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Abstract Image zooming or upsampling is a widely used tool in image process-
ing and an essential step in many algorithms. Upsampling increases the number of
pixels and introduces new information into the image, which can lead to numerical
effects such as ringing artifacts, aliasing effects and blurring of the image. In this pa-
per, we propose an efficient polynomial interpolation algorithm based on the WENO
algorithm for image upsampling that provides high accuracy in smooth regions, pre-
serves edges, and reduces aliasing effects. Although, this is not the first application of
WENO interpolation for image resampling, it is designed to have comparable com-
plexity and memory load with better image quality than separable WENO algorithm.

We show that the algorithm performs equally well on smooth 2D functions, ar-
tificial pixel art and real digital images. Comparison with similar methods on test
images shows good results on standard metrics and also provides visually satisfac-
tory results. Moreover, the low complexity of the algorithm is ensured by a small
local approximation stencil and the appropriate choice of smoothness indicators.
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Fig. 1.1 Artefacts and blurring of images

1 Introduction

Zooming a digital image increases the number of pixels of an original raster image.
The pixel values of the new image must be determined based on the original image
by an approximation algorithm. This process is very common and very important in
many applications, from medical imaging to gaming or electronic publishing, denois-
ing, antialiasing, satellite-image zooming and geometric transformation etc. Zooming
algorithms are often executed in real time and therefore must be very efficient and not
cause significant numerical artifacts.

We are interested in image upsampling efficient algorithm for image resolution
doubling which preserves the edges and avoids ringing artifacts, aliasing effects, and
excessive numerical diffusion. Ringing artifacts usually occur near sharp color transi-
tions and look like ghost shadows of contours. This undesirable effect can be reduced
by introducing artificial diffusion or by reducing oscillations in the approximation
algorithm. Also, when lines are rendered in raster mode, a ”staircase effect” can oc-
cur that can cause aliasing effects in the zoomed image as non-linear mixing effects
create high-frequency components. Figure 1.1 shows a pixel graphics image and an
8x magnification with the standard bicubic algorithm, which exhibits all of the previ-
ously mentioned artifacts to some degree and introduces artificial diffusion

A common approach to image upsampling is to convert a discrete RGB image
into a (often) continuous function with separate channels for each colour, and af-
ter reconstruction this function is transformed back into the new discrete image by
resampling. So the main cause of ringing artefact is mostly oscillations of such ap-
proximations. There are a larger number of different approaches used for upsampling
digital images [12,13,10,6,14] which can be divided into linear and nonlinear tech-
niques. The linear techniques, such as bilinear and bicubic spline interpolation [12,
13] have the advantage of simplicity and fast computation, but can lead to undesir-
able oscillations and/or reduced visual sharpness near sharp color transitions. On the
other hand, non-linear methods can improve edges, reduce artifacts and reconstruct
pixel values with a high degree of accuracy, resulting in images with higher subjec-
tive quality compared to linear methods. Although non-linear methods have obvious
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advantages over linear methods, linear methods are used in most applications due to
their low computational cost.

There are several good examples of non-linear methods based on the superposi-
tion of directed interpolation approximations. Interpolation with geometric contour
templates [9] produces very sharp images with very good approximations of lines
in multiple directions. This method reduces aliasing effects, but can produce strong
ringing effects. Although this method produces visually sharp images, it is not suit-
able for all applications because it is very computationally intensive. The method
in [26] interpolates a missing sample in two orthogonal directions and then merges
the results of the directional interpolation by the linear minimum mean square-error
estimation.

Non-oscillatory methods developed primarily for solving PDEs have also been
adapted for image denoising and resampling [8,23,6,14]. These methods are com-
putationally intensive but give very good results compared to the commonly used
methods. Upsampling is treated as an inverse problem where the result is a plau-
sible larger image that would look like the input image after downsampling. Good
results are also obtained by [20], which leads to the histopolation problems. The idea
of histopolation is relatively old, and histopolation by polynomial splines was intro-
duced by I. J. Schoenberg in [21] in 1973. In [5] a method based on reconstruction
of surfaces using tension histosplines is presented. The basic idea of this method is
to identify pixels with 2D numerical cells (instead of knots) and pixel values with
cell averages. The histopolation approach to image reconstruction produces sharper
images, but is more susceptible to numerical oscillations, so special treatment is re-
quired to reduce possible oscillations. The tension splines we used in [5] drastically
reduce oscillations by applying tension to the splines, preserving the sharpness of the
edges in the reconstructed surface that the image approximates. The idea of splines
with tension was also used in [16], where the moving least squares method is con-
trolled by a set of exponential polynomials with tension parameters so that they can
be tuned to the characteristics of the given data. For a better fit to the local structures
around the edges, the proposed algorithm also uses weights that take into account the
edge orientation.

Some of the numerical methods developed for solving hyperbolic PDEs, such
as Weighted Essentially Non-Oscillatory (WENO), can be used for signal processing
[1] or resampling digital images [3] where a non-separable two-dimensional weighted
ENO interpolation was developed. The image can also be resampled using the tensor
product of 1D WENO interpolation methods [2]. These methods are highly accurate
even in the presence of jump discontinuities and should not exhibit ringing effects.

Many fast edge-enhancing methods ([4,18,19,24]) for upsampling have two main
stages: First, the main interpolation is used to create a double density version of
the original image, and then this double density image is resampled using a simpler
method to obtain an image with the desired resolution.

The main objective of this paper is to present a novel non-linear method optimized
for image double density upsampling based on 1D WENO interpolation in multiple
directions, resulting in a non-separable 2D approximation. The interpolation approx-
imation in multiple directions are blended according to weights that depend on 1D
smoothness indicators in the direction of interpolation. Although this is not the first
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use of WENO interpolation for digital image resampling [8,3,2], this is the first one
which is comparable with image quality and low computational complexity to meth-
ods of similar purpose available in standard libraries and open repositories.

The main advantage of this approach is to obtain a non-linear method with low
complexity, able to adapt to local structures and to produce sharp images without os-
cillations and noticeable numerical artifacts. The complexity of the method is compa-
rable to linear methods, but the resulting images have much better image quality. The
method can be used for upsampling real digital images as well as for pixel art, and it
can be used for interpolation of 2D functions evaluated on nested regular meshes. Al-
though the algorithm works optimally for image doubling it can be used for arbitrary
scale factors of magnification.

This paper is organized as follows. Section 2 gives a brief introduction to fourth-
order accurate 1D WENO interpolation, which serves as the basis and motivation for
deriving 2D WENO as well for the tensor WENO interpolation. Section 3 introduces
a novel 2D WENO method with some theoretical results. Numerical experiments with
artificial smooth 2D functions and the relative performance on real digital images is
given in Section 4, followed by a conclusion.

2 1D WENO interpolation 1D

Let a= x0 < .. . < xN−1 = b be an equidistant partition of interval [a,b], with step size
h, and with given discrete set of function values vi = v(xi), i = 0, . . . ,N −1 of some
continuous function v. WENO interpolation approximates v by a rational function on
[xi,xi+1].

If a function v is smooth enough, a polynomial interpolation can achieve high
order of approximation on the interval [xi,xi+1]. Let pi be an interpolating polynomial
for nodes {xi−1,xi,xi+1} of degree 2:

pi(x) = v(x)+O(h3), x ∈ [xi,xi+1],

pi+1(x) = v(x)+O(h3), x ∈ [xi,xi+1].
(2.1)

The following notation will be used for an interval:

Si = [xi−1,xi+1] (2.2)

Both of intervals Si and Si+1, contain xi and xi+1, as can be seen in (2.1), the approxi-
mations are of order 3 on the interval [xi,xi+1]. The union of intervals S = Si ∪Si+1,
each contain 4 nodes. We can form an interpolating polynomial qi of degree 3 on
interval Si. If v is smooth on interval Si, then qi is O(h4) approximation of v. One
can find polynomials Ci,s, s = 0,1, so it holds:

q(x) =Ci,0(x)pi(x)+Ci,1(x)pi+1(x), x ∈ [xi,xi+1]. (2.3)

Ci,s(x) are first degree polynomials which must satisfy consistency conditions:

Ci,s(x)≥ 0 and Ci,0(x)+Ci,1(x) = 1, x ∈ [xi,xi+1].
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From (2.3) it follows that we can approximate v on [xi,xi+1] with 4th order approx-
imation as a convex combination of 3rd order accurate approximations. If v is not
smooth, loss of accuracy and oscillations in the approximation can appear.

WENO interpolation can reduce oscillations of the approximation by measuring
oscillations of polynomials pi. Instead of qi we will use a weighted combination of
polynomials

ui(x) = ωi,0(x)pi(x)+ωi,1(x)pi+1(x), (2.4)

where ωi,s are weighting functions which satisfy the same consistency conditions as
ideal weights (2.3). Furthermore, if the data is non-oscillatory on Si, then ωi,s must
be very close to ideal weights Ci,s:

ωi,s(x) =Ci,s(x)+O(h2), s = 0,1. (2.5)

According to [22], if the condition (2.5) is satisfied, then ui is an approximation of
order 4. If the polynomial pi oscillates on [xi,xi+1] , then ωi,s(x) should be very small
to reduce oscillations in the final approximation.

Weights which satisfy given condition can be obtained in form of:

ωi,s(x) =
αi,s(x)

αi,0(x)+αi,1(x)
, and αi,s(x) =

Ci,s(x)

(εh +SIi,s)
β
, s = 0,1, (2.6)

where εh =Kε h2 prevents division by zero and is often very small, usually Kε = 10−8,
and β > 0 amplifies how strongly interpolation reduces oscillations.

Smoothness indicator SIi,s which apers in (2.6) measures oscillations of pi+s on
[xi,xi+1]. We use the ones which satisfy (2.5) :

SIi,s =
2

∑
l=1

∫ xi+1

xi

h2l−1

(
dl pi+s(x)

dxl

)2

dx.

From the [17] we have the following properties of 1D WENO smoothness indicators:

SIi,s =

{
O
(
h2
)

if v is smooth locally,
O (1) , otherwise.

(2.7)

More details about smoothness indicators can be found in [22,17].
In special case of uniform mashes, when the approximation is evaluated in the

middle of the interval x = (xi + xi+1)/2, the ideal weight are equal Ci,0 = Ci,1 = 0.5
which simplifies (2.6).

3 Weighted Direction WENO 2D interpolation

Using true 2D WENO interpolation can be very computationally demanding even
on a uniform rectilinear meshes, so we will focus on a special case where the n×m
rectilinear mesh, with step sizes in both dimensions equal to h, is interpolated to
obtain a values on a finer mesh with (2n−1)× (2m−1) grid points. This will enable
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(a) Input data (b) Interpolated data

Fig. 3.1 Approximation of an (2n−1)× (2m−1) array from input n×m array

us to use fast 1D WENO interpolation from the previous section. Figure 3.1 shows
given points on a grid marked with circles and points which have to be interpolated
marked with ”×” or ”+”. If we index given points with even coordinates (2i,2 j), 0 ≤
i < n, 0 ≤ j < m, with the respect to the finer grid, then all ”×” marked points have
odd coordinates (2i+ 1,2 j + 1), 0 ≤ i < n− 1, 0 ≤ j < m− 1 and all ”+” marked
points will have one even and the other odd coordinate.

The interpolation is carried out in two phases. The first phase carries out the
interpolation in slanted directions (Figure 3.2) and the second phase in horizontal
and vertical directions (Figure 3.3). Similarly to 1D case, if the function which we
interpolate is smooth, the interpolation should be close to weighted combination of
interpolating polynomials in directions

γk = γ0 + kπ/2, k = 0,1,2,3, (3.1)

which we denote

q(xi, j) = δ

1

∑
k=0

Cγ2k
i, j pγ2k

i, j +(1−δ )
1

∑
k=0

Cγ2k+1
i, j pγ2k+1

i, j , (3.2)

where xi, j :=(xi,y j) :=
(
x0 + i h

2 ,y0 + j h
2

)
, the weights are Cγk

i, j = 0.5, pγk
i, j are quadratic

interpolating polynomials in directions γk evaluated at xi, j, and δ is defined in (3.18).
We should point out that the weighted combination of quadratic polynomials in par-
allel directions reconstruct a value of a cubic interpolating polynomial.

3.1 Phase 1

In the first phase, points with odd coordinates designated with ”×” are interpolated
by a convex combination of values of second degree interpolating 1D polynomials in
directions γ = π

4 ,
3π

4 , 5π

4 , 7π

4 , which correspond to (3.1) with γ0 =
π

4 . The interpolating
polynomials use given values marked with (”◦”) with even coordinates.
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(a) Smoothness indicators associated with one
direction

(b) Interpolation in slanted directions

Fig. 3.2 Approximation of grid data marked with ”×” based on input data marked with ”◦”.

Figure 3.2 shows stencils for this 4 polynomials and we can clearly see that they
overlap on the middle point marked with ”×”. The idea behind this construction is
that this interpolation should inherit good properties of WENO interpolation from 1D
and if the data is not smooth it would pick the appropriate weight for the direction of
interpolation in 2D. This approach will be called Weighted Direction (WD) WENO
interpolation further on. The key to this would be to pick correct weights for the linear
combination of 1D interpolation values.

Similar to the 1D idea, the values interpolated by four 1D polynomials are used
to obtain a weighted combination for the point where all four polynomials intersect.
We will introduce a vector which points in the direction of interpolation:

dγ =

√
2

2
h

1
cos2(γ)+ sin2(γ)

(cos(γ),sin(γ)). (3.3)

The interpolation stencil in 2D depends on direction of interpolation γ and the central
interpolation point

Sγ

i, j = {xi, j −dγ ,xi, j +dγ ,xi, j +3dγ}. (3.4)

We need to evaluate interpolation polynomials which depend on the stencil in the
given direction

pγ

i, j := pSγ

i, j
(xi, j). (3.5)

We will then associate a 1D smoothness indicator to each polynomial which depends
on the direction of interpolation:

SIγ

i, j =
2

∑
l=1

∫ xi, j+dγ

xi, j−dγ

(√
2h
)2l−1

dl pSγ

i, j
(x)

dxl

2

dx. (3.6)
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In 2D we will use a linear combination of nearby 1D smoothness indicators (3.6)
where 1D indicator SIγ

i, j must remain if h → 0:

Dγ

i, j = SIγ

i, j +
h2

4
(SIγ

i, j+2 +SIγ

i+2, j +SIγ

i, j−2 +SIγ

i−2, j). (3.7)

The equation (3.7) shows that the smoothness indicator in WD WENO algorithm de-
pends on smoothness of nearest polynomials calculated in this phase. Figure 3.3a)
shows in red the local dependence stencil of one of the 1D polynomials with smooth-
ness indicators. This choice is not arbitrary because we need to make sure the WD
WENO algorithm must have low computational load and give high order accurate
approximations.

The ideal weights for this interpolation would be 0.5 which would result in a 1D
cubic interpolation polynomial. However, we’d like to assign larger weight values to
polynomials which have smaller values of smoothness indicator (3.7):

α
γ

i, j =
0.5

(εh +Dγ

i, j)
β
. (3.8)

Final non-linear weights used in the approximation must be scaled to sum up to
one:

ω
γk
i, j =

α
γk
i, j

∑
3
l=0 α

γl
i, j
. (3.9)

Finally, interpolated value is obtained by a weighted combination of interpolation
polynomials:

ui, j =
3

∑
k=0

ω
(2k+1)π/4
i, j p(2k+1)π/4

i, j , (3.10)

where

– ω
γ

i, j are non-linear weights which depend on 1D smoothness indicators of nearby
polynomials in the same direction, and

– pγ

i, j are associated values of the interpolation polynomials on stencil Sγ

i, j at the
intersecting point xi, j.

3.2 Phase 2

The algorithm 1 is carried out in the first phase where the ”×” marked points must be
interpolated because they are needed for the second phase.

The second phase must interpolate ”+” points and is carried out in similar to first
phase. The only difference between these phases is the direction of interpolation, now
γ0 = 0 in (3.1). Figure 3.3 shows stencils for this 4 polynomials and we can clearly
se that they overlap on the middle point marked with ”+”. Interpolation uses only the
original local data on even coordinates and the data on points marked with ”×” on
odd coordinates which were obtained in the previous step.
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Algorithm 1: WD WENO phase 1, × directions
for k = 0, k < 3, k = k+1 do

γk = π/4+ kπ/2
for i = 1, i < 2n−1, i = i+2 do

for j = 1, j < 2m−1, j = j+2 do
Calculate pγk

i, j Equation (3.5)
Calculate SIγk

i, j Equation (3.6)
end

end
for i = 1, i < 2n−1, i = i+2 do

for j = 1, j < 2m−1, j = j+2 do
Calculate α

γk
i, j Equation (3.8)

ui, j = ui, j +α
γk
i, j pγk

i, j
end

end
end
for i = 1, i < 2n−1, i = i+2 do

for j = 1, j < 2m−1, j = j+2 do
ui, j =

ui, j

∑
3
k=0 α

γk
i, j

end
end

(a) Smoothness indicator (b) Interpolation in horizontal and vertical direc-
tions

Fig. 3.3 Interpolation of grid data marked with ”+”.

Finally, interpolated value for coordinates with one odd and one even is obtained
by a weighted combination of interpolation polynomials in standard coordinate di-
rections where now we can use values obtained in previous stage:

Dγ

i, j = SIγ

i, j +
h2

4
(SIγ

i+1, j+1 +SIγ

i−1, j−1 +SIγ

i−1, j+1 +SIγ

i+1, j−1). (3.11)



10 Bojan Crnković et al.

We should point out that although equation (3.11) is similar to equation (3.7), closest
neighbouring 1D indicators are in different positions. Furthermore,

ω
γ

i, j =
α

γ

i, j

∑
3
k=0 α

kπ/2
i, j

, (3.12)

ui, j =
3

∑
k=0

ω
kπ/2
i, j pkπ/2

i, j . (3.13)

Here, ω
γ

i, j are non-linear weights dependent on 1D smoothness indicators of nearby
polynomials and pγ

i, j are associated values of interpolation polynomials on stencil Sγ

i, j
at the intersecting point xi, j. The algorithm 2 describes the second phase.

For polynomial approximation (3.2) we can state the following proposition.

Proposition 3.1 Let v ∈ C4(R2), then the polynomial approximation q from (3.2)
based on uniform sampling of v on a rectangular n×m grid, satisfy:

v(xi,y j)−q(xi,y j) = O(h4) (3.14)

Proof The proof follows directly from the Taylor expansion of v at (xi,y j).

v(xi,y j)−q(xi, j) = δ

(
v(xi,y j)−

1

∑
k=0

Cγ2k
i, j pγ2k

i, j

)
+(1−δ )

(
v(xi,y j)−

1

∑
k=0

Cγ2k+1
i, j pγ2k+1

i, j

)
= O(h4).

Finally, similar statement can be done for our approximation.

Theorem 3.2 Let v ∈ C4(R2) be sampled on uniform rectangular n×m grid with
constant grid spacing h. Then two phase approximation u defined in (3.3)–(3.13), for
(x,y) ∈ {(x0 + ih/2,y0 + jh/2)|0 ≤ i < 2n,0 ≤ j < 2m} satisfies

u(x,y)− v(x,y) = O(h4).

If v is not smooth everywhere but is at least C3 in some subset of the domain and if at
least in one direction the stencil lies in a smooth region, then with β ≥ 3

2 and for all
(x,y) in this smooth region:

u(x,y)− v(x,y) = O(h3).

Proof At each point of interpolation with index (i, j) there are four second degree
polynomials which in two pairs are part of two perpendicular lines containing (i, j),
see figures 3.3 and 3.2. The equation (3.14) holds for horizontal–vertical directions
as well as for slanted directions which can be verified by Taylor expansion of v at xi, j.
Using the usual WENO argument we should prove that this order of accuracy still
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Algorithm 2: WD WENO phase 2, + directions
for k = 0, k < 3, k = k+1 do

γk = kπ/2
for i = 1, i < 2n−1, i = i+2 do

for j = 0, j < 2m−1, j = j+2 do
Calculate pγk

i, j Equation (3.5)
Calculate SIγk

i, j Equation (3.6)
end

end
for i = 0, i < 2n−1, i = i+2 do

for j = 1, j < 2m−1, j = j+2 do
Calculate pγk

i, j Equation (3.5)
Calculate SIγk

i, j , Equation (3.6)
end

end
for i = 1, i < 2n−1, i = i+2 do

for j = 0, j < 2m−1, j = j+2 do
Calculate α

γk
i, j Equation (3.8)

ui, j = ui, j +α
γk
i, j pγk

i, j
end

end
for i = 0, i < 2n−1, i = i+2 do

for j = 1, j < 2m−1, j = j+2 do
Calculate α

γk
i, j Equation (3.8)

ui, j = ui, j +α
γk
i, j pγk

i, j
end

end
end
for i = 1, i < 2n−1, i = i+2 do

for j = 0, j < 2m−1, j = j+2 do
ui, j =

ui, j

∑
3
k=0 α

γk
i, j

end
end
for i = 0, i < 2n−1, i = i+2 do

for j = 1, j < 2m−1, j = j+2 do
ui, j =

ui, j

∑
3
k=0 α

γk
i, j

end
end

holds when we replace the ideal weights with non-linear WENO weights in smooth
regions i.e.

ω
γ2k
i, j −δCγ2k

i, j = O(h2), k = 0,1,

ω
γ2k+1
i, j − (1−δ )Cγ2k+1

i, j = O(h2), k = 0,1.
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From the [17,3] and equation (2.7) we can use the properties of 1D WENO
smoothness indicators, if v is smooth locally in direction of γ :

SIγ+π

i, j −SIγ

i, j = O
(
h4)

SIγ

i, j = O
(
h2) (3.15)

Dγ

i, j = O
(
h2)

Dγ+π

i, j −Dγ

i, j = SIγ+π

i, j −SIγ

i, j

+
h2

8
(SIγ+π

i+1, j+1 +SIγ+π

i−1, j−1 +SIγ+π

i−1, j+1 +SIγ+π

i+1, j−1)

− h2

8
(SIγ

i+1, j+1 +SIγ

i−1, j−1 +SIγ

i−1, j+1 +SIγ

i+1, j−1)

= O
(
h4)+ h2

4
O
(
h4)

(3.16)

1(
εh+Dγ

i, j

)β
− 1(

εh+Dγ+π

i, j

)β

1(
εh+Dγ+π

i, j

)β

=

(
εh +Dγ+π

i, j

εh +Dγ

i, j

)β

−1

=

(
εh +Dγ+π

i, j

εh +Dγ

i, j
−1

)
∞

∑
l=0

(
β

l +1

)(
εh +Dγ+π

i, j

εh +Dγ

i, j
−1

)l

=
Dγ+π

i, j −Dγ

i, j

Kε h2 +O (h2)

∞

∑
l=0

(
β

l +1

)( Dγ+π

i, j −Dγ

i, j

Kε h2 +O (h2)

)l

=
O
(
h4
)

Kε h2 +O (h2)

∞

∑
l=0

(
β

l +1

)(
O
(
h4
)

Kε h2 +O (h2)

)l

= O
(
h2)O (1) ,

(3.17)
where the series in equation (3.17) converges near zero. Therefore
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1(
εh +Dγ

i, j

)β
=

1(
εh +Dγ+π

i, j

)β

(
1+O

(
h2)) , ∀(i, j),γ

α
γ+π

i, j =
0.5
(
1+O

(
h2
))(

εh +Dγ

i, j

)β
,

α
γ

i, j +α
γ+π

i, j =

(
1+O

(
h2
))(

εh +Dγ

i, j

)β
,

δ =
α

γ

i, j +α
γ+π

i, j

α
γ

i, j +α
γ+π

i, j +α
γ+π/4
i, j +α

γ+3π/4
i, j

ω
γ

i, j

δ
=

α
γ

i, j

α
γ

i, j +α
γ+π

i, j

=
0.5/

(
εh +Dγ

i, j

)β

(1+O (h2))/
(

εh +Dγ

i, j

)β
=

0.5
1+O (h2)

= 0.5
(
1+O

(
h2)) .

(3.18)

Similarly, we get

ω
γ

i, j

δ
−0.5 = O

(
h2) , ω

γ+π

i, j

δ
−0.5 = O

(
h2)

ω
γ+π/4
i, j

1−δ
−0.5 = O

(
h2) , ω

γ+3π/4
i, j

1−δ
−0.5 = O

(
h2)

If, v has a singularity inside stencil of Dγ , then Dγ

i, j =O (1), whereas Dγ

i, j =O
(
h2
)

otherwise, then

α
γ

i, j =

{
O(1), v not smooth ,

O
(
h−2β

)
, v smooth ,

therefore ∑
3
k=0 α

γk
i, j =O

(
h−2β

)
and ω

γ

i, j =O
(
h2β
)

if v is not smooth in direction γ but
smooth in at least one of the possible directions. If we denote S = {k|v is smooth in
direction γk} then

vi, j −ui, j = ∑
k/∈S

ω
γk
i, j

(
vi, j − pγk

i, j

)
+ ∑

k∈S

ω
γk
i, j

(
vi, j − pγk

i, j

)
= ∑

k/∈S

O
(

h2β

)
O(1)+ ∑

k∈S

O(1)O
(
h3)= O

(
hmin(3,2β )

)
.

If v is smooth locally in all directions, WD WENO approximation almost reduces
to a weighted average of interpolating cubic polynomials. We can write the proof for
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directions γk = γ0 + kπ/2 and split the indices in two sets S1 = {0,2} and S2 =
{1,3}, then from Proposition 3.1 we have

vi, j −ui, j = vi, j −qi, j +qi, j −ui, j = vi, j −δ ∑
k∈S1

Cγk
i, j p

γk
i, j − (1−δ ) ∑

k∈S2

Cγk
i, j p

γk
i, j

+δ ∑
k∈S1

Cγk
i, j

(
pγk

i, j − vi, j

)
+(1−δ ) ∑

k∈S2

Cγk
i, j

(
pγk

i, j − vi, j

)
+ ∑

k∈S

ω
γk
i, j

(
vi, j − pγk

i, j

)
= O

(
h4)−δ ∑

k∈S1

(
pγk

i, j − vi, j

)(
ω

γk
i, j/δ −0.5

)
− (1−δ ) ∑

k∈S2

(
pγk

i, j − vi, j

)(
ω

γk
i, j/(1−δ )−0.5

)
= O

(
h4)+δO(h3)O

(
h2)+(1−δ )O(h3)O

(
h2)= O

(
h4) .

Finally, if some of the values used in the interpolation are calculated in previous
phase in the smooth regions, the error is small enough to not interfere with the order
of interpolation.

Q.E.D.

3.3 Arbitrary resolution interpolation

There is a simple way of obtaining an interpolation method which can be applied
to get 2D interpolation with an arbitrary resolution, relaying on the 1D interpolation
from section 2 which was used in [2]. Based on local WENO interpolation function
(2.4) it useful to introduce 1D WENO interpolation spline which interpolates function
values V = (v0, . . .vn−1) on uniformly spaced grid 0, . . . ,n − 1 which we want to
evaluate on non-integer valued grid 0, . . . ,xn∗−1 which satisfies xn∗−1 = n−1:

w(V,x) = ui((vi−1,vi,vi+1,vi+2),x), x ∈ [xi,xi+1].

The images are usually represented as matrices A := (ai, j), where ai, j is located in
the i-th row and j-th column. Although our notation of xi, j is little bit different, it
actually doesn’t matter, so for the simplicity we will denote with ai, j the original
value of the pixel at the position xi, j, and A ∈ Rn×m. Now we can construct a tensor
product interpolation function for given matrix:

zk = w(A(:,k),y), k = 0, . . . ,m−1,
Z = (z0, . . . ,zm−1),

U(x,y) = w(Z,x).
(3.19)

This tensor WENO algorithm provides the advantage of separable interpolation,
allowing the interpolation process to be broken down into one-dimensional interpola-
tions along each dimension. Its complexity is the same as WD WENO interpolation
and satisfies both the non-oscillatory properties and the accuracy requirements out-
lined in Theorem 3.2 for WD WENO. However, the algorithm falls short in achieving
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(a) Input image (b) Tensor WENO (c) WD WENO

Fig. 3.4 Pixel art image interpolation with scale facotor 3.

the desired outcomes for images, as evident in Figure 3.4 b), where the image was up-
sampled by a factor of 3. Notably, the tensor WENO algorithm introduces a staircase
effect on slanted lines. On a positive note, it’s worth mentioning that this algorithm
is adaptable to any resolution. Furthermore, the method produces minimal artifacts
during downsampling, making it a viable component of WD WENO algorithm (not
shown).

If the resolution of the interpolated image precisely matches

(2k(n−1)+1)× (2k(m−1)+1) (3.20)

for some integer k, then this image can be interpolated by successively applying the
WD WENO algorithm with two phases exactly k times. In cases where the resolution
does not satisfy equation (3.20), we initially interpolate an image with a larger mag-
nification that satisfies the equation (3.20). The resulting image is then downsampled
to the exact resolution using a tensor WENO algorithm (3.19). The outcomes of this
algorithm can be observed in Figure 3.4 c), where the image was initially upsampled
to dimensions (4n − 3)× (4m − 3) and subsequently downsampled to dimensions
3n×3m using tensor WENO.

The images generated through the aforementioned WD WENO algorithm can
be employed for upsampling or downsampling to arbitrary resolutions, preserving
all the effects originally designed for image resolution ”doubling”. It is evident that
”doubling” the image resolution can be executed faster and with a reduced memory
load compared to a more general scaling factor. Consequently, the numerical tests
will be concentrated on resolutions that fulfills the condition specified in (3.20).

4 Numerical tests

To evaluate the behavior of the WD WENO interpolation, we will use selected images
to illustrate and demonstrate some important properties of the proposed algorithm
and compare it with other similar methods commonly used for upsampling images.
The proposed method will be tested on images with sharp color transitions and on
standard real-world test images taken with a digital camera.

The quality of the upscaled images is measured using the Peak Signal-to-Noise
Ratio (PSNR) [11] and the Mean Structural Similarity Index (MSSIM) [25], which
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h Lin f error Oin f (h∗) L2 error O2(h∗)
1.00E+00 6.32E-01 3.24E-01
5.00E-01 1.33E-01 2.25 7.20E-02 2.17
2.50E-01 4.29E-02 1.63 1.50E-02 2.26
1.25E-01 6.51E-03 2.72 1.58E-03 3.25
6.25E-02 5.15E-04 3.66 1.10E-04 3.85
3.13E-02 3.47E-05 3.89 6.77E-06 4.02
1.56E-02 2.36E-06 3.88 4.14E-07 4.03
7.81E-03 1.56E-07 3.92 2.56E-08 4.02
3.91E-03 1.01E-08 3.95 1.59E-09 4.01
1.95E-03 6.42E-10 3.97 9.95E-11 4
9.77E-04 4.05E-11 3.99 6.22E-12 4

Table 4.1 Rate of convergence approximated from Lin f and L2 errors for a sequence of embedded numer-
ical meshes O(h∗) = log2

Erri
Erri+1

are commonly used to measure image quality. In addition to these measurements, im-
ages must be visually inspected to rule out the possibility of local numerical artifacts
that do not affect PSNR and MSSIM.

Unless stated otherwise, the free parameter β used in Eq. (3.8) is set to β = 2.
Furthermore, the upsampled images will satisfy equation (3.20) but for simplicity we
will designate as scale factors d = 2,4,8,16.

4.1 Convergence test

We verify numerically that the order of the error for the interpolation proposed in this
paper is O(h4) for sufficiently smooth functions. In this experiment, we interpolate
the function

f (x,y) =
1

x2 + y2 +1

on a square domain [−1,1]× [−1,1] using a regular rectangular grid with grid spac-
ing h = 2i, i = 0, . . .10. Table 4.1 shows L2 and Lin f errors as well as the numerical
convergence rate of the WD WENO algorithm with exponent β = 1. The convergence
rates in both norms are very close to the predicted rates in the Theorem 3.2

4.2 Discontinuity test

In this experiment we interpolate the function

f (x,y) =

{
1

x2+y2+1 +1, if x < 0
1

x2+y2+1 , otherwise
(4.1)

on a square domain [−1,1]× [−1,1] using a regular rectangular grid with grid spacing
h = 2i, i = 0, . . .10. Although we can not expect convergence in Lin f , we can observe
the behavior of the interpolation algorithm and the relative error distribution in Figure
4.1. The errors are significantly larger on the left-hand side of the discontinuity and
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(a) Discontinuous function
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(b) Distribution of relative errors

Fig. 4.1 Interpolated discontinuous function using WD WENO β = 2

β = 2,x ∈ [−1,1] β = 0,x ∈ [0,1] β = 1,x ∈ [0,1] β = 2,x ∈ [0,1]
h Oin f (h∗) O2(h∗) Oin f (h∗) O2(h∗) Oin f (h∗) O2(h∗) Oin f (h∗) O2(h∗)

1.00E+00
5.00E-01 -1.58 -0.66 0.8 1.77 0.0 1.0 -0.05 0.72
2.50E-01 -0.01 0.36 0.45 0.57 1.2 1.6 1.6 2.02
1.30E-01 0.14 0.55 0.06 0.56 2.2 2.6 2.8 3.19
6.30E-02 0.1 0.54 0.01 0.51 1.9 2.9 3.52 3.95
3.10E-02 0.03 0.51 0 0.5 2.0 2.6 3.77 4.19
1.60E-02 0.01 0.5 0 0.5 2.0 2.5 3.55 4.14
7.80E-03 0 0.5 0 0.5 2.0 2.5 3.73 4.06
3.90E-03 0 0.5 0 0.5 2.0 2.5 3.9 4.03

Table 4.2 Rate of convergence of WD WENO algorithm measured on different parts of the domain

the convergence in L2 is linear at best, which can be seen in Table 4.2, since close
to the discontinuity, there are some points where the function f is not smooth in all
four directions at some phase. Therefore, no condition of Theorem 3.2 is fulfilled.
If we measure the errors only on the right-hand side of the discontinuity (x ∈ [0,1]),
we can expect convergence of order three according to theorem 3.2, since only a part
of the stencil of WD WENO method is in the smooth region. In Table 4.2, the mea-
sured convergence in the last two columns is even better than expected, confirming
Theorem 3.2. For the parameter β = 1, the order is less than three, which is expected
according to theorem 3.2 since β < 1.5. Moreover, for the parameter β = 0, the or-
der of the approximation measured in the right-hand part of the domain decreases
to first order, since the approximation in this case can not avoid the discontinuity.
This demonstrates the Theorem 3.2 and the adaptive behavior of the presented WD
WENO approximation.

4.3 Influence of the free parameter β

We have seen in the previous section the influence of the parameter β on the con-
vergence of the interpolation algorithm for smooth and piece-wise smooth functions.
In this test, we want to get a qualitative evaluation and direct visual confirmation of
how the quality of the upsampled image depends on the choice of the free parameter



18 Bojan Crnković et al.

(a) Input image (b) β = 0 (c) β = 0.1

(d) β = 1 (e) β = 2 (f) β = 3

Fig. 4.2 Influence of β exponent on interpolation, scale d = 16

β (3.8). The input image 4.5(c) was upsampled using our method, as described in the
Subsection 4.4.

The resulting MSSIM and PSNR values showed no significant deviations for dif-
ferent β values, in contrast to visual inspection of the scaled images. The effect is
clearly seen in Figure 4.2, where the input image was scaled for d = 16. For this
reason, the free parameter β = 2 was chosen from this point on.

4.4 Natural images

Our first numerical test was conducted with the standard Kodak Lossless True Color
Image Suite [15], a set of 24 natural color images.

The performance of our WD WENO algorithm was measured for two scaling
factors d = 2,4. Each image is first cropped by the last row and column to obtain the
referent image for d = 2. Similarly, in order to obtain the referent image for d = 4,
original image was cropped by last three rows and columns.

Then the images are downsampled according to the expression

downsampledsz = (referentsz −1)/d +1.

The downsampled image was then upsampled with tested methods according to the
expression

scaledsz = d(downsampledsz −1)+1.
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Table 4.3 PSNR and MSSIM on the Kodim image suite for d=2, 4

d = 2 d = 4
Method PSNR Rank MSSIM Rank PSNR Rank MSSIM Rank
WD WENO 27.6841 2 0.8106 2 23.4737 5 0.6248 1
Box 25.6948 31 0.7519 31 22.1150 31 0.5635 31
Triangle 27.2094 22 0.7899 25 23.3565 9 0.6107 9
Catrom 27.3542 13 0.8029 16 23.0967 14 0.6092 11
Cubic 26.6882 29 0.7557 29 23.5256 1 0.6073 14
Gaussian 26.9763 25 0.774 27 23.4976 4 0.6112 8
Hermite 27.1648 23 0.7928 22 23.1746 13 0.6063 17
Lagrange 27.3729 5 0.8015 18 23.1895 12 0.6114 7
Mitchell 27.2609 20 0.792 23 23.3668 8 0.6131 4
Robidoux 27.2363 21 0.7901 24 23.3931 7 0.6132 3
RobidouxSharp 27.2945 19 0.7948 21 23.3202 10 0.6127 5
Spline 26.6882 29 0.7557 29 23.5256 1 0.6073 14
Bartlett 27.3627 11 0.8052 13 22.9317 21 0.6032 25
Blackman 27.3741 3 0.8056 10 22.9798 18 0.6063 17
Bohman 27.3734 4 0.8055 12 22.9868 17 0.6066 16
Cosine 27.3541 14 0.8059 6 22.8947 25 0.6031 26
Hamming 27.3554 12 0.8058 7 22.8901 26 0.6026 27
Hann 27.3636 8 0.8057 9 22.921 24 0.6036 23
Jinc 27.1287 24 0.7819 26 23.4288 6 0.6094 10
Kaiser 27.3682 7 0.8058 7 22.9368 20 0.6045 22
Lanczos 27.3631 9 0.806 4 22.925 22 0.6047 20
Lanczos2 27.352 16 0.8029 16 23.0892 15 0.6088 12
Lanczos2Sharp 27.3146 18 0.8039 15 22.9756 19 0.6055 19
LanczosRadius 27.3631 9 0.806 4 22.925 22 0.6047 20
LanczosSharp 27.3522 15 0.8065 3 22.8812 27 0.6035 24
Parzen 27.3725 6 0.8051 14 23.0122 16 0.6074 13
Point 25.6948 31 0.7519 31 22.115 31 0.5635 31
Quadratic 26.9472 28 0.7715 28 23.5174 3 0.6115 6
Sinc 26.9607 26 0.7967 19 22.3428 29 0.5791 29
SincFast 26.9607 26 0.7967 19 22.3428 29 0.5791 29
Welch 27.347 17 0.8056 10 22.8776 28 0.6021 28
GCS 27.7598 1 0.8166 1 23.2188 11 0.6214 2

Since the results are very consistent across all Kodak suit images, we will present
the average result rather than picking out a representative image (Table 4.3).

The methods in the tables are grouped by filter type. The first method is the
proposed WD WENO method. The rest of the tested methods are implemented in
ImageMagick software [7], except for the Geometric Contour Stencils (GCS) [9]
method.

The second group of methods are the cubic interpolation methods, which pro-
vide relatively fast execution times. These methods may exhibit ringing effects or
introduce numerical diffusion to solve this problem.

The box and triangle filters are simple, fast interpolation methods that produce
strong aliasing effects but no ringing effects.

Windowed–sinc filters are a separate group of filters that have higher computa-
tional costs compared to the interpolation methods and are considered the best filters
for use with real images. In general, windowed–sinc filters produce stronger ringing
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(a) Input image (b) Catrom (c) Robidoux

(d) Mitchell (e) WD WENO (f) GCS

Fig. 4.3 Kodak image No. 05, scale d = 8

effects, but some of them, such as the Lanczos Sharp filter, are usually recommended
for upsampling images with minimal blur and ringing.

The last group shows the Geometric Contour Stencils method. This is a com-
putationally intensive method that estimates the geometric properties of contours in
an image that affect the interpolation process. By incorporating information about
contour tangents and curvature, the method aims to produce interpolated images that
preserve the structure and sharpness of the contours.

The results in Table 4.3 show that the images generated by the WD WENO
method achieve very good results in the PSNR and MSSIM measures.

Visual evaluation of the performance of WD WENO was performed by upsam-
pling the original Kodak images No. 05 and 20 by a factor of d = 8, as shown in
Figures 4.3 and 4.4. Among all the methods presented, WD WENO and GCS stand
out. The WD WENO images are very sharp, suggesting low diffusion, and have no
detectable ringing effects. The GCS method, however, appears to produce the most
visually sharp images, but the approximation has strong ringing effects that are no-
ticeable in strong color transitions.
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(a) Input image (b) Catrom (c) Robidoux

(d) Mitchell (e) WD WENO (f) GCS

Fig. 4.4 Kodak image No. 20, scale d = 8

(a) Pixel art (b) Tiger (c) Head

Fig. 4.5 Selected test images

4.5 Images with sharp color transitions

We selected two test images (Figures 4.5(a) and 4.5(b)) to test the ability of the pro-
posed WD WENO method to avoid oscillations and ringing effects and to produce
reasonably sharp images.

First, we chose the Tiger image in vector format1. The vector image is then resam-
pled to the following resolution (512x512), which is chosen as the input image. Then,
the vector image is resampled to (1023x1023), (2045x2045) and (4089x4089), which
roughly corresponds with the scales of d = 2,4, and 8, respectively. More precisely,
resolutions are obtained with the following expression:

scaledsz = d(inputsz −1)+1.

Table 4.4 shows the PSNR and MSSIM results for the Tiger image for two scaling
factors. It is worth noting that the results for d = 2 have been omitted because they
do not show significant differences in PSNR or MSSIM ranks. The images obtained
with the WD WENO method do not give very good results in the PSNR norm, while

1 Available online at https://commons.wikimedia.org/wiki/File:Ghostscript Tiger.svg
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Table 4.4 PSNR and MSSIM on the Tiger image for d = 4 and d = 8

d = 4 d = 8
Method PSNR Rank MSSIM Rank PSNR Rank MSSIM Rank
WD WENO 21.6621 28 0.9001 9 21.3700 25 0.8932 2
Tensor WENO 21.2307 33 0.8871 26 20.9963 29 0.8822 20
Box 21.5205 29 0.8814 27 21.5205 30 0.8814 27
Triangle 22.5313 25 0.8875 25 21.5008 24 0.8797 25
Catrom 23.2599 17 0.9031 5 22.0893 17 0.8906 4
Cubic 21.4835 31 0.8611 31 20.6357 32 0.8618 31
Gaussian 22.0278 27 0.8755 29 21.0895 27 0.8712 29
Hermite 22.6928 22 0.8936 21 21.6377 22 0.8846 13
Lagrange 23.1486 19 0.9004 9 21.9990 18 0.8889 7
Mitchell 22.7068 21 0.8913 22 21.6446 21 0.8825 19
Quadratic 21.9728 28 0.8738 30 21.0441 28 0.8704 30
Robidoux 22.6275 24 0.8895 24 21.5803 23 0.8812 23
RobidouxSharp 22.8310 20 0.8941 19 21.7449 19 0.8844 14
Spline 21.4835 31 0.8611 31 20.6357 32 0.8618 31
Bartlett 23.5207 11 0.8945 15 22.2953 11 0.8818 21
Blackman 23.4931 12 0.9013 8 22.2734 12 0.8875 9
Bohman 23.4826 13 0.9018 7 22.2651 13 0.8880 8
Cosine 23.5930 6 0.8941 19 22.3525 6 0.8807 24
Hamming 23.5992 4 0.8967 14 22.3573 4 0.8834 16
Hann 23.5535 9 0.8944 16 22.3211 9 0.8813 22
Jinc 22.3566 26 0.8607 33 21.3597 26 0.8554 33
Kaiser 23.5449 10 0.8978 13 22.3142 10 0.8843 15
Lanczos 23.5717 7 0.8989 11 22.3355 7 0.8850 11
Lanczos2 23.2776 16 0.9025 6 22.1031 16 0.8897 6
Lanczos2Sharp 23.3466 15 0.9044 2 22.1594 15 0.8910 3
LanczosRadius 23.5717 7 0.8989 11 22.3355 7 0.8850 11
LanczosSharp 23.6128 3 0.8997 10 22.3680 3 0.8852 10
Parzen 23.4421 14 0.9035 4 22.2333 14 0.8899 5
Point 21.5205 29 0.8814 27 20.7240 30 0.8758 27
Sinc 23.9279 1 0.8944 16 22.6267 1 0.8834 16
SincFast 23.9279 1 0.8944 16 22.6267 1 0.8834 16
Welch 23.5978 5 0.8905 23 22.3565 5 0.8777 26
GCS 23.2294 18 0.9083 1 21.7315 20 0.8938 1

the opposite is true for the same results in the MSSIM norm. However, the obtained
images are quite sharp and do not show ringing effects.

Figure 4.6 shows the comparison of the different methods for scale d = 8. Al-
though the GCS method gives the best results compared to the other methods, WD
WENO introduces the least amount of diffusion and does not produce ringing ef-
fects. The ringing effect is also visible with the GCS method. The same effect is also
observed with other scaling factors and is therefore not shown. We should point out
that WD WENO produces significantly better results quantitatively and visually than
the tensor WENO and the example of this comparison can be seen in Figure 4.6 and
Table 4.4.

To further evaluate the performance of the WD WENO method, the pixel art
image shown in Figure 4.5(a) was scaled for d = 16. Figures 4.7 and 4.8 clearly show
that the WD WENO method has the best overall performance. WD WENO reduces
the staircase effect significantly for multiple angles of lines which is far better then
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(a) Input image (b) Catrom (c) Parzen (d) Lanczos2Sharp

(e) Spline (f) Tensor WENO (g) WD WENO (h) GCS

Fig. 4.6 Eye of the tiger, scale d = 8

(a) Input image (b) Catrom (c) Lanczos Radius

(d) Spline (e) WD WENO (f) GCS

Fig. 4.7 Pixel art, Head, scale d = 16

expected. It is interesting to note that GCS method quite fails with the image from the
Figure 4.5(a), since next to the ringing effect, it shows staircase effect on the slanted
squares, which was not expected.



24 Bojan Crnković et al.

(a) Input image (b) Catrom (c) Lanczos Radius

(d) Spline (e) WD WENO (f) GCS

Fig. 4.8 Pixel art, squares, scale d = 16

5 Conclusion

The aim of this work was to develop an efficient algorithm with low memory load
that produces sharp images, with the method having fourth-order accuracy in smooth
regions while maintaining a high degree of accuracy near discontinuities and ensur-
ing good approximation properties when applied to digital images. The choice of a
relatively low degree of accuracy, for WENO methods, and a small number of in-
terpolation directions should make this method with comparable complexity to the
tensor WENO method and commonly used linear methods while improving the qual-
ity of the interpolated digital images. For image doubling this goal was achieved, but
for general resolutions it is at most twice as complex as tensor WENO method.

Tests with standard test images have confirmed that the algorithm does not pro-
duce excessive numerical artifacts such as ringing or aliasing effects and that the
image quality and visual sharpness are almost equivalent to the much more com-
plex GCS method. For images with sharp color transitions, the WD WENO method
achieved very good results compared to other methods in terms of standard metrics
and outperformed all in visual qualitative inspection. The algorithm allows direct
parallelization and vectorization of the algorithm and can be generalized for higher
dimensions, multiple directions and higher accuracy, which will be the topic of future
work.
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