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Abstract. We study a generalized Follow-the-Leader model where the driver
considers the position of an arbitrary but finite number of vehicles ahead, as

well as the position of the vehicle directly behind the driver. It is proved that

this model converges to the classical Lighthill–Whitham–Richards model for
traffic flow when traffic becomes dense. This also underscores the robustness

of the Lighthill–Whitham–Richards model.

1. Introduction

We study a generalized Follow-the-Leader (FtL) model for unidirectional traffic
of Mℓ vehicles on a single lane road given by

ẋi(t) =

N∑
j=0

cjv

(
ℓ

xi+j+1(t)− xi+j(t)

)

+ κ

(
v

(
ℓ

xi+1(t)− xi(t)

)
− v

(
ℓ

xi(t)− xi−1(t)

))
, i = 1, . . . ,Mℓ.(1.1)

Here the position of the ith vehicle, each of length ℓ, is xi(t) at time t. The system
(1.1) is closed by posing appropriate periodic boundary conditions, see later.

The velocity function v is a decreasing function that vanishes at maximum ca-
pacity of the road. Each driver considers the distances to the N vehicles ahead
and the one vehicle right behind. The impact of more distant vehicles is less pro-
nounced, and thus we assume that the constants cj decrease, i.e., cj ≥ cj+1 ≥ 0. In
addition, the driver considers the distance to the vehicle right behind, and if that
becomes too short, the driver will speed up, and the coefficient κ measures this
influence.

We show that as the length of each vehicle becomes smaller, ℓ → 0 and the
number of vehicles increases, Mℓ → ∞, while N is kept fixed, the distribution
of vehicles will approach the solution of the classical Lighthill–Whitham–Richards
(LWR) model [16, 17]

(1.2) ρt + (ρv(ρ))x = 0,

where the density, or rather saturation, ρ is approximated by ℓ/(xi+1(t) − xi(t)).
This is of course a scalar hyperbolic conservation law [13]. The result is independent
of the finer details given by N and the coefficients cj , κ, and shows the robustness
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2 HOLDEN AND RISEBRO

of the LWR model. As long as N remains unaltered in the limiting process, this
limit is distinct from the widely studied problem of non-local to local limit for
conservation law, see, e.g., [4, 5].

The model (1.1) is based on the following anticipated behavior: In general, the
longer the distance to the vehicle in front, the faster the drivers are willing to drive.
However, each driver considers the distance between successive vehicles ahead of
the driver. More weight is given to the vehicles close to the driver. By the same
token, the driver can look in the rear mirror and assess the distance to the vehicle
immediately behind. If that distance is shorter than the distance to the vehicle just
in front, the driver will speed up. This generalization of the FtL model is more
realistic than the traditional one, as it takes into account finitely many vehicles
ahead of the driver, and includes the observed fact that also the behavior of the
vehicle right behind you influences your actions.

More specifically, we are given coefficients cj ≥ 0 that indicate the weight given to
the velocity between the jth and (j+1)th vehicle (as counted from the ith vehicle).
We assume that the influence drops with the distance, thus cj ≥ cj+1 ≥ 0. The

driver is willing to consider N vehicles. We have
∑N

j=0 cj = 1, and for convenience
we put cN = 0. Similarly, if the distance to the vehicle immediately behind is
shorter than the distance to the vehicle directly in front, the driver will speed up.
The impact of this is scaled by the numerical parameter κ > 0. This results in the
model (1.1).

There are two main classes of mathematical models for traffic flow, namely dis-
crete models based on car-following on the one hand, and, on the other hand,
continuum models based on the assumption of dense traffic for which the flow can
be described by a density, resulting in “traffic hydrodynamics” models. The di-
chotomy between microscopic and macroscopic models, or discrete and continuum
models, is of course one of the fundamental outstanding problems of mathematical
physics. The problem here is a considerably easier than the general problem, how-
ever, it allows for a rigorous analysis of the limit, as the number “particles” tends
to infinity.

There is a wide range of car-following models dating from the late fifties and
early sixties, see [3]. We here generalize a Follow-the-Leader model based on what
is called safety-distance models or collision avoidance models, as a feature of this
model is that it is collision-free. On the other hand, the LWR model [16, 17] has
been, and still is, the prevalent continuum model. A consequence of the analysis
in the present paper is that even for the generalized FtL model presented here, the
scaling limit remains the LWR model, and this offers yet another justification for
the LWR model.

By now there are several ways to show that the standard FtL model converges to
the LWR model, the first one being [10]. The realization that the Follow-the-Leader
is nothing but a semi-discrete approximation of the LWR in Lagrangian coordinates
simplified the proof considerably, see [14, 15]. See also [1, 2, 7, 9, 18, 12, 19, 11]
and references therein. There are also proofs in the setting of traffic on a network
[6, 8].

Let us now describe the content of this paper. We introduce the short-hand no-

tation ∆±ai = ±(ai±1−ai) and āi =
∑N

j=0 cjai+j . If we define vi = v(ℓ/(xi+1(t)−
xi(t))) = v(ℓ/∆+xi(t)), the model (1.1) takes the compact form

(1.3) ẋi(t) = v̄i + κ∆−vi.

It turns out that it is convenient to introduce the Lagrangian variable yi(t) =
∆+xi(t)/ℓ, and then we find the following equation

(1.4) ℓẏi(t) = ∆+V̄i + κ∆+∆−Vi,
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with V (y) = v(1/y), and hence Vi = V (yi) = vi. Note that for N = 1 we recover
the traditional FtL model.

The proof that the FtL model converges to the LWR model proceeds as follows:
To avoid technical complications associated with boundary terms, we consider the
periodic case. More precisely, we impose in equation (1.4) that

yi+Mℓ
= yi, i ∈ Z.

We first analyze the equation for yi. By introducing a spatially piecewise con-
stant function yℓ using the values yi and a fixed grid in space of size Mℓ = 1/ℓ,
cf. (3.7), we can show that

|yℓ(t, · )|BV ([0,1]) ≤ |yℓ(0, · )|BV ([0,1]) , ∥yℓ(t, · )− yℓ(s, · )∥L1([0,1]) ≤ C |t− s| .

Furthermore, if we have another solution zi(t) of (1.4), we get stability in the sense
that

∥yℓ(t, · )− zℓ(t, · )∥L1([0,1]) ≤ ∥yℓ(0, · )− zℓ(0, · )∥L1([0,1]) .

This suffices to obtain strong convergence yℓ → y in C([0, T ];L1([0, 1])) as ℓ → 0.
However, as we are interested in the Eulerian formulation in terms of the den-
sity ρ, we simply define ρi(t) = 1/yi(t), and derive the corresponding equation
for ρi(t), and translate the properties from yi to ρi. We introduce the function

ρℓ(t, x) =
∑Mℓ

i=1 ρi(t)Ii(t, x) where Ii(t, x) is the indicator function of the time-
dependent spatial interval [xi(t), xi+1(t)). Since yi is periodic, the corresponding
ρi will be periodic in Eulerian coordinates, with some period P , see equation (2.7).
We ensure that we stay away from vacuum by assuming that ρ0 ≥ ν > 0. Then we
can prove, cf. Lemma 3.1,

inf ρ0 ≤ ρℓ(t, x) ≤ sup ρ0,

|ρℓ(t, · )|BV ([0,P ]) ≤
1

ν2
|ρ0|BV ([0,P ]) ,

∥ρℓ(t, · )− ρℓ(s, · )∥L1([0,P ]) ≤ C |t− s| .

Observe that we get the somewhat unexpected constant 1/ν2 in the estimate for
bounded variation. This is the case provided N > 1; in the classical case N = 1
the constant is replaced by unity.

These estimates establish the existence of a limit ρ ∈ C([0, T ];L1([0, P ])) ∩
L∞([0, T ];BV ([0, P ])), cf. Corollary 3.4, as ℓ → 0. Here L∞([0, T ];BV ([0, P ]))
denotes the set of functions u = u(t, x) with

sup
t∈[0,T ]

|u(t, · )|BV ([0,P ]) < ∞.

It remains to show that the limit equals the unique weak entropy solution of the
LWR equation (1.2), which means that it satisfies, cf. Theorem 4.1,∫ ∞

0

∫ P

0

(
η(ρ)φt + q(ρ)φx

)
dxdt+

∫ P

0

η(ρ0)φ(0, x) dx ≥ 0

for any non-negative P -periodic test function φ ∈ C∞
c ([0,∞)× [0, P ]). Here η is a

convex (entropy) function and q is the entropy flux, satisfying q′(ρ) = η′(ρ)(ρv(ρ))′.
This shows that ρ is indeed the unique weak entropy solution of the LWR equation.

2. The model

Consider Mℓ identical vehicles on a unidirectional, single lane road with initial
positions x1(0) < x2(0) < · · · < xMℓ

(0) where xi+1(0)−xi(0) > ℓ, with ℓ > 0 being
the length of each vehicle. The velocity v is assumed to be a decreasing Lipschitz
function of a single variable. The “non-localness” enters the model in the following
way.
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Given constants cj for j = 0, . . . , N

(2.1)

N∑
j=0

cj = 1, c0 ≥ · · · ≥ cN−1 ≥ 0, cN = 0,

we define for any sequence ai

(2.2) āi =

N∑
j=0

cjai+j .

Furthermore, we define the traditional shift operators as follows

(2.3) ∆±ai = ±(ai±1 − ai).

Observe that we have, by applying summation by parts, that

(2.4)

∆+ai = ∆+ai =

N∑
j=0

cj (ai+j+1 − ai+j) = −c0ai +

N∑
j=1

(cj−1 − cj) ai+j

=

N∑
j=1

(cj − cj−1) (ai − ai+j) = −
N∑
j=1

∆−cj (ai+j − ai) .

Given a Lipschitz continuous non-increasing velocity function v : [0, 1] → [0, 1]
with v(0) = 1 and v(1) = 0, we assume that the dynamics of the ith vehicle is given
by

ẋi(t) =

N∑
j=0

cjv
( ℓ

xi+j+1(t)− xi+j(t)

)
+ κ
(
v
( ℓ

xi+1(t)− xi(t)

)
− v
( ℓ

xi(t)− xi−1(t)

))
, i ∈ Zℓ,(2.5)

with Zℓ = {1, . . . ,Mℓ}, and κ is a positive constant. With the introduced notation
we can write (2.5) compactly as

(2.6) ẋi(t) = v̄i + κ∆−vi,

with vi = v(ℓ/∆+xi(t)). To avoid technicalities connected with boundary condi-
tions, we assume periodicity. More concretely, we assume the existence of a positive
P such that

(2.7) xi+Mℓ
(t) = xi(t) + P for all i ∈ Z and all t.

As in (1.4) we write yi(t) = ∆+xi(t)/ℓ, which implies that (2.6) takes the form

(2.8) ℓẏi(t) = ∆+Vi + κ∆+∆−Vi, i ∈ Zℓ,

where V (y) = v(1/y), and hence Vi = V (yi) = vi. Note that yi+Mℓ
= yi for all i.

This gives a finite-dimensional system of ordinary differential equations, and (local
in time) existence of a unique solution follows from standard theory. Clearly, V is
increasing and V : [1,∞) → [0, 1].

3. The continuum limit

Next we will study the limit when ℓ → 0.
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3.1. Entropy estimates. Inspired by conservation laws, let (η,Q) be an entropy/entropy
flux pair, i.e., η is twice continuously differentiable and convex, and Q is defined by
Q′ = η′V ′. We multiply (2.8) with η′(yi) and use (2.4) to obtain

ℓ
d

dt
ηi = η′(yi)∆+Vi + κη′(yi)∆+∆−Vi

= ∆+Qi + η′(yi)∆+Vi −∆+Qi

+ κ∆+ (η′(yi)∆−Vi)− κ (∆+η
′(yi)) (∆+Vi)

= ∆+Qi +

N∑
j=1

(cj − cj−1) [(η
′(yi)Vi −Qi)− (η′(yi)Vi+j −Qi+j)]

+ κ∆+ (η′(yi)∆−Vi)− κ (∆+η
′(yi)) (∆+Vi)

= ∆+Qi +

N∑
j=1

(cj − cj−1)H(yi, yi+j)

+ κ∆+ (η′(yi)∆−Vi)− κ (∆+η
′(yi)) (∆+Vi) ,

where

H(a, b) = [(η′(a)V (a)−Q(a))− (η′(a)V (b)−Q(b))]

=

∫ a

0

(η′(a)− η′(σ))V ′(σ) dσ −
∫ b

0

(η′(a)− η′(σ))V ′(σ) dσ

=

∫ b

a

(η′(σ)− η′(a))V ′(σ) dσ =

∫ b

a

∫ σ

a

η′′(µ) dµV ′(σ) dσ ≥ 0.

Here we have written, in obvious notation, ηi = η(yi), Qi = Q(yi). Furthermore,
we get

(3.1)
ℓ
d

dt
ηi −

N∑
j=1

(∆−cj)H(yi, yi+j)+κ (∆+η
′(yi)) (∆+Vi)

= ∆+Qi + κ∆+ (η′(yi)∆−Vi) ,

and since cj ≤ cj−1, we see that the second term is non-negative. Furthermore,
since η′ and V are both increasing functions, also the third term is non-negative.
This entropy equality immediately implies the entropy inequality

(3.2) ℓ
d

dt
ηi ≤ ∆+Qi + κ∆+ (η′(yi)∆−Vi) ,

and by an approximation argument, this is valid for any Lipschitz continuous convex
entropy η. Hence

(3.3)
d

dt
ℓ
∑
i∈Zℓ

η(yi(t)) ≤ 0.

Choosing

η(y) =
(
y − inf

i
yi(0)

)−
and η(y) =

(
y − sup

i
yi(0)

)+

,

where a± = (|a| ± a)/2, implies that

inf
i∈Zℓ

yi(0) ≤ yi(t) ≤ sup
i∈Zℓ

yi(0),

for any positive t. Incidentally, this shows that the systems of ordinary differen-
tial equations, (2.6) and (2.8), both have unique global solutions for t ∈ (0,∞).
Furthermore, it shows that the model does not allow for collisions.
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Consider next another solution zi(t) of (2.8) with initial data zi(0). Subtract the
equation for zi from the corresponding equation for yi, and multiply by sign (yi − zi)
to get

ℓ
d

dt
|yi − zi| = ℓ sign (yi − zi)

d

dt
(yi − zi)

= sign (yi − zi)∆+

(
V (yi)− V (zi)

)
+ κ sign (yi − zi)∆−∆+ (V (yi)− V (zi))

= sign (yi − zi)

N∑
j=1

(cj − cj−1) [(V (yi)− V (zi))− (V (yi+j)− V (zi+j))]

+ κ∆+ (sign (yi − zi)∆−(V (yi)− V (zi)))

− κ (∆+ sign (yi − zi)) (∆+(V (yi)− V (zi)))

≤
N∑
j=1

(cj − cj−1) [|V (yi)− V (zi)| − |V (yi+j)− V (zi+j)|]

+ κ∆+ (sign (yi − zi)∆−(V (yi)− V (zi)))

= ∆+|V (yi)− V (zi)|+ κ∆+ (sign (yi − zi)∆−(V (yi)− V (zi))) ,(3.4)

where we used the fact that cj ≤ cj−1 to get the inequality. In addition, we used
that

(∆+ sign (yi − zi)) (∆+(V (yi)− V (zi))

= (∆+ sign (V (yi)− V (zi))) (∆+(V (yi)− V (zi))) ≥ 0,

as both the signum function and V are increasing functions. This immediately gives
the stability estimate

(3.5) ℓ
∑
i∈Zℓ

|yi(t)− zi(t)| ≤ ℓ
∑
i∈Zℓ

|yi(0)− zi(0)| ,

for any t > 0.
Choosing zi = yi−1 yields a bound on the variation of yi, viz.

(3.6)
∑
i∈Zℓ

|yi(t)− yi−1(t)| ≤
∑
i∈Zℓ

|yi(0)− yi−1(0)| .

It is convenient to view yi as a spatially 1-periodic function. Define for i = 0, . . . ,Mℓ

the quantities ζi = i/Mℓ and Ii = [ζi, ζi+1). Then we let

(3.7) yℓ(t, ζ) =
∑
i∈Zℓ

yi(t)IIi(ζ),

where IA is the indicator function of the set A. Using this, (3.5) and (3.6) read
∥yℓ(t, · )− zℓ(t, · )∥L1([0,1]) ≤ ∥yℓ(0, · )− zℓ(0, · )∥L1([0,1]) and |yℓ(t, · )|BV ([0,1]) ≤
|yℓ(0, · )|BV ([0,1]), respectively.

Next we consider the time continuity of the approximate solution. Let now
t ≥ s ≥ 0, and calculate

∥yℓ(t, · )− yℓ(s, · )∥L1([0,1]) = ℓ
∑
i∈Zℓ

|yi(t)− yi(s)|

= ℓ
∑
i∈Zℓ

∣∣∣∫ t

s

d

dτ
yi(τ) dτ

∣∣∣
≤
∑
i∈Zℓ

∫ t

s

∣∣∣ℓ d

dτ
yi(τ)

∣∣∣ dτ



NON-LOCAL FOLLOW-THE-LEADER 7

=
∑
i∈Zℓ

∫ t

s

∣∣∣∆+V (yi(τ)) + κ∆+∆−V (yi(τ))
∣∣∣ dτ

≤ ∥V ′∥∞
∑
i∈Zℓ

∫ t

s

∣∣∣∆+yi(τ)
∣∣∣+ 2κ |∆+yi(τ)| dτ

≤ ∥V ′∥∞ (1 + 2κ) |yℓ(0, · )|BV (t− s),(3.8)

so that the map t 7→ yℓ(t, · ) is Lipschitz continuous in L1. Here we used that

|a|BV =
∑
i∈Zℓ

∣∣∆+ai
∣∣ = ∑

i∈Zℓ

∣∣∣ N∑
j=0

cj∆+ai+j

∣∣∣ ≤ ∑
i∈Zℓ

N∑
j=0

cj |∆+ai+j |

=

N∑
j=1

cj
∑
i∈Zℓ

|∆+ai+j | =
N∑
j=0

cj |a|BV = |a|BV .(3.9)

Note that the total variation is computed on Dℓ.
Recall that ℓMℓ = 1, from the estimates (3.5), (3.6), and (3.8) we can conclude

the strong convergence

yℓ → y in C([0, T ];L1([0, 1])) as ℓ → 0,

as ℓ → 0, see [13, Thm. A.8].
At this point we could have shown that the limit y is the unique entropy solution

of the conservation law yt − Vz = 0, subsequently transfer the result to Eulerian
coordinates, and finally show that the corresponding density, or rather saturation,
is an entropy solution of the LWR model.

However, we shall do this directly for ρ in the Eulerian setting. To this end, we
define ρi(t) = 1/yi(t). Applying equation (2.8) we find

(3.10) ρ̇i = −ρi

(∆+vi
∆+xi

+ κ
∆+∆−vi
∆+xi

)
,

for t > 0, using ρi(t) = ℓ/∆+xi(t). Observe the straightforward transition between
the Lagrangian formulation (2.8) and the Eulerian formulation (3.10), sharply con-
trasting the cumbersome transition in the continuum case.

Next we define the appropriate initial data. Assume that we are given a non-
negative P -periodic function ρ0 ∈ L1([0, P ]) ∩ BV ([0, P ]), such that ρ0(x) ∈ [ν, 1]
for all x, where ν is some small positive number. This last assumption excludes
vacuum.

Choose

Mℓ ∈ N, and define ℓ =
1

Mℓ

∫ P

0

ρ0(x) dx.

Let x0(0) = 0 and define xi+1(0) inductively by

(3.11)

∫ xi+1(0)

xi(0)

ρ0(ξ) dξ = ℓ, i = 0, . . . ,Mℓ − 1.

Next, we set

(3.12) ρi(0) =
ℓ

xi+1(0)− xi(0)
=:

1

yi(0)
, i = 1, . . . ,Mℓ,

extending it periodically by ρi+Mℓ
(0) = ρi(0) for i ∈ Z. Finally, we define ρi(t)

as the solution of (3.10) with initial data ρi(0) defined by (3.12). We can then
introduce

(3.13) ρℓ(t, x) =
∑
i∈Z

ρi(t)Ii(t, x),
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where Ii(t, x) = I[xi(t),xi+1(t))(x). Note that Ii and IIi are distinct. Observe that
at this point the variable yi is superfluous; it is used only as a tool to obtain the
convergence. Converting the above calculations we get the following result.

Lemma 3.1. Let ρi for i ∈ Zℓ be defined by (3.10), and ρℓ(t, x) by (3.13). Assume
also that ρℓ(0, x) = ρℓ,0(x) ≥ ν > 0 for all ℓ > 0 and x. Then

inf ρ0 ≤ ρℓ(t, x) ≤ sup ρ0,(3.14) ∑
i∈Zℓ

|ρi(t)− ρ̃i(t)| ≤
1

ν2

∑
i∈Zℓ

|ρi,0 − ρ̃i,0| ,(3.15)

|ρℓ(t, · )|BV ([0,P ]) ≤
1

ν2
|ρ0|BV ([0,P ]) ,(3.16)

∥ρℓ(t, · )− ρℓ(s, · )∥L1([0,P ]) ≤ 2(1 + 2κ) ∥v′∥∞ (t− s),(3.17)

for all 0 ≤ s ≤ t. Here ρℓ and ρ̃ℓ are two solutions with P -periodic initial data ρℓ,0
and ρ̃ℓ,0, respectively.

Remark 3.2. Estimate (3.15) follows directly from the corresponding estimate
(3.5). However, this estimate cannot directly be expressed in terms of the L1-norm
in Eulerian coordinates.1

Proof. The inequalities (3.14), (3.15), and (3.16) all follow from the corresponding
inequalities for yℓ, using that ρi ≥ ν.

To prove (3.17), let ωε be a standard mollifier and define

(3.18) χε
i (t, x) =

∫ x

−∞

(
ωε(σ − xi(t))− ωε(σ − xi+1(t))

)
dσ,

and

ρεℓ(t, x) =
∑
i

ρi(t)χ
ε
i (t, x).

Using that
∂

∂t
χε
i (t, x) = ∆+ [ωε(x− xi) (vi + κ∆−vi)] ,

we get

∂tρ
ε
ℓ(x, t) =

∑
i

∂t (ρiχ
ε
i (t, x))

=
∑
i

ρ̇iχ
ε
i (t, x) + ρi

∂

∂t
χε
i (t, x)

=
∑
i

−ρi

(∆+vi + κ∆+∆−vi
∆+xi

)
χε
i (t, x) + ρi∆+[ωε(x− xi)(vi + κ∆−vi)].

Consequently

∥ρεℓ(t, · )− ρεℓ(s, · )∥L1([0,P ]) =
∥∥∥∫ t

s

∂tρ
ε
ℓ(σ, · ) dσ

∥∥∥
L1([0,P ])

≤
∫ t

s

∫ P

0

∣∣∣∂tρεℓ(σ, · )∣∣∣ dxdσ
≤
∫ t

s

∑
i

∫ P

0

[
ρi
|∆+vi + κ∆+∆−vi|

∆+xi
χε
i

+ ρi |∆+ [ωε(x− xi)(vi + κ∆−vi)]|
]
dxdσ.

1We are grateful to Halvard O. Storbugt for pointing this out.
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Now we can send ε to zero to obtain

∥ρℓ(t, · )− ρℓ(s, · )∥L1([0,P ]) ≤
∫ t

s

∑
i

[
ρi (|∆+vi|+ κ |∆+∆−vi|)

+ ρi (|∆+vi|+ κ |∆+∆−vi|)
]
dσ

≤ 2 (1 + 2κ) ∥v′∥∞ (t− s),

where we have used that ρi ≤ 1 and (3.9). □

Remark 3.3. It is natural to ask whether (3.14), (3.15), and (3.16) can be proved
directly from the scheme for ρi, i.e., from (3.10). Using elementary techniques, this
is easily accomplished for (3.14). For (3.15) and (3.16) one would hope to eliminate
the constant 1/ν2 (in fact, one would surmise that the constant would equal unity).
However, we only managed to prove (3.15) and (3.16) with constant unity if N = 1.
To do this we rewrite the equation (3.10) for ρ̇i as

ℓρ̇i = −ρ2i∆+(vi + κ∆−vi),

where we have used ρi = ℓ/∆+xi. Then we have

ℓ
d

dt
|ρi − ρi−1| = sign (∆−ρi)∆−ρ̇i

= sign (∆−vi)∆−
(
ρ2i∆+vi

)
+ κ sign (∆−vi)∆−

(
ρ2i∆+∆−vi

)
.

We sum over i ∈ Zℓ, and consider each term on the right separately. For the first
term we get∑

i

sign (∆−vi)∆−
(
ρ2i∆+vi

)
=
∑
i

sign (∆−vi)
(
ρ2i∆+vi − ρ2i−1∆−vi

)
=
∑
i

sign (∆−vi) ρ
2
i∆+vi − ρ2i |∆+vi| ≤ 0.

As to the second term∑
i

sign (∆−vi)∆−
(
ρ2i∆+∆−vi

)
=
∑
i

sign (∆−vi)
(
ρ2i∆+∆−vi − ρ2i−1∆−∆−vi

)
=
∑
i

sign (∆−vi)
(
ρ2i (∆+vi −∆−vi)

− ρ2i−1 (∆−vi −∆−vi−1)
)

=
∑
i

ρ2i [∆+vi −∆−vi] (sign (∆−vi)− sign∆+vi) ≤ 0.(3.19)

Thus
d

dt
|ρℓ(t, · )|BV ≤ 0,

and (3.16) holds with constant equal to 1. We investigate the general case N > 1
numerically. A natural numerical scheme consists in solving (2.6) by the Euler
method, i.e., replacing (2.6) by

(3.20)
1

∆t

(
xi(t+∆t)− xi(t)

)
= vi(t) + κ∆−vi(t),

where we must choose ∆t ≤ ℓ in order to avoid collisions. We choose κ = 0,
N = 10, cj = 1/10 for j = 0, . . . , 4, ℓ = 1/45, ∆t = ℓ and initial data given by

ρ0(x) =

{
1.0 |x| < 0.5,

0.05 otherwise,

for x in the interval [−2, 2], and extended periodically. From Figure 1 we see that
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Figure 1. Left: ρℓ(1, x), the red circles at the bottom indicate
the position of the vehicles. Right: The total variation of ρℓ as a
function of t ∈ [0, 4].

ρℓ develops large oscillations, and that it most likely is not true that |ρℓ(t, · )|BV ≤
|ρ0|BV for the model specified by (2.6) when N > 1.

Corollary 3.4. Under the same assumptions as in Lemma 3.1, for any T > 0
there exists a function ρ ∈ C([0, T ];L1([0, P ])) ∩ L∞([0, T ];BV ([0, P ])) such that
(up to a subsequence)

lim
ℓ→0

ρℓ = ρ.

4. The limit

Having established the existence of the limit of ρℓ to a function ρ as ℓ → 0
in Corollary 3.4, we now need to show that the limit is the unique weak entropy
solution of the LWR equation, that is,

(4.1)

∫ ∞

0

∫ P

0

(
η(ρ)φt + q(ρ)φx

)
dxdt+

∫ P

0

η(ρ0)φ(0, x) dx ≥ 0

for all non-negative P -periodic test functions φ ∈ C∞
c ([0,∞)× [0, P ]). Here η is a

convex (entropy) function and q is the entropy flux, satisfying q′(ρ) = η′(ρ)(ρv(ρ))′.

Theorem 4.1. Let v be a Lipschitz continuous non-increasing velocity function
v : [0, 1] → [0, 1], with v(0) = 1 and v(1) = 0. Let P > 0 and ρ0 ∈ L1([0, P ]) ∩
BV ([0, P ]) be P -periodic such that ρ0(x) ∈ [ν, 1] for all x for some ν > 0. Define
xi(0) by (3.11) for i ∈ Zℓ, and let xi(t) be defined by (2.6).

Define ρi for i ∈ Zℓ by (3.10), and ρℓ(t, x) by (3.13) for ℓ > 0. Denote the limit
as ℓ → 0 of ρℓ(t, x), granted by Corollary 3.4, by ρ with ρ ∈ C([0, T ];L1([0, P ])) ∩
L∞([0, T ];BV ([0, P ])). Then ρ is the unique weak entropy solution of the scalar
conservation law

(4.2) ρt + (ρv(ρ))x = 0, ρ|t=0 = ρ0.

Proof. Let (η, q) be an entropy/entropy flux pair. We define

ηℓ(t, x) =
∑
i

ηi(t)Ii(t, x),

ηεℓ (t, x) =
∑
i

ηi(t)χ
ε
i (t, x),

where, in the obvious notation, ηi = η(ρi), and χε
i is given by (3.18). The dynamics

of ηi is given by

η̇i = −η′(ρi)ρi
∆+vi + κ∆+∆−vi

∆+xi
.



NON-LOCAL FOLLOW-THE-LEADER 11

Fix a nonnegative test function φ and calculate∫ ∞

0

∫ P

0

ηεℓφt dxdt

= −
∫ P

0

ηεℓ (0, x)φ(0, x) dx−
∫ ∞

0

∫ P

0

∂tη
ε
ℓφdxdt

= −
∫ P

0

ηεℓ (0, x)φ(0, x) dx−
∫ ∞

0

∫ P

0

∑
i

(
η̇iχ

ε
i + ηi

∂

∂t
χε
i

)
φdxdt

= −
∫ P

0

ηεℓ (0, x)φ(0, x) dx

−
∫ ∞

0

∫ P

0

∑
i

[(
−η′(ρi)ρi

∆+vi + κ∆+∆−vi
∆+xi

)
χε
i

+ ηi∆+ [ωε(x− xi) (vi + κ∆−vi)]
]
φdxdt.(4.3)

Next we want to take the ε → 0 limit. To that end, we consider some of the terms
separately. We have∫ P

0

∑
i

(
−η′(ρi)ρi

∆+vi + κ∆+∆−vi
∆+xi

)
χε
iφdx

ε→0−→
∑
i

∫ xi+1

xi

(
−η′(ρi)ρi

∆+vi + κ∆+∆−vi
∆+xi

)
φdx

=
∑
i

(
−η′(ρi)ρi(∆+vi + κ∆+∆−vi)

)
φi+1/2

where

φi+1/2 =
1

∆+xi

∫ xi+1

xi

φdx.

Furthermore, we will use∫ P

0

ηi∆+ [ωε(x− xi) (vi + κ∆−vi)]φdx

=

∫ P

0

ηi∆+ [ωε(x− xi) (vi + κ∆−vi)φ] dx

ε→0−→ ηi∆+ [(vi + κ∆−vi)φi] ,

with φi = φ(t, xi(t)). Note that while φi+1/2 is defined by a spatial average, φi is
given as a pointwise value. This yields that the limit as ε → 0 in (4.3) satisfies∫ ∞

0

∫ P

0

ηℓφt dxdt

= −
∫ P

0

ηℓ(0, x)φ(0, x) dx

−
∫ ∞

0

(∑
i

(
−η′(ρi)ρi(∆+vi + κ∆+∆−vi)

)
φi+1/2

+ ηi∆+ [(vi + κ∆−vi)ϕi]
)
dt

= −
∫ P

0

ηℓ(0, x)φ(0, x) dx

+

∫ ∞

0

∑
i

(
ρiη

′(ρi)∆+viφi+1/2 − ηi∆+viφi+1 − ηivi∆+φi
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+ κ (∆+∆−vi)
(
ρiη

′(ρi)φi+1/2 − ηiφi

) )
dt.

Next we want to replace φi+1/2 and φi+1 with φi, and by doing so, we will
introduce an error term of order O(ℓ). First observe that∣∣φi+1/2 − φi

∣∣ ≤ 1

2
∥φx∥∞ ∆+xi ≤

ℓ

2ν
∥φx∥∞ ,

|∆+φi| = |φi − φi+1| ≤ ∥φx∥∞ ∆+xi ≤
ℓ

ν
∥φx∥∞ ,

since

∆+xi(t) ≤ ℓ sup
i

yi(t) ≤
ℓ

ν
,

where ∥φx∥∞ = ∥φx∥L∞([0,∞)×[0,P ]).

For the relevant terms we add and subtract φi. Thus∣∣∣∫ ∞

0

∑
i

ρiη
′(ρi)∆+vi(φi+1/2 − φi) dt

∣∣∣ ≤ sup
ρ∈[0,1]

|η′(ρ)|T
∑
i

|∆+vi| ∥φx∥∞
ℓ

ν

≤ sup
ρ∈[0,1]

|η′(ρ)| Tℓ
ν

∥φx∥∞ |v|BV

≤ sup
ρ∈[0,1]

|η′(ρ)| Tℓ
ν

∥φx∥∞ ∥v′∥∞ |ρℓ(t, · )|BV

≤ sup
ρ∈[0,1]

|η′(ρ)| Tℓ
ν3

∥φx∥∞ ∥v′∥∞ |ρ0|BV = O(ℓ),

where we used that ρℓ ∈ [0, 1], (3.9), (3.16), and T > 0 is such that φ(t, x) = 0 for
t > T and all x. Next, we find∣∣∣∫ ∞

0

∑
i

ηi∆+vi(φi+1 − φi) dt
∣∣∣ ≤ sup

ρ∈[0,1]

|η(ρ)| Tℓ
ν3

∥φx∥∞ ∥v′∥∞ |ρ0|BV = O(ℓ),

by the same estimates as above. Finally, we consider∣∣∣∫ ∞

0

∑
i

(∆+∆−vi) ρiη
′(ρi)(φi+1/2 − φi) dt

∣∣∣ ≤ sup
ρ∈[0,1]

|η′(ρ)| Tℓ
2ν

∥φx∥∞ 2 |v|BV

≤ sup
ρ∈[0,1]

|η′(ρ)| ∥v′∥∞ |ρ0|BV

Tℓ

ν
= O(ℓ),

as in the estimates above. Thus∫ ∞

0

∫ P

0

ηℓφt dxdt = −
∫ P

0

ηℓ(0, x)φ(0, x) dx

+

∫ ∞

0

∑
i

(
ρiη

′(ρi)∆+viφi − ηi∆+viφi − ηivi∆+φi

+ κ (∆+∆−vi) (ρiη
′(ρi)− ηi)φi

)
dt+O(ℓ).(4.4)

Define h(ρ) = ρη′(ρ)− η(ρ) and note that h′(ρ) = ρη′′(ρ) ≥ 0. Using this, the last
term above equals∑

i

(∆+∆−vi)φihi = −
∑
i

∆−vi∆−(hiφi)

= −
∑
i

(
∆−vi∆−hi φi−1 + hi∆−vi∆−φi

)
= −

∑
i

∆−vi∆−ρih
′(ρ̂i)φi−1 +O(ℓ)

≥ O(ℓ),
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for some ρ̂i between ρi and ρi−1. We used the nonnegativity of the test function
and that ∆−vi∆−ρi ≤ 0 since v is non-increasing in ρ.

We want to replace the term ηivi by (ηv)i, and this invokes an error of O(ℓ), as
the following computation reveals.∣∣∣∫ ∞

0

∑
i

(
ηivi − ηvi

)
∆+φi dt

∣∣∣ = ∣∣∣∫ ∞

0

∑
i

N∑
j=0

cj
(
ηi − ηi+j

)
vi+j∆+φi dt

∣∣∣
=
∣∣∣∫ ∞

0

∑
i

N∑
j=0

j−1∑
k=0

cj
(
ηi+k − ηi+k+1

)
vi+j∆+φi dt

∣∣∣
≤ ∥v∥∞

∫ T

0

N∑
j=0

cj

j−1∑
k=0

∑
i

|ηi+k − ηi+k+1| |∆+φi| dt

≤ ∥v∥∞ ∥φx∥∞
ℓ

ν

∫ T

0

|η(t)|BV

N∑
j=0

jcj dt

≤ ∥v∥∞ ∥φx∥∞
ℓ

ν
∥η′∥∞

∫ T

0

|ρ(t)|BV

N∑
j=0

jcj dt

≤ T ∥v∥∞ ∥φx∥∞
ℓ

ν
∥η′∥∞ |ρ0|BV

N∑
j=0

jcj

= O(ℓ).(4.5)

Thus we find that (4.4) can be re-written as∫ ∞

0

∫ P

0

ηℓφt dxdt ≥ −
∫ P

0

ηℓ(0, x)φ(0, x) dx

+

∫ ∞

0

∑
i

(ρiη
′(ρi)− ηi)∆+viφi dt−

∫ ∞

0

∫ P

0

(ηv)ℓ φx dxdt+O(ℓ).(4.6)

In order to understand the convective term we compare this with the term involving
the entropy flux. We define

qℓ(t, x) =
∑
i

qi(t)Ii(t, x), qi(t) = q(ρi(t)),

which implies that∫ ∞

0

∫ P

0

qℓφx dxdt =

∫ ∞

0

∑
i

qi∆+φi dt =

∫ ∞

0

∑
i

qi∆+φi dt+O(ℓ)

= −
∫ ∞

0

∑
i

∆+qiφi dt+O(ℓ),(4.7)

where we have replaced qi by qi, resulting in an error of order O(ℓ), from the
following computation∣∣∣∫ ∞

0

∑
i

(
qi − qi

)
∆+φi dt

∣∣∣ = ∣∣∣∫ ∞

0

∑
i

N∑
j=0

cj
(
qi − qi+j

)
∆+φi dt

∣∣∣
≤
∫ T

0

∑
i

N∑
j=0

cj |qi − qi+j | |∆+φi| dt

≤ T ∥φx∥∞
ℓ

ν
∥q′∥∞ |ρ0|BV

N∑
j=0

jcj
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= O(ℓ),

similarly to (4.5). The observant reader will also have noticed that we have replaced
φi+1 by φi in (4.7), which also yields another O(ℓ) error.

Adding (4.6) and (4.7) we get∫ ∞

0

∫ P

0

(
ηℓφt + qℓφx

)
dxdt+

∫ P

0

ηℓ(0, x)φ(0, x) dx

≥
∫ ∞

0

∑
i

[
(ρiη

′(ρi)− ηi)∆+vi −∆+qi︸ ︷︷ ︸
ei

]
φi dt−

∫ ∞

0

∫ P

0

(ηv)ℓ φx dxdt+O(ℓ),

and it remains to estimate the term ei. To that end we find, using the formula
(2.4), that

ei = −
N∑
j=1

∆−cj [(ρiη
′(ρi)− ηi) (vi+j − vi)− (qi+j − qi)]

= −
N∑
j=1

∆−cj

∫ ρi+j

ρi

(
(ρiη

′(ρi)− ηi) v
′(s)− η′(s)sv′(s)− η′(s)v(s)

)
ds

= −
N∑
j=1

∆−cj

∫ ρi+j

ρi

(
v′(s) (ρiη

′(ρi)− sη′(s))− η′iv
′(s)− η′(s)v(s)

)
ds

= −
N∑
j=1

∆−cj

∫ ρi+j

ρi

(
v′(s)

∫ ρi

s

d

dσ
(ση′(σ)) dσ − η′(ρi)v

′(s)− η′(s)v(s)
)
ds

= −
N∑
j=1

∆−cj

∫ ρi+j

ρi

(
v′(s)

∫ ρi

s

ση′′(σ) + η′(σ) dσ − η′(ρi)v
′(s)− η′(s)v(s)

)
ds

=

N∑
j=1

∆−cj

∫ ρi+j

ρi

∫ s

ρi

v′(s)ση′′(σ) dσds

−
N∑
j=1

∆−cj

∫ ρi+j

ρi

(
v′(s)(ηi − η(s))− ηiv

′(s)− η′(s)v(s)
)
ds

≥
N∑
j=1

∆−cj

∫ ρi+j

ρi

(
v′(s)η(s) + v(s)η′(s)

)
ds

=

N∑
j=1

∆−cj (vi+jηi+j − viηi)

= −∆+ (vη)i .

In the inequality we used that ∆−cjv
′(s) ≥ 0, as both cj and v are non-increasing,

ρi and ρi+j are positive, and finally η′′(σ) ≥ 0.
Therefore∫ ∞

0

∫ P

0

(
ηℓφt + qℓφx

)
dxdt+

∫ P

0

ηℓ(0, x)φ(0, x) dx

≥
∫ ∞

0

∑
i

eiφi dt−
∫ ∞

0

∫ P

0

(ηv)ℓ φx dxdt+O(ℓ)

≥ −
∫ ∞

0

∑
i

∆+ (vη)i φi dt−
∫ ∞

0

∫ P

0

(ηv)ℓ φx dxdt+O(ℓ)
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=

∫ ∞

0

∑
i

(vη)i ∆−φi dt −
∫ ∞

0

∫ P

0

(ηv)ℓ φx dxdt+O(ℓ)

= O(ℓ),

and by taking ℓ → 0, we obtain (4.1). By standard theory, see, e.g., [13, Thm. 2.14],
it follows that ρ is the unique weak entropy solution. □
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