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We study analytically the ordering kinetics of the two-dimensional long-range voter model on
a two-dimensional lattice, where agents on each vertex take the opinion of others at distance r
with probability P (r) ∝ r−α. The model is characterized by different regimes, as α is varied. For
α > 4 the behaviour is similar to that of the nearest-neighbor model, with the formation of ordered
domains of a typical size growing as L(t) ∝

√
t, until consensus is reached in a time of the order

of N lnN , with N being the number of agents. Dynamical scaling is violated due to an excess
of interfacial sites whose density decays as slowly as ρ(t) ∝ 1/ ln t. Sizable finite-time corrections
are also present, which are absent in the case of nearest-neighbors interactions. For 0 < α ≤ 4
standard scaling is reinstated, and the correlation length increases algebraically as L(t) ∝ t1/z, with
1/z = 2/α for 3 < α < 4 and 1/z = 2/3 for 0 < α < 3. In addition, for α ≤ 3, L(t) depends
on N at any time t > 0. Such coarsening, however, only leads the system to a partially ordered
metastable state where correlations decay algebraically with distance, and whose lifetime diverges
in the N → ∞ limit. In finite systems consensus is reached in a time of order N for any α < 4.

I. INTRODUCTION

The voter model was firstly introduced in the study of genetic correlations [2, 3]. Later on its basic properties were
derived in Refs. [4, 5] and widely studied through the years [4–14], with application to various disciplines [14–19, 21].
The informing idea is quite simple: at each point of a lattice an agent can express one of two possible choices, say
“left” and “right” or, equivalently +1 or −1. Because of the similarity to the Ising model, the term “spins” is also
used for such agents. In the original nearest-neighbor (NN) version, an agent takes the status of a randomly chosen
NN, so that the probability of the spin-flip is proportional to the fraction of opposite NN agents surrounding it. In
arbitrary space dimension, this dynamical rule does not respect detailed balance, and hence the voter model, although
perhaps adequate for the description of some social system and other phenomena, is not fitted to describe, even at
an elementary level, the thermodynamic properties of physical substances such as magnetic materials. However,
regardless of its application domain, the interest in the voter model is mainly due to the fact it can be exactly solved
for every number of space dimensions [9, 10], which is not true for the Ising model. Then, the critical behavior of a
broad variety of models belonging to the universality class of the voter one can be easily determined [22]. Furthermore,
despite the differences between the two models, it has been sometimes argued that the analytical solution of the voter
model could shed some light on the properties of the less tractable Ising one. In a sense, in passing from the latter to
the former we trade detailed balance against exact solubility [8].

Through the years, many variants of the original model have been proposed, in order to adapt it to explain different
situations [19, 23–34]. In particular, in a recent paper [35] the ordering kinetics of the one-dimensional voter model
in the presence of long-range interactions have been analytically studied. There, the interaction probability between
two agents at distance r was taken to be of the form P (r) ∝ r−α. Various regimes of α were analyzed, displaying a
rich and diverse structure. For α > 3 the model behaves as the NN (d = 1) one, with a typical size of the domains
growing as

√
t until consensus is reached. Moreover, the correlation function presents a dynamical scaling behavior,

with corrections at large distances. For smaller α a breaking of scaling was found, and lowering α to α ≤ 2 the
formation of partially ordered stationary states was discovered, similarly to what is known for the mean-field case,
corresponding to α = 0.
Besides the interest in the voter model itself, the case with extended interactions can also be framed into the more

general topic of long-range statistical models far from equilibrium, to which an increasing interest has been devoted
in recent years, concerning phase-ordering kinetics [36–42, 44, 45, 56] and other aspects [46–48].

In this work we extend the analysis of the ordering dynamics of the long-range voter model presented in Ref. [35],
by studying the evolution of the two-dimensional case, where quite different results are observed. A brief summary of
what we find follows. For α > 4 the model’s behaviour is akin to that of the NN model: a correlation length grows as
L(t) ∝

√
t and there are violations of dynamical scaling due to the presence of a large amount of interfacial agents,
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whose number decays as ρ(t) = 1/ ln t. Due to that, the consensus time grows as T ∝ N lnN with the number N of
agents, as in the NN case. In addition, important finite-time corrections can be explicitly computed for x ≡ r/L(t)

larger than x∗ ∝
√
(α− 4) ln t, at variance with the NN case. For α ≤ 4 the system presents non-trivial stationary

states, with the correlations decaying with distance r as r−(4−α) or as r−α for 2 < α ≤ 4 and 0 ≤ α ≤ 2, respectively.
Such stationary state is approached through a coarsening regime with L(t) ∝ t

2
α for 3 ≤ α ≤ 4 and L(t) ∝ t

2
3 for

0 < α < 3. For α ≤ 3, it is also found that L(t) monotonically increases with N at any t > 0 and diverges in the the
thermodynamic limit.

The paper is organized as follows: In Sec. II we define the voter model and derive the evolution equation for the
equal-time correlation function, the fundamental observable from which most of the dynamical properties can be
studied. Then, in the following Secs. III, IV and V, we separately study the kinetics of the model in the α-sectors
α > 4, 2 < α ≤ 4, and 0 ≤ α ≤ 2, where different dynamical properties are found. In Sec. VI we determine
the dependence of the coarsening growing length on the system size. A final discussion and some future research
perspectives are provided in the last Sec. VII.

II. THE MODEL

In the voter model a set of binary variables (spins), assuming the value Si = ±1, is located on a d-dimensional lattice
and interacts with a probability P (ℓ) = 1

Z ℓ−α, where ℓ is the distance between two of them. Z is a normalization
that, for α ≤ d, depends on the number N of spins. In general, distances are non-integer numbers: for instance in
the case of a square lattice in d = 2, r = 1,

√
2, 2, . . .. Hence it is useful to introduce an integer index p, indicating

proximity, such that p = 1 means NN, p = 2 next-NN and so on. Then

Z =
∑
p

np ℓ
−α
p , (1)

where np is the number of lattice sites at proximity p, and ℓp is the distance between two p-neighboring sites. In
Eq. (1) p runs from 1 to the maximum proximity number in the considered lattice. To ease the notation this will
always be implicitly understood in any p-summation, unless differently stated. Regarding np, it is clear that it is a
multiple of 2d and that it is an irregularly increasing function of p, fluctuating around its continuum approximation
np = Ωd−1l

d−1
p , with Ωd being the surface of a unit d-dimensional sphere.

The probability to flip a spin Si is

w(Si) =
1

2N

∑
p

P (ℓp)
∑

|k−i|=ℓp

(1− SiSk) , (2)

where k are the np sites p-neighbors of i. Our aim is to find the correlation functions C(r, t) = ⟨Si(t)Sj(t)⟩, where
r = |i − j| is the distance between the i-th and the j-th sites. Following Ref. [49] one has d

dt ⟨Si1Si2 · · ·Sin⟩ =
−2⟨Si1Si2 · · ·Sin ·

∑n
m=1 w(Sim)⟩ which, for n = 2, provides

d

dt
⟨Si(t)Sj(t)⟩ = −2⟨Si(t)Sj(t)⟩+

∑
p

P (ℓp)

 ∑
|k−i|=ℓp

⟨Sj(t)Sk(t)⟩+
∑

|q−j|=ℓp

⟨Si(t)Sq(t)⟩

 , (3)

where time is measured in units of N elementary moves, i.e. in Monte Carlo steps.
Then, Eq. (4), can be written as

Ċ(r, t) = −2C(r, t) + 2
∑
p

P (ℓp)

np∑
k=1

C([[dk(r, ℓp)]], t) , (4)

where the dot is a time derivative and the double square-brackets indicate that we are using periodic boundary
conditions. In other words, the topology of the system becomes that of a torus, which is obtained by gluing together
the edges of the lattice. This means that

[[n]] =

{
n, if n ∈ D
M(n), if n /∈ D,

(5)

where D is the set of all possible distances on a quarter of the lattice, and M(n) is the shorter distance computed
moving through the boundary. The various distances entering Eq. (4) are sketched in Fig. 1. Let us remark that
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FIG. 1. The points i, j, k and their distances.

Eq. (4) is exact in any d. Its solution in d = 2 will be obtained, by approximating in different ways the sums contained
on the r.h.s., in the following sections.

A dynamical correlation length can be extracted from C as

L(t) =

∑
p np rp C(rp, t)∑
p npC(rp, t)

. (6)

Notice that, generally speaking, L(t) depends on N , however we do not explicitly indicate such dependence to ease
the notation.

In the following we will be interested in the ordering kinetics of the model when it is prepared in a fully disordered
initial condition, i.e. P (Si) =

1
2δSi,1 +

1
2δSi,−1, ∀i, with C(r, t = 0) = δr,0. Typical behaviors of L(t) for such process

on the 2-d square lattice, which will be further commented on in the following sections, can be seen in Fig. (2). This
and the following figures of this article are obtained by numerically solving Eq. (4) and represent, therefore, exact
results (apart, clearly, from numerical and/or discretisation errors) [? ]. Once C(r, t) has been obtained in this way,
L(t) is computed by means of its definition (6). Generally, one sees in Fig. 2 that there is an initial coarsening stage in
which L(t) increases (typically algebraically in time), until saturation to a final value of the order of 102 is attained.
This is a finite-size effect setting-in when L(t) becomes comparable to the system size and, hence, can be pushed to
larger and larger values of L in the thermodynamic limit N → ∞.
In the rest of this article we will study the model introduced insofar, specializing to the two-dimensional case. In

order to do this, we have to separately consider different regimes for α.

III. CASE α > 4

Since Eq. (4) cannot be routinely solved in a simple way, we proceed by guessing the form of the solution and then
verifying the consistency of the assumption at the end of the calculation, benchmarking also with the results of a
numerical integration of the same equation.

For sufficiently large values of α – which will turn out to be α > 4 – we expect a form of C(r, t) analogous to the
one known for the NN model [9]:

C(r, t) =
1

ln t
f

(
r

L(t)

)
, (7)

where L(t) is a function of time to be determined, which reduces to L(t) ∝ t1/2 in the NN case (i.e. for α → ∞).
Substituting the condition (7) into Eq. (4), we get

f(x)

t ln t
+

L̇(t)

L(t)
x f

′
(x) = 2

[
f(x)−

∑
p

P (ℓp)

np∑
k=1

f

(
[[dk(r, ℓp)]]

L(t)

)]
, (8)
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FIG. 2. L(t) is plotted against time on double-logarithmic axes, for different values of α, see legend. System size is N = 3012.
The straight dashed lines are the analytic predictions (16,56,61).

where f ′ means a derivative with respect to x ≡ r/L(t). Notice that the form (7)) implies that the argument x
of the function f tends to become a continuous variable when L(t) increases more and more. So we are allowed to
use a continuum approach with respect to this variable. Enforcing this fact we can Taylor expand the argument of
the sum on the r.h.s. of the above equation around ℓ = 0. We argue now that the expansion can be truncated to
the lowest (significative) order. Heuristically, this is expected if P (ℓ) decays sufficiently fast (which will be shown to
occur for α > 4) to make only the terms with small ℓ relevant. A more precise statement of this concept follows: For
small enough x, i.e. smaller than a certain value x∗ that will be determined later (see Eq.(30), below), the relevant
contribution to the sum on the r.h.s. of Eq. (8) comes from the points dk ≈ r, i.e. for small lp. Indeed, as one can
verify a posteriori (see Eq. (20)), for small r, f vary much less than P which, in turn, decays sufficiently fast as to
make relevant only the contributions produced at small ℓ. We now proceed with the Taylor expansion of f around
ℓ = 0 in the sum. In doing that, the first order term cancels, as it can be seen employing a continuum approximation,
namely replacing the sum on the r.h.s. of Eq. (8) with an integral as

∑
p

P (ℓp)

np∑
k=1

f

(
[[dk(r, ℓp)]]

L(t)

)
→

∫
dℓ ℓ P (ℓ)

∫ 2π

0

dθ f

(
d(r, ℓ, θ)

L(t)

)
, (9)

where θ is the angle between r⃗, namely the segment i− j (see Fig. 1), and ℓ⃗p, namely the segment i− k, and

d(r, ℓ, θ) =
√
r2 + ℓ2 − 2ℓr cos θ ≈ r − ℓ cos θ , (10)

where the last relation holds for ℓ ≪ r. Notice that we have written d(r, ℓ, θ) in Eq. (9), instead of [[d(r, ℓ, θ)]], because
we are working for small d. Therefore, the first order term in the Taylor expansion reads

−f ′(x)

∫
dℓ ℓ2 P (ℓ)

∫ 2π

0

dθ
cos θ

L(t)
= 0 . (11)
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Then, upon Maclaurin expanding f on the r.h.s. of Eq. (8) up to second order in the small quantity ℓ, we arrive at

f(x)

t ln t
+

L̇(t)

L(t)
x f

′
(x) = −

∑
p

P (ℓp)

np∑
k=1

[
f

′′
(x)(dk − r)2 L−2(t) + xf

′
(x)φ2

k

]
, (12)

where φk is the angle between r⃗ and d⃗k, namely the segment j − k (see Fig. 1).
Using the law of sines, it is sinφk = ℓ

dk
sin θk ≃ ℓ

r sin θk, the last passage holding for small ℓ. In the same limit it

is also sinφk ≃ φk, leading to φk ≈ ℓ
r sin θk. Using this fact, Eq. (12) takes the form

f(x)

t ln t
+

L̇(t)

L(t)
x f

′
(x) = −

[
J f

′′
(x) + x−1Kf

′
(x)

]
L−2(t) , (13)

where J ≡
∑

p P (ℓp)
∑

k (dk(r, ℓp)− r)2 and K ≡
∑

p l
2
pP (ℓp)

∑
k sin

2 θk. Since d− r ≈ ℓ cos θ, after Eq. (10), in the
continuum limit

J ≈ K ≈ π

∫
dℓ ℓ3P (ℓ) . (14)

Notice that such expression is only convergent for α > 4, which already suggests that the solution we will arrive at
in this way only holds in that range of α-values.
We now make the ansatz, to be verified a posteriori, that the term f/(t ln t) can be dropped in Eq. (13), because

it is subdominant for large t, yielding

L̇(t)

L(t)
x f

′
(x) = −J

[
f

′′
(x) + x−1f

′
(x)

]
L−2(t) . (15)

The r.h.s does not explicitly depend on time. In order to have the same property on the l.h.s. it must be

L(t) = D t
1
2 . (16)

Then we have that for α > 4 the correlation growth-law is the same as in the NN model [11]. This behavior is clearly
observed for any value of α > 4 in Fig. 2, where data for L(t) have been obtained numerically, as already explained
at the end of Sec. II. Plugging the form (16) in Eq. (15), an equation for f(x) emerges

x2
0

2
f

′′
(x) +

(
x2
0

2x
+ x

)
f

′
(x) = 0 , (17)

with x2
0 ≡ 4J /D2. The solutions are

f(x) = c1E1

[(
x

x0

)2
]
+ c2 , (18)

where E1 is the exponential integral special function [50]. In order to fix the constant, one should impose that the
correlation function (7) goes to 1 when r = 1 (the minimum distance in the lattice) and t ≫ 1, i.e. when x → 0. In
such case we can use that

E1 (z) ∼ −γ − ln z , as z → 0 , (19)

where γ is the Euler–Mascheroni constant. Using this asymptotic result in Eq. (18) and keeping only the dominant
term for large times, one has c1 = 1. Moreover, imposing that C(r) → 0 when r → ∞, c2 = 0 is also determined.
Therefore

f(x) = E1

[(
x

x0

)2
]
. (20)

Let us remind that the solution obtained for C(r, t), given in Eq. (7), with f(x) and L(t) given in Eqs. (20) and (16),
respectively, is only valid for small values of x, namely for x < x∗. As we will show at the end of this section, x∗ is a
weakly increasing function of time (see Eq. (30)).
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The above determinations are compared with the outcome of the numerical solution of Eq. (4) in Fig. 3, for α = 5.
Because of the form (7), one should find data-collapse of the curves at different times (corresponding to different colors
in the figure) by plotting ln t · C(r, t) against x = r/L(t). This is the kind of plot presented in the main part of the
figure, where L(t) has been extracted from C(r, t) by means of Eq. (6). A good data-collapse can be appreciated, at
sufficiently long times, in the small-x sector, for x < x∗, where x∗ can be located where the master-curve f(x) changes
its shape from concave to straight, in this double logarithmic plot. The quality of the data collapse is poorer for short
times, but it constantly improves as time elapses. The concavity of f(x) in the region x < x∗ signals that the decay
is faster than any power, as indeed our analytical form (20) implies. Actually, in the figure, with gray circles we also
plot the scaling function in Eq. (18), where c1 = 0.55, c2 = 0, x0 = 1.65 have been used as fitting parameters. This
form interpolates the data for x < x∗ very well. The fact that we have to use c1 < 1 to superimpose the curve to the
data is probably due to the fact that the analytical determination c1 = 1, c2 = 0 is only correct in the very large-time
limit when x∗(t) ≫ 1, as we will comment further below. The form of C(r, t) for x > x∗ will be investigated later,
and we will discuss this part of the figure in due time, and the inset as well.

10-2 10-1 100 101 102

r/L(t)

10-9

10-6

10-3

100

ln
 t 

. C
(r

,t)

t=10
t=20
t=40
t=70
t=100
t=200
t=400
t=700
t=1000

10-1 100 101 102
r/t2/α

10-8

10-6

10-4

10-2

100

C
(r

,t)

x-α

FIG. 3. ln t · C(r, t) is plotted against r/L(t) for α = 5 at different times (see legend), in a log-log plot. The number of agents
is N = 3012. The heavy gray circles are the form (18) with fitting parameters c1 = 0.55, c2 = 0, x0 = 1.65. In the inset we

plot C(r, t) against x = r/t2/α, still with double logarithmic scales. The green dashed-line is the form x−α of Eq. (27), with
x = r/Λ(t).

The form (7) implies a breakdown of standard dynamical scaling [51–53] (i.e., a scaling as in Eq. (47)), due to
the presence of the logarithmic factor. As in the NN case, this is due to the building-up of thick interfaces around
correlated regions of size L(t). In order to see this, we now compute the density of interfaces ρ(t), which is related to
the correlation function between agents at unitary distance as

ρ(t) =
1

2
[1− C(r = 1, t)] . (21)

In our case

ρ(t) =

[
1− 1

ln t
E1

(
1

x2
0L

2(t)

)]
. (22)
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For large t, again using Eq. (19), one gets

ρ(t) ∼
γ − ln

(
x2
0D

)
ln t

. (23)

Hence the amount of interfaces vanishes only logarithmically, whereas correlated regions grow algebraically as in
Eq. (16), similarly to what observed in the NN model [10, 22].

As we commented already, the solution obtained thus far, based on a Maclaurin expansion for small ℓ, is only valid
for sufficiently small values of r, namely for x < x∗. In the following, we determine the form of C(r, t) in the large-r
domain, which will be found to be quite different, as can also be appreciated in Fig. 3. This will also allow us to
determine x∗. For large r, the sum on the r.h.s of Eq.(4) is dominated by the contributions at k ≈ j, i.e. for dk ≈ 0,
namely ℓ ≈ r and θ ≈ 0. The first term on the r.h.s. is subdominant and can be discarded, so, going again in the
continuum, and using the small argument expansion (19) one has

Ċ(r, t) ≈ −2
P (r)

ln t

∫
dℓdθ ℓ

[
γ + ln

(
d2(r, ℓ, θ)

x2
0L

2(t)

)]
≈ −2

P (r)

ln t

∫
dℓdθ ℓ ln

(
d2(r, ℓ, θ)

x2
0L

2(t)

)
, (24)

where, in the last passage, we have dropped sub-dominant terms for large t. The approximation (19) is correct up to
z ≲ 1, namely for d ≲ x0L(t). Since in the above approximation d ≈ rθ ≈ ℓθ, we can integrate up to ℓ ≈ x0L(t). By
evaluating the integral and retaining the dominant term for large L(t) one gets

Ċ(r, t) ∝ P (r)x2
0L

2(t) . (25)

Integrating the differential equation yields

C(r, t) ∝ P (r)x2
0 t

2 , (26)

and then one has a scaling form

C(r, t) ∝
(

r

Λ(t)

)−α

, (27)

with

Λ(t) ∝ x
4/α
0 t2/α. (28)

Notice that for x > x∗, C turns from the fast decay of Eq. (20) to a slower algebraic decrease, as it can be appreciated
in Fig. 3. Moreover, the reference length changes from L(t) ∝ t1/2 to the slower one Λ(t) ∝ t2/α. This can also be
seen in Fig. 3, because a good data collapse in the region x > x∗ is only obtained by plotting C(r, t) against r/t2/α,
as done in the inset. By the way, in this figure one can also observe some lattice effects in the form of small ripples at
large r. This is because, on the square lattice, periodic boundary conditions have a different effect moving along one
of the two easy-axis or in different directions (the boundary is met sooner upon proceeding along the easy axes with
respect to going, say, along a diagonal). Clearly, this fact deteriorates the data collapse. However this effect is pushed
to smaller and smaller values of the correlation as the thermodynamic limit N → ∞ is taken. Notice also that, with
the rescaling presented in the inset, the collapse at x < x∗ is definitely worse than the one obtained in the main part
of the figure. This effect can be magnified upon increasing α, since the difference between the growth-exponent of
L(t) and of Λ(t) increases. We do not show this here.

The actual value of x∗ can be obtained by matching the two forms of C in the large and small r sectors. Using the
asymptotic form [50] of E1

E1(z) ≈ e−z

z
, (29)

we find

x∗(t) ∝
√

(α− 4) ln t . (30)

As t → ∞, x∗ → ∞. This justifies the fact that we could take the limit x → ∞ to fix the boundary conditions in
Eq. (18) despite the fact that x < x∗ in that case. Notice that x∗ → 0 for α → 4, implying again that all the above
ceases to be valid for α ≤ 4. This case will be considered in Sec. IV.
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A. Consensus time

We conclude this section by computing the consensus time T , namely the time needed to reach a fully ordered
configuration. When this happens, it must be C(r, t) ≡ 1, hence we use the criterion

∑
p=0

np∑
k=1

C([[dk(r, ℓp)]], t = T ) =
∑
p=0

np∑
k=1

1 = N (31)

to determine T , similarly to what is done in [9]. Notice that in Eq. (31) the summations start from p = 0, differently
from elsewhere. Resorting again to the continuum approximation, transforming the sum into integrals we have

2π

∫ L

0

dr r C(r, T ) = N , (32)

where

L ∝
√
N (33)

is proportional to the linear size of the lattice. In Eq. (31) we can send to ∞ the upper integration limit, because C

is integrable, according to the expressions (7,20). One has
∫ L
0
dr r C(r, T ) ∝ L(T )2/ lnT , and hence

T ∝ N lnN, (34)

to leading order, as in the NN model [9].

IV. CASE 2 < α ≤ 4

A. Stationary states without consensus

The NN voter model is impacted by the presence of metastable stationary states without consensus in d ≥ 3 [4, 5, 10],
whose lifetime diverges in the thermodynamic limit N → ∞. The same feature [35] is found in the d = 1 model with
the same type of long-range interactions we are considering here, for α ≤ 2. We show below that stationary states
with similar characteristics are found also in the present 2d case, but now for α ≤ 4. Starting with the case 2 < α ≤ 4,
it is not difficult to get convinced that the state with correlation function

Cstat(r) ∝ r−(4−α) for r ≫ 1, (35)

is stable for N → ∞. According to Eq.(4), letting the l.h.s. equal to zero, this function should obey

Cstat(r) =
∑
p

P (ℓp)

np∑
k=1

Cstat([[dk(r, ℓp)]]) . (36)

Moving to the continuum approximation one has

Cstat(r) ≃
∫ r

1

dℓ

∫
dθ ℓ P (ℓ)Cstat(d(r, ℓ, θ)) +

∫ L

r

dℓ

∫
dθ ℓ P (ℓ)Cstat(d(r, ℓ, θ) . (37)

Since for r ≫ 1 Eq. (35) holds, while C(0) ≡ 1, we can use the interpolating form

Cstat(r) ≃ (1 + κr)−(4−α) (38)

in the integral, where κ is a constant, thus having

Z Cstat(r) ≃
∫ r

1

dℓ

∫
dθ ℓ1−α

[
1 + κ

√
r2 + ℓ2 − 2ℓr cos θ

]−(4−α)

+

∫ L

r

dℓ

∫
dθ ℓ1−α

[
1 + κ

√
r2 + ℓ2 − 2ℓr cos θ

]−(4−α)

, (39)
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where we used Eq. (10). The integrals are dominated by the region θ ≃ 0, because at this angle there is a peak of the
integrands at ℓ = r. Letting θ = 0 in the integrands, one arrives at

Z Cstat(r) ≃ 2π

∫ r

1

dℓ ℓ1−α[1 + κ(r − ℓ)]−(4−α) + 2π

∫ L

r

dℓ ℓ1−α[1 + κ(ℓ− r)]−(4−α) . (40)

Working now, for simplicity, for L/r ≫ 1 (however, such limitation can be relaxed), the second integral is negligible
and, integrating the first term, one has

ZCstat(r) ≃ 2π
(κ(r − 1) + 1)α(κ+ (α− 3)κr − 1)− ((α− 2)κ− 1)(κ(r − 1) + 1)3

(α− 3)(α− 2)κ2r2(κ(r − 1) + 1)3
∼ 2π

(κ r)−(4−α)

α− 2
, (41)

with the last passage holding for large r.
Evaluating Z by also transforming the sum in Eq. (1) into an integral as

Z ≃ 2π

∫ L

1

dℓ ℓ1−α, (42)

for large L one finds Z ≃ 2π/(α− 2). Then Eq. (41) reads

ZCstat(r) ≃ Z(κr)−(4−α), (43)

providing consistency to the initially postulated form (35).
In Fig. 4, the evolution of C(r, t), obtained numerically solving Eq. (4) on the square lattice, is shown for α = 7/2.

In the main part of the figure it can be seen that C(r, t) gradually approaches the stationary form (35) (dashed
magenta line), starting from smaller values of r.

100 101 102

r

10-6

10-5

10-4

10-3

10-2

10-1

C
(r

,t)

r-(4-α) t=10
t=20
t=40
t=70
t=100
t=200
t=400
t=700
t=1000

10-1 100 101
r/L(t)

10-6

10-5

10-4

10-3

10-2

10-1

C
(r

,t)

x-α

FIG. 4. C(r, t) is plotted against r, on a double logarithmic scale, at different times (see legend), for α = 7/2. The number of
agents is N = 3012. The magenta dashed line is the algebraic behaviour (35). In the inset C(r, t) is plotted against x = r/L(t).
The green dashed line is the scaling behaviour (47),(48) in the coarsening stage preceding stationarization.
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Clearly, the stationary state (35) is not fully ordered, since the criterion (31) is not met. Still, it is strongly
correlated, because the correlation length Lstat diverges in such a state. Indeed, using the definition (6), one finds

Lstat =
α− 2

α− 1
L ∝ α− 2

α− 1
N

1
2 , (44)

for large N .

B. Consensus time

The lifetime of stationary states diverges for large-N but is otherwise finite. Hence, in a finite system, consensus
is always reached in a limited time T . We saw in Sec. III that T ∝ N lnN for α > 4 (Eq. (34)). We did not find a
simple way to compute the consensus time for α ≤ 4. However, using the criterion that T must be a non decreasing
function of α, because global ordering is promoted by the extent of interactions, and recalling that it is T = N [54]
in mean-field (i.e. α = 0), we conclude that the N dependence of T for 0 < α ≤ 4 must be compressed between N
and N lnN . Since for α > 4 the lnN factor is caused by the logarithmic correction to scaling in Eq. (7), and there
is no such correction for any value α < 4 (as we will see, this is true down to α = 0+) we argue that T ∝ N for any
0 ≤ α ≤ 4.
In order to check this hypothesis, recalling the consensus criterion (31), we have computed the distance from

consensus

D(t) =
∑
p

P (ℓp)

np∑
k=1

1−
∑
p

P (ℓp)

np∑
k=1

C([[dk(r, ℓp)]], t). (45)

In this equation the first term on the r.h.s. is a number that can be exactly computed by enumerating all the possible
distances on the lattice, while the second term on the r.h.s. is readily computed once C is known, which is done by
means of the numerical solution of Eq. (4). Consensus is reached when D = 0. We find that D(t) decays to zero
exponentially. This can be seen in Fig. 5, where the case with α = 7/2 is considered. Here we plot only a relatively
short time interval, because for longer times numerical errors tend to increase and data become progressively less
affordable. From the main figure it is seen that curves for different values of N can be collapsed on a single one by
plotting against rescaled time t/N . Instead, the rescaling with t/(N lnN), shown in the inset, fails in collapsing the
curves. Hence we can conclude that T ∝ N is correct. Summarizing the results for the consensus time for all values
of α we have

T (N) ∝

{
N lnN α > 4

N 0 < α ≤ 4
. (46)

C. Approaching stationarity by coarsening

We have seen (Eq. (44)) that the stationary states are characterized by a macroscopic correlation length. Since this
quantity starts from a microscopic value, it must grow, due to a coarsening phenomenon that will be arrested in the
stationary state. This can be appreciated in Fig. 2 where a clear increase of L(t) is observed for any value of α.
In order to compute the properties of such pre-asymptotic coarsening we have to distinguish between the cases with

3 ≤ α ≤ 4 and 2 < α < 3.

1. 3 ≤ α ≤ 4

We can argue that C(r, t) approaches the stationary form (35) initially for small values of r, and then for larger
and larger distances. This is very well observed in Fig. 4. We will also prove, by checking for consistency at the end
of the present calculation, that a large-r scaling form for C

C(r, t) = f

(
r

L(t)

)
, for r ≫ L(t) (47)
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FIG. 5. D(t) is plotted against t/N (main figure) or against t/(N lnN) (inset). The vertical scale is logarithmic. Different
curves correspond to various values of N , see legend.

is obeyed with

f(x) ∝ x−α, for x ≫ 1, (48)

where L(t) is a function of time to be yet determined. Looking at the inset of Fig. 4 one can already be convinced,
at least visually, that this is correct. The crossover point r∗ between the small and large-r behaviors can be found by
matching the two forms (62) and (47),(48), thus obtaining

r∗(t) ∝ L(t)
α

2(α−2) . (49)

Plugging the scaling assumption (47) into Eq. (4) we arrive at

L̇(t)

L(t)
x f

′
(x) = 2

[
f(x)−

∑
p

P (ℓp)

np∑
k=1

f

(
[[dk(r, ℓp)]]

L(t)

)]
. (50)

Once again we have to evaluate the sum appearing in Eq. (50). In this case we can restrict the summation domain to
the region dk(r, ℓp) < r∗, because the decay of C is integrable after r∗ and not before. Transforming the sum into an
integral and using the interpolating expression (38) we have to evaluate

S(r) =

∫
dℓ

∫
dθ ℓP (ℓ)

[
1 + κ

√
r2 + ℓ2 − 2ℓr cos θ

]−(4−α)

, (51)

on the restricted domain mentioned before. Working for r ≫ r∗, the set of allowed values of θ satisfying these
constraints is θ ∈ [−r∗/r, r∗/r], i.e., a tiny interval. Therefore we can safely set θ = 0 in the integral and replace∫
dθ → 2r∗/r, the interval amplitude. Then we arrive at

S(r) =
2r∗

r

∫ r

r−r∗
dℓ ℓP (ℓ) [1 + κ(r − ℓ)]

−(4−α)
+

2r∗

r

∫ r+r∗

r

dℓ ℓP (ℓ) [1 + κ(ℓ− r)]
−(4−α)

. (52)
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The algebraic function ℓP (ℓ) does not appreciably vary in the integration interval, because we are considering r ≫ r∗,
and hence the integrals are approximated by

S(r) = 2r∗P (r)

∫ r

r−r∗
dℓ [1 + κ(r − ℓ)]

−(4−α)
+ 2r∗P (r)

∫ r+r∗

r

dℓ [1 + κ(ℓ− r)]
−(4−α)

, (53)

which, for large r∗, is

S(r) ∝ P (r)

α− 3
r∗α−2 ∝ x−α

α− 3
L(t)−α/2. (54)

Therefore, Eq. (50) gives

L̇(t)

L(t)
x f

′
(x) ∝ x−α

α− 3
L(t)−α/2 , (55)

so one has consistency with the x−α behavior and

L(t) ∝ t2/α, 3 < α < 4. (56)

The cases with α = 3 or α = 4 must be considered separately.
For α = 4, instead of Eq. (35) one has Cstat ∝ (ln r)−1. Therefore, proceeding as before, one finds r∗/(ln r)1/4 ∝

L(t), in place of Eq. (49). Solving for large L gives r∗ ∝ L(t)[lnL(t)]1/4. For α = 4 Eq. (54) becomes S(r) ∝
P (r)r∗2/ ln r∗. Using the value of r∗ thus obtained, one gets S(r) ∝ x−4L(t)−2[lnL(t)]−1/2. Inserting this result into
the differential equation (50) and solving for large times we arrive at

L(t) ∝ t
1
2 (ln t)−

1
4 , α = 4. (57)

The behavior for α = 3 can also be obtained proceeding along the same lines. In this case the integrals in Eq. (53)
amount to

S(r) =
2L(t)3/2 ln

(
κL(t)3/2 + 1

)
κ r3

= 2κ−1 x−3 L(t)−3/2 ln
(
κL3/2 + 1

)
. (58)

Upon substituting this form into Eq. (50), we again find consistency with the form (48) and, for large times,

L(t) ∝ (t ln t)2/3, α = 3. (59)

It can be seen in Fig. 2 that, in the interval 3 ≤ α ≤ 4 the growth-laws predicted in this section are well verified.
At very late times the curves bend due to the presence of the stationary state and, later on, flatten due to the finite
size effect. Notice that, since C(r = 1, t) = Cstat(r), in this coarsening stage the density of interfaces ρ stays constant.
This holds true for any α ≤ 4.

2. 2 < α < 3

The α − 3 at the denominator in Eq. (55) indicates that the above approach is only valid for 3 ≤ α ≤ 4. The
difference from the previous case is that now, when searching for the solution of Eq. (50), still for large r, the restriction
d(r, ℓp) < r∗ that we imposed before in Sec. IVC1) must be replaced with a more stringent one, dk(r, ℓp) < r̃ ≪ r∗, at
large times. The reason is the following: for ℓ ≪ r the summand S(ℓ, r, t) in the last term of Eq. (50) can be obtained
by letting C([[dk(r, ℓp)]], t) ≃ C([[dk(r, 0)]], t) = C(r, t) ∼ x−α (x = r/L(t)). Hence, calling S< the behavior of S at
small ℓ, one has S<(ℓ, r, t) ∼ x−αP (ℓ). Instead, for ℓp ∼ r one has S(ℓp, r, t) ≃ S>(ℓp, r, t) ≃ P (r)C(dk ≃ 0, t) ≃
P (r)[1 + κdk]

−(4−α), where we again used the interpolating form (38). If S<(ℓp = r∗, r, t) ≪ S>(ℓ = r∗, r, t) one can
proceed as in the previous section IVC1, restricting the sum in Eq. (4), namely the integral (51), to d(r, ℓ) < r∗, as
we did. This is correct for sufficiently large values of α, which happens to be the case when the solution presented in
the previous Sec. IVC1 is valid, namely for α > 3. However, for α ≤ 3 this is no longer true and the sum in Eq. (4)
must be restricted to distances dk < r̃, where r̃ is defined as the distance where S<(ℓp = r̃, r, t) ≃ S>(ℓp = r̃, r, t). We
have not found a simple way to explicitly determine r̃. For this reason, letting r̃ ∼ Lβ , where β(α) is an unknown
exponent, we make the simplest possible ansatz that β is a linear function of α such that r̃ ∝ r∗ for α → 3, namely
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β = a(α−3/2), where a is a constant yet to be determined. Evaluating the integrals in Eq. (53), with the replacement
r∗ → r̃, for large r̃ one has

S(r) =
P (r)

3− α
r̃. (60)

Plugging this result into Eq.(4), one finds consistency with the x−α behavior for a = 1, namely β = α− 3/2. Asking
for the explicit time-dependence to drop out one finds

L(t) ∝ t2/3. (61)

We can see in Fig. 2 that this behavior is very well observed for any α < 3.
In general the growth exponent 1/z – defined by L(t) ∝ t1/z – is a non-decreasing function of the range of

interactions, because ordering is promoted by far reaching communications. This is what we find here also, since
1/z increases from the NN value 1/2, for α > 4, up to 2/3 at α = 3. The saturation of this exponent to the NN
value upon crossing a critical value αNN of α is quite generally observed. Besides the case at hand, where αNN = 4,
it is also found in the same model in d = 1, with αNN = 3 in that case [35], and also in ferromagnetic models
with algebraic interactions [36–41, 44]. On the opposite side of the α variation interval, it is also generally found
that 1/z saturates to a maximum value (1/z)max below a certain value αLR of α. Here we find αLR = 3, in the
corresponding d = 1 voter model it is found [35] αLR = 2, while for the d = 1 Ising model one has αLR = 1 [55, 56].
In the 1d voter and Ising models the saturation value is (1/z)max = 1 [35, 55], and this has a simple interpretation.
Indeed, the motion of interfaces can be thought of as an advection-diffusion process, where advection is due to the
long-range interactions and diffusion to thermal fluctuations or other noise sources. When interactions are extremely
long-ranged, for α < αLR, the advection fully determines the interfaces motion, leading to a ballistic behavior with
1/z = (1/z)max = 1. What is interesting in the present 2d voter case, is the appearance of a non trivial value
(1/z)max = 2/3 eluding an interpretation in terms of a fully advected process. It is clear, however, that such exponent
results from the competition between the two contrasting effects induced by the same long-range interactions. Indeed,
besides promoting global ordering, interaction with far-apart agents at distances larger than the size of the ordered
regions also, has a disordering effect. Let us mention, to conclude this short discussion, that a non trivial value
(1/z)max = 3/4 of the maximum growth exponent is also observed in the 2d Ising model with analogous long-range
interactions [41, 57], although for different reasons of a geometrical nature.

V. CASE 0 < α ≤ 2

We show below that the stationary solution

Cstat(r) ∝ r−α, for r ≫ 1 (62)

exists.
To verify the consistency of this expression we proceed as in the case 2 < α ≤ 4. We use the interpolating expression

Cstat(r) ≃ (1 + κr)−α, (63)

in Eq. (37). Working, as in the case of Sec. IVA, for 1 ≪ r ≪ L the relevant contribution to the integrals comes from
the region ℓ ≈ r and θ ≈ 0, so we can bring the probability P out of such integrals, thus arriving at

Z Cstat(r) ≃ 2π r−α

∫ r

1

dℓ ℓ [1 + κ(r − ℓ)]
−α

+ 2π r−α

∫ L

r

dℓ ℓ [1 + κ(ℓ− r)]
−α ≃ 2π

κ−α L2−α

2− α
r−α . (64)

Evaluating Z as in Eq. (42) one has Z = 2π
2−α L2−α, and hence the result (64) is consistent with Eq. (62).

Using the definition (6), the correlation length in the stationary state diverges, for large-N , as

Lstat =
α− 2

α− 3
L ∝ α− 2

α− 3
N

1
2 . (65)

Notice that for α = 2 we have a logarithmic correction Lstat = L/ lnL ∝ N1/2/ lnN .
Also in this case, therefore, there is a macroscopic correlation length at stationarity, implying that some coarsening

must initially characterize the kinetics as can also be appreciated in Fig. 2. However the time-domain where L(t)
grows does not increase with N and, hence, this phenomenon cannot be macroscopically observed. This is because,
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as we will discuss in the next section, L(t) carries an N -dependence (for fixed t) when α ≤ 3. As can be seen in
Eq. (68), in fact, L(t) is already of the order of N1/2 at fixed t, and hence Lstat is approached by L(t) in a time of
the order of one. For this reason, we do not proceed to the determination of the growth-law for α < 2 here. However,
it is quite natural to expect that the growth-exponent stays equal to its maximum value (1/z)max = 2/3 for α ≤ 2
also, as seems to be suggested by Fig. 2, even if the power law behavior is too limited in time, because of the reasons
explained just above, to arrive at more definite conclusions.

VI. SIZE DEPENDENCE OF THE COARSENING DOMAINS

For α > 4 we can use the scaling-ansatz (7) and the definition (6), employing the continuum approximation, to
compute the N dependence of L(t) ∫ L

L
1
L

dxx2 f(x)∫ L
2L
1
L

dxx f(x)
= 1 . (66)

Note that the θ dependence and the 1/ ln t factor are the same for the numerator and the denominator and can
be canceled. The integral can be easily performed noting that the form for large x is the one that is relevant to
understand the N dependence. Then one finds that

L(t) =
(α− 2)

(
Lα − L3

)
(α− 3) (Lα − L2)

. (67)

Then L does not depend on N for N ≫ 1. Following the same procedure, one can check that such behavior still holds

for 3 < α ≤ 4. In the limiting case α = 3, one has L ∝ lnN . For 2 < α < 3 it is L ∝ N
3−α
2 , while for N = 2, one gets

L ∝
√
N/ lnN . Finally, for α < 2, L ∝

√
N . Summarizing

L(t) ∝



α−2
α−3 L

0 ∝ N0, for α > 3 ,

lnL ∝ lnN, for α = 3 ,

α−2
3−α L3−α ∝ N (3−α)/2, for 2 < α < 3 ,

L/ lnL ∝ ∝
√
N/ lnN, for α = 2 ,

α−2
α−3 L ∝

√
N, for α < 2 .

(68)

These behaviors are illustrated in Fig. 6. For α > 3, which in the figure is represented by the case α = 4 on the left
half of the plot, the effect of changing N is only manifested at the time when L(t) approaches L by a flattening of
the curves. This is the usual finite-size effect observed in a coarsening system with short-range interactions. Instead,
for α ≤ 3, represented by the case α = 5/2 in the upper-right part of the plot, one sees that, on top of the flattening
effect discussed before, there is an N -dependence at any time. According to Eq. (68), curves for different system sizes

should collapse by plotting N− 3−α
2 L(t), which is in fact very well observed in the lower-right part of the figure.

VII. CONCLUSIONS

In this paper we have studied analytically the ordering kinetics of the 2d voter model with long-range interactions.
In this formulation, agents at distance r agree with probability P (r) ∝ r−α. The dynamical properties markedly
depend on the value of α. For α > 4 we find a behavior analogous to the one observed in the corresponding model
with NN interactions, in that coarsening is characterized by the growth-law L(t) ∝ t1/2 and scaling is violated due to
an abundance of interfacial spins whose density vanishes slowly as ρ(t) ∝ 1/ ln t. A peculiar feature introduced by the
long-range interactions is the presence of a characteristic scale x∗(t) (x = r/L(t)) beyond which a different behavior,
characterized by standard scaling and another growth-law of correlations is observed. x∗(t) slowly increases in time
(see Eq. (30)), eventually relegating this behavior to huge distances, and thus eventually banishing it. However this
effect produces sizable corrections at finite times. A similar feature was observed in d = 1 [35]. Coarsening ends up
in a fully ordered state in a consensus time T = N lnN , as in the NN case.
The situation changes a lot when α crosses α = 4. For α ≤ 4, in fact, dynamical scaling is fully reinstated and

the correlation length increases as L(t) ∝ t1/z, with an α-dependent exponent 1/z = 2/α for 3 < α < 4, and with
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FIG. 6. In the left part of the figure L(t) is plotted against t for α = 4 and different system sizes, see legend. In the upper-right

part the same plot is shown, but for α = 5/2. In the lower-right part, still for α = 5/2, we plot N− 3−α
2 L(t) against t.

1/z = 2/3 for 0 < α < 3. The other important difference with the large-α case, is that now the coarsening kinetics
does not lead the system to consensus, but to a metastable state whose lifetime diverges in the thermodynamic
limit. Similar stationary states are exhibited by the corresponding 1d model for α < 2 and by the the NN model
in d ≥ 3 and in the mean-field. Let us also remark that non-equilibrium stationary states are generally observed in
various systems with long-range interactions [58]. In the present model, metastable states are partially ordered with
algebraically decaying correlations and an infinite correlation length (in the N → ∞ limit). Finite systems eventually
escape this state and reach consensus in a time of the order of N , irrespective of α. Another interesting feature,
making the long-range case different from the short-range one, is the N dependence of the coarsening length L(t) at
any time for α ≤ 3 (see Eq. (68)), a feature that is generally observed in coarsening systems with sufficiently extended
interactions [35, 56].

Our study can be framed in the more general topic of the evolution far from equilibrium of systems with slowly
decaying interactions [46–48] and, more specifically, in the context of phase-ordering kinetics with long-ranges [36–
42, 44, 45, 56]. Given the scarcity of analytically tractable models in this field, we believe that our result can provide
a relevant contribution to the understanding of such problems. Indeed, one can argue that the results arrived at
analytically in this paper could hardly be obtained by means of numerical simulations. This is because, particularly
for α ≤ 4, most of the relevant features are encoded into the properties of correlations at relatively large distances,
which are shaded in simulations by the noise. Indeed, the only numerical attempt to study the long-range voter model
that we are aware of is in d = 1 [59], while simulation of the Ising model with long-range interactions suffer from huge
noise and finite-size effects for small values of α [42, 56].

The study undertaken in this paper and, for d = 1, in [35], open the way to different possible generalizations.
Firstly, Eq. (4) is exact in any dimension and, therefore, its analysis is also feasible for d > 2. On the basis of the
knowledge gained so far we expect stationary states without consensus to be present for any value of α for d ≥ 3.
However, besides that, the coarsening properties and other features remain to be studied. Furthermore, in the context
of aging systems, the behavior of two-time quantities, such as the two-time correlation functions, which have not been
widely considered so far, are of great interest and could also be investigated analytically. This and other related topics
are interesting research lines left for future activity.
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