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The Wehrl entropy of a quantum state is the entropy of the coherent-state distribution function
(Husimi function) of this state. This entropy is non-zero even for pure states. We investigate the
Wehrl entropy for N spin-1/2 particles with respect to the SU(2)⊗N coherent states (i.e., the direct
products of spin coherent states of each particle). We focus on: (1) The statistical interpretation
of this Wehrl entropy. (2) The relationship between the Wehrl entropy and quantum entanglement,
particularly in systems with a large number of particles. For the problem (1), despite the coherent
states not forming a group of orthonormal bases, we prove that the Wehrl entropy can still be inter-
preted as the entropy of a probability distribution with clear physical meaning. For the problem (2),
we numerically calculate the Wehrl entropy of various types of entangled pure states with respect to
particle number 2 ≤ N ≤ 20. Our results show that for the large-N (N ≳ 10) systems the Wehrl en-

tropy of the highly chaotic entangled states (e.g., 2−N/2 ∑
s1,s2,...,sN=↑,↓ |s1, s2, ..., sN ⟩e−iϕs1,s2,...,sN ,

with ϕs1,s2,...,sN being 2N random angles) are substantially larger than that of the very regular ones
(e.g., the Greenberger–Horne–Zeilinger state). These results, together with the fact that the Wehrl
entropy is invariant under local unitary transformations, indicate that the Wehrl entropy can reflect
the complexity of the quantum entanglement (entanglement complexity) of many-body pure states,
as A. Sugita proposed directly from the definitions of the Husimi function and Wehrl entropy (Jour.
Phys. A 36, 9081 (2003)). Furthermore, the Wehrl entropy per particle can serve as a quantitative
description of this entanglement complexity. We further show that the many-body pure entangled
states can be classified into three types, according to the behaviors of the Wehrl entropy per particle
in the limit N → ∞, with the states of each type having very different entanglement complexity.
Therefore, the Wehrl entropy is helpful for the research areas related to the entanglement com-
plexity of a many-body system, such as many-body quantum dynamics, spin-liquids and quantum
computation.

I. INTRODUCTION

Entropy plays a crucial role in various fields of physics,
including but not limited to statistical mechanics, quan-
tum information, many-body physics, and quantum
chaos [1–6]. The Wehrl entropy was initially proposed
by A. Wehrl in 1979 [7]. For a given quantum sys-
tem with density operator ρ̂, the Wehrl entropy is de-
fined as the entropy of the Husimi function ⟨n|ρ̂|n⟩/Z
[8], where {|n⟩} are the coherent states of this system
and Z =

´
dn⟨n|ρ̂|n⟩ serves as the normalization con-

stant. For instance, for a single spin-1/2 particle, {|n⟩}
are the SU(2) spin-coherent states, where n is a three-
dimensional (3D) unit vector, i.e., n ∈ S2 with S2 being
the unit sphere (Bloch sphere) of the 3D space. Unlike
the well-known von Neumann entropy, the Wehrl entropy
is non-zero even for a pure state, and and can change
with time during the evolution of a closed system. The
Wehrl entropy has been applied and studied in various
fields such as quantum optics [9, 10], quantum informa-
tion [11] and mathematical physics [12–15].

For the system of N spin-1/2 particles (N > 1), there
are two different methods to define the Husimi function
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and the Wehrl entropy, corresponding to different choices
of the coherent states |n⟩. In the first method, n ∈ S2

and {|n⟩} are SU(2) coherent states, which are multi-
particle states with certain quantum numbers of the N -
particle total spin and its component along the direction
n [13]. In the second method, {|n⟩} are chosen to be the
SU(2)⊗N coherent states, which are the direct products
of spin coherent states of each particle [11, 14]. Conse-
quently, in the second method, the coherent-state label
n comprises N components, with each one being a 3D
unit vector, i.e., n ∈ S2⊗N .
In this work we investigate the Wehrl entropy of N

spin-1/2 particles, which are defined via the second
method shown above. The Wehrl entropy, as defined by
this method, has been previously explored for two spin-
1/2 particles in [11]. Here we consider the systems with
arbitrary particle number N , and focus on the following
two problems:
(1) The statistical interpretation of the Husimi func-

tion and the Wehrl entropy. Since the coherent states
{|n⟩} are not a group of orthonormal basis of the Hilbert
space, the Husimi function cannot be directly interpreted
as the probability distribution of the measurement out-
comes of a certain observable, and thus the Wehrl entropy
cannot be directly interpreted as the entropy correspond-
ing to such a probability distribution. However, with the
help of the Bayes theorem we prove that they can still be
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interpreted as an alternative well-defined probability dis-
tribution with clear physical meaning, and its entropy,
respectively. In addition, under this interpretation the
Wehrl entropy returns to the Gibbs entropy in the clas-
sical analogy.

(2) The relationship between the Wehrl entropy and
quantum entanglement, especially in the large-N systems.
It can be straightforwardly proven (Appendix C) that
the Wehrl entropy of our system is invariant under local
unitary transformations, and thus takes the same value
ΛLN ≡ [ln(2π) + 1/2]N for all the completely separa-
ble pure states. In 2003, A. Sugita [14] conjectured that
the Wehrl entropy of all entangled states, as defined as
above, are larger than that of the completely separable
pure states. Based on the definition of the corresponding
Husimi function, A. Sugita [14] also proposed that for
many-body pure states the delocalization of the Husimi
function, which can be measured by the Wehrl entropy,
reflect the complexity of quantum entanglement (entan-
glement complexity). However, to our knowledge, the
Wehrl entropy of specific entangled states of many-body
systems (with particle number being larger than 3) has
not been calculated in previous researches. As a result,
the connection between the Wehrl entropy and the entan-
glement complexity has not been examined and studied
for specific examples of these many-body systems.

Therefore, in this work we numerically calculate the
Wehrl entropy for various pure states with respect to
particle number 2 ≤ N ≤ 20. The Wehrl entropy ob-
tained by our calculation for the entangled pure states
are all higher than that for the the completely separa-
ble pure states, supporting the above conjecture of A.
Sugita [14]. Furthermore, our numerical results indi-
cate that in the large-N (N ≳ 10) cases the Wehrl en-
tropy per particle of highly chaotic entangled states (e.g,
2−N/2

∑
s1,s2,...,sN=↑,↓ |s1, s2, ..., sN ⟩e−iϕs1,s2,...,sN , with

ϕs1,s2,...,sN being independent random phases) are signif-
icantly larger than those of very regular entangled states,
such as the Greenberger–Horne–Zeilinger (GHZ) state.

Our results yield that the Wehrl entropy does reflect
the entanglement complexity of many-body pure states.
In particular, the Wehrl entropy per particle can be used
as a quantitative description of this entanglement com-
plexity. Moreover, unlike other quantities used to evalu-
ate this complexity, such as the degree of entanglement
between a subsystem and the other particles, the Wehrl
entropy per particle does not necessitate the division of
the total system into two subsystems.

Furthermore, our numerical results suggest that many-
body pure states can be categorized into three types, each
exhibiting distinct behaviors of Wehrl entropy per par-
ticle as N approaches infinity, and differing in entangle-
ment complexity.

The results of this work are helpful for the studies of
the areas with entanglement complexity being very im-
portant, such as quantum many-body dynamics, chaos
and thermalization, spin liquids, and quantum computa-
tion, as well as the deep understanding of Husimi func-

tion and Wehrl entropy.
The the statistical interpretation we developed for the

Wehrl entropy is not used in the discussions for the re-
lationship between the Wehrl entropy and quantum en-
tanglement. Thus, the readers who are interested in the
latter problem can skip the discussion for the former (i.e.,
Sec. III).
The remainder of this paper is organized as follows. In

Sec. II we introduce the definitions of the Husimi function
and Wehrl entropy of N spin-1/2 particles. The statisti-
cal interpretation of the Wehrl entropy is given in Sec. III,
and we briefly outline some properties of the Wehrl en-
tropy in Sec. IV. In Sec. V we investigate the relationship
between the Wehrl entropy and quantum entanglement.
Sec. VI contains a summary and some discussions. In the
appendices we illustrate more properties of the Wehrl en-
tropy, as well as some details of our calculations.

II. DEFINITIONS OF THE HUSIMI FUNCTION
AND WEHRL ENTROPY

We considerN spin-1/2 particles 1, ..., N . An SU(2)⊗N

spin coherent state is defined as a direct product of the
spin coherent state of each particle:

|n⟩ ≡ |n1⟩1 ⊗ |n2⟩2 ⊗ ...⊗ |nN ⟩N , (1)

with

n ≡ (n1,n2, ...,nN ) ∈ S2⊗N . (2)

Here nj ∈ S2 (j = 1, ..., N) is a 3D unit vector,
or the position vector of a point on the unit sphere
(Bloch sphere) S2, and can be expressed as nj =
(sin θj cosϕj , sin θj sinϕj , cos θj), with θj ∈ [0, π], ϕj ∈
[0, 2π]. Additionally, S2⊗N is the Cartesian product of N
unit spheres. Moreover, |nj⟩j is the spin-coherent state
of particle j with respect to the direction nj , which sat-
isfies [

σ̂(j) · nj

]
|nj⟩j = |nj⟩j , (3)

where σ̂(j) = (σ̂
(j)
x , σ̂

(j)
y , σ̂

(j)
z ), with σ̂

(j)
x,y,z being the Pauli

matrixes of the particle j (j = 1, ..., N). The spin coher-
ent states {|n⟩} satisfy

1

(2π)N

ˆ
dn|n⟩⟨n| = 1, (4)

with

ˆ
dn =

N∏
j=1

ˆ π

0

sin θjdθj

ˆ 2π

0

dϕj . (5)

The Husimi function PH(ρ̂;n) of this system is defined
as

PH(ρ̂;n) ≡ 1

(2π)N
⟨n|ρ̂|n⟩, (6)
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FIG. 1. A schematic illustration of the though experiment of
Sec. III for a single spin-1/2 particle. As shown in the table, in
the η-th step (η = 1, 2, ..,m), the experimenter measures the

observable σ̂ ·u(η) for the copy η. If and only if the outcome
is +1, then the experimenter notes down the direction u(η)

in the notebook. In the case of this figure the outcome of
the measurements 1, 3, 4,... are +1, and thus the directions
u(1,3,4,..) are noted down in the notebook.

with ρ̂ being the density operator of theN -body quantum
state, describing the quantum state of all these particles.
It is clear that PH(ρ̂;n) ≥ 0 for all n, and

ˆ
dnPH(ρ̂;n) = 1. (7)

Notice that each Husimi function PH(ρ̂;n) corresponds
to a unique N -body state ρ̂. Namely, if ρ̂ ̸= ρ̂′, then there
definitely exists n ∈ S2⊗N , which satisfies PH(ρ̂;n) ̸=
PH(ρ̂′;n).

Furthermore, the Wehrl entropy of these N spin-1/2
particles is defined as the entropy corresponding to the
Husimi function:

SW (ρ̂) ≡ −
ˆ
PH(ρ̂;n) ln

[
PH(ρ̂;n)

]
dn. (8)

Clearly, the Wehrl entropy is a functional of the quantum
state ρ̂.

III. STATISTICAL INTERPRETATION OF THE
HUSIMI FUNCTION AND THE WEHRL

ENTROPY

In this section we demonstrate the statistical interpre-
tation of the Husimi function and the Wehrl entropy. As
mentioned before, the results in this section is not used in
the subsequent sections. Therefore, the readers who are
interested in the relation between the Wehrl entropy and
quantum entanglement can skip this section and directly
go to Sec. IV.

Since the coherent states |n⟩ and |n′⟩ defined above
are not orthogonal if ⟨n′

j |nj⟩ ≠ 0 for all j = 1, ..., N ,
these states are not eigen-states of the same observable.
Consequently, the Husimi function PH(ρ̂;n) cannot be
interpreted as the probability distribution of the outcome

of a measurement for any specific observable. Hence,
the Wehrl entropy cannot be directly interpreted as the
entropy of such a probability distribution.

Here we provide a statistical interoperation for the
Husimi function and the Wehrl entropy. We will demon-
strate that they can still be interpreted as a certain
well-defined probability distribution with a clear physical
meaning, and the corresponding entropy, respectively.

We begin from the single-particle case (N = 1). Con-
sider the following thought experiment: Assume there
are m copies c(1), c(2), ..., c(m) of the spin-1/2 particle,
with each one being in the same state ρ̂. In addition,
the experimenter generates m independent random unit
vectors u(1),u(2), ...,u(m) from the unit sphere S2. Ex-
plicitly, the probability densities of these vectors in S2

are all 1/(4π), and are independent of each other. Then
the experimenter performs the following m steps: In the
η-th step (η = 1, ...,m), the experimenter measures the
Pauli operator vector σ̂ along the direction u(η) (i.e., the
observable σ̂ · u(η)) for the copy c(η). If and only if the
outcome of this measurement is +1, the experimenter
notes down the direction u(η) in a notebook. In Fig. 1
we schematically illustrate these m steps.

We consider the cases where m is very large, and as-
sume that when all these m steps are finished, there are
D directions noted down in the notebook. Then, the
following question arises:

Question: What is the distribution of the directions
noted down in the notebook? In another word, for a
given direction n ∈ S2, how many directions, among the
D ones in the notebook, are in a small solid angle ∆Ω
around n?

This question can be answered as follows:
Answer: Denote the answer to the above question

(i.e., the number of directions in the region described
above) as N (n). Since a direction can be noted down
in the notebook if and only if the outcome of the cor-
responding measurement is +1, the answer to the above
question can be expressed as:

N (n) = DP
(
n
∣∣+ 1

)
∆Ω. (9)

Here P
(
n
∣∣+ 1

)
is a conditional probability density, i.e.,

the probability density of a randomly-chosen direction
being n, under the condition that the outcome of the
measurement of the σ̂-operator along that direction is
+1.

Moreover, according to Bayes’ theorem, we have

P
(
n
∣∣+ 1

)
=

P
(
+1

∣∣n)
P (+1)

P (n) . (10)

Here P (n) = 1/(4π) is the probability density of a
randomly-chosen direction being n, P (+1|n) is the prob-
ability that outcome of the measurement of the σ-
operator along this random-chosen direction is +1 and
can be expressed as

P
(
+1

∣∣n) = ⟨n|ρ̂|n⟩, (11)
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and P(+1) =
´
dn′P(+1

∣∣n′)P(n′).
Since both P (n) and P (+1) are independent of n,

Eqs. (10, 11) yield that P
(
n
∣∣+ 1

)
= Z⟨n|ρ̂|n⟩, with

the constant Z being determined by the normalization
condition

´
dnP

(
n
∣∣+ 1

)
= 1. Direct calculation gives

Z = 1/(2π). Therefore, we finally obtain P
(
n
∣∣+ 1

)
=

⟨n|ρ̂|n⟩/(2π), or

P
(
n
∣∣+ 1

)
= PH(ρ̂;n). (12)

Substituting this result into Eq. (9), we find that the
amount of the noted-down directions in the small solid
angle ∆Ω among n is:

N (n) = DPH(ρ̂;n)∆Ω. (13)

That is the answer to the question.
From the above discussion, we know that the Husimi

function PH(ρ̂;n) can be interpreted as the conditional
probability density P

(
n
∣∣+ 1

)
. Moreover, in the above

thought experiment with m → ∞, we can consider the
directions noted down in the notebook as an ensemble of
directions in S2, and the probability distribution corre-
sponding to this ensemble is just PH(ρ̂;n).
The above discussions can be straightforwardly gener-

alized to the multi-particle (N > 1) cases. In the though
experiment of these cases, each copy c(η) (η = 1, ...,m) in-
cludes N particles, and every copy has the same N -body
density operator ρ̂. In addition, each u(η) (η = 1, ...,m)
is randomly selected from S2⊗N , and includes N compo-

nent with each one being in S2, i.e., u(η) ≡ (u
(η)
1 , ...,u

(η)
N )

with u
(η)
j ∈ S2 (j = 1, ..., N). As before, the thought ex-

periment includes m steps of measurement and noting.
Nevertheless, now in the η-th step (η = 1, . . . ,m), the
experimenter needs to measure N observables, i.e., mea-

sure the value of σ̂ · u(η)
j of the j-th particle of the copy

c(η), for all j = 1, ..., N . The experimenter notes down
u(η) in the notebook if and only if the outcomes of these
N measurements are all +1.

As in the single-particle case, here we can still prove the
relation of Eq. (12), while now n ≡ (n1, ...,nN ) ∈ S2⊗N ,
with nj ∈ S2 (j = 1, ..., N). Therefore, for arbitrary par-
ticle number N , the Husimi function PH(ρ̂;n) can always
be interpreted as P

(
n
∣∣+ 1

)
, i.e., the probability density

of a randomly-chosen element of S2⊗N being n, under
the condition that the outcomes of the measurements of
σ̂ · nj of the particle j for each particle j (j = 1, ..., N)
are all +1. Clearly, it is also the distribution of the u-
vecotrs noted down in the thought experiment in the limit
m→ ∞.

Furthermore, according to the above statistical inter-
pretation of the Husimi function PH(ρ̂;n), the Wehrl en-
tropy can be interpreted as the entropy corresponding to
the conditional probability density P

(
n
∣∣+ 1

)
of our sys-

tem, or the entropy corresponding to the distribution of
the u-vecotrs noted down in the thought experiment, in
the limit that there are infinity copies.

So far we have obtained the statistical interoperation
of the Husimi function and Wehrl entropy of the of N

quantum spin-1/2 particles. In Appendies A and B,
we explore the classical correspondence of the above in-
terpretation of the Wehrl entropy of spin-1/2 particles.
Precisely speaking, spin-1/2 particles constitute a pure
quantum system and do not have exact classical corre-
spondences. Nevertheless, as described in Appendix A,
precessing symmetric spinning tops can be viewed as a
classical analogy of spin-1/2 particles. By calculating the
related probabilities, we demonstrate that in this anal-
ogy, that in this analogy the Wehrl entropy of N quan-
tum spin-1/2 particles corresponds the Gibbs entropy of
N such classical tops.

IV. PROPERTIES OF THE WEHRL ENTROPY

In Appendix C we present and prove some properties
of the Wehrl entropy and the Husimi function of N spin-
1/2 particles. Here we introduce two ones of them, which
will be utilized in the subsequent sections.
Property 1: For all N -particle density operators ρ̂,

the Wehrl entropy per particle (i.e., SW /N) satisfies

SW (ρ̂)

N
≤ ΛU , (14)

with

ΛU ≡ ln(4π) ≈ 2.5310. (15)

The equality in Eq. (14) is satisfied when the system is in

the state ρ̂ =
⊗N

j=1(Îj/2), where Îj (j = 1, ..., N) is the
identity operator for particle j. This state is commonly
referred to as the “maximum mixed state”.
Property 2: The Wehrl entropy SW (ρ̂) is invariant

under any local unitary transformation. Explicitly, if

ρ̂′ = Uρ̂U† where U =
⊗N

j=1 Uj and Uj (j = 1, ..., N)
is a unitary transformation acting on particle j, then
SW (ρ̂) = SW (ρ̂′). This property implies that the Wehrl
entropy is strongly related to quantum entanglement.

V. WEHRL ENTROPY AND ENTANGLEMENT

In this section we focus on the Wehrl entropy of N -
body pure states, i.e., SW (|ψ⟩⟨ψ|), and investigate the
relationship between the Wehrl entropy and quantum en-
tanglement.

A. Wehrl Entropy of Completely Separable Pure
States

We first consider the cases where |ψ⟩ is a N -body com-
pletely separable pure state, i.e., a direct product of pure
states of each particle. Since the spin of each particle is
1/2, such a state is definitely an S2⊗N spin-coherent state
|n⟩ defined in Eq. (1).
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FIG. 2. The Wehrl entropy per particle of a two-body pure
state |ψ⟩ (black solid line) and the degree of entanglement
SV (|ψ⟩) (blue dashed line), as a functions of the parameter λ
defined in Sec. VB. We also indicate the Wehrl entropy per
particle of the completely separable pure state and maximum
mixed state, i.e., ΛU and ΛL.

As shown in the above section, SW (ρ̂) is invariant un-
der any local unitary transformation. On the other hand,
every two completely separable states can be related via
a local unitary transformation. Therefore, all the com-
pletely separable states have the same Wehrl entropy.
Explicitly, the direct calculations yield that

SW (|n⟩⟨n|)
N

= ΛL, ∀n ∈ S2⊗N , (16)

with

ΛL ≡ 1

2
+ ln(2π) ≈ 2.3379. (17)

B. Wehrl Entropy of Two-Body Entangled States

Using the Schmidt-decomposition technique, one can
prove that each pure state |ψ⟩ of two particles 1 and 2
can always be written as |ψ⟩ = U1 ⊗ U2|φ⟩, where Uj

(j = 1, 2) is a unitary transformation acting on particle
j, and

|φ⟩ =
√
1− λ| ↑⟩1| ↑⟩2 +

√
λ| ↓⟩1| ↓⟩2. (18)

Here λ ∈ [0, 1/2] is the smaller one of the two eigen-
values of the reduced density operator of particle 1, and

| ↑ (↓)⟩j (j = 1, 2) is the eigen-state of σ̂
(j)
z with eigen-

value +1(−1). Notice that the degree of entanglement
of state |ψ⟩ is characterized by the von Neuman entropy
of ρ̂1, i.e., SV (|ψ⟩⟨ψ|) ≡ −λ lnλ− (1− λ) ln(1− λ). For
instance, |ψ⟩ is a separable state when λ = 0 (SV = 0),
and is a maximum entanglement state (Bell state) when
λ = 1/2 (SV = ln 2).

As demonstrated in Sec. IV, the Wehrl entropy is in-
variable under local transformations. Due to this fact,

we have SW (|ψ⟩⟨ψ|) = SW (|φ⟩⟨φ|), and thus SW (|ψ⟩⟨ψ|)
is a function of the parameter λ. In Fig. 2 we illustrate
the Wehrl entropy per particle SW (|ψ⟩⟨ψ|)/N (N = 2)
and the entanglement degree SV (|ψ⟩⟨ψ|) as functions of
λ. It is shown that SW (|ψ⟩⟨ψ|)/N increases with λ or
SV (|ψ⟩⟨ψ|). Therefore, the Wehrl entropy of a two-body
pure entangled state is larger than the one of a separa-
ble state, and for all two-body pure states, the maximum
entangled states (i.e., the Bell states) have the largest
Wehrl entropy.

C. Wehrl Entropy of Multi-Particle Entangled
States

Now we study the relationship between the Wehrl
entropy and the entanglement of pure states of multi
(N ≥ 3) spin-1/2 particles. Unfortunately, even up to
a local unitary transformation, one cannot express an ar-
bitrary pure state of these particles in a simple form like
Eq. (18), which has only one parameters. As a result,
we cannot investigate the Wehrl entropy of every pure
states, as done above for the two-particle systems. Al-
ternatively, we numerically calculate the Wehrl entropy
for the entangled states of some typical types.

We numerically calculate the Wehrl entropy for the
following states (In the following the symbol |s1, s2,...,sN ⟩
(s1, s2, ..., sN =↑, ↓) indicates the completely separable
pure state |s1⟩1 ⊗ |s2⟩2 ⊗ ...⊗ |sN ⟩N ):

• GHZ state:

|GHZ⟩ ≡ 1√
2

[
| ↑, ↑, ..., ↑⟩+ | ↓, ↓, ..., ↓⟩

]
. (19)

• W state:

|W⟩ ≡ 1√
N

[
| ↓, ↑, ↑, ..., ↑⟩+ | ↑, ↓, ↑, ..., ↑⟩

+ ...+ | ↑, ↑, ..., ↑, ↓⟩
]
. (20)

• p-Bell state: the product-Bell state which is only
defined only for even N , i.e.,

|p-Bell⟩ ≡⊗
j=1,3,...,N−1

(| ↑⟩j | ↑⟩j+1 + | ↓⟩j | ↓⟩j+1) /
√
2. (21)

• R1-state: the state with equal amplitude and ran-
dom sign, i.e.,

|R1⟩ ≡
1√
2N

∑
s1,s2,...,sN=↑,↓

(−1)ξs1,s2,...,sN |s1, s2, ..., sN ⟩,

(22)

where ξs1,s2,...,sN (sj =↑, ↓; j = 1, ..., N) are 2N in-
dependent random coefficients, with each one tak-
ing values 0 or 1 with equal probabilities.
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states, and ⟨⟨SW /N⟩⟩ for the R1, R2 and R3 states. The error bars indicates δMC of the the GHZ and W states and δtot of
the R1, R2 and R3 states. We also show the analytical result of the Wehrl entropy per particle of the p-Bell states without
error bar. The Wehrl entropy per particle of the completely separable pure state and maximum mixed state, i.e., ΛU and ΛL,
respectively, are also shown as dashed lines. For more details, see Sec. VC.

• R2-state: the state with “equal amplitude and
random phase”, i.e.,

|R2⟩ ≡
1√
2N

∑
s1,s2,...,sN=↑,↓

|s1, s2, ..., sN ⟩e−iϕs1,s2,...,sN ,

(23)

where ϕs1,s2,...,sN (sj =↑, ↓; j = 1, ..., N) are 2N

independent random angles, with each one taking
values in the region [0, 2π) with constant proba-
bilistic density 1/(2π).

• R3-state: the “totally-random” state, i.e.,

|R3⟩ ≡
1

Z

∑
s1,s2,...,sN=↑,↓

Cs1,s2,...,sN |s1, s2, ..., sN ⟩e−iϕs1,s2,...,sN ,

(24)

where Cs1,s2,...,sN and ϕs1,s2,...,sN (sj =↑, ↓; j =
1, ..., N) are 2N independent random positive num-
bers and independent random angles, respectively.
Explicitly, each Cs1,s2,...,sN taking values in the re-
gion [0, 1] with constant probabilistic density 1,
and each ϕs1,s2,...,sN taking values in the region
[0, 2π) with constant probabilistic density 1/(2π),

and Z =
√∑

s1,s2,...,sN=↑,↓ C
2
s1,s2,...,sN .

We analytically calculate the Wehrl entropy for the
p-Bell states, and numerically calculate those for other

states by performing the integration in Eq. (8) using the
Monte Carlo method, for 2 ≤ N ≤ 20. Explicitly, for
the GHZ and W states, we perform the integration for
ten times for each particle number N , and then derive
the average value ⟨SW /N⟩ as well as the standard devi-
ation δMC. For the R1, R2 and R3 states, for each N
we first generate five samples of the random parameters
in the definitions of these states (i.e., the ξ-, C- and ϕ-
parameters). For each state with respective to a certain
sample, we calculate ⟨SW /N⟩ and δMC as above. We
further derive the average value and the standard devia-
tion of ⟨SW /N⟩ of these five states, which are denoted as
⟨⟨SW /N⟩⟩ and δR, respectively. Additionally, we define
δtot ≡ δR + δmax

MC , where δmax
MC is the maximum value of

δMC these five states.

In Fig. 3 we show the Wehrl entropy per particle ob-
tained from the above calculations as functions of N . Ex-
plicitly, we illustrate {⟨SW /N⟩, δMC} for the GHZ and W
states, and illustrate {⟨⟨SW /N⟩⟩, δtot} for the R1, R2 and
R3 states. The analytical results of SW /N for the p-Bell
states is also shown in this figure.

In addition to the aforementioned states, we also cal-
culate the Wehrl entropy of the time-dependent states
|ψ(t)⟩ governed by the time-dependent Schrödinger equa-
tion of some models listed in Appendix D.

From the these calculations, we obtain the following
understandings for the Wehrl entropy of multi-particle
entangled pure states:
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FIG. 4. Solid line with error bars: the Wehrl entropy per
particle of the GHZ states, which are given by our numerical
calculation (i.e., the results shown in Fig. 3). Dashed line:
(ln 2)/N + ΛL.

(a) The lower and upper bounds of Wehrl entropy

As shown in Fig. 3, the Wehrl entropy per particle of
all the states of types (i-v) are larger than the one of the
completely separable pure states, i.e., ΛL. The same is
true for the Wehrl entropy per particle of we obtained
for the states of Appendix D. These results consist with
the conjecture of A. Sugita [14], which yields that for our
system the Wehrl entropy takes the minimum value for
the spin coherent states.

According to this conjecture, ΛL is the lower bound of
the Wehrl entropy per particle of all density operators.
This result, together with the property shown in Eq. (14),
further leads to

ΛL ≤ SW (ρ̂)

N
≤ ΛU , for ∀ρ̂. (25)

(b) Wehrl entropy and entanglement complexity of
multi-particle pure states

As shown in Fig. 3, when the particle number N is
large enough (N ≳ 10.) the Wehrl entropy per particle
of the the R1, R2 or R3 states, which are almost same,
are significantly larger than the ones of the GHZ or W
states. On the other hand, we notice that there is big dif-
ference between the R1/R2/R3 states and the GHZ/W
states: the former ones are very chaotic (complicated)
while the latter ones are very regular (simple). Explic-
itly, the R1/R2/R3 states include 2N terms with very
random coefficients, while the GHZ or W states only in-
clude 2 or N terms with equal coefficients. Thus, the
Wehrl entropy is larger when |ψ⟩ is entangled more com-
plicated. Moreover, since the Wehrl entropy is invariant
under local unitary transformations (the property 2 of
Sec. IV), for pure states it is only determined by the en-
tanglement. Therefore, one can use the Wehrl entropy
per particle as a quantitative description of the entan-

lim
!→#

𝑆$
𝑁

= Λ!

= Λ"

between 
Λ" and Λ!

e.g., R1, R2, R3

e.g., GHZ, W

e.g., p-Bell

with very high entanglement complexity 
(very chaotically entangled)

with very low entanglement complexity 
(very regularly entangled)

FIG. 5. The three types of behaviors of limN→∞ SW /N of
many-body pure states. The yellow rectangles with connected
discs are just schematic diagrams for the entanglement com-
plexity of the the states of each type. The detailed discussions
are given in Sec. VC.

glement complexity of N -body pure states of spin-1/2
particles.
Furthermore, in the calculation of the Wehrl entropy,

one does not require to divide the system into two subsys-
tems. This is a big difference between the Wehrl entropy
and some other descriptions of the entanglement com-
plexity of a multi-particle system, e.g., the entanglement
entropy between a subsystem and the other particles.
As mentioned above, we calculate the Wehrl entropy

of the time-dependent states |ψ(t)⟩ of the models in Ap-
pendix D. Our results show that when N ≥ 10 the Wehrl
entropy per particle of all these states are below or equal
to the ones of the R1/R2/R3 states.

(c) Behaviors of Wehrl entropy in the limit N → ∞

Fig. 3 shows that when the particle number N is large,
the Wehrl entropy per particle of the R1, R2 and R3
states increase with N , while the one of the ones of
GHZ/W states decrease with N . We numerically fit the
results of these states with N ≥ 16 as functions of N , and
find that within the error bar of the fitting, in the limit
N → ∞ the Wehrl entropy per particle of the R1/R2/R3
states and the ones of the GHZ/W states tend ΛU and
ΛL, respectively. The details of the fitting results are
shown in the footnote [16].
Due to these results, we conjecture that

limN→∞ SW /N = ΛL for the GHZ/W states, and
limN→∞ SW /N = ΛU for the R1/R2/R3 states. More-
over, in Appendix E we performs rough analysis which
supports the above conjectures for the GHZ and R1/R2
states. Additionally, this analysis also show that for
GHZ state we have SW (ρ̂)/N ≈ (ln 2)/N + ΛL for the
large-N cases. As shown in Fig. 4, this approximate
expression agrees well with our numerical results when
N ≳ 16. Moreover, it can be directly proved that the
Wehrl entropy per particle of the p-Bell states is a
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N -dependent constant (approximately 2.43) between ΛL

and ΛN , as shown in Fig. 3.
Therefore, the multi-particle entangled pure states of

our system can be classified into three types, according
to the behaviors of SW /N (Fig. 5), i.e., the states with:

limN→∞
SW

N = ΛU (type I),

ΛL < limN→∞
SW

N < ΛU (type II),

limN→∞
SW

N = ΛL (type III).

Specifically, states of type I (e.g., the R1/R2/R3 states)
exhibit highly chaotic entanglement, resulting in such
a high entanglement complexity that, for N → ∞ the
Wehrl entropy tends towards that of the maximum mixed
state (i.e., the upper bound of the Wehrl entropy for all
density operators). In contrast, the states of type III
(e.g., the GHZ/W states) are entangled very regularly,
so that for N → ∞ the Wehrl entropy tends to the one
of the completely separable pure states (i.e., the lower
bound of the Wehrl entropy for all density operators).
The entanglement complexity of the states of the type II
are between that of the above two types.

VI. SUMMARY AND DISCUSSION

In this work we present a statistical interpretation for
the Wehrl entropy of N spin-1/2 particles, and evalu-
ate the relation between the Wehrl entropy and entan-
glement of quantum pure states. The discussions for the
statistical interpretation and the classical analogy can be
generalized to other systems, including those with contin-
uous variables, and maybe helpful for the understanding
of chaotic behaviors in quantum systems.

Moreover, as shown above, the Wehrl entropy per par-
ticle can be used as a quantitative description for the
entanglement complexity of multi-particle pure states,
without dividing the total system into two or more sub-
systems, and thus would be helpful for the studies of
related many-body problems.

We emphasis that the Wehrl entropy can describe the
entanglement complexity only for the pure states. It
would be very helpful if a description of this complex-
ity of the multi-particle mixed states can be found.
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Appendix A: Classical Correspondence of the
Husimi Function and Wehrl Entropy

In this appendix we study the classical correspondence
of the statistical interpretation of Husimi function and
Wehrl entropy of spin-1/2 particles, which are given in
Sec. III.
As in that section, we begin from the single-particle

(N = 1) case. Precisely speaking, a spin-1/2 particle is a
pure quantum system and does not have exact classical
correspondence. Nevertheless, we can still find “classical
analogies” for this kind of particle, i.e., classical systems
with dynamic equations being equivalent to the Heisen-
berg equations of a spin-1/2 particle.
In Fig 6(a) we present one example of such systems:

a charged axial symmetric top precessing in a homoge-
neous magnetic field. Explicitly, the top is rapidly spin-
ning along its symmetry axis with fixed angular speed ω,
and the center-of-mass of this top is fixed in an inertial
frame of reference. In addition, an electric charge Q is
fixed on the edge of the top, forming an electric current
during the spinning. Due to this current, the top gains a
magnetic moment, and thus is subject to a force moment
from the magnetic field. The precession of this top, i.e.,
the changing of the the direction of the symmetry axis
of the top in the inertial frame of reference, is caused by
this force moment. During the precession, the unit vec-
tor w along the symmetry axis of the top satisfies the
dynamical equation

dw

dt
= Cw ×B, (A1)

where B is the magnetic field and C = QR2/(2I). Here
R is the distance between the charge and the symmetric
axis of the top, and I is the moment of inertia of the
top along this axis. On the other hand, the Hamilto-
nian of a quantum spin-1/2 particle can always be writ-
ten as (up to a constant) a linear combination of Pauli
operators σx,y,z, i.e., HS = ℏ

∑
α=x,y,z fασα. Thus, the

corresponding Heisenberg equation is

dσ̂H

dt
= −2σ̂H × f , (A2)

where σ̂H = (σ̂xH , σ̂yH , σ̂zH) is the time-dependent
Pauli-operator vector in the Heisenberg picture, and
f = (fx, fy, fz). Clearly, this Heisenberg equation is
equivalent to the dynamical equation (A1) of the above
charged spinning top in a magnetic field B = −2f/C.
The above analysis reveals that the charged spinning

top is a classical analogy of a quantum spin-1/2 particle.
The direction vector w ≡ (wx, wy, wz) of the top axis is
just the classical analogy of the Pauli -operator vector
σ̂ ≡ (σ̂x, σ̂y, σ̂z) of the spin-1/2 particle. Furthermore,
as shown in Appendix B, the classical dynamical equa-
tion (A1) of the top can be re-expressed as a Hamiltonian
equation, and the phase space of this system is just the
set of all possible direction vectors of the top axis, coin-
ciding with the unit sphere S2. As a result, the state of
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FIG. 6. (a): A spinning charged top precessing in a homoge-
neous magnetic field, which is a classical analogy of a spin-1/2
particle. Here O is the center-of-mass of the top, and w is the
unit vector along the symmetry axis. Other details are intro-
duced in Appendix A. (b): The identities proven in Secs. III
and Appendix A for the quantum and classical systems, re-
spectively, and the quantum-classical correspondence of the
related functions.

this classical top is described by the phase-space proba-
bility distribution PC(n) with n ∈ S2. Explicitly, PC(n)
represents the probability density of the event that the
symmetry axis of the top is along n, i.e., w = n.
In the discussion in Sec. III, which is for the spin-1/2

quantum particle, we introduced the conditional proba-
bility density P

(
n
∣∣+ 1

)
. Now let us consider the classi-

cal correspondence of P
(
n
∣∣+ 1

)
. As shown above, the

classical correspondence of the σ̂-operator is the sym-
metry axis direction w. Therefore, for a given direc-
tion u ∈ S2, the classical correspondence of the event
σ̂ · u = +1 is the event w · u = 1 or u = w. There-
fore, the classical correspondence of P

(
n
∣∣+ 1

)
is a con-

ditional probability density P
(
u = n

∣∣u = w
)
, which is

defined as the probability that a random direction u be-
ing in a small solid angle ∆Ω around the direction n, un-
der the condition that u = w, is P

(
u = n

∣∣u = w
)
∆Ω.

Clearly, P
(
u = n

∣∣u = w
)
can in principle be measured

via a “classical version” of the thought experiment in
Sec. III [17].

Furthermore, for a charged spinning top with phase-
space distribution function PC(n), the conditional prob-
ability density P

(
u = n

∣∣u = w
)
can be calculated via

Bayes’ theorem as:

P
(
u = n

∣∣u = w
)
=

P
(
u = w

∣∣u = n
)

P (u = w)
P (u = n) ,(A3)

where P (u = n) = 1/(4π) is the probability density of
the random vector u being n, P

(
u = w

∣∣u = n
)
is the

probability density of u = w under the condition that
u = n, and P (u = w) =

´
dn′P

(
u = w

∣∣u = n′)P(u =
n′). Because P (u = n) and P (u = w) are all indepen-
dent of n, Eq. (A3) yields

P
(
u = n

∣∣u = w
)
= ξP

(
u = w

∣∣u = n
)
, (A4)

where ξ is the normalization factor determined by the
condition

´
dnP

(
u = n

∣∣u = w
)
= 1. Furthermore, we

have

P
(
u = w

∣∣u = n
)

= P
(
w = n

∣∣u = n
)

= PC(n), (A5)

where the second equality is due to the fact that
P
(
w = n

∣∣u = n
)
is just the probability density of w =

n, i.e., PC(n). Substituting Eq. (A5) into Eq. (A4), and
using the normalization condition, we finally obtain

P
(
u = n

∣∣u = w
)
= PC(n). (A6)

As shown above, in our quantum-classical analogy
the classical correspondence of P

(
n
∣∣+ 1

)
is a condi-

tional probability density P
(
u = n

∣∣u = w
)
. Addition-

ally, as shown in Sec. III, in the quantum case we have
P
(
n
∣∣+ 1

)
= PH(ρ̂;n). Moreover, Eq. (A6) show that in

the classical side we have P
(
u = n

∣∣u = w
)
= PC(n).

Therefore, the classical correspondence of the Husimi
function PH(ρ̂;n) is the phase-probability distribution
function PC(n) (Fig. 6(b)).
Using the above conclusion and the relationship be-

tween the Wehrl entropy and the Husimi function (i.e.,
Eq. (8)), we further find that the classical analogy of the
Wehrl entropy is −

´
PC(n) ln [PC(n)] dn. This is noth-

ing but the Gibbs entropy of the spinning top because
PC(n) is the phase-space probability distribution func-
tion of this top.

The above discussions can be directly generalized to
the multi-particle cases with N > 1. The classical anal-
ogy of N spin-1/2 particles are N charged spinning tops,
and the N -body phase space is the product S2⊗N of the
N spheres. Similar as above, one can find that the clas-
sical analogy of the Husimi function and Wehrl entropy
of the N quantum particles are the probability distri-
bution of the tops in this N -body phase space and the
corresponding Gibbs entropy, respectively.

Appendix B: The Phase Space of a Charged
Spinning Top

In this appendix we show that the phase space of the
charged spinning top of Appendix A is just the unit
sphere S2.

The canonical coordinate of this top can be chosen
as the azimuth angle φ and the z-component wz of the
direction vector ŵ of the top axis (Fig. 6(a)). Then the
Lagrangian of this system is given by

Ltop = C
[
Bzwz+Bx

√
1− w2

z cosφ+By

√
1− w2

z sinφ
]

+φ̇wz. (B1)

It can be straightforwardly proven that the Lagrangian
equaitons

d

dt

(
∂Ltop

∂φ̇

)
− ∂Ltop

∂φ
= 0; (B2)

d

dt

(
∂Ltop

∂ẇz

)
− ∂Ltop

∂wz
= 0, (B3)
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are equivalent to the classical dynamical equation (A1)
of this top, and the x and y components wx,y of the direc-
tion vector ŵ are functions of the canonical coordinates,
i.e., wx =

√
1− w2

z cosφ and wy =
√

1− w2
z sinφ.

Moreover, the canonical momentums pφ and pw of our
system are canonical coordinates

pφ =
∂Ltop

∂φ̇
= wz; (B4)

pwz =
∂Ltop

∂ẇz
= 0. (B5)

Therefore, although there are two canonical coordinates,
the phase space of our system two-dimensional, rather
than four-dimensional. Explicitly, this phase space is the
space of (φ,wz), with φ ∈ [0, 2π) and wz ∈ [−1, 1]. In
addition, the measurement (area element) of this phase
space is dφdwz. It is clear that this phase space is equiv-
alent to the unit sphere S2 with azimuth angle being φ
and polar angle being θ ≡ arccoswz = arccos pφ, i.e.,
the set of all possible direction vectors ŵ. Moreover, the
measurement dφdwz just equals to sin θdθdφ, i.e., the
area element of the S2 sphere.

In the end of this appendix, for reference, we provide
the Hamiltonian of this charged spinning top:

Htop

= −C
[
Bzpφ +Bx

√
1− p2φ cosφ+By

√
1− p2φ sinφ

]
.

(B6)

Appendix C: Properties of the Wehrl Entropy and
Husimi Function

In this appendix, we demonstrate and prove some
properties of the Husimi function and the Wehrl entropy
of N spin-1/2 particles, including but not limited to the
two ones presented in Sec. IV.

1. Invariance of the Wehrl Entropy Under Local
Unitary Transformations

We first prove the “property 2” of Sec. IV, i.e., the
Wehrl entropy SW (ρ̂) is invariable under any local uni-
tary transformation. Explicitly, if two density operators

ρ̂ and ρ̂′ satisfy ρ̂′ = Uρ̂U†, where U =
⊗N

j=1 Uj and Uj

(j = 1, ..., N) is a unitary transformation of particle j,
then we have SW (ρ̂) = SW (ρ̂′).
This property can be proved directly with the defini-

tions of the Husimi function and Wehrl entropy. We first
consider the case with N = 1. In this case the Wehrl
entropy of ρ̂′ is

SW (ρ̂′) = −
ˆ
PH(ρ̂′;n) ln

[
PH(ρ̂′;n)

]
dn. (C1)

On the other hand, we have

PH(ρ̂′;n) =
1

(2π)N
⟨n|Uρ̂U†|n⟩

=
1

(2π)N
⟨n′|ρ̂|n′⟩

= PH(ρ̂;n′). (C2)

Here the direction n′ is a function of n, and satisfies

σ̂ · n′ = U†σ̂ · nU. (C3)

Therefore, we have

SW (ρ̂′) = −
ˆ
PH(ρ̂;n′) ln

[
PH(ρ̂;n′)

]
dn. (C4)

Furthermore, the relation (C3) between the unit vec-
tors n′ and n can be written as n′ = RUn, with RU

the rotation on the Bloch sphere, which corresponds to
the unitary transformation U . The results yields that
dn = dn′, i.e., the Jacobi determinant corresponding to
the transformation n → n′ is unit. Combining this fact
and Eq. (C4), we obtain

SW (ρ̂′) = −
ˆ
PH(ρ̂;n′) ln

[
PH(ρ̂;n′)

]
dn′

= SW (ρ̂). (C5)

So far we have proved this property for the single particle
case. The proof for arbitrary particle number N can be
done with the same approach.

2. The Relation Between the Husimi Functions of
the Total System and Subsystems

If the density operator of N spin-1/2 particles is ρ̂,
then the reduced density operator ρ̂sub of a subsystem
including M particles i1, i2, .., iM is

ρ̂sub = Tri/∈{i1,i2,..,iM}ρ̂. (C6)

Here Tri/∈{i1,i2,..,iM} means tracing over the particles ex-
pect i1, i2, .., iM . The Husimi function PH(ρ̂sub;nsub),
with nsub ≡ (ni1 ,ni2 , ...,niM ) ∈ S2⊗M , is related to the
Husimi function PH(ρ̂;n) of all the N -particles via

PH(ρ̂sub;nsub) =

ˆ
PH(ρ̂;n)

∏
i/∈{i1,i2,..,iM}

dni. (C7)

This can be proved directly with the definition of the
Husimi function.

3. The Subadditivity, Monotonicity and Concavity
of the Wehrl Entropy

The N spin-1/2 particles can be separated into
two subsystems A and B, with A including particles
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i1, i2, .., iM and B including other particles. If the den-
sity operators of the N particles is ρ̂, and the reduced
operators of the subsystems A and B are ρ̂A and ρ̂B ,
respectively, then we have

SW (ρ̂) ≤ SW (ρ̂A) + SW (ρ̂B) = SW (ρ̂A ⊗ ρ̂B)

(subadditivity), (C8)

and

SW (ρ̂A), SW (ρ̂B) ≤ SW (ρ̂) (monotonicity). (C9)

Furthermore, if three N -body density operators ρ̂, ρ̂(1)

and ρ̂(2) satisfy ρ̂ = p1ρ̂
(1) + p2ρ̂

(2), with p1,2 > 0 and
p1 + p2 = 1, when we have

SW (ρ̂) ≥ p1SW (ρ̂(1)) + p2SW (ρ̂(2)) (concavity).

(C10)

These results can be proved directly via Eq. (C7) and the
methods used in Ref. [1] (subadditivity and concavity)
and Ref. [7] (monotonicity).

Due to Eq. (C8), for every N -body state ρ̂, we have

SW (ρ̂) ≤
N∑
j=1

SW (ρ̂j), (C11)

with ρ̂j (j = 1, ..., N) being the reduced density operator
of particle j. On the other hand, it can be directly proved
that for a spin-1/2 particle, the Wehrl entropy is at most
ΛU ≡ ln(4π). Using this fact and Eq. (C11), we obtain
the “property 1” of Sec. IV.

Appendix D: Dynamical Models

As mentioned in Sec. VC, we have calculated the
Wehrl entropy of the states |ψ(t)⟩ determined by the
time-dependent Schrödinger equation with the following
Hamiltonians.

(1): The Ising model with Hamiltonian

HIsing ≡ −

N−1∑
j=1

σ(j)
z σ(j+1)

z + σ(N)
z σ(1)

z

 . (D1)

For this model we consider the cases with initial
state

|ψ(t = 0)⟩ =
N⊗
j=1

(| ↑⟩j + | ↓⟩j)/
√
2, (D2)

particle number N = 5, and evolution time t ∈
[0, 40], as well as that with the same initial state
and 2 ≤ N ≤ 14, t ∈ [30, 40].

(2): The XY model with Hamiltonian

HXY ≡ −

{
N−1∑
j=1

[
σ(j)
x σ(j+1)

x + σ(j)
y σ(j+1)

y

]
+

σ(N)
x σ(1)

x + σ(N)
z σ(1)

z

}
. (D3)

The initial states, particle numbers, and evolution
times of the cases we consider for this model are
same as those of the above Ising model.

(3): The Ising model with both a transverse and a lon-
gitudinal field with Hamiltonian

HTLI ≡ HIsing −
N∑
j=1

[
σ(j)
y + σ(j)

z

]
, (D4)

with HIsing being defined in Eq. (D1). The initial
states, particle numbers, and evolution times of the
cases we consider for this model are same as those
of the above Ising model.

(4): The Ising model with both a transverse and a lon-
gitudinal field with Hamiltonian

HTLI ≡ HIsing −
N∑
j=1

[
σ(j)
x + gzσ

(j)
z

]
, (D5)

with HIsing being defined in Eq. (D1) and gz =
0, 0.1, 0.5, 1, 2. For this model we consider the cases
with particle number N = 6, evolution time t ∈
[0, 40] and the initial states being either the one

of Eq. (D2) or |ψ(t = 0)⟩ =
⊗N

j=1 |uj⟩j , where

uj(j = 1, · · · , N) are random directions.

Appendix E: Behaviors of SW /N for N → ∞

In this appendix we provide two rough analysis,
which imply that for the R1 and R2 states we have
limN→∞ SW /N = ΛU , and for the GHZ states we have
limN→∞ SW /N = ΛL and SW /N ≈ (ln 2)/N +ΛL in the
large-N limit.

We first consider the GHZ states defined in Eq. (4).
According to Eq. (6), the Husimi function of this state is
given by

PH(n) =
1

2

{
P

(1)
H (n) + P

(2)
H (n) + P

(3)
H (n) + P

(3)
H (n)∗

}
,

(E1)

where P
(1)
H (n) and P

(2)
H (n) are the Husimi functions of

the states | ↑, ↑, ..., ↑⟩ and | ↓, ↓, ..., ↓⟩, respectively, and

P
(3)
H (n) =

1

(2π)N
⟨n| ↑, ↑, ..., ↑⟩⟨↓, ↓, ..., ↓ |n⟩. (E2)
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Furthermore, the straightforward calculations yield that

P
(1)
H (n) =

N∏
j=1

cos(θj/2)
2

2π
; (E3)

P
(2)
H (n) =

N∏
j=1

sin(θj/2)
2

2π
; (E4)

|P (3)
H (n)| =

N∏
j=1

sin(θj/2) cos(θj/2)

2π
, (E5)

where θj ∈ [0, π] is the polar angle of nj , with n ≡
(n1,n2, ...,nN ), as shown in Sec. II. Eqs (E3-E5) show

that when N → ∞, the functions P
(1)
H (n) and P

(2)
H (n)

significantly at the points with θ1 = θ2 = ... = θN = 0
and θ1 = θ2 = ... = θN = π, respectively. So we sup-

pose that the contributions of P
(1,2)
H (n) to the integral of

the expression (8) of the Wehrl entropy are mainly given
by that of the regions around these two peaking points.

Moreover, the maximum value of |P (3)
H (n)| ((4π)−N )

is much less the peaking values of P
(1,2)
H (n) ((2π)−N ).

Therefore, in the calculation of the Wehrl entropy with

Eq. (8) we totally ignore the contributions from P
(3)
H (n).

The similar analysis yields that in this calculation one

can also also ignore P
(1)
H (n) in the regions around the

peaking point of P
(2)
H (n), and vice versa. Thus, in the

limit N → ∞ the Wehrl entropy of the GHZ states is

SW (ρ̂) ≈ −1

2

ˆ
P

(1)
H (ρ̂;n) ln

[
P

(1)
H (ρ̂;n)/2

]
dn

−1

2

ˆ
P

(2)
H (ρ̂;n) ln

[
P

(2)
H (ρ̂;n)/2

]
dn

= ln 2 + ΛLN, (E6)

which yields limN→∞ SW (ρ̂)/N = ΛL and SW /N ≈
(ln 2)/N + ΛL in the large-N limit.
Now we consider the R2 states defined in Sec. VC.

The density operator ρ̂ = |R2⟩⟨R2| of this state
can be expressed as a density matrix in the basis
{|s1, s2, ..., sN ⟩, s1, s2, ..., sN =↑, ↓} the density operator
ρ̂ = |R2⟩⟨R2|. The diagonal elements of this density
matrix are all 1/2N . The norm of the non-diagonal ele-
ments are also 1/2N , but the complex phases of the non-
diagonal elements are very random when N → ∞, due
to the random phases ϕs1,s2,...,sN in the expression (24)
of this state. On the other hand, in the calculations
of the Wehrl entropy with Eq. (8), there are summa-
tions for the these non-diagonal matrix elements. Due
to these random phases we suppose that these summa-
tions can be ignored in the limit N → ∞, and thus
in the calculation of the Wehrl entropy one can only
keep the diagonal elements of the density matrix, i.e.,
make the approximation SW (ρ̂) ≈ SW (ρ̂′), with ρ̂′ =∑

s1,s2,...,sN=↑,↓ |s1, s2, ..., sN ⟩⟨s1, s2, ..., sN |/(2π)N/2. It

is clear that ρ̂′ is just the density operator of the max-

imum mixed state, i.e., ρ̂ =
⊗N

j=1(Îj/2), where Îj
(j = 1, ..., N) is the identity operator for particle j. Thus,
we have SW (ρ̂)/N ≈ ΛU .
Moreover, an analysis similar to above also implies that

SW (ρ̂)/N ≈ ΛU for the R1 states.
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If the outcome is +1, then experimenter denote the di-
rection û(η) in the notebook. Now the question is, after
all the measurements, the number of the denoted direc-

tions in a small solid angle ∆Ω around direction n is
D∆ΩP

(
u = n

∣∣w = u
)
, with D being the total number

of all the denoted directions.
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