
ar
X

iv
:2

31
2.

00
08

8v
1

 [
cs

.L
G

]
 3

0
N

ov
 2

02
3

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024 1

Anomaly Detection via Learning-Based
Sequential Controlled Sensing

Geethu Joseph, Chen Zhong, M. Cenk Gursoy, Senem Velipasalar, and

Pramod K. Varshney Life Fellow, IEEE

Process 1

Process 2
...

Process N

J
o

in
t

d
is

tr
ib

u
ti

o
n

Environment

Our learning

algorithm

Anomalous

processes’ indices

Noisy sensor

measurements

Dynamic

sensor selection

Output

Abstract—In this paper, we address the problem of
detecting anomalies among a given set of binary pro-
cesses via learning-based controlled sensing. Each pro-
cess is parameterized by a binary random variable in-
dicating whether the process is anomalous. To identify
the anomalies, the decision-making agent is allowed to
observe a subset of the processes at each time instant.
Also, probing each process has an associated cost. Our
objective is to design a sequential selection policy that
dynamically determines which processes to observe at
each time with the goal to minimize the delay in mak-
ing the decision and the total sensing cost. We cast
this problem as a sequential hypothesis testing problem
within the framework of Markov decision processes. This
formulation utilizes both a Bayesian log-likelihood ratio-based reward and an entropy-based reward. The problem is then
solved using two approaches: 1) a deep reinforcement learning-based approach where we design both deep Q-learning
and policy gradient actor-critic algorithms; and 2) a deep active inference-based approach. Using numerical experiments,
we demonstrate the efficacy of our algorithms and show that our algorithms adapt to any unknown statistical dependence
pattern of the processes.

Index Terms— Active hypothesis testing, anomaly detection, active inference, quickest state estimation, sequential
decision-making, sequential sensing.

I. INTRODUCTION

Sequential controlled sensing refers to a stochastic frame-

work in which an agent sequentially controls the process

of acquiring observations. The goal here is to minimize the

cost of making observations while satisfying the inference

objectives. We consider a sequential controlled sensing prob-

lem in the context of anomaly detection wherein there are

N processes, each of which can be in either a normal or

an anomalous condition. Our goal is to identify the anoma-

lies among the given processes. To this end, the decision-

making agent sequentially chooses a subset of processes (or

equivalently sensors monitoring these processes) at every time

instant, probes them, and obtain estimates of their conditions.

The agent generally obtains noisy observations, i.e., the ob-

This work was supported in part by the National Science Foundation
under grants ENG 60064237. The material in this paper was presented
in part at the IEEE International Workshop on Signal Processing Ad-
vances in Wireless Communications, May 2020, Atlanta, GA, USA, and
the IEEE Global Communications Conference, December 2020, Taipei,
Taiwan.

G. Joseph is with the faculty of Electrical Engineering, Mathematics,
and Computer Science, Delft Technical University, 2628 XE, Nether-
lands (email: g.joseph@tudelft.nl).

C. Zhong, M. C. Gursoy, S. Velipasalar, and P. K.Varshney
are with the Department of Electrical and Computer
Engineering, Syracuse University, New York, 13244, USA
(emails:{czhong03,mcgursoy,svelipas,varshney}@syr.edu.)

served condition may get flipped from the actual condition

with a certain probability. This paradigm is encountered in

many practical applications such as remote health monitoring,

assembly lines, structural health monitoring and Internet of

Things (IoT). In such applications, the objective is to identify

the anomalies among a given set of different (not necessarily

independent) functionalities of a system [1], [2]. Each sensor

monitors a different functionality and sends observations to the

agent over a communication link. The received observation

may be distorted due to the unreliable nature of the sensor

hardware and/or the noisy link (e.g., a wireless channel)

between the sensor and the agent. Hence, the agent needs

to probe each process multiple times before declaring one or

more of the processes anomalous with the desired confidence.

Repeatedly probing all the processes allows the agent to find

any potential system malfunction or anomaly quickly, but this

incurs a higher energy consumption that reduces the life span

of the network. Therefore, we address the question of how

the agent must sequentially choose the subset of processes to

accurately detect the anomalies while minimizing the delay

and cost of making observations.

We start with a brief literature review. A classical approach

to solve the sequential process selection problem for anomaly

detection is based on the active hypothesis testing frame-

work [3], [4]. Here, the decision-making agent constructs a

http://arxiv.org/abs/2312.00088v1

2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

hypothesis corresponding to each of the possible conditions

of the processes and determines which one of these hypotheses

is true. The goal of active hypothesis testing is to infer

the true hypothesis by collecting relevant data sequentially

until sufficiently strong evidence is gathered. In [5], Chernoff

proposed a randomized strategy and established its asymptotic

optimality. This seminal work in [5] was followed by several

other studies that investigated active hypothesis testing un-

der different settings [6]–[10]. These studies investigated the

theoretical aspects of the problem and presented a few model-

based algorithms to solve the problem. However, these model-

based algorithms are designed under simplified modeling

assumptions. This has motivated the researchers to design

data-driven deep learning algorithms for active hypothesis test-

ing [3], [4], [11]–[15]. These algorithms are not only model

free and thus, more flexible than the traditional algorithms,

but they also possess reduced computational complexity. It

should be noted that the classical sequential hypothesis testing

framework does not incorporate the sensing cost in the detec-

tion problem and assumes that the decision-maker chooses

the same fixed number of processes at every time instant. Our

problem setting is different from these models. Specifically,

the decision-maker can choose any number of processes at

each time instant, and this choice is determined by the cost

associated with the observations. We also account for the

potential statistical dependence among the processes.

Our anomaly detection problem is different from the se-

quential parameter estimation. Sequential parameter estima-

tion refers to estimating the random parameter of a pro-

cess [16]–[18]. Although this goal is similar to ours, the con-

trolled sequential selection of processes makes our problem

fundamentally different from sequential parameter estimation.

In particular, only one Bernoulli process is considered in [16]–

[18], and at every time instant, the decision-maker only

decides whether or not to continue collecting observations.

Hence, the results in these studies apply to our setting only

if we consider the set of all N processes as a single random

process with 2N states and choose the sub-optimal strategy of

observing all the processes all the time.

A. Our Contributions

To the best of our knowledge, ours is the first work

that formulated the anomaly detection problem as an active

hypothesis testing problem and developed specific solutions

for the problem. Our specific contributions are as follows:

• Formulation of anomaly detection as a Markov decision

process: In Section III, we formulate the anomaly de-

tection problem as a Markov decision process (MDP).

We define the posterior belief vector on the conditions

of the processes as the state of the MDP, the subset of

processes chosen by the decision-making agent as the

action, and two different types of reward functions: an av-

erage Bayesian log-likelihood ratio (LLR) based reward

and an entropy-based reward. The rewards are designed

such that the optimal policy of the MDP minimize the

sensing cost and the delay in decision-making. Finally,

the process/sensor selection is formulated as the problem

of finding an optimal policy that maximizes the long-

term reward of the MDP subject to the condition that the

confidence level on the estimate exceeds a specific value.

• RL algorithms: In Section IV, we develop the deep

RL framework through which an optimal policy that

maximizes the discounted cumulative reward is learned.

We develop two deep RL algorithms, based on the Q-

learning and actor-critic frameworks.

• Active inference: In Section V, we present an alternative

solution strategy called active inference. Here, we define

the notion of free-energy based on the entropy associated

with the estimate of the states of the processes and

the sensing cost and reformulate the anomaly detection

problem as an active inference problem to minimize the

free energy. The resulting algorithm is implemented using

deep neural networks which are relatively less explored

for active inference.

• Empirical validation: Via our numerical results presented

in Section VI, we investigate the performance of different

frameworks and algorithms in terms of detection accu-

racy, delay, and sensing cost. We show that the active

inference algorithm is more robust to the variations in

the system parameters and adapts better to statistical

dependence among the processes. Further, we observe

that as the statistical dependence between the states of

the processes increases, the delay in state estimation gets

diminished. This result implies that unlike the traditional

Chernoff test, our algorithms are able to learn and

exploit any underlying statistical dependence among the

processes to reduce the number of observations.

In summary, we use the model-based posterior updates to

tackle the uncertainties in the observations and the data-

driven neural networks to handle the underlying statistical

dependence between the processes, balancing the model-based

and the data-driven approaches.

Furthermore, in this paper, compared to the conference ver-

sions, we conduct a more comprehensive and unified analysis

of deep learning-based anomaly detection and make several

new contributions: 1) We design a new RL algorithm based on

the deep Q-learning algorithm which we implement using the

dueling architecture; 2) in addition to the LLR-based reward,

we introduce an entropy-based reward (newly applied in deep

RL algorithms), and we mathematically show that the two

reward functions encourage the agent to achieve the desired

confidence level as quickly as possible (see Proposition 1);

3) we derive the Chernoff test for the anomaly detection

problem and compare its performance with our algorithms;

4) we present a detailed numerical study that compares the

different algorithms when the cost and flipping probabilities

are different across the processes.

The remainder of the paper is organized as follows. We

present the system model in Section II and describe the MDP

problem in Section III. In Sections IV and V, we present our

RL and active inference algorithms, respectively. We provide

the simulation results in Section VI and offer our concluding

remarks in Section VII.

G. JOSEPH et al.: ANOMALY DETECTION VIA LEARNING-BASED SEQUENTIAL CONTROLLED SENSING 3

II. ANOMALY DETECTION PROBLEM

We consider a set of N processes wherein each process

is in one of the two conditions: normal (denoted by 0) or

anomalous (denoted by 1). The condition of the ith process is

denoted by the ith entry xi of a random vector x ∈ {0, 1}N .

The vector x can take M , 2N possible values denoted by
{

h(i), i = 1, 2, . . . ,M
}

. The conditions of these processes

(entries of x) can be potentially statistically dependent. This

dependence is captured by the prior distribution of x that is

denoted using π(0) ∈ [0, 1]M whose ith entry πi(0) is

πi(0) = P

{

x = h(i)
}

. (1)

Our goal is to identify the anomalous processes out of the

N processes, which is equivalent to estimating the random

vector x. To estimate x, the decision-making agent probes one

or more processes at every time instant and obtains potentially

erroneous observations of the corresponding entries of x. Let

the set of processes probed at time t be A(t) ∈ P(N) where

P(N) denotes the power set of {1, 2, . . . , N} without the

null set (i.e., |P(N)| = M − 1). Also, let the observation

corresponding to the ith process at time t be denoted as

yi(t). Depending on the condition, yi(t) obeys the following

probabilistic model:

yi(t) =

{

xi with probability 1− pi

1− xi with probability pi,
(2)

where pi ∈ [0, 0.5] is called the cross-over (or flipping)

probability of the ith process. We also assume that given x,

the observations are jointly (conditionally) independent:

P

[

{y(τ)}
t

τ=1

∣

∣

∣
x
]

=

t
∏

τ=1

N
∏

k=1

P [yk(τ)|x] , (3)

for any t > 0 where y(τ) ∈ {0, 1}N and its kth entry is

yk(τ). Further, probing the ith process incurs a cost of ci > 0.

In short, at every time instant t, the decision-maker probes

the processes indexed by A(k), obtains the corresponding

observations denoted by yA(t)(t) ∈ {0, 1}|A(t)|, and incurs

a sensing cost of
∑

k∈A(t) ck.

In this setting, the three performance metrics associated

with the decision making are the following:

1) stopping time denoted by T which is the time instant

when the decision-maker ends the observation acquisition

phase and yields its estimate x̂ of x;

2) detection accuracy given by the conditional probability

P

[

x̂ = x

∣

∣

∣

∣

{

yA(t)(t)
}T

t=1

]

;

3) sensing cost given by
∑T

t=1

∑

k∈A(t) ck which represents

the total cost incurred during the observation acquisition.

The strategy of probing all the processes at all times may

lead to the most accurate and fastest decision, but at the

expense of a higher sensing cost. Therefore, the decision-

maker sequentially chooses a subset of processes A(t) ∈
P(N) to balance the trade-offs between the three performance

metrics. Our decision-making algorithm has two components:

1) sequential process selection: a mechanism to choose

A(t) ∈ P(N) at every time t,

yA(1)(1)

A(1)

π(1)π(0)

yA(2)(2)

A(2)

π(2)

yA(T)(T)

A(T)

π(T)

. . .

. . .

. . .

x

Fig. 1: Graphical model with posteriors (MDP states), actions

and observations

2) stopping rule: a mechanism to determine when to stop

taking observations and declare x̂.

We next present a novel anomaly detection algorithm that

we derive by casting the detection as a learning problem using

an MDP framework.

III. MDP-BASED LEARNING PROBLEM FORMULATION

This section describes the MDP framework that models

the anomaly detection problem. An MDP represents a se-

quential decision making problem in stochastic environments

wherein the state of the environment depends on the action

of a decision-maker. The goal of the decision-maker is to

sequentially decide which action to choose while in a given

state to maximize the reward which is the same as finding

a mapping from the states to the actions. This mapping is

referred to as a policy and it can be either deterministic (i.e.,

a one-to-one mapping) or stochastic (described by conditional

probability distributions over actions given the states).

A. State and Action

In the context of our anomaly detection problem, we define

the state of the MDP at time t as the posterior belief vector

π(t) on the random vector x ∈ {0, 1}N . The ith entry of the

posterior belief vector π(t) ∈ [0, 1]M is defined as

πi(t) = P

[

x = h(i)

∣

∣

∣

∣

{

yA(τ)(τ)
}t

τ=1

]

. (4)

Further, the action at time t refers to the set of processes to

be observed, A(t) ∈ P(N).

We next establish the connections between the states, ac-

tions, and corresponding observations which can be repre-

sented using a probabilistic graphical model depicted in Fig. 1.

We first note that at time t, the data available to the agent is
{

yA(τ)(τ), τ = 1, 2, . . . , k
}

using which the posterior belief

vector π(t) ∈ [0, 1]M can be computed in closed form. From

4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

(4), πi(t) is computed recursively from (3) and (1) as

πi(t) =

πi(t− 1)
∏

k∈A(t)

P

[

yk(t)
∣

∣

∣
x = h(i)

]

M
∑

j=1

πj(t− 1)
∏

k∈A(t)

P

[

yk(t)
∣

∣

∣
x = h(j)

]

, (5)

where we obtain from (2) that

P

[

yk(t)
∣

∣

∣
x = h(i)

]

= (1− pk)1{

y
k
(t)=h

(i)
k

} + pk1{

y
k
(t) 6=h

(i)
k

}, (6)

1 is the indicator function, and h
(i)
k ∈ {0, 1} is the kth entry

of h(i). As a result, given the previous posterior π(t − 1),
the action A(t) and the observation yA(t), we can exactly

compute the updated posterior belief vector π(t) using (5).

Before we define the notion of reward, we recall from

Section II that our goal is to achieve a balance between the

detection accuracy, stopping time, and sensing cost. We can

use the posteriors or the MDP states to control the detection

accuracy via the stopping rule using a parameter πupper ∈
(0, 1). The parameter πupper represents the threshold on the

largest value among the beliefs on the different values of x,

max
i=1,2,...,m

πi(T) ≥ πupper. (7)

Having defined the stopping rule (one of the two components

of the algorithm), which controls the detection accuracy, we

next focus on the trade-off between the stopping time and

sensing cost. This trade-off is determined by the sequential

process selection (the other algorithm component), which we

derive using the notion of reward and policy.

B. Reward

The reward r(t) at time t is a function of the posterior

beliefs π(t) and π(t − 1), and the selected processes A(t).
The reward indicates the intrinsic desirability of choosing the

subset of processes as a function of the posterior belief. For

a given reward function, the policy µ : [0, 1]M → P(N)
is a mapping from the posterior belief vector π(t − 1) to

the processes to be probed A(t). The policy represents the

sequential process selection part of our algorithm, and it is

designed to maximize the long-term reward given as follows:

R(T) =

T
∑

t=1

E {r(t)} . (8)

Here, the expectation is over the uncertainty in the value of x

and the observations yA(t)(t) when A(t) follows the policy µ.

The reward function balances the trade-off between the

stopping time and sensing cost. Here, the sensing cost can be

quantified as a function of A(t) using the term
∑

k∈A(t) ck.

However, we also need a term in the reward which forces

the policy to build the posterior belief on the true value of

x as quickly as possible, and thus minimize the stopping

time T . We represent this term using ξ : [0, 1]M → R

which is a function of the posterior beliefs. We seek ξ that

encourages the decision-maker to move away from the non-

informative posterior π(t) = 1/M1 and move towards the

posterior π(t) ∈ {ei}
M

i=1. Here, 1 denotes the all-ones vector

and ei ∈ {0, 1}M denotes the ith column of the M × M
identity matrix. Two functions that achieve this goal are given

by the following proposition [19].

Proposition 1: Let L,H : [0, 1]M → R be two functions

defined, respectively, as

L(π) =

M
∑

i=1

πi log
πi

1− πi

(9)

H(π) = −

M
∑

i=1

πi log πi. (10)

These functions satisfy

argmin
π∈[0,1]M
∑

M

i=1 πi=1

L(π) = argmax
π∈[0,1]M
∑

M

i=1 πi=1

H(π) =
1

M
1

argmax
π∈[0,1]M
∑

M

i=1 πi=1

L(π) = argmin
π∈[0,1]M
∑

M

i=1 πi=1

H(π) = {ei}
M

i=1 ,

where 1 denotes the all-ones vector and ei ∈ [0, 1]M denotes

the ith column of the M ×M identity matrix.

Proof: From the log-sum inequality, we have

M
∑

i=1

ai log

(

ai
bi

)

≥

(

M
∑

i=1

ai

)

log

(

∑M
i=1 ai

∑M

i=1 bi

)

,

for any set {ai ≥ 0, bi ≥ 0}
M

i=1, and equality holds only if

ai = αbi, for some constant α > 0. Thus, for any π ∈ [0, 1]M ,

L(π)− L

(

1

M
1

)

=

M
∑

i=1

πi log
πi(M − 1)

1− πi

≥

(

M
∑

i=1

πi

)

log

(

∑M

i=1 πi
∑M

i=1
1−πi

M−1

)

= 0.

Hence, L(π) ≥ L
(

1
M
1

)

and equality holds only if πi = 1/M .

We next look at the maximum of L(π) and we see that if

πi ∈ [0, 1) for all values of i, L(π) < ∞. Therefore, L(π)
attains the maximum value if and only if at least one entry of

π is 1. Hence, the desired maxima is achieved at {ei}
M

i=1.

We can compute the maxima and minima of H(π) using

similar arguments and thus, the proof is complete.

The above proposition implies that the functions L and H
are two good choices for ξ. We note that in (9), the term

log πi

1−πi

is the likelihood ratio (LLR) of the two hypotheses

namely, x = h(i) and x 6= h(i). Consequently, L(π) is the

Bayesian LLR obtained by applying the logit function on

the posterior belief. Further, maximizing the Bayesian LLR

increases the posterior belief on the true value of x. Also, H
is the entropy of the distribution π, and thus, minimizing H
reduces the uncertainty in estimation and builds the posterior

belief on the true value of x.

Having defined the function1 ξ, we formulate the instanta-

1The algorithmic development is independent of the choice of the reward
function (LLR and entropy-based). Therefore, in the remainder of the paper,
we use ξ(·) in the reward of the MDP which can either be L(·) defined in
(9) or −H(·) defined in (10).

G. JOSEPH et al.: ANOMALY DETECTION VIA LEARNING-BASED SEQUENTIAL CONTROLLED SENSING 5

neous reward of the MDP as a weighted sum of ξ and the

sensing cost:

r(t) = ξ(π(t)) − ξ(π(t − 1)) + λ
∑

k∈A(t)

ck, (11)

where λ > 0 is the weighing parameter that dictates the

balance between the stopping time and the total sensing cost.

Thus, from (8) and (11), the long-term expected reward of the

MDP up to time t is given by

R(t) = E

ξ(π(t)) − ξ(π(0))− λ

t
∑

τ=1

∑

k∈A(τ)

ck

,

where the expectation is over the distribution of x and the

observations yA(t)(t) given A(t). The MDP objective is to

find a policy or sequence of actions {A(t) ∈ P(N)}
T

t=1 that

maximizes the long-term average sum of the rewards. Hence,

a policy that maximizes the long-term reward improves the

accuracy of the estimate (quantified by ξ(π(t))) as soon as

possible while minimizing the overall sensing cost (the last

term in R(t)). Further, the agent continues to take observa-

tions until it declares an estimate with the desired level of

confidence given by πupper (i.e., t = T). Therefore, if λ
is small, the reward ensures that the agent chooses actions

with a significant change ξ(π(t)) − ξ(π(0)), leading to a

shorter stopping time. On the other hand, with a large λ, the

agent tries to minimize the sensing cost by probing a few

processes at every time instant which increases the stopping

time. Therefore, λ controls the stopping time and total sensing

cost.

Further, the Bayesian LLR L is unbounded unlike the

entropy satisfying H(π) ≤ logM for any π ∈ [0, 1]M . Also,

L(π) = −H(π)−

M
∑

i=1

πi log(1 − πi) ≥ −H(π). (12)

Therefore, for the same value of λ, the Bayesian LLR reward

function gives a higher weight to the accuracy than the

cost. As a result, the sensitivity of the trade-off between the

accuracy and sensing cost differs for the two reward functions.

We discuss this point in detail in Section VI.

This completes our discussion on the reward function.

Using this formulation, we next present the deep learning

algorithms to obtain policies that maximize the long-term

reward of the MDP. We use two approaches: the deep RL-

based approach presented in Section IV and deep active

inference-based approach presented in Section V.

IV. ANOMALY DETECTION USING DEEP RL
ALGORITHMS

Our RL algorithms are designed to maximize the expected

discounted return R̄(t) defined as

R̄(t) = lim
T→∞

T
∑

j=0

γjr(t+ j), (13)

where 0 < γ < 1 (which is generally close to 1) is the

discount factor. This parameter γ weighs the rewards in the

distant future relative to those in the immediate future, i.e., a

reward received j time steps in the future is worth only γj−1

times what it would be worth if it were received immediately.

Hence, this approach encourages the agent to minimize the

stopping time.

To maximize R̄(t), the RL algorithms make process selec-

tion based on the value functions of the posterior-action pair

and the posterior. For a given policy µ, these value functions

are

Qµ(π,A) = E
{

R̄k

∣

∣π(t− 1) = π,A(t) = A
}

(14)

Vµ(π) = EA∼µ(π)

{

R̄k

∣

∣π(t− 1) = π
}

, (15)

where the expectations are evaluated given that the agent fol-

lows the policy µ for all future actions. Intuitively, the action-

value function (referred to as the Q-function), Qµ(π,A), in

(14) indicates the long term desirability of choosing a particu-

lar action when the posterior belief vector is π. Also, the state-

value function (referred to as the value function), Vµ(π), in

(15) specifies the expected reward when starting with posterior

belief vector π and following the policy µ thereafter. An RL

agent makes the action choices by evaluating the optimal value

estimates, Q-function or the value function, or both. If we

have the optimal values of the functions, then the actions that

appear best after a one-step search are the optimal actions [20].

In the following, we present two different RL approaches, the

Q-learning and actor-critic algorithms, and describe how they

estimate these functions to arrive at the optimal policy.

A. Dueling Deep Q-learning

The Q-learning approach is a popular RL algorithm where

the agent estimates the Q-function and chooses the action A(t)
that maximizes the Q-function given the posterior belief vector

π(t− 1) [21]. Further, in the deep Q-learning framework, the

unknown Q-function is modeled using a neural network [22],

and the dueling deep Q-learning framework refers to the

implementation of this neural network using a model called

the dueling architecture [23].

This architecture consists of a single Q-network and relies

on a quantity called the advantage function: Aµ(π,A) =
Qµ(π,A)−Vµ(π), which is a measure of how much Qµ(π,A)
deviates from the expected value over all the actions, Vµ(π),
and therefore, specifies the relative preference of each action

for a given posterior belief vector. The dueling architecture

estimates both Vµ(π) and Aµ(π,A) separately and combines

them to obtain Qµ(π,A). The input to the Q-network is the

posterior belief vector π ∈ R
M and the output is an (M − 1)-

length vector whose ith entry corresponds to Qµ(π, ·) of the

ith possible action. The network parameter θDQN is obtained

by optimizing the loss function [23]:

LDQN(θDQN)=Eπ,A,π′

{

r(t) + γ max
A′∈P(N)

Q(π′,A′; θ−DQN)

−Q(π,A; θDQN)

}

, (16)

where θ−DQN is the current network parameter estimate ob-

tained in the previous time. We update the Q-function using

6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

bootstrapping by basing its update in part on an current

estimate Q(π′,A′; θ−DQN). Also, to ensure that the learned

value of the Q-function converges to the optimal Q-function,

we use the greedy policy to choose the successor action A′.

Using the learned Q-function, we next describe how to

obtain the optimal policy. We derive the policy using a

combination of the decaying-epsilon greedy algorithm [23],

[24] and the Gibbs softmax method [25]. At every time step,

the agent takes action using the Gibbs softmax method with

a probability of 1− ǫ and a random action with a probability

of ǫ. Here, ǫ is a parameter that decays with time. Also, the

Gibbs softmax method refers to choosing the action A(t) ∼
σ (Q(π(t), ·; θDQN)) ∈ [0, 1]M−1 where σ(·) is the softmax

function. The approach ensures that the entire action space is

explored while exploiting the best action with high probability.

The algorithm chooses actions in the above fashion until the

posterior belief distribution satisfies the stopping rule in (7).

We present the pseudo-code for our dueling deep Q-learning-

based detection algorithm in Algorithm 1.

Algorithm 1 Dueling Q-learning algorithm for anomaly de-

tection

Parameters: Prior distribution π(0), discount rate γ ∈ (0, 1),
and confidence level πupper ∈ (0, 1]

Initialization: Q-network parameter θDQN arbitrarily

1: repeat

2: Time index t = 1
3: while max

i
πi(t− 1) < πupper do

4: Choose action A(t) using the policy derived from

Q(π(t), ·; θDQN)
5: Generate observations yA(t)(t)
6: Compute π(t) using (5) and r(t) using (11)

7: Update θDQN by minimizing LDQN(θDQN) in (16)

8: Increase time index t = t+ 1
9: end while

10: Declare x̂ = h
(i∗)
k where i∗ = argmax

i

πi(t− 1)

11: until

B. Deep Actor-critic

The deep actor-critic algorithm is another RL algorithm that

directly learns the policy. This principle differs from that of

the dueling deep Q-learning algorithm, which learns the Q-

function and derives a policy based on the learned Q-function.

The actor-critic architecture consists of two separate neural

networks, actor and critic, with no shared features. The actor

learns the policy, which chooses the action based on the

posterior probabilities. Thus, its input is π ∈ R
M and the

output is µAC(π, ·; θactor) ∈ [0, 1]M−1 where θactor represents

the neural network parameters. The policy returned by the

actor network is a stochastic policy which chooses an action

according to A ∼ µAC(π, ·; θactor). The critic refers to the

learned value function, which is an estimate of how good the

policy learned by the actor is and hence, essentially provides

an evaluation of that policy. The evaluation of the action A(t)
taken corresponding to the posterior π(t − 1) takes the form

of the temporal-difference (TD) error as given by

δ(t) = r(t) + γVµ(π(t)) − Vµ(π(t− 1)),

for a given policy µ(·) with

Vµ(π) = Eπ′,A∼µ(π) {r(t) + γVµ(π
′)|π(t− 1) = π} .

If the TD error is positive, the probability of choosing A(t)
in the future is increased, and vice versa. Therefore, the

input to the critic network is the posterior belief vectors

π ∈ [0, 1]M and the output is the corresponding value function

V (π; θcritic) ∈ R where θcritic represents the neural network

parameters.

We next describe how to learn the two sets of network

parameters: θactor of the actor and θcritic of the critic. Since

the goal of the critic network is to fit a model to estimate the

optimal value function, its parameter update is equivalent to

minimizing the model mismatch between the reward obtained

at the current time step and the learned value function. Thus,

the critic network updates its parameter θcritic by minimizing

the square of the TD error given by

δ(t) = r(t) + γV (π(t); θcritic)− V (π(t− 1); θ−critic), (17)

where θ−critic is the current critic network parameter estimate

obtained in the previous time instant. On the other hand, the

goal of the actor network is to find a policy that maximizes the

value function. Thus, its parameter update is via maximization

of the value function. The actor updates its parameter [20] as

θactor =θ−actor + δ(t)∇θactor [logµAC(π(t−1),A(t); θactor)] ,
(18)

where θ−actor is the current actor network parameter estimate

obtained in the previous time instant and δ(t) given by (17)

is obtained from the critic network.

The learned policy is straightforward in the case of the

actor-critic framework, as the actor network directly learns

the policy. Hence, at every time step, the agent chooses an

action based on the output of the actor network and receives

the reward for updating both actor and critic networks. The

agent stops collecting observations and returns an estimate of

x when the confidence level exceeds the desired level, i.e.,

when (7) holds. The pseudo-code of our algorithm is given in

Algorithm 2.

V. ANOMALY DETECTION USING DEEP ACTIVE

INFERENCE

The active inference framework is an alternate approach to

solving the MDP problem described in Section III. It is in-

spired by a normative theory of brain function based on its per-

ception of the MDP, i.e., the active inference agent maintains a

generative model that represents its perception [26]–[28]. This

generative model φ(·) comprises a joint probability distribu-

tion on the posterior, the actions, and the corresponding obser-

vations:
{

π(t− 1),A(t),yA(t)(t), t > 0
}

. The model assigns

higher probabilities to the posteriors and actions favorable to

the agent. Given a generative model, the agent inverts the

model to find the conditional distribution of the action A(t)
corresponding to the posterior π(t − 1). However, since di-

rectly computing the marginals is difficult, we use the method

G. JOSEPH et al.: ANOMALY DETECTION VIA LEARNING-BASED SEQUENTIAL CONTROLLED SENSING 7

Algorithm 2 Actor-critic RL for anomaly detection

Parameters: Prior distribution π(0), discount rate γ ∈ (0, 1),
and confidence level πupper ∈ (0, 1]

Initialization: Actor and critic neural network parameters

θactor and θcritic arbitrarily

1: repeat

2: Time index t = 1
3: while max

i
πi(t− 1) < πupper do

4: Choose action A(t) using the policy derived from

µAC(π(t− 1), ·; θactor)
5: Generate observations yA(t)(t)
6: Compute π(t) using (5) and r(t) using (11)

7: Update θcritic by minimizing the squared temporal

error δ2(t) in (17)

8: Update θactor using (18)

9: Increase time index t = t+ 1
10: end while

11: Declare x̂ = h
(i∗)
k where i∗ = argmax

i

πi(t− 1)

12: until

of approximate Bayesian inference. To this end, it defines

a variational distribution µAI(π,A) that is controlled by the

agent. The distribution µAI(·) is optimized by minimizing the

Kullback-Leibler (KL) divergence between the distributions

µAI(·) and φ(·). Therefore, a stochastic policy that chooses

actions according to the distribution µAI(·) maximizes the

obtained reward. The KL divergence between the variational

distribution and the generative model is called the variational

free energy. In other words, the goal of the active inference

agent is to find the stochastic policy µAI(·) which minimizes

its expected free energy (EFE).

From (5), we know that the posterior belief vector π(t) can

be exactly inferred using the knowledge of the action A(t),
observation yA(t) and posterior belief vector π(t − 1). This

relationship, along with the Markov property, enables us to

completely define the generative model using the distribution

φ(A(t),yA(t)(t)|π(t − 1)). This distribution is

φ(yA(t)(t),A(t)|π(t − 1))

= φ(yA(t)|A(t), π(t − 1))φ(A(t)|π(t − 1)).

The generative model is biased towards high rewards, encoded

into the generative model as the prior probability of the belief,

φ(yA(t)(t)|A(t), π(t − 1)) = σ (r(t)) , (19)

where we recall that σ(·) is the softmax function and r(t)
denotes the instantaneous reward of the MDP at time t.

We next complete the construction of the generative model

by specifying the distribution φ(A(t)|π(t)). Since the agent

tries to minimize the total free energy of the expected trajec-

tories into the future, it is encoded into the generative model

as

φ(A(t)|π(t)) = σ (−G(A(t), π(t − 1))) , (20)

where G(·) is the total free energy of the expected trajectories

into the future, and the variational free energy is the KL

divergence between the variational distribution µAI(·) and the

generative model φ(·):

F (t) =
∑

A(t)∈P(N)

µAI(π(t− 1),A(t))

× log
µAI(π(t− 1),A(t))

φ(A(t),yA(t)(t)|π(t− 1))
. (21)

Thus, the agent constructs the generative model using the EFE,

obtains the optimum policy by minimizing the EFE of all the

paths into the future, and chooses an action that minimizes the

EFE. In other words, determining the optimal policy reduces

to computing and optimizing the EFE.

Next, we present the neural network architecture and learn-

ing of the neural network parameters. The deep active infer-

ence algorithm consists of two neural networks: the policy and

EFE. The policy network directly learns the process selection,

and therefore, it takes the posterior belief vector π(t − 1)
as the input. Its output is the stochastic selection policy

µAI(π(t − 1), ·; θpolicy) ∈ [0, 1]M−1 which is a probability

distribution on P(N). Here, θpolicy denotes the neural net-

work parameters. The EFE network represents EFE’s learned

value, which estimates how close the learned policy is to

the generative model. Thus, the input of the EFE network

is the posterior π ∈ [0, 1]M , and the output is the EFE value

G(π, ·; θEFE) ∈ R
M−1, representing the EFE values of each

action A ∈ P(N) and the posterior π. Here, θEFE denotes

the parameters of the EFE network.

The EFE can be approximated as follows [29]:

G(A(t), π(t − 1)) ≈ E {−r(t) +G(A(t+ 1), π(t))} ,

where we use (19). Therefore, we learn the parameters of the

EFE network by optimizing the model mismatch between the

learned EFE value and the reward obtained:

LEFE(θEFE) = E

{

(

G (A(t), π(t − 1); θEFE) + r(t)

−G
(

A(t+ 1), π(t); θ−EFE

))2
}

, (22)

where θ−EFE denotes the current estimate of the network pa-

rameter obtained in the previous time step and the expectation

is over the action distribution A(t+1) ∼ µAI(π(t), ·; θpolicy).
To update the policy network, we minimize the variational

free energy defined in (21):

F (θpolicy) =
∑

A∈P(N)

µAI(π(t − 1),A; θpolicy))

× log
µAI(π(t − 1),A; θpolicy)

σ(r(t))σ(−G(π(t − 1),A; θEFE))
. (23)

Since r(t) is independent of θpolicy, the loss function is

LAI(θpolicy) = −H(µAI(π(t − 1), ·; θpolicy))

−
∑

A∈P(N)

µAI(π(t − 1),A) log σ(G(π(t − 1),A; θEFE)),

(24)

where H(·) is given by (10).

As in the case of the actor-critic algorithm, the policy to be

followed by the agent is directly obtained from the (policy)

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

neural network output. The agent follows this policy to choose

an action at every time instant, collects the corresponding re-

ward, and updates the two neural networks using the obtained

reward. The algorithm is summarized in Algorithm 3.

Algorithm 3 Active inference algorithm for anomaly detection

Parameters: Prior distribution π(0) and confidence level

πupper ∈ (0, 1]
Initialization: Policy and EFE network parameters θpolicy

and θEFE arbitrarily

1: repeat

2: Time index t = 1
3: while max

i
πi(t− 1) < πupper do

4: Choose action A(t) using the policy derived from

µAI(π(t − 1), ·; θpolicy)
5: Generate observations yA(t)(t)
6: Compute π(t) using (5) and r(t) using (11)

7: Update θEFE by minimizing LEFE(θEFE) in (22)

8: Update θpolicy by minimizing the variational free

energy LAI(θpolicy) in (24)

9: Increase time index t = t+ 1
10: end while

11: Declare x̂ = h
(i∗)
k where i∗ = argmax

i

πi(t− 1)

12: until

A. Comparison With RL Methods

The active inference approach has many similarities to

RL-based algorithms, such as learning probabilistic models,

exploring and exploiting various actions, and efficient plan-

ning. In particular, the active inference algorithm closely

resembles the policy gradient methods (for example, the actor-

critic algorithm) since both approaches try to learn the policy

directly. We recall that the actor-critic and the active inference

methods have two separate neural networks. The actor network

of the actor-critic algorithm and the policy network of the

active inference algorithm learn the policy to be followed. In

contrast, the other network estimates a function (TD error or

EFE) used to evaluate and optimize the policy. However, the

two algorithms are derived based on different principles, and

the main differences between the RL framework and the active

inference framework are as follows:

1) Model-free and model-based: The traditional RL uses

a model-free approach where the algorithm aims at reward

maximization based on the Q function or the value function,

or both. The algorithm does not try to explicitly learn the

probabilistic model that governs the state transition or the

generation of the observations of the MDP. However, the ac-

tive inference model relies on a hierarchical generative model,

which is based on variational free energy. It explicitly learns

the model consisting of states, actions, and observations of

the MDP. To be specific, in the most general setting, the deep

active inference algorithm consists of four neural networks:

policy network; EFE network; observation network to learn

the distribution of the observations given the state and action;

and state transition network to learn the distribution of the next

state given the previous state, action, and observation [29].

However, in our case, (19) and (5) define the distributions

learned by the observation network and the state transition

network. Hence, the active inference algorithm comprises only

two neural networks. In other words, the active inference

algorithm naturally allows the algorithm to incorporate any

knowledge of the environment’s statistics into the model.

2) Policy optimization: The actor-critic algorithm uses the

value functions directly to learn the policy. In contrast, the

active inference algorithm relies on the generative probability

distribution derived from softmax over the variational free

energy as defined in (20). Therefore, the actor-critic algorithm

maximizes the expected reward function in the future, whereas

the active inference algorithm reduces the surprise in the

future by learning the probabilistic model. Moreover, the

objective function of the actor-critic algorithm depends only

on the samples generated using the actions that the agent

took within the episode as opposed to the active inference

algorithm, which averages the objective function over all

possible actions in the next step (see the summation in (24)).

Since the active inference algorithm computes the expected

value, it may lead to reduced variance and better performance.

B. Comparison With Chernoff Test

The Chernoff test, a standard algorithm for active hypoth-

esis testing [5], sequentially chooses actions that build the

posterior belief on the true value of x as quickly as possible.

However, it does not take the sensing cost into account. It

follows the stochastic policy µChernoff ,

µChernoff(π(t− 1), ·) = argmax
q∈[0,1]M−1
∑

i
q
i
=1

min
x̂∈{0,1}M

x̂ 6=x̄(t−1)

qTd(x̄(t− 1), x̂),

(25)

where we define the ith entry of d(·) ∈ R
M−1 as

di(x̄(t), x̂) , KL (p (yAi
(t)|x = x̄(t)) ‖p (yAi

(t)|x = x̂))

x̄(t) = h(̃i∗); ĩ∗ = argmax
i

πi(t).

Here, KL denotes the KL divergence between the distribu-

tions, and Ai denotes that ith element of set P(N). However,

for any x̂, the KL divergence term is maximized when all

the processes are selected. Thus, we have di(x̄(t), x̂) ≤
d1(x̄(t), x̂) with A1 = {1, 2, . . . , N} denoting the action of

selecting all processes. Therefore, we arrive at

max
q∈[0,1]M−1
∑

i
q
i
=1

min
x̂∈{0,1}M

x̂6=x̄(t−1)

qTd(x̄(t− 1), x̂)

≤ min
x̂∈{0,1}M

x̂ 6=x̄(t−1)

d1(x̄(t), x̂),

and equality holds when q =
[

1 0 . . . 0
]

∈ [0, 1]M−1.

Therefore, the Chernoff test always chooses the action A1

with probability one. This policy is expected as the Chernoff

test does not optimize the sensing cost, and thus, it achieves

a small stopping time while incurring a high sensing cost. On

the contrary, our formulation balances the trade-off between

G. JOSEPH et al.: ANOMALY DETECTION VIA LEARNING-BASED SEQUENTIAL CONTROLLED SENSING 9

0 1 2 3 4 5 6

Time step t

0

0.2

0.4

0.6

0.8

1

P
o

s
te

ri
o

r
p

ro
b

a
b

il
it

y

i(t
)

x=000

x=001

x=010

x=011

x=100

x=101

x=110

x=111

(1
/0

,2
/0

)

(1
/0

,2
/1

,3
/1

)

(1
/0

,3
/1

)

(3
/1

)

(1
/0

)

(1
/1

,2
/0

,3
/1

)

Processes chosen/observations

(a) Actor-critic’s policy when the process state is
[0 0 1]

0 1 2 3 4 5 6

Time step t

0

0.2

0.4

0.6

0.8

1

P
o

s
te

ri
o

r
p

ro
b

a
b

il
it

y

i(t
)

x=000

x=001

x=010

x=011

x=100

x=101

x=110

x=111

(1
/1

,3
/0

)

(1
/0

,2
/1

)

(2
/0

)

(1
/0

)

(2
/0

)

(1
/0

,2
/0

,3
/0

)

Processes chosen/observations

(b) Active inference’s policy when the process state
is [0 0 0]

Fig. 2: A single realization of the variation of the belief

vector π(t), sensor selection A(t), and the corresponding

observations yA(t)(t) over time t. We choose πupper = 0.94,

ρ = 0.8, and λ = 0.2. The curves represent the evolution

of the posterior probabilities of different hypotheses. The se-

lected processes (sensors) and the corresponding observations

at different times are depicted at the top of the figure.

the stopping time and sensing cost via λ and exploits the sta-

tistical dependence in x modeled using π(0). We corroborate

this point using results in Section VI (e.g., see Fig. 7).

VI. NUMERICAL RESULTS

In this section, we present numerical results comparing

the performances of deep RL and deep active inference

algorithms. We choose the number of processes as N = 3
and, thus, M = 2N = 8. The prior probability of a process

being normal is taken as q = 0.8. Here, the first and second

processes are assumed to be statistically dependent, and the

third is independent of the other two. The correlation between

the dependent processes is captured by the parameter ρ ∈
[0, 1]:

P
{

x =
[

0 0
]}

= q2 + ρq(1− q)

P
{

x =
[

0 1
]}

= P
{

x =
[

1 0
]}

= q(1− q)(1 − ρ).

Also, we assume that the maximum number of time slots for

each episode (trial or run) is Tmax = 5000.

We implement all the neural networks (the Q-network of

deep Q-learning, the actor and critic networks, and the policy

and the bootstrapped EFE networks of active inference) with

three layers and the ReLU activation function between each

consecutive layer. To update the network parameters, we apply

the Adam Optimizer. Also, we set γ = 0.9 for the RL

algorithms, and ǫ values linearly decrease from 0.4 to 0.05.

We train the neural networks over multiple episodes (real-

izations) where, for each episode, we choose the process states

from the prior distribution mentioned above, and the number

of time slots for each episode is fixed as 50. The actor-critic

and active inference algorithms converge after 1000 episodes,

whereas the deep Q-learning algorithm requires 2000 episodes

to achieve a stable policy. So, the deep Q-learning algorithm

requires more extended training than the other two algorithms.

After the training phase, we test the algorithms. We start

with two illustrations in Fig. 2. They show the realizations of

the variation of the belief vector π(k), sensor selection A(k),
and the corresponding observations yA(k)(k) over time k until

the stopping time. Fig. 2a shows the sensor selection of the

actor-critic algorithm when the true hypothesis (process state)

is [0 0 1]. Here, the posterior probability corresponding to

the wrong process state [0 0 0] was high initially due to the

prior distribution. Since the true process state [0 0 1] and the

state [0 0 0] differ only in the state of the third process, the

posterior probability corresponding to the true process state

[0 0 1] is not high until the third process is observed at

k = 2. Note that at k = 2, the selected processes and the

corresponding observations are described by (1/0, 2/1, 3/1),
indicating that all three processes have been chosen and the

noisy observations are [0 1 1]. As the probability of the

true process state [0 0 1] increases (at time k = 2), the

algorithm observes the third process more often. Finally, at

time k = 6, the posterior probability of the true process state

[0 0 1] exceeds πupper = 0.94 and the algorithm stops. We

can make similar observations from Fig. 2b where the true

process state is [0 0 0]. Due to the error in observations from

the first process at k = 1 and the second process at k = 2,

the posterior probability of the state [1 1 0] increases initially.

Then, the algorithm observes these two processes more often.

This policy allows the algorithm to observe that the probability

of the state [1 1 0] decreases, and the probability of the true

process state [0 0 0] exceeds πupper at k = 6.

Next, we show the performance of the algorithms. Like

the training phase, for each episode of the testing phase,

we choose the process states from the prior distribution. The

three performance metrics we use for comparison are detection

accuracy, stopping time, and total cost, as defined in Section II.

If the estimated hypothesis is the same as the true hypothesis,

the (instantaneous) detection accuracy is one, and otherwise,

it is zero. Also, stopping time is the shortest time at which the

stopping criteria in (7) is met. The average detection accuracy,

stopping time, and total cost obtained using the 104 episodes

are shown in Figs. 3 through 7. Like the training phase, during

testing for each episode, we choose the process states from

the prior distribution mentioned above. In Figs. 4 to 6, we

also show bar plots where the heights are proportional to the

fraction of times each process is chosen. In the figures, we

10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

0.8 0.85 0.9 0.95 1

Confidence level
upper

0.5

0.6

0.7

0.8

0.9

1

D
e

te
c

ti
o

n
 a

c
c

u
ra

c
y

AC: LLR

AI: LLR

DQN: LLR

0.8 0.85 0.9 0.95 1

Confidence level
upper

4

6

8

10

12

14

16

18

20

S
to

p
p

in
g

 t
im

e

K

AC: LLR

AI: LLR

DQN: LLR

0.8 0.85 0.9 0.95 1

Confidence level
upper

1

1.5

2

2.5

3

3.5

4

T
o

ta
l
c
o

s
t

AC: LLR

AI: LLR

DQN: LLR

0 0.2 0.4 0.6 0.8 1

Correlation parameter

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti

o
n

 a
c
c
u

ra
c
y

AC: Entropy

AI: Entropy

DQN: Entropy

0 0.2 0.4 0.6 0.8 1

Correlation parameter

4

5

6

7

8

9

10

11

12

13
S

to
p

p
in

g
 t

im
e

K

AC: Entropy

AI: Entropy

DQN: Entropy

0 0.2 0.4 0.6 0.8 1

Correlation parameter

1

1.5

2

2.5

3

T
o

ta
l

c
o

s
t

AC: Entropy

AI: Entropy

DQN: Entropy

0 0.5 1 1.5 2 2.5

Tradeoff parameter

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti

o
n

 a
c
c
u

ra
c
y

AC: LLR

AC: Entropy

AI: LLR

AI: Entropy

DQN: LLR

DQN: Entropy

0 0.5 1 1.5 2 2.5

Tradeoff parameter

0

2

4

6

8

10

S
to

p
p

in
g

 t
im

e

K

AC: LLR

AC: Entropy

AI: LLR

AI: Entropy

DQN: LLR

DQN: Entropy

0 0.5 1 1.5 2 2.5

Tradeoff parameter

0.5

1

1.5

2

2.5

T
o

ta
l
c
o

s
t

AC: LLR

AC: Entropy

AI: LLR

AI: Entropy

DQN: LLR

DQN: Entropy

Fig. 3: Performance of the actor-critic, active inference, and deep Q-learning algorithms for two different reward functions.

Unless otherwise mentioned in the plot, we choose πupper = 0.8, ρ = 0.8, and λ = 1.

compare the three algorithms (label names in brackets), deep

Q-learning (DQN), actor-critic (AC), and active inference (AI)

algorithms considering both Bayesian LLR-based (LLR) and

entropy-based (Entropy) reward functions. Our observations

from the numerical results are presented next.

1) Confidence level πupper: The variations in the perfor-

mance of different algorithms with πupper are shown in the

first row of Fig. 3, and Figs. 4 to 6. All three performance

metrics increase with πupper in all cases. This observation is

intuitive as a higher value of πupper implies higher accuracy

and requires the algorithms to collect more observations

before they decide on anomalous processes. Also, the accuracy

levels achieved by all the algorithms are comparable in all

the settings because the common πupper sets the desired

confidence level of detection.

2) Correlation parameter ρ: The second row of Fig. 3

illustrates the performances with varying ρ. The accuracy

is insensitive to ρ as it is decided by the confidence level

πupper. On the other hand, the stopping time and total cost

decrease with ρ. This decrease is expected because when the

G. JOSEPH et al.: ANOMALY DETECTION VIA LEARNING-BASED SEQUENTIAL CONTROLLED SENSING 11

AC: LLR AI: LLR DQN: LLR
0

0.1

0.2

0.3

0.4

0.5
F

ra
c

ti
o

n
 o

f
s

e
n

s
o

r
s

e
le

c
ti

o
n

Sensor 1

Sensor 2

Sensor 3

0.8 0.85 0.9 0.95 1

Confidence level
upper

4

4.5

5

5.5

6

6.5

7

7.5

8

S
to

p
p

in
g

 t
im

e

K

AC: LLR

AI: LLR

DQN: LLR

0.8 0.85 0.9 0.95 1

Confidence level
upper

2

3

4

5

6

7

8

9

10

11

T
o

ta
l
c
o

s
t

AC: LLR

AI: LLR

DQN: LLR

Fig. 4: Performance of the actor-critic, active inference, and deep Q-learning algorithms when the sensing costs differ: c1 = 2
and c2 = c3 = 0.2. We choose ρ = λ = 1, pi = 0.2 for i = 1, 2, 3, and for the bar plot, we set πupper = 0.94.

AC: LLR AI: LLR DQN: LLR
0

0.1

0.2

0.3

0.4

0.5

F
ra

c
ti

o
n

 o
f

s
e
n

s
o

r
s
e
le

c
ti

o
n

Sensor 1

Sensor 2

Sensor 3

0.8 0.85 0.9 0.95 1

Confidence level
upper

4

5

6

7

8

9

10

11

12

13

S
to

p
p

in
g

 t
im

e

K

AC: LLR

AI: LLR

DQN: LLR

0.8 0.85 0.9 0.95 1

Confidence level
upper

1.5

2

2.5

3

3.5

4

T
o

ta
l
c
o

s
t

AC: LLR

AI: LLR

DQN: LLR

Fig. 5: Performance of the actor-critic, active inference, and deep Q-learning algorithms when the flipping probabilities differ:

p1 = 0.45 and p2 = p3 = 0.2. We choose ρ = λ = 1, ci = 0.2 for i = 1, 2, 3, and for the bar plot, we set πupper = 0.94.

AC: LLR AI: LLR DQN: LLR
0

0.1

0.2

0.3

0.4

0.5

F
ra

c
ti

o
n

 o
f

s
e
n

s
o

r
s
e
le

c
ti

o
n

Sensor 1

Sensor 2

Sensor 3

0.8 0.85 0.9 0.95 1

Confidence level
upper

3

4

5

6

7

8

S
to

p
p

in
g

 t
im

e

K

AC: LLR

AI: LLR

DQN: LLR

0.8 0.85 0.9 0.95 1

Confidence level
upper

2

3

4

5

6

7

8

9

10

T
o

ta
l
c
o

s
t

AC: LLR

AI: LLR

DQN: LLR

Fig. 6: Performance of the actor-critic, active inference and deep Q-learning algorithms when both sensing costs are different:

c1 = 2 and c2 = c3 = 0.2; and p1 = 0.02, and p2 = p3 = 0.2. We choose ρ = λ = 1, and we set πupper = 0.94 for the bar

plot.

12 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

0 0.2 0.4 0.6 0.8

Correlation parameter

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti

o
n

 a
c
c
u

ra
c
y

AC: LLR

AI: LLR

DQN: LLR

Chernoff

0 0.2 0.4 0.6 0.8

Correlation parameter

0

2

4

6

8

10

S
to

p
p

in
g

 t
im

e

K

AC: LLR

AI: LLR

DQN: LLR

Chernoff

0 0.2 0.4 0.6 0.8

Correlation parameter

1

1.5

2

2.5

3

T
o

ta
l
c
o

s
t

AC: LLR

AI: LLR

DQN: LLR

Chernoff

Fig. 7: Comparison of our algorithms with the Chernoff test when πupper = 0.82, λ = 0 and ci = pi = 0.2 for i = 1, 2, 3.

correlation increases, an observation corresponding to one of

the dependent processes gives more information about the

other. Consequently, the algorithms require fewer observations

and a shorter stopping time to reach the same confidence level.

3) Tradeoff parameter λ: The last row of Fig. 3 depicts the

changes in the algorithm performances with λ. As in the case

of ρ, the accuracy and total cost do not vary significantly with

λ for a fixed value of πupper and ρ. This behavior is because

when ρ is fixed, we need the same number of observations to

achieve the same confidence level. However, as λ increases,

each observation becomes costlier, and the stopping time

increases. We notice that the stopping time of the actor-critic

algorithm is more sensitive to λ compared to the deep Q-

learning and active inference algorithms. One reason for this

could be that the temporal error, which is a function of only

the posterior, is more sensitive to the parameter λ than the Q-

function learned by the deep Q-learning algorithm and EFE

learned by the active inference algorithm, which are both

functions of the posterior belief and action.

4) Reward functions: From Fig. 3, we infer that all the al-

gorithms provide similar performance levels with both choices

of the reward function. However, the actor-critic and deep Q-

learning algorithms slightly underperform with the entropy-

based reward function. Since the two reward functions have

λ ‖A(t)‖ in common, as λ increases, the performance differ-

ence also grows, as observed from the last row of Fig. 3. In

other words, the performance gap is the largest when λ = 0,

and the two reward functions become identical as λ goes to

∞. Further, we recall from Section III-B that for the same

value of λ, the Bayesian LLR reward functions give more

weight to the accuracy than the cost (see (12)). As a result, the

performance with the entropy-based function for a particular

value of λ is similar to that with the Bayesian LLR reward

for a larger value of λ. For example, the sudden change in

the stopping time of the actor-critic algorithm with λ occurs

at λ = 0.05 for the entropy-based function, whereas it occurs

at λ = 0.2 for the Bayesian LLR-based reward. We observe

similar behavior for the deep Q-learning algorithm as well.

5) Sensing cost ci and flipping probability pi: We analyze the

dependence of the algorithms’ performance on the sensing

cost and flipping probability under three settings: 1) nonuni-

form sensing costs and uniform flipping probabilities (see

Fig. 4); 2) uniform sensing costs and nonuniform flipping

probabilities (see Fig. 5); and 3) nonuniform sensing costs

and flipping probabilities (see Fig. 6) across the processes.

From Fig. 4, the deep Q-learning algorithm is more sensitive

to different cost values ci. In all settings considered in Fig. 4,

the deep Q-learning agent chooses the first process less often,

leading to the lowest total cost and best performance. The

actor-critic algorithm also adapts to the varying cost, while

the active inference algorithm is relatively less insensitive to

the different costs. Similarly, when we increase the flipping

probability of the first process in Fig. 5 (with uniform sensing

costs), we see that all algorithms adapt their policies. However,

the policy offered by the active inference algorithm has shorter

stopping times than the other algorithms for comparable

values of the total cost. The differences in the policies of

the three algorithms are more evident in Fig. 6 when we vary

both sensing cost and flipping probabilities. In this setting, the

deep Q-learning algorithm chooses the first process less often

despite its smaller flipping probability. As in the case of Fig. 5,

active inference is more sensitive to the flipping probability

than the cost, and as a result, it gives the shortest stopping

times at the price of a higher total cost. The performance

of the actor-critic algorithm is between those of the other two

algorithms. The actor-critic algorithm provides stopping times

comparable to those of the active inference algorithm while

incurring a smaller total sensing cost.

6) Competing algorithms: We first note that all the algo-

rithms have similar detection accuracy due to the common

stopping criteria in (7), i.e., they stop only when the detection

accuracy of the algorithm always exceeds πupper. So, the

choice of the best learning algorithm depends on the stopping

time and total cost. We first look at the algorithm perfor-

mances for the uniform cost and filliping probability case from

Figs. 3 and 7. For small values of λ, the actor-critic algorithm

offers the best stopping time but has a slightly higher cost

than the other algorithms. As λ increases, its stopping time

also increases, and the active inference algorithm provides

the best stopping time for a comparable total cost. Also, the

G. JOSEPH et al.: ANOMALY DETECTION VIA LEARNING-BASED SEQUENTIAL CONTROLLED SENSING 13

active inference algorithm offers slightly better performance

than deep Q-learning. However, our experiments show that the

Q-learning algorithm requires more episodes in the training

phase than the other algorithms to achieve a stable policy.

The memory replay in the Q-learning algorithm also makes its

training phase further longer than the other algorithms. There-

fore, the actor-critic algorithm is more suitable for sensing

cost-critical applications, and for time-sensitive applications,

we recommend the active inference algorithm over Q-learning.

Next, we look at the nonuniform setting in Figs. 4 to 6. We

notice that the deep Q-learning algorithm is more sensitive

to the nonuniform sensing cost, whereas the active inference

algorithm is more sensitive to the nonuniform flipping prob-

ability. So, in the nonuniform setting, we prefer Q-learning

for cost-critical applications and active inference for stopping

time-sensitive applications. These observations further justify

our joint analysis of different learning-based methods.

7) Comparison with Chernoff test: Fig. 7 compares our

algorithms with the classical Chernoff test. The stopping time

and the total sensing cost of the Chernoff test are relatively in-

sensitive to the variation in ρ. In contrast, our algorithms, par-

ticularly the active inference algorithm, adapt their stopping

time and total sensing cost to ρ. This observation is intuitive

as the policy followed by the Chernoff test does not depend

on ρ or λ, and it assumes that the processes are independent.

Therefore, (25) leads to the optimum performance when ρ = 0
but deteriorates as ρ increases.

VII. CONCLUSION

This paper considered the anomaly detection problem,

where the goal is to identify the anomalies among a given

set of processes. We modeled the problem of anomaly de-

tection as an MDP problem aiming at the detection accuracy

exceeding a desired value while minimizing the delay and total

sensing cost. To this end, we designed two objective functions

based on Bayesian LLR and entropy and presented two deep

RL-based algorithms and a deep active inference algorithm.

Through simulation results, we compared our algorithms and

showed that all algorithms perform similarly in the detection

accuracy for the same confidence level. However, the dueling

deep Q-learning algorithm required a more prolonged training

phase, and the active inference algorithm is more robust to

the trade-off parameter and adapts better to the correlation

parameter. We also inferred that the policy of the dueling deep

Q-learning algorithm always led to more negligible sensing

costs. In contrast, the active inference algorithm is more

sensitive to the flipping probabilities. Extending our algorithm

to track any changes in the behavior of the processes over a

more extended time period is an exciting future direction.

REFERENCES

[1] W.-Y. Chung and S.-J. Oh, “Remote monitoring system with wireless
sensors module for room environment,” Sensors Actuators B: Chemical,
vol. 113, no. 1, pp. 64–70, Jan. 2006.

[2] A. Bujnowski, J. Ruminski, A. Palinski, and J. Wtrorek, “Enhanced
remote control providing medical functionalities,” in Proc. Inter. Conf.

Pervasive Comput. Tech Healthc. Workshops, May 2013, pp. 290–293.
[3] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep actor-critic rein-

forcement learning for anomaly detection,” in Proc. Globecom, Dec.
2019.

[4] G. Joseph, M. C. Gursoy, and P. K. Varshney, “Anomaly detection under
controlled sensing using actor-critic reinforcement learning,” in Proc.

IEEE Inter. Workshop SPAWC, May 2020.
[5] H. Chernoff, “Sequential design of experiments,” Ann. Math. Stat.,

vol. 30, no. 3, pp. 755–770, Sep. 1959.
[6] S. A. Bessler, “Theory and applications of the sequential design of

experiments, k-actions and infinitely many experiments. part I. theory,”
Stanford Univ CA Applied Mathematics and Statistics Labs, Tech. Rep.,
1960.

[7] M. Naghshvar and T. Javidi, “Extrinsic jensen-shannon divergence with
application in active hypothesis testing,” in Proc. ISIT, Jul. 2012, pp.
2191–2195.

[8] M. Naghshvar, T. Javidi et al., “Active sequential hypothesis testing,”
Ann. Stat., vol. 41, no. 6, pp. 2703–2738, 2013.

[9] M. Franceschetti, S. Marano, and V. Matta, “Chernoff test for strong-
or-weak radar models,” IEEE Trans. Signal Process., vol. 65, no. 2, pp.
289–302, Oct. 2016.

[10] B. Huang, K. Cohen, and Q. Zhao, “Active anomaly detection in
heterogeneous processes,” IEEE Trans. Inf. Theory, vol. 65, no. 4, pp.
2284–2301, Aug. 2018.

[11] D. Kartik, E. Sabir, U. Mitra, and P. Natarajan, “Policy design for active
sequential hypothesis testing using deep learning,” in Proc. Allerton,
Oct. 2018, pp. 741–748.

[12] G. Joseph, C. Zhong, M. C. Gursoy, S. Velipasalar, and P. K. Varshney,
“Anomaly detection via controlled sensing and deep active inference,”
in Proc. IEEE Globecom, Dec. 2020.

[13] G. Joseph, M. C. Gursoy, and P. K. Varshney, “Temporal detection
of anomalies via actor-critic based controlled sensing,” in Proc. IEEE
Globecom, Dec. 2021, pp. 1–6.

[14] ——, “A scalable algorithm for anomaly detection via learning-based
controlled sensing,” in Proc. ICC, Jun. 2021, pp. 1–6.

[15] G. Joseph, C. Zhong, M. C. Gursoy, S. Velipasalar, and P. K. Varsh-
ney, “Scalable and decentralized algorithms for anomaly detection via
learning-based controlled sensing,” IEEE Trans. Signal Inf. Process.

Netw., to appear.
[16] T. Yaacoub, G. V. Moustakides, and Y. Mei, “Optimal stopping for

interval estimation in Bernoulli trials,” IEEE Trans. Inf. Theory, vol. 65,
no. 5, pp. 3022–3033, 2018.

[17] P. Grambsch, “Sequential sampling based on the observed Fisher infor-
mation to guarantee the accuracy of the maximum likelihood estimator,”
Ann. Stat., pp. 68–77, 1983.

[18] P. J. Bickel and J. A. Yahav, “Asymptotically pointwise optimal proce-
dures in sequential analysis,” in Proc. Fifth Berk. Symp. Math. Statist.

Probab, vol. 1, 1967, pp. 401–413.
[19] T. M. Cover, Elements of information theory. John Wiley & Sons,

1999.
[20] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press, 2018.
[21] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-

tion, Psychology Department, King’s College, Cambridge, UK, 1989.
[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[23] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
Proc. ICML, 2016, pp. 1995–2003.

[24] A. Ostovar, O. Ringdahl, and T. Hellström, “Adaptive image threshold-
ing of yellow peppers for a harvesting robot,” Robotics, vol. 7, no. 1,
p. 11, 2018.

[25] W. Kong, W. Krichene, N. Mayoraz, S. Rendle, and L. Zhang,
“Rankmax: An adaptive projection alternative to the softmax function,”
Adv. Neural Inf. Process. Syst., vol. 33, pp. 633–643, 2020.

[26] K. Friston, T. FitzGerald, F. Rigoli, P. Schwartenbeck, and G. Pezzulo,
“Active inference: A process theory,” Neural Comput., vol. 29, no. 1,
pp. 1–49, Jan. 2017.

[27] K. J. Friston, M. Lin, C. D. Frith, G. Pezzulo, J. A. Hobson, and
S. Ondobaka, “Active inference, curiosity and insight,” Neural Comput.,
vol. 29, no. 10, pp. 2633–2683, Oct. 2017.

[28] K. Friston, F. Rigoli, D. Ognibene, C. Mathys, T. Fitzgerald, and
G. Pezzulo, “Active inference and epistemic value,” J. Cogn. Neurosci.,
vol. 6, no. 4, pp. 187–214, Oct. 2015.

[29] B. Millidge, “Deep active inference as variational policy gradients,” J.

Math. Psychol., vol. 96, p. 102348, Jan. 2020.
[30] A. Dargazany, “Model-based actor-critic: GAN+ DRL (actor-critic) =>

AGI,” arXiv preprint arXiv:2004.04574, 2020.

Process 1

Process 2
...

Process N

J
o
in
t
d
is
tr
ib
u
ti
o
n

Environment

Our learning

algorithm

Anomalous

processes’ indices

Noisy sensor

measurements

Dynamic

sensor selection

Output

http://arxiv.org/abs/2312.00088v1

This figure "jsenga.png" is available in "png"
 format from:

http://arxiv.org/ps/2312.00088v1

http://arxiv.org/ps/2312.00088v1

