2022. 2

[32] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick.
Training Region-based Object Detectors with Online Hard
Example Mining. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 761–769,
2016. 2, 3

[33] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas
Kokkinos, Pascal Fua, and Francesc Moreno-Noguer. Dis-
criminative Learning of Deep Convolutional Feature Point
Descriptors. In Proceedings of the IEEE international con-
ference on computer vision, pages 118–126, 2015. 2, 3

[34] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene Representation Networks: Continuous 3D-
Structure-Aware Neural Scene Representations. In Adv. Neu-
ral Inform. Process. Syst., 2019. 2

[35] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
Neural Representations with Periodic Activation Functions.
In Adv. Neural Inform. Process. Syst., 2020. 1, 3, 4

[36] Vincent Sitzmann, Semon Rezchikov, William T. Free-
man, Joshua B. Tenenbaum, and Fredo Durand. Light
Field Networks: Neural Scene Representations with Single-
Evaluation Rendering. In Adv. Neural Inform. Process. Syst.,
2021. 2

[37] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Light Field Neural Rendering. In IEEE
Conf. Comput. Vis. Pattern Recog., 2022. 1

[38] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct Voxel
Grid Optimization: Super-fast Convergence for Radiance
Fields Reconstruction. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 5459–5469, 2022. 2

[39] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier Fea-
tures Let Networks Learn High Frequency Functions in Low
Dimensional Domains. In Adv. Neural Inform. Process. Syst.,
2020. 1

[40] Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural Discrete Representation Learn-
ing. In Adv. Neural Inform. Process. Syst., 2017. 3

[41] Xinshao Wang, Yang Hua, Elyor Kodirov, Guosheng Hu, and
Neil M Robertson. Deep Metric Learning by Online Soft
Mining and Class-aware Attention. In AAAI, 2019. 2

[42] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image Quality Assessment: From Error Visibility
to Structural Similarity. IEEE Trans. Image Process., 13(4):
600–612, 2004. 6

[43] Max Welling and Yee W Teh. Bayesian Learning via
Stochastic Gradient Langevin Dynamics. In Int. Conf. on
Machine Learning., pages 681–688, 2011. 2

[44] Zhijie Wu, Yuhe Jin, and Kwang Moo Yi. Neural Fourier Fil-
ter Bank. In IEEE Conf. Comput. Vis. Pattern Recog., pages
14153–14163, 2023. 5

[45] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in
visual computing and beyond. In Computer Graphics Forum.
Wiley Online Library, 2022. 1

[46] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural Fields
in Visual Computing and Beyond. Comput. Graph. Forum,
2022. 2

[47] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview Neu-
ral Surface Reconstruction by Disentangling Geometry and
Appearance. In Adv. Neural Inform. Process. Syst., 2020. 2

[48] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for Real-time Rendering of
Neural Radiance Fields. In Int. Conf. Comput. Vis., 2021. 1,
2

[49] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The Unreasonable Effectiveness of Deep
Features as a Perceptual Metric. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 586–595, 2018. 6

[50] Wenyuan Zhang, Ruofan Xing, Yunfan Zeng, Yu-Shen Liu,
Kanle Shi, and Zhizhong Han. Fast Learning Radiance
Fields by Shooting Much Fewer Rays. IEEE Trans. Image
Process., 2023. 2, 3, 7


	. Introduction
	. Related Works
	. Method
	. Neural field training
	. Soft mining with importance sampling
	. Sampling via Langevin Monte Carlo

	. Results
	. 2D image fitting
	. Neural radiance fields
	. Ablation studies

	. Conclusions
	. Acknowledgments

