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Abstract

Event cameras are a novel type of biologically inspired
vision sensor known for their high temporal resolution, high
dynamic range, and low power consumption. Because of
these properties, they are well-suited for processing fast mo-
tions that require rapid reactions. Although event cameras
have recently shown competitive performance in unsuper-
vised optical flow estimation, performance in detecting in-
dependently moving objects (IMOs) is lacking behind, al-
though event-based methods would be suited for this task
based on their low latency and HDR properties. Previous
approaches to event-based IMO segmentation have been
heavily dependent on labeled data. However, biological
vision systems have developed the ability to avoid moving
objects through daily tasks without being given explicit la-
bels. In this work, we propose the first event framework that
generates IMO pseudo-labels using geometric constraints.
Due to its unsupervised nature, our method can handle an
arbitrary number of not predetermined objects and is eas-
ily scalable to datasets where expensive IMO labels are not
readily available. We evaluate our approach on the EVIMO
dataset and show that it performs competitively with super-
vised methods, both quantitatively and qualitatively. Please
see our project website for more details: https://www.
cis.upenn.edu/˜ziyunw/un_evmoseg/.

1. Introduction
Biological visual systems show remarkable performance in
identifying independently moving objects when the viewer
is undergoing self-motion. Basketball players can catch a
ball flying at high speed while running across the court. In-
sects have neurons optimized for detecting independent mo-
tion to search for prey or avoid threats [24]. Cross-species
studies have found that biological systems have neurons that
specialize in detecting looming motion, a special case of in-
dependent motion [38]. Scientists have found that certain
parts of the visual field are involved in subtracting out self-
motion to help identify moving objects [29]. In cognitive
science, the ability to model or segment independently mov-
ing objects has been extensively studied [16, 31–33]. Hu-

Figure 1. We propose a novel framework for training event-based
motion segmentation networks. Our method does not require any
manually labeled IMOs. Instead, a geometric labeling approach
is used to enable scalable training. The event IMO segmentation
network runs real-time and can handle various conditions without
extensive parameter tuning.

man drivers have the ability to identify moving pedestrians
and avoid them even when the car is traveling at high speed.
Another consideration is the speed of camera and depth sen-
sors, which has become the bottleneck of autonomous vi-
sion [17]. High-accuracy depth sensors, e.g. LIDAR, are
able to map rigid scenes but have to apply semantic seg-
mentation in order to detect IMOs.

The recent development of event-based cameras has
brought hope to these issues. Event cameras are able to
record the log change of brightness of individual pixels
asynchronously. These low-latency cameras allow for con-
tinuous monitoring of motion patterns of the scene. In this
work, inspired by biological vision systems, we use an event
camera as a silicon “eye” and tackle the IMO segmentation
problem given a stream of events.

Recently, CNN-based approaches have shown success in
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Fast
(Real-Time)

Scalable
(No IMO Labels) Minimal Tuning Full Motion Models

EMSGC ✗ ✔ ✗ ✗

EVIMO Network ✔ ✗ ✔ ✗

SpikeMS ✔ ✗ ✔ -
ESMS ✗ ✗ ✔ -

Un-EvMoSeg ✔ ✔ ✔ ✔

Table 1. Feature comparisons. Un-EvMoSeg does not simplify the geometry by following the complete motion field model; it does not
require manual labeling of IMO objects; it trains a network that performs inference on scenes without extensive tuning; and it runs inference
at real-time without heavy optimization.

dense segmentation tasks. In this work, we use neural net-
works as our predictor to take advantage of their generaliz-
ability. The bottleneck of event-based algorithms is the need
for a tremendous amount of labeled training data. However,
if we examine how species acquired the ability to handle
IMOs, the labels do not need to come from annotated bi-
nary masks. Actually, many studies have shown that the
motion field itself contains enough information to differen-
tiate between self-motion and independent motion [24, 38].
An important question is: Can we learn motion segmen-
tation with event cameras without manual labels by look-
ing at the motion pattern in the scene? In this work, we
propose a novel framework for training IMO segmentation
networks in an unlabeled dataset. Un-EvMoSeg is the first
event-based learning framework for IMO detection without
being trained with manual labels. We use a geometric self-
labeling method to generate binary IMO pseudo-labels that
supervise the IMO segmentation network. Our framework
uses off-the-shelf optical flow prediction and input depth to
fit 3D camera motion using RANSAC for excluding IMO as
outliers. IMO flow field is obtained by subtracting the cam-
era motion-induced flow field from the combined flow field.
Pseudo-labels are generated through adaptive thresholding
techniques based on the magnitude of estimated IMO mo-
tion field. Running inference Un-EvMoSeg is simple with-
out parameter turning because while the training process re-
quires geometry-based labels, only events are used for pre-
diction. Unlike many previous works, we do not assume
simplified motion models or a known number of objects.

2. Related Work

2.1. Event-based Motion Segmentation

Recent advances in event-based motion segmentation
research are driven by several event-based datasets.
EVIMO [21] is a motion segmentation data set that con-
tains more than 30 minutes of various motions of scanned
objects with a moving camera. Objects are geometrically
tracked with a multi-camera tracking system (Vicon) and
then projected onto a tracked camera. In the EVIMO paper,
a baseline approach has been proposed to learn the mixture

of unsupervised 3D velocities, depth, and flow from events.
Motion segmentation is trained using the motion masks pro-
vided in the datasets on top of the learned mixture weights.
Recently, Burner et al. released EVIMO2 [4], which uses
VGA resolution cameras. Evdodgenet [34] predict camera
velocity by deblurring ground events using a downward-
facing event camera and a motion segmentation network
to identify objects that need to be dodged. Stoffregen et
al. [36] propose an Expectation-Maximization framework
that assigns events to different motion clusters by optimiz-
ing the event-based contrast maximization. EMSGC [44]
is an optimization method that uses a graph cut method to
cluster events in the x-y-t event space based on paramet-
ric flow. Mitrokhin et al. [22] use a graph neural network
to learn the segmentation masks directly in the event point
space. ConvGC [22] use a graph neural network to learn
event-based segmentation on graphs constructed on down-
sampled events. SpikeMs [27] apply a spiking neural net-
work (SNN) architecture that allows incremental updates of
the prediction over a longer time horizon. We compare the
features of these methods with our work in Table 1.

2.2. Unsupervised Motion Segmentation

Motion estimation and segmentation are coupled prob-
lems [30]. In classical computer vision, motion segmenta-
tion is solved by optimization that simultaneously estimates
parametric flow and motion labels. Early layered flow mod-
els [7, 14, 15] model the flow field as multiple motion lay-
ers, each representing a parametric motion field. To robustly
optimize the different flow patterns, mixture flow models
are proposed to compose the overall optical flow field with
multiple simpler parametric flow fields. These methods usu-
ally assume a fixed number of clusters and simplified para-
metric forms of the individual flow component. Later, sev-
eral works have found that clustering the orientation of the
flow field leads to good segmentation results [3, 23].

These problems have been significantly improved with
the advancement of neural networks, which provide the
ability to learn motion and structure prior from a large
amount of data. The most common way to approach the
problem of estimating ego-motion is to directly predict flow,



Figure 2. Pipeline of Un-EvMoSeg. Left Dotted Box: we train a network to directly predict IMO masks from events. Rest of Figure: we
use a geometric self-labeling method to generate binary IMO pseudo-labels that supervise the IMO segmentation network. Our framework
uses off-the-shelf optical flow (fine-tuned on image-based flow) and input depth. The camera motion fitted from flow and depth through
RANSAC is used to compute rigid flow from the camera only. Pseudo-labels are generated through adaptive thresholding techniques based
on the magnitude of estimated IMO motion field. Running inference Un-EvMoSeg is simple without parameter turning because while the
training process requires geometry-based labels, only events are used for prediction. We take the best of both worlds of deep learning and
optimization: 1) simple and robust inference with a simple feed-forward pass, and 2) scalable with no expensive annotations required to
train the network.

depth, and egomotion [6, 30, 42, 48]. These quantities are
related by the rigid motion field equation, and thus, geomet-
ric constraints can be used for joint optimization to improve
overall performance. Zhu et al. [45] inserted a nondifferen-
tiable RANSAC layer to allow explicit handling of nonrigid
and/or independently moving objects in the scene. Casser
et al. [5] model both camera ego-motion and objects motion
model in 3D space; however, the 3D object motion estima-
tor requires precomputed semantic segmentation masks as
input, which are unavailable in most settings.

The incompatibility between independent motion and
camera motion also creates opportunities for segmenta-
tion. Ranjan et al. [30] propose an adversarial collabo-
ration framework to explain and assign pixels to IMO or
rigid backgrounds. Furthermore, informatic-theoretic ap-
proaches are proposed to supervise segmentation networks
by training an inpainter and a segmenter [40]. The mo-
tion segmenter predicts a foreground mask so that the in-
painter cannot recover the masked foreground region from
the background. On the other hand, the inpainter tries to in-
paint the flow field using a background flow pattern. These
works tend to work better on datasets with relatively simple
camera motion and a single IMO. Another line of approach
that is related to our work is geometric self-labeling. Yang

and Ramanan [39] train a network to segment objects based
on the error in the flow of the predicted scene. Zheng and
Yang [43] refine pseudo-labels by looking at the uncertainty
of semantic segmentation.

3. Preliminaries
In this section, we geometrically define Independently
Moving Objects (IMOs) in a 2D motion field. We con-
sider the first-order instantaneous optical flow derived by
Longuet-Higgins et al. [19]. For a point P = (X,Y, Z) that
is observed by a camera C that moves instantaneously with
linear velocity v and angular velocity ω, its 3D motion field
is written as:

Ṗ = −v − ω × P (1)

= −

vxvy
vz

−

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

XY
Z

 (2)

Assuming a pinhole camera model, the point (X,Y, Z) is
projected to (XZ , Y

Z ), whose derivative with respect to time
is: [

ẋ
ẏ

]
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]
(3)



Plugging Equation 2 into Equation 3, we obtain the 2D mo-
tion field generated from point P :

[
ẋ
ẏ

]
=

1

Z

[
−1 0 x
0 −1 y

]vXvY
vZ

+ (4)

[
xy −(1 + x2) y

1 + y2 −xy −x

]ωX

ωY

ωZ

 (5)

It can be seen that for an object moving in the camera
frame with linear and angular velocity vo and ωo, the com-
bined motion field can be written as the sum of two motion
fields Ψ(vc, ωc, X, Y, Z) and Ψ(−vo,−ωo, X, Y, Z), as ob-
ject velocity can be thought as the opposite of camera ve-
locity. In the following sections, we slightly abuse the nota-
tion to write Ψ(x) to indicate the motion field of a 2D point
x which inversely projects to point [X,Y, Z] in the cam-
era frame. More generally, with multiple IMOs, the motion
field can be written as:

Ψ(x) = Ψcam(x) +
∑
i

ΨOi
(x)1[x ∈ Oi] (6)

where Oi represents the ith object in the scene, where
∪n
i=1Oi represents all independently moving points in the

scene that can be observed in the camera. Since the objects
are assumed to be non-transparent, for each point observed
by the camera, only one object contains this point:

∩n
i=1Oi = ∅ (7)

From Equation 6, it can be seen that the objects and the
camera have independent motion patterns. It it worth not-
ing that previous literature usually models this as a mix-
ture model [1] where the indicator function 1[x ∈ Oi] is
replaced with a weight wi and the camera motion field is
weighted by wcam such that wcam +

∑
i wi = 1. The

weight wi is a soft weight that indicates the likelihood that
a point belongs to an object Oi or the camera. Similarly,
Stoffregen et al. [36], Mitrokhin et al. [21], Zhou et al. [44]
all employed this mixture formulation to enable segmen-
tation among several candidate motion models. Either an
Expectation-Maximization frame is used to optimize the
weights directly, or a network is used to learn the mixture
weights.

However, several underlying assumptions are made here
to reduce the generalization ability of such approaches.
First, such mixture models assume a fixed number of can-
didate models to initialize. These values cannot be eas-
ily tuned and depend heavily on the scene. In our experi-
ments, we find the number of clusters cannot easily be se-
lected without knowing beforehand the number of objects
in the test sequence. Second, the mixture model makes
strong assumptions about the parametric motion model.

Table Box Floor Wall Fast
E-RAFT

[11] 11.150 14.902 4.983 8.036 20.471
Ours 1.550 3.432 1.036 2.062 5.331

Table 2. Optical flow comparison. E-RAFT underperforms when
there is independent motion. We report EPE metric as described
in E-RAFT [11].

Figure 3. Top Left: Events projected onto x-y space. Top Right:
RAFT flow from images. Bottom Left: E-RAFT flow. Bottom
Right: our optical flow containing independent motion. Indepen-
dent motions are clearly missing from E-RAFT. Flow fields are
predicted on the wall test sequence of EVIMO. The color indi-
cated direction. Best viewed in color.

EMSGC [44] uses 4 to 12 parameter models on different
scenes. EMMC [36] uses linear, rotational, 4-DOF and 8-
DOF models. The most general model is EVIMO [21],
which uses translational-only models for the object and a
full rigid motion field for the camera.

In comparison, we deploy the exact formulation in Equa-
tion 6, and estimate the IMO motion weights directly
through a per-pixel classification network, utilizing a dis-
criminative power of a neural network over a large amount
of data. This choice leads to a major challenge in event-
based research, which is the lack of labeled data. In the
next sections, we explain how we train the network without
labeled motion masks.

4. Unsupervised Motion Segmentation

In Figure 2, we show the pipeline of Un-EvMoSeg. Gener-
ating motion labels on a large scale has a been a challenging
problem. The most scalable solution is collecting data in
simulation [9, 20]. In video datasets such as DAVIS16 [28],
the motion masks of objects are usually labeled by humans.



Table Box Floor Plain Wall Fast Motion
Supervised

Baseline CNN 66±23 50±23 74±13 60±20 52±24
EVIMO [21] 79±6 70±5 59±9 78±5 67±3

EVDodgeNet [34] 70±8 67±8 61±6 72±9 60±10
SpikeMS [27] 50±8 65±8 53±16 63±6 38±10
GConv [22] 51±16 60±18 55±19 80±7 39±19

Unsupervised
EMSGC [44] Top 30% 55±17 24±28 18±29 24±33 43±27
EMSGC [44] Top 50% 36±27 14±25 11±24 15±28 26±29
Un-EvMoSeg (Ours) 50±21 45±24 56±15 53±19 44±21

Table 3. Quantitative Evaluation on EVIMO. Event-masked IoU on predicted masks and gt masks is calculated as described in 12. Our
method compares favorably with EMSGC, which is the only one other than Un-EvMoSeg that does not need labels. Our method performs
competitively with other supervised methods. “Baseline CNN” is our network-trained ground truth masks. EMSGC requires per-scene
parameter tuning. For fair comparisons, we take the top 30 and 50 percent of EMSGC IoU.

Figure 4. Estimated camera rotation from estimated optical flow.
The results are shown for the whole evaluation sequence wall 00.
Translational velocity shown in Supplementary Material due to
space limitations. Best viewed in color.

In driving datasets that have high accuracy depth sensros,
such as KITTI [12], IMOs are mostly cars. These objects
are removed and inserted back using fitted car CAD models.
In certain constrained cases, the labels can be generated by
projecting known objects into the current camera frame. In
EVIMO [21], the authors scanned the environment and ob-

jects before collecting dynamic motion. During data collec-
tion, VICON markers are attached to objects and cameras
so that the relative poses between the camera, objects, and
room are known. The object masks are then subsequently
obtained by projecting the 3D model of the object onto the
current camera. Despite this automatic labeling scheme, the
amount of work required to calibrate the system and provide
high-quality object scans makes this supervising method not
transferable to general scenes.

In this section, we propose a framework for automati-
cally obtaining labels taking advantage of the results of the
CNN-based optical flow [11, 37, 41, 46, 47] estimation. Our
method is based on geometric error rather than on the se-
mantics of the objects, which allows it to be applied on a
large scale. We explain how roughly accurate labels can be
generated only using depth and camera data. In addition,
we describe how we train a robust event-based motion seg-
mentation network completely without human annotation.
Our pipeline is mainly composed of two parts: a robust
pseudo-label generation module and an event motion seg-
mentation network. The data required for training is only
the depth map in the camera frame. The depth information
is only used during training in our geometry-based pseudo-
label generation module. Such data are not required during
inference. Instead, we train a per-pixel classifier that takes
in events and produces a binary segmentation mask.

4.1. Optical Flow with Independent Motion

The high temporal resolution of the events preserves rich
temporal information in x-y-t space, which allows robust
estimation of optical flow under various challenging con-
ditions. Early work achieves this estimation by plane fit-
ting [2], which produces an event-based optical flow only
on regions with events. EV-FlowNet [46] and E-RAFT [11]
are trained neural networks that learn the dense optical flow
from events. In our formulation, it is critical to have dense



flow predictions in order to compute the residual error be-
tween camera motion and the observed flow field. In this
work, we used the E-RAFT flow network pretrained on
DSEC. We fine-tuned the flow on the predicted flow from
grayscale images using RAFT [37]. In Figure 3, we show
examples of three types of optical flow. RAFT [37] is the
state-of-the-art optical flow method for images. E-RAFT
extends the RAFT framework to events. It can be seen that
our fine-tuned flow correctly estimates the flow for IMO
objects. This is consistent with the discovery of Shiba et
al. that E-RAFT performs poorly on independently moving
objects [35].
Optical Flow with Independent Motion Flow networks
trained on driving data cannot be easily used for IMO de-
tection. To show this, we compare our optical flow re-
sults with the state-of-the-art E-RAFT models pre-trained
on DSEC [10]. For this evaluation, we use the architec-
ture of E-RAFT as is and only fine-tune the flow based on
image-based flow. Since the ground-truth optical flow of
EVIMO is not provided, we supervise on the high-quality
optical flow computed using RAFT [37] with photometric
matching and refinement. We evaluated unseen test se-
quences in EVIMO using RAFT output as ground truth.
In our experiments, we observe that the performance gap
between our Un-EvMoSeg flow network and E-RAFT is
tightly correlated with how dynamic the scene is. In our ex-
periments, due to the missing IMOs, the E-RAFT baseline
cannot provide good pseudo-labels for training the down-
stream network.

4.2. Robust Camera Motion Estimation

Traditionally, the motion segmentation problem can be seen
as a chicken-and-egg problem because IMOs can signifi-
cantly bias camera motion estimation if they are not prop-
erly filtered. Several self-supervised methods for joint mo-
tion estimation approaches are susceptible to this prob-
lem. For example, Zhu et al. [47] jointly learn emotion,
depth, and flow assuming rigid scenes, which is depen-
dent on a network to ignore independent motions. E-
RAFT [11], although it does not learn ego-motion directly,
has been shown to underperform in the independent mo-
tion regions [35]. Thus, a robust camera motion module
needs to be designed to avoid further blurring of the deci-
sion boundary between IMO motion and camera motion. To
this end, we take advantage of the classical outlier rejection
techniques and use Random Sample Consensus (RANSAC)
to estimate camera motion. In general, RANSAC is used to
solve the following problem:

θ = argmin
θ

N∑
i=1

ρ(ϵ(ui; θ))

where ϵ is an error function, ρ is a robust likelihood func-
tion, and ui is the observed motion field at pixel i with

respect to the camera motion given the velocity θ. We
notice that the error term ϵ(ui; θ) corresponds exactly to∑

i ΨOi
(x)1[x ∈ Oi], the second term in Equation 6. A

naive optimization without outlier rejection will bias the
motion estimation towards the motion of near and fast-
moving objects. Based on Equation 3, the camera motion
(vx, vy, vz, ωx, ωy, ωz) can be solved by the linear equation:



1/z1 0 x1/z1 x1y1 −(1+x2
1) y1

...
1/zn 0 xn/zn xnyn −(1+x2

n) yn

0 −z−1
1 y1/z1 1+y2

1 −x1y1 −x1

...
0 −z−1

n yn/zn n+y2
n −xnyn −xn


 vx

vy
vz
ωx
ωy
ωz

 =


ẋ1

...
ẋn
ẏ1

...
ẏn


(8)

where zi, xi, yi are the depth values (input) and the pixel
coordinates of the ith pixel and (ẋi, ẏi) is the calibrated op-
tical flow from events. We sample 3 points every time to
solve the equation for a maximum of 300 iterations, or a
stop probability of 0.999 is reached. Then we use all inlier
pixels to solve the over-constrained least square problem
using SVD.

4.3. Adaptive Geometry-based Thresholding

We combine accurate flow estimation from events and ro-
bust motion estimation to produce a residual flow field. In
contrast to model-based approaches in previous event-based
motion segmentation works, we do not assume a fixed num-
ber of parametric flow models. In Section 5, we show fail-
ure cases of parametric flow due to the high variation of
motion and depth in real data. Since no competing models
are learned or optimized, selecting an appropriate threshold
for the magnitude of the residual flow becomes a crucial
step. In analyzing the data, we find that the error usually
demonstrates a bimodal distribution, where one peak cor-
responds to the correct rigid motion, and the other model
concentrates at a much higher mean. Since there is usually
no fixed threshold value due to the variation of noise and
depth, we adopt a statistically robust thresholding method
based on Otsu’s method [25].

Given a set of pixels Λ = {qi}, the residual flow function
for each pixel is predicted by computing the l2 norm of the
residual flow: r(qi) = ||Ψ(qi)−Ψcam(qi)||2. Modeling the
residual r(qi) as a bimodal distribution, choosing a thresh-
old r̂ is treated as the problem of maximizing the variance
between the two classes. The two classes, by definition, are
rigid areas and IMO areas. IMO areas have higher residual
flow because they have different velocities than the cam-
era. The problem can be solved efficiently with a simple
1D search if we define R = {rj} as the set of candidate



Figure 5. Columns 1 to 3: Segmentation Results of EMSGC, SpikeMS, Un-EvMoSeg and EVIMO-Supervised. Columns 4 to 5: Flow
output of E-RAFT (trained on DSEC) and our fine-tuned flow network. Column 6: Segmented IMO event using ground truth. It can be
seen that Un-EvMoSeg produces sharper and more consistent masks than the baseline methods.

solutions. The objective of the search is

argmax
rj∈R

rj∑
k=0

Pk(µbg(rj)− µ)2 +

Kmax∑
k=rj

Pk(µimo(rj)− µ)2

µ =

Kmax∑
k=0

Pkk, µbg(rj) =

rj∑
k=0

Pkk, µimo(rj) =

Kmax∑
k=rj

Pkk.

Pk is the probability that a pixel qi falls into the bin k. We
use 256 bins for this problem, and the histogram is clipped
at 10 pixels. In our search, we applied a two-stage filter
on Otsu’s thresholding results. First, we examine the to-
tal variance of the histogram of errors; If the variance is
greater than some threshold ϵvar, we do not look at this
slice of events, since the flow prediction does not provide
clear boundaries of the objects. Similarly, we compute the
variance between IMO pixels and BG pixels, based on the
selected threshold rj and remove the training example if this
value is too small. These two calculated variance values can

be seen as a measure of confidence in the labels. Selecting
confident labels is a crucial step in pseudo-label selection.

4.4. Event-based Motion Segmentation Network

It can be seen from our pseudo-label generation framework
that the task of independent motion segmentation can be
seen as a combination of global and local motion estima-
tion. As previously studied in the event-based flow liter-
ature [11, 46], it is preferred to preserve motion informa-
tion in events. For this purpose, we use the event volume
representation, which encodes the temporal domain as dis-
cretized channels of a 3D tensor. A bi-linear interpolation
kernel(kb) is used to distribute events to discretized bins
based on their spatio-temporal proximity with these bins.
We use the event volume as described in [47]:

E(x, y, t) =
∑
i

pikb(x− xi)kb(y − yi)kb(t− t∗i ). (9)



We use 15 channels for the event volume to allow the net-
work to extract fine temporal information from events. We
provide details on the implementation of the network and
the loss functions of Un-EvMoSeg. Our trained prediction
module is a UNet-like convolutional neural network. The
bottleneck layers facilitate the aggregation of global fea-
tures, since the segmentation problem relies not only on
the local flow pattern of events but also on the global mo-
tion pattern caused by the camera. We use a pre-trained
ResNet34 [13] encoder with pre-trained weights on Ima-
geNet [8]. Although events and images have different ap-
pearances, the kernels learned in an image-based encoder
can be re-used in event-based prediction. Since objects usu-
ally occupy much less space than the rigid background, we
use a Focal Loss [18] to handle the class imbalance prob-
lem. Let us denote ground truth class for a pixel as y: y is 1
for an IMO pixel and −1 for a rigid background pixel, and
our predicted probability for this pixel is p.

Lfocal(pt) = −(1− pt)
γ log (pt) (10)

pt =

{
p if y = 1

1− p otherwise.
(11)

Here, γ is a hyperparameter that determines how much we
diminish the loss for well-classified examples. We use 0.25
for this value. The network is trained with an Adam opti-
mizer using a learning rate of 2e−4 on EVIMO Table, Wall,
Floor, Box, and Fast training sequences.

5. Experiments
5.1. Quantitative Evaluation

In Table 3, we report the IoU our Un-EvMoSeg against
competing methods on different classes of EVIMO. The
IoU is computed on masked events directly in order to com-
pare with single-event labeling approaches. The IoU score
is computed as

IoU(Ot, Pt, Et) =
|(Et ∩ Pt) ∩ (Et ∩Ot)|
|(Et ∩ Pt) ∪ (Et ∩Ot)|

(12)

where Et is the set of projected events surrounding time t.
Pt and Ot are the projected mask and ground truth in 2D.
Et, Pt, and Ot are all subsets of all pixels. The comparison
is evaluated at 40Hz, which is the default evaluation fre-
quency for the dataset. Comparison methods can be divided
into two classes: supervised and optimization-based. In su-
pervised methods, a mask of a moving object is provided
at each time. On the other hand, EMSGC in the table is
an optimization-based method, which does not use mask la-
bels. Instead, multiple motion models are fitted to the events
by alternating between contrast maximization and flow fit-
ting. It is worth noting that the EMSGC method is very
sensitive to parameters such as the class of the parametric

model and the number of objects. In our evaluation, we had
to devote considerable effort to tuning the parameters to get
the best performance. Our model outperforms the super-
vised spiking method and unsupervised ESMGC (with per-
sequence tuning). It can be seen that our method is compa-
rable to supervised methods on Tables, Floor, Wall and Fast
Motion. Compared to supervised methods, the main disad-
vantage of our approach is the lack of sharp boundaries in
prediction because the network is trained with noisy labels.
To better evaluate this, we computed the “detection” rate of
IMOs on the floor sequence by thresholding the predicted
IOU at 0.3. Our detection rate is 0.912, which indicates that
we can find the object 91% of the time. It is possible that
the lack of sharp mask boundaries contributes to low IoU
values. In terms of inference speed, we are able to run in-
ference with neural network-based methods well over 40Hz
on an RTX 3090 GPU. EMSGC performs worse in this cat-
egory due to iterative optimization steps. EMSGC takes 7
to 10 seconds to process 25 ms of events on average.

5.2. Qualitative Evaluation

In Figure 5, we provide qualitative examples of competing
methods on the Wall sequence of the evaluation set. We
only show examples using methods whose source code is
available. A supplementary video of our prediction on the
full sequence is provided in the supplementary material. It
can be seen that qualitatively, our results are very similar
in quality compared with supervised CNN methods, largely
outperform optimization-based methods, and even outper-
forms supervised SNNs. SpikeMS tends to sparsify the
events and keep edges. EMSGC needs extensive tuning to
get reasonable results. However, it still misclassifies IMO
as rigid areas. With these noise predictions across the image
from SpikeMS and EMSGC, IMO cannot be easily detected
and handled, while our network produces spatially consis-
tent segmentations.

6. Conclusion
In this work, we tackle the problem of event-based segmen-
tation from a geometric point of view. We focus on the
major problem of event-based motion segmentation, which
is the lack of labeled segmentation masks. Instead of using
clustering techniques that require a fixed number of clusters
and simplified parametric flow, our approach is purely geo-
metric and robust to unseen semantic classes. Using the ac-
curate event-based optical flow, we generated pseudo-labels
based on the residual flow field defined by the difference
between the estimated ego-motion field and the general mo-
tion field. Ego-motion field was predicted using depth and a
pre-trained flow network. With experiments on the EVIMO
dataset, we show that our framework can be used to train
downstream motion segmentation to perform competitively
with supervised methods.
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Un-EvMoSeg: Unsupervised Event-based Independent Motion Segmentation

Supplementary Material

1. Summary of Items in Supplementary Files
In the compressed zip file submitted, we include the follow-
ing items:
• One video of IMO segmentation on EVIMO [21]
• The supplementary PDF file (this file) with additional re-

sults

2. Additional Results
Consecutive Segmentation Results In Figure 5 of the
main manuscript, we show samples of the test sequences.
These images only show how individual predictions per-
form. In this supplementary material, we include more
consecutive predictions to show that the network prediction
is consistent, although the prediction at each time is inde-
pendent. In Figure 6, we show clips of continuous IMO
segmentation to demonstrate temporal consistency. Simi-
larly to our evaluation procedure, each image uses 0.025s of
events. In each clip, we show six consecutive event slices in
ascending order by time from left to right. We see in these
figures that the boundaries of objects are sometimes mis-
classified as background events. There are two main rea-
sons for this issue. First, the pseudo-masks are computed
on a specific time rather than over a duration, which causes
the network to predict the mask at a given time. Thus, the
motion of objects during the time of the event slice can
cause the network to underestimate the size of the IMO re-
gions. In our experiments, networks trained with ground-
truth labels also experience the same problem. Second, the
sharp boundaries in the ground truth masks help the net-
work learn better decision boundaries on binary classifica-
tion. The baseline CNN we trained was able to keep slowly
improving performance even after many epochs, whereas
our method stopped improving after the first few epochs.

Egomotion Estimation Results In the main manuscript,
we assume that the camera pose can be accurately estimated
from the flow prediction. Although we do not train a net-
work to estimate the pose, accurate optical flow and depth
can be combined to estimate egomotion robustly. In Fig-
ure 9, we show the complete velocity estimate (linear and
rotational) computed on unseen wall and floor sequences.
Due to the high-frequency movements in EVIMO, our flow
at 40Hz acts as a filter that smooths the velocities. On
the other hand, the VICON ground truth is captured at
200Hz, which allows one to see the high-frequency vibra-
tions. Overall, the robust RANSAC algorithm is able to
estimate egomotion accuarately for idenfying the IMO re-
gions.

Wall Table Floor Box Fast
Detection Rate 0.853 0.817 0.912 0.703 0.694

Table 4. Detection rate using IoU of 0.3 on all evaluation se-
quences on EVIMO [21].

3. Additional Detection Rate Results
In Section 5.1 in the main manuscript, we explain the lower
performance of our approach compared to supervised base-
line methods. Sharp boundaries in ground-truth masks pro-
vide stronger discriminative signals to the network. How-
ever, in fast motion estimation, an essential task is to locate
the IMOs. In Table 4, we computed the detection rate using
the IoU threshold at 0.3.

4. Failure Cases and Limitations
In Figure 7, we show one false positive and one false nega-
tive output from our approach. Due to the extreme dynamic
nature of the dataset, the residual between the background
flow and the IMO flow is small. In particular, there are
cases where the objects have near-zero velocities. These
objects should be segmented if we consider its past motion,
but should be excluded if we only look at current motion.
This leads to a limitation of our approach, which is the lack
of temporal consistency in the prediction. A possible solu-
tion is to explicitly add constraints between the current IMO
mask and the immediate past IMO masks during training.
This could be applied during the pseudo-label generation
phase as well for better ground truth.

In Figure 8, we demonstrate why adding temporal con-
sistency can be helpful. The network lost track of the IMO
at time, but it should know that an IMO is close-by by look-
ing at the previous several mask predictions. A discontinu-
ity in prediction should be penalized because the motion of
an object can be seen as continuous in the events.

5. Implementation Details
5.1. Data Preparation

As described in the main manuscript, we perform motion
segmentation on events projected on x, y space, allowing
us to use existing image-based segmentation architectures.
However, this does not imply that we discard time informa-
tion from the input of the network. Instead, we use an event
volume [47] to encode the spatiotemporal information in the
events. The input volume has a dimension of (N,H,W ),
where H and W are the spatial dimensions of the event



Figure 6. In each row, we show motion segmentation of a clip. Each clip shows temporally consistent segmentation results while each slice
is predicted independently. Each row progresses temporally from left to right. Blue are background events and red are segmented IMO
events. Best viewed in color.



Sequence
Percentile

K=0.3 K=0.4 K=0.5 K=0.6 K=0.7 K=0.8 K=0.9 K=1.0

Table 55±17 45±23 36±27 30±28 26±28 23±27 20±27 18±26
Wall 24±33 18±31 15±28 12±26 11±25 9±23 8±22 7±21
Floor 18±29 14±26 11±24 9±22 8±21 7±20 6±19 5±18
Fast 43±27 33±29 26±29 22±28 19±27 16±26 15±25 13±24
Box 24±28 18±26 14±25 12±23 10±22 9±21 8±20 7±19

Table 5. Full EMSGC evaluation results on all sequences. Each column corresponds to the top K performance of EMSGC.

Figure 7. Failure cases of our method. On the left, the network
incorrectly classifies a static square pattern on the ground as IMO.
On the right, the network fails to find the apparent IMO in the
scene.

Figure 8. IMO predictions at three consecutive event slices. Our
IMO detection runs on single slices of events. Occasional erro-
neous predictions do not have temporal consistency with the pre-
vious and next predictions.

camera, and N is the number of temporal bins used to dis-
cretize time. We use a relatively large number 15 for N to
balance between the amount of temporal information and
the usage of gpu. In EV-IMO [21], an DAVIS 346 is used
for data collection, the sensor resolution is 260 × 346. In
this dataset, a rather wide lens was used, which caused dis-
tortion. Our method assumes calibrated cameras, and thus
we undistort the events and input depth and crop the images
to 215× 320. We use the raw resolution for training and in-
ference. In addition, we clarify the training and test split of
our network. Table, Wall, Floor and Box training sequences
are used during training. We performed the test on all eval-
uation sequences from the same four classes. We perform
an evaluation on all slices where at least a single object is
present, when IoU is meaningful.

We notice that multiple modalities of the provided
ground truth have built-in noise. For example, the depth
maps are provided with holes and the scans have disconti-
nuities on flat surfaces. Therefore, we only use depth maps

up to 3 meters of the camera during training. In our pseudo-
label generation, the holes in the depth map created discon-
tinuous masks, which we use mathematical morphology to
fill these holes. However, we find the network relatively ro-
bust to these changes because the pseudo-masks are them-
selves noisy. We report these engineering choices to ensure
that the experiments are completely reproducible. Details
can be seen in the code files submitted.

5.2. EMSGC Comparison

EMSGC [44] is an optimization-based method. We choose
to compare with this method because it similarly does not
use labeled training data. In this method, the authors pro-
pose to build a spatiotemporal graph and cut the graph based
on contrast loss with respect to a predetermined number of
motion models (2-parameter, 4-parameter, etc.). Like many
optimization methods, EMSGC suffers from high sensitiv-
ity to hyperparameters. The exact hyperparameters for each
sequence are not released with the code. These parameters
include various motion models for the background and fore-
ground, the weight λ that balances local consistency versus
spatial coherence, and MDL weight that determines how
much we want to regulate the number of clusters. The de-
tails are in Section VI-C of the EMSGC paper [44], which
states that the parameters are obtained based on properties
of the data set and empirical tuning. However, in practice,
it is difficult to know these parameters in advance, which
weakens the method’s ability to perform real-time infer-
ence.

In our initial tests, we used their open-source code and
configuration files to run prediction on all evaluation se-
quences. However, this approach does not produce mean-
ingful results in most of the event slices. Then, we tried tun-
ing the parameters on each sequence separately, but found
that per-sequence tuning was not sufficient for good perfor-
mance. Due to the large amount of evaluation data (thou-
sands of frames per sequence), we were unable to tune
the parameters for each slice. Instead, we tuned for each
sequence and used the highest K percent of all IoU to
compute the mean performance and then reported the re-
sults. The performance with low K value can be seen as
an approximation of the upper-bound performance of the



(a) Results on Test Sequence Wall 00 (b) Results on Test Sequence Floor 01

Figure 9. Estimated linear and angular velocity in EVIMO evaluation sequences. Red is our estimated velocities from flow and RANSAC,
and blue is the ground-truth velocity captured by VICON. It can be seen that the VICON estimates are at 200Hz, which is able to capture
high-frequency motion more effectively, whereas our estimate is based on flow at 40Hz.

method. In Table 5, we report the full results for selecting
different K.

5.3. SpikeMS Comparison

For SpikeMS [26], we take quantitative results directly from
their paper. However, there is a hyperparameter that spec-
ifies the maximum background-to-foreground ratio during
evaluation. Therefore, the numbers reported in their pa-
per can be seen as the upper bound of their performance.

We used the pre-trained model released by the authors to
generate the qualitative results. We notice that the net-
work prefers to remove events in both IMO and back-
ground areas, which induces high recall, which works well
in low background-to-foreground ratio scenarios. In our ex-
periments with SpikeMS, the performance is significantly
worse for general cases when the objects are smaller.



5.4. Supervised CNN Baseline Comparison

The original EVIMO network [21] has a few auxilliary
losses to assist segmentation. GConv [22] uses a graph neu-
ral network on subsampled events where per-event labels
are available. Comparing these methods does not give us a
direct understanding of the effectiveness of the self-labeling
mechanism. Therefore, we train a baseline network using
the same architecture and ground truth labels. We report
the results in Table 3 of the main article, labeled “Baseline
CNN”. The average performance gap between this method
and Un-EvMoSeg is smaller than that between other listed
methods. This simple baseline supports our hypothesis that
our pseudo-labels are good approximation of the ground-
truth labels, given that other factors have been controlled.
We train the network using the same setting as the EVIMO
network [21].

5.5. Optical Flow Fine-tuning

In EVIMO, only the flow of the foreground is given. We
instead used RAFT [37] to compute the optical flow from
low-quality DAVIS images and use these as a good refer-
ence flow. We then fine-tuned the E-RAFT [11] network
for 10 epochs to allow E-RAFT to learn the IMO flow. In
our experiments, we find that our flow network is able to
overcome the missing IMO problem from this fine-tuning.
In certain cases, it actually produces sharper flow than the
RAFT flow labels. Since the ground-truth flow was missing
from the general scene, we leave the full flow evaluation
to future work. The fine-tuned network is forozen and is
directly used as a fixed predictor in our pseudo-label gen-
eration module. We would like to emphasize that we do
not claim new flow methods. Instead, we corrected the flow
based on our need for accurate IMO motion estimation.

5.6. Network Details

In our experience with event data, pre-trained backbone
usually gives the network better gradients for quicker con-
vergence. We use a ResNet18 pre-trained on ImageNet as
our encoder backbone. The event volumes are reshaped as
(15, 256, 256) via nearest neighbor interpolation and then
fed into the network. The decoder is trained from scratch
with (256, 128, 64, 32, 16) channels with increasing reso-
lution from the bottleneck. Standard skip connections be-
tween the encoder output and the decoder output are used.
The final output has one channel, which is passed through
the sigmoid function to get the IMO probability. We trained
our network when a small validation set loss curve flattens.
We do not apply special gradient clipping or decay tech-
niques. We used a learning rate of 2e-4 with an ADAM
optimizer. The batch size of our training experiments is 32.
On an Nvidia RTX 3090 GPU, the training speed is about
1 iteration per second. For the supervised baseline CNN,

the network is trained in the exact setting. The only differ-
ence is that the ground truth IMO masks are given and the
network can train longer because the ground truth masks
can force the network to learn sharp boundaries as training
progresses.
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