
Variants of Tagged Sentential Decision Diagrams
Deyuan Zhong

Department of Computer Science
Jinan University

Guangzhou, China
zhongdeyuan@stu2021.jnu.edu.cn

Mingwei Zhang
Department of Computer Science

Jinan University
Guangzhou, China

mingweizhang@stu2022.jnu.edu.cn

Quanlong Guan
Department of Computer Science

Jinan University
Guangzhou, China
guanql@jnu.edu.cn

Liangda Fang
Department of Computer Science

Jinan University
Guangzhou, China
fangld@jnu.edu.cn

Zhaorong Lai
Department of Computer Science

Jinan University
Guangzhou, China
laizhr@jnu.edu.cn

Yong Lai
College of Computer Science and Technology

JiLin University
Changchun, China

laiy@jlu.edu.cn

Abstract—A recently proposed canonical form of Boolean functions,
namely tagged sentential decision diagrams (TSDDs), exploits both
the standard and zero-suppressed trimming rules. The standard ones
minimize the size of sentential decision diagrams (SDDs) while the zero-
suppressed trimming rules have the same objective as the standard
ones but for zero-suppressed sentential decision diagrams (ZSDDs). The
original TSDDs, which we call zero-suppressed TSDDs (ZTSDDs), firstly
fully utilize the zero-suppressed trimming rules, and then the standard
ones. In this paper, we present a variant of TSDDs which we call standard
TSDDs (STSDDs) by reversing the order of trimming rules. We then
prove the canonicity of STSDDs and present the algorithms for binary
operations on TSDDs. In addition, we offer two kinds of implementations
of STSDDs and ZTSDDs and acquire three variations of the original
TSDDs. Experimental evaluations demonstrate that the four versions of
TSDDs have the size advantage over SDDs and ZSDDs.

Index Terms—Boolean functions, Combination sets, Decision diagrams

I. INTRODUCTION

Knowledge compilation aims to transform a Boolean function
into a tractable representation. Binary decision diagrams (BDDs) [1]
is one of the most notable representations that is widely employed
for numerous fields of computer science including computer-aided
design [2], [3], cryptography [4], [5], formal method [6], [7].
Interestingly, BDDs are a canonical form under the two restrictions:
ordering and reduction, that means, any Boolean function has a
unique BDD representation. This property reduces the storage space
of BDDs and enables an O(1) time equality-test on BDDs.

Following the success of BDDs, a variant zero-suppressed BDDs
(ZDDs) was proposed in [8]. ZDDs enjoy the same properties:
canonicity and supporting polytime Boolean operations as BDDs.
The main difference between BDDs and ZBDDs lies in their different
reduction rules. Some applications inspire several extensions of BDD
that combine the reduction rules of BDDs and ZBDDs, including
tagged BDDs (TBDDs) [9], chain-reduced BDDs (CBDDs) [10],
chain-reduced ZDDs (CZDDs) [10] and edge-specified-reduction
BDDs (ESRBDDs) [11]. Thanks to the integration of two reduction
rules, the above extensions are more compact representations than
BDDs and ZDDs.

The theoretical foundation of BDDs is the Shannon decomposition
[12], which splits a Boolean function into two subfunctions based on
a single variable. Structured decomposition [13], an extension to the
Shannon decomposition, splits a Boolean function according to a set
of mutually exclusive subfunctions. By using structured decomposi-
tion instead of the Shannon decomposition, a novel decision diagram,
namely sentential decision diagram (SDD), was developed in [14].

Just as BDDs are characterized by a total order of variables, SDDs
are characterized by a variable tree (vtree), that is, a full and binary
tree whose leaves are variables. The advantage of SDDs over BDDs is
providing a more succinct representation in theory and practice [15],
[16]. In addition, [17] proposed the zero-suppressed variant of SDDs
(called ZSDDs), which is also based on structured decomposition,
and applies the zero-suppressed trimming rules instead of the
standard rules used in SDDs. ZSDDs offer a more compact form
for spare Boolean functions compared to SDDs. In contrast, SDDs
are more suitable for homogeneous Boolean functions. In order to
harness the relative strengths of SDDs and ZSDDs, [18] designed
a novel decision diagram, namely tagged SDDs (TSDDs), which
combines the standard and zero-suppressed trimming rules.

In this paper, we investigate the variants of TSDDs. To distinguish
it from its variants, we call the original TSDD zero-suppressed
TSDD (ZTSDD). ZTSDD firstly fully utilizes the zero-suppressed
trimming rules before adopting the standard ones. By reversing the
order of the trimming rules, we propose the first variant, namely
standard TSDD (STSDD). The syntactical definition of STSDD
is the same as ZTSDD that is made up of two vtrees and a
decomposition node. However, STSDD uses the standard trimming
rules as the first rule and the zero-suppressed ones as the second
rule. We also propose the semantics for STSDDs and design the
trimming rules for STSDDs, obtaining the canonicity property of
STSDDs. In addition, we implement these two types of TSDDs in
two ways: node-based and edge-based. Basically, the node-based
implementation specifies two vtrees and the decomposition node in a
TSDD node. In contrast, the edge-based implementation only keeps
the secondary vtree in a TSDD node and associate the edge pointing
to each STSDD subnode of the decomposition node with its primary
vtree. When a large number of nodes share the same secondary vtree
and decomposable node, edge-based implementation utilizes less
memory than node-based one. Node-based implementation, on the
other hand, uses less memory space to save TSDDs. [18] developed
only edge-based implementation of ZTSDDs using C++ language.
Some critical data structures, such as unique table and cache table,
were built directly on standard template library, making them less
efficient. We provide more efficient implementations of four TSDD
variations by rewriting such data structures in C language. We
also compare SDDs and ZSDDs with the four TSDD variations
in terms of size and compilation time of decision diagrams on an
extensive set of benchmarks. The experimental results support the
effectiveness of our implementation and the relative compactness of

ar
X

iv
:2

31
2.

00
79

3v
1

 [
cs

.A
I]

 1
6

N
ov

 2
02

3

TABLE I: Operations on combination sets.

Operation Description Definition

Q ∩ Q′ intersection {X̃ | X̃ ∈ Q and X̃ ∈ Q′}
Q ∪ Q′ union {X̃ | X̃ ∈ Q or X̃ ∈ Q′}
Q \ Q′ difference {X̃ | X̃ ∈ Q and X̃ /∈ Q′}
Q ⊔ Q′ orthogonal join {X̃ ∪ X̃′ | X̃ ∈ Q and X̃′ ∈ Q′}

Change(Q, x) change
{X̃ ∪ {x} | X̃ ∈ Q and x /∈ X̃}∪
{X̃ \ {x} | X̃ ∈ Q and x ∈ X̃}

TSDDs over SDDs and ZSDDs on the majority of test-cases.
The rest of this paper is organized as follows. Section 2 provides

the preliminaries of Boolean function, combination set, the standard
and zero-suppressed trimming rules. In Section 3, we give the syntax
of TSDDs and two semantics for TSDDs, obtaining two versions of
TSDDs: STSDDs and ZTSDDs. We also design the compressness
and trimming rules for STSDDs, gaining the canonicity property of
STSDDs and offer two implementations for TSDDs. In Section 4,
we develop the algorithm for binary operations of combination sets
on STSDDs. Experimental evaluation for comparison among four
variations of TSDDs with SDDs and ZSDDs appears in Section 5.
Finally, Section 6 concludes this paper.

II. PRELIMINARIES

Throughout this paper, we use lower case letters (e.g., x1, x2) for
variables, and bold upper case letters (e.g., X,Y) for sets of variables.
For a variable x, we use x to denote the negation of x. A literal is a
variable or a negated one. A truth assignment over X is a mapping
σ : X 7→ {0, 1}. We let ΣX be the set of truth assignments over
X. We say f is a Boolean function over X, which is a mapping:
ΣX 7→ {0, 1}. We use 1 (resp. 0) for the Boolean function that
maps all assignments to 1 (resp. 0). A combination X̃ on X is a
subset of X. Every combination X̃ corresponds to exactly one truth
assignment σ, that is, x ∈ X̃ iff σ(x) = 1. A combination set Q
over X is a collection of combinations on X. It was shown that
every combination set can be transformed into a Boolean function,
and vice versa [8], [17]. The operations on combination sets include:
union ∪, intersection ∩, difference \, orthogonal join ⊔ and change
[17]. The definitions of the above operations are illustrated in Table I.
We use UX for the universe set of combinations on X. For example,
U{x1,x2} = {{x1, x2}, {x1}, {x2}, ∅}. We remark that U∅ = {∅}.

Let X and Y be two disjoint and non-empty sets of variables. We
say the set {(P1,S1), · · · , (Pn,Sn)} is an (X,Y)-decomposition
of a combination set Q, iff Q = [P1 ⊔ S1] ∪ · · · ∪ [Pn ⊔ Sn]
where every Pi (resp. Si) is a combination set over X (resp. Y).
A decomposition is compressed iff Si ̸= Sj for i ̸= j. An (X,Y)-
decomposition is called an (X,Y)-partition, iff (1) every Pi is non-
empty, (2) Pi ∩Pj = ∅ for i ̸= j, and (3) Pi ∪ · · · ∪Pn = UX.

A vtree is a full binary tree whose leaves are labeled by variables,
which generalizes variable orders. For a vtree T, we use v(T) for
the set of variables appearing in leaves of T, and Tl and Tr for the
left and right subtrees of T respectively. There is a special leaf node
labeled by 0 that can be considered as a child of any vtree node and
v(0) = ∅. The notation T1 ≼ T2 denotes that T1 is a subtree of T2

and T1 ≺ T2 means that T1 is a proper subtree.
Based the notion of vtrees, a combination set can be graphically

represented by a structured decomposable diagram [18].
Definition 1: A structured decomposable diagram is a pair (T, α)

where T is a vtree and α is recursively defined as follows

• α is a terminal node labeled by one of the four symbols: 1, 0,
ε and ε̄, and T is any vtree.

• α is a decomposition node {(p1, s1), · · · , (pn, sn)} satisfying
the following conditions:

1) each pi is a structured decomposable diagram (T1
i , β) where

T1
i ≼ Tl;

2) each si is a structured decomposable diagram (T2
i , γ) where

T2
i ≼ Tr .

Every pair (pi, si) of a decomposition node is called an element
where pi is called a prime and si is called a sub.

We hereafter provide two ways to interpret a structured decompos-
able diagram (T2, α) as a combination set, which we call standard
and zero-suppressed semantics. Since the standard semantics depends
on an extra vtree T1, it is a mapping from structured decomposable
diagrams and vtrees into combination sets.

Definition 2: Let T1 be a vtree and (T2, α) be a structured
decomposable diagram where T2 ≼ T1. The standard semantics
⟨T1, (T2, α)⟩s is recursively defined as follows:

• ⟨T1, (T2,1)⟩s = UT1 and ⟨T1, (T2,0)⟩s = ∅;
• ⟨T1, (T2, ε)⟩s = Uv(T1)\v(T2) and ⟨T1, (T2, ε̄)⟩s =

Uv(T1)\v(T2) ⊔ (Uv(T2) \ {∅});
• ⟨T1, (T2, {(p1, s1), · · · , (pn, sn)})⟩s = Uv(T1)\v(T2) ⊔[

n⋃
i=1

(⟨T2
l , pi⟩s ⊔ ⟨T2

r, si⟩s)
]

.

The standard semantics ⟨T1, (T2, α)⟩s contains two combination
sets. The main combination set is based on T2 and α. The four
terminal nodes 1, 0, ε and ε̄ represent Uv(T2), ∅, {∅} and Uv(T2) \
{∅}, respectively. The decomposition node {(p1, s1), · · · , (pn, sn)}
denotes the combination set that is the union of the orthogonal join of
⟨pi⟩s and ⟨si⟩s for every pair (pi, si). The auxiliary combination set
is the universe set over v(T1)\v(T2). The standard semantics is the
orthogonal join of main and auxiliary combination sets. For example,
the combination set of (T1,T2,1) is Uv(T2) ⊔Uv(T1)\v(T2), and
hence being Uv(T1).

The zero-suppressed semantics ⟨T1, (T2, α)⟩z is only the main
combination set, which can be easily defined. For example,

⟨T1, (T2, {(p1, s1), · · · , (pn, sn)})⟩z =
n⋃

i=1

(⟨pi⟩s ⊔ ⟨si⟩s). We

introduce the extra vtree T1 in the zero-suppressed semantics in
accordance with the standard semantics though it is not required for
the zero-suppressed semantics.

Based on the standard semantics, we impose some restrictions
on structured decomposable diagram and obtain the definition of
sentenial decision diagram (SDD).

Definition 3: A structured decomposable diagram (T, α) is a
sentenial decision diagram, if one of the following holds:

1) α is a terminal node labeled by 1 or 0, and T = 0.
2) α is a terminal node labeled by ε or ε̄, and T is a leaf node.
3) α is a decomposition node {(p1, s1), · · · , (pn, sn)}, and all of

the following hold:
• ⟨Tl, pi⟩s ̸= ∅ for 1 ≤ i ≤ n;
• ⟨Tl, pi⟩s ∩ ⟨Tl, pj⟩s = ∅ for i ̸= j;

•
n⋃

i=1

⟨Tl, pi⟩s = Uv(Tl).

The definition of zero-suppressed sentenial decision diagram
(ZSDD) is the same as SDD, except that (1) we require T to be
the special vtree 0 when α is a terminal node labeled by ε; (2) the
vtree T can be any leaf node when α is labeled by 1; (3) we use
the zero-suppressed semantics for the decomposition node.

An SDD can be transformed to an equivalent one with smaller size
by the following the standard compressness and trimming rules.

4

6

x3x4

2

x1x2

1 3 5 7

4

6 2 2

·
 · ·p1 p2 p3s1 s2 s3

4

6

·· ·p1 p2 p3s1 s2 s3

62

(a) A vtree (b) An SDD (c) A ZSDD

·

(f) A edge-based STSDD

4

4

6

6

1ε

·
2

··

5ε 7ε

··
75

3ε

··
6

3

·2
1

(d) A node-based STSDD

4
4

6
6

ε
3
3ε

6
5ε

0
0ε

0
00

5
5ε

7
7ε

·1
1

(e) A node-based ZTSDD

4
4

6
6

ε
2
3ε

5
5ε

2
0

0
00

5
5ε

7
7ε

1

5
0

0
001

·

(g) A edge-based ZTSDD

4

4

6

6

1ε

·
1

··
2

5ε 7ε

··
75

3ε

··
5

2

0 00

··
5 0

1

p1 s1p2 s2 p3 s3
p1 s1 p2 s2 p3 s3

p1
s1p2 s2 p3 s3

p1 s1p2 s2 p3 s3

0ε 00

··
0 0

0
0ε

0
00

00 0

1ε

5ε 7ε 5ε 00 1ε 3ε 1ε 00

5ε

00

00

1ε1ε 3ε
00 00 00

00

1ε 0ε 0ε 0ε

0ε3ε

5ε 7ε 5ε31 71

Fig. 1: The vtree and the SDD, ZSDD and TSDD representations of the combination set {{x1,x2,x3,x4},{x2,x3,x4},{x1,x3,x4},{x1,x4}}.

• Standard compression rule (S-compression rule): if
⟨Tr, si⟩s = ⟨Tr, sj⟩s, then replace (T, {(p1, s1), · · · , (pi, si),
· · · , (pj , sj), · · · , (pn, sn)}) with (T, {(p1, s1), · · · , (p′, si),
· · · , (pn, sn)}) where ⟨Tl, p

′⟩s = ⟨Tl, pi⟩s ∪ ⟨Tl, pj⟩s.
• Standard trimming rule (S-trimming rule):
(a) replace the diagram (T, {(p, s)}) by the diagram s.
(b) if ⟨Tr, s1⟩s = Uv(Tr) and ⟨Tr, s2⟩s = ∅, then replace the

diagram (T, {(p1, s1), (p2, s2)}) by the diagram p1.
The S-compression rule combines two elements (pi, si) and

(pj , sj) when si and sj denotes the same combination set. The
two S-trimming rules aim to remove the universe set over a subset
of variables in a decomposition node. By repeatedly applying the
S-compression and trimming rules, we can create the unique SDD.

Similarly, we can define the zero-suppressed compression and
trimming rules for ZSDD.

• Zero-suppressed compression rule (Z-compression rule): if
⟨Tr, si⟩z = ⟨Tr, sj⟩z , then replace (T, {(p1, s1), · · · , (pi, si),
· · · , (pj , sj), · · · , (pn, sn)}) with (T, {(p1, s1), · · · , (p′, si),
· · · , (pn, sn)}) where ⟨Tl, p

′⟩z = ⟨Tl, pi⟩z ∪ ⟨Tl, pj⟩z .
• Zero-suppressed trimming rule (Z-trimming rule):
(a) if ⟨Tl, p1⟩z = {∅} (resp. ⟨Tr, s1⟩z = {∅})

and ⟨Tr, s2⟩z = ∅, then replace the diagram
(T, {(p1, s1), (p2, s2)}) by the diagram s1 (resp. p1);

(b) if ⟨Tr, s⟩z = ∅, then replace the diagram (T, {(p, s)}) by
the diagram s;

The Z-compression rule is similar to the S-compression rule except
that it uses the zero-suppressed semantics. The two Z-trimming rules
seek to eliminate {∅}. We acquire the canonical representation via
utilizing the Z-trimming rule on ZSDDs.

Example 1: Fig. 1(a) shows the vtree T where its left subtree Tl

involves X : {x1, x2} while its right one Tr involves Y : {x3, x4}.
Fig. 1(b) depicts an SDD representing the combination set
Q = {{x1, x2, x3, x4}, {x2, x3, x4}, {x1, x3, x4}, {x1, x4}}
based on T. The (X,Y)-partition of Q contains three elements:

(

P1︷ ︸︸ ︷
{{x1, x2}, {x2}},

S1︷ ︸︸ ︷
{{x3, x4}}), (

P2︷ ︸︸ ︷
{{x1}},

S2︷ ︸︸ ︷
{{x3, x4}, {x4}}) and

pn snp1 s1 ...

T1

T2

α T1

T2

(a) A terminal node

pn snp1 s1 ...

T1

T2

α T1

T2

(b) A decomposition node

Fig. 2: Two types of nodes of ESDDs

(

P3︷︸︸︷
{∅} ,

S3︷︸︸︷
∅). Each combination subset Pi (resp. Si) corresponds to

the node pi (resp. si) of the SDD. The ZSDD representation for Q
with smaller nodes than the SDD one is shown in Fig. 1(c). □

III. TAGGED SENTENTIAL DECISION DIAGRAMS

In this section, we will first provide a general structure, namely
extended structured decomposable diagram (ESDD), that is, the
syntactic definition for TSDDs, and then with two different semantics,
that are, a mapping from ESDDs to combination sets. The ESDD with
the standard semantics is called standard TSDD (STSDD) while it is
called zero-suppressed TSDD (ZTSDD) under the zero-suppressed
semantics. We also present the trimming rules for STSDD so as
to reduce the size of STSDD and obtain the canonicity theorem of
STSDDs. Finally, we provide two implementations for TSDDs: node-
based and edge-based. Hence, we obtain four versions of TSDDs.

A. The Syntax and semantics

In order to facilitate combining two types of trimming rules,
we first provide a general structure, namely extended structured
decomposable diagram (ESDD).

Definition 4: An ESDD is a tuple (T1,T2, α) s.t. T2 ≼ T1, which
is recursively defined as:

• α is a terminal node labeled by one of the four symbols: 1, 0,
ε and ε̄;

• α is a decomposition node {(p1, s1), · · · , (pn, sn)} satisfying
the following:

– each pi is an ESDD (T3,T4, β) where T4 ≼ T3 ≺ T2;
– each si is an ESDD (T5,T6, γ) where T6 ≼ T5 ≺ T2.

An ESDD F = (T1,T2, α) consists of three components: the
primary vtree T1, the secondary vtree T2 and the terminal (or
decomposition) node α. As seen in Fig. 2(a), when α is a terminal
node, the above three components are represented by a square where
α is shown in the left side of the square, T1 in the upper-right
corner and T2 in the lower-right corner. When α is a decomposition
node, the primary and secondary vtrees are displayed as a circle with
outgoing edges pointing to the elements as shown in Fig. 2(b). Each
element (pi, si) is represented by a paired box where the left box
represents the prime pi and the right box stands for the sub si. We use
pv(F) for the primary vtree of F and sv(F) for the secondary vtree.
The size of α, denoted by |α|, is the sizes of all of its decompositions.

To interpret ESDDs, we provide the semantics, that is, a mapping
from ESDDs into combination sets.

Definition 5: Let (T1,T2, α) be an ESDD. The standard semantics
∥(T1,T2, α)∥s is recursively defined as:

• ∥(T1,T2,1)∥s = Uv(T1) and ∥(T1,T2,0)∥s = ∅;
• ∥(T1,T2, ε)∥s = Uv(T1)\v(T2) and ∥(T1,T2, ε̄)∥s =

Uv(T1)\v(T2) ⊔ (Uv(T2) \ {∅});
• ∥(T1,T2, {(p1, s1), · · · , (pn, sn)})∥s = Uv(T1)\v(T2) ⊔[

n⋃
i=1

(∥pi∥s ⊔ ∥si∥s)
]

.

Since every ESDD involves an extra vtree T1 compared to
structured decision diagrams, the standard semantics for ESDDs is
similar to structured decision diagrams (cf. Definition 2).

A standard tagged sentential decision diagram (STSDD) is an
ESDD with the following constraints.

Definition 6: An ESDD (T1,T2, α) is an STSDD, if one of the
following holds:

• α is a terminal node labeled by 0 and T1 = T2 = 0.
• α is a terminal node labeled by ε and T2 = 0.
• α is a terminal node labeled by ε̄ and T2 is a leaf node.
• α is a decomposable node {(p1, s1), · · · , (pn, sn)} and

{(∥p1∥s, ∥s1∥s), · · · , (∥pn∥s, ∥sn∥s)} is an (X,Y)-partition
where X = v(T2

l) and Y = v(T2
r).

We remark that we use the terminal node ε instead of 1 in STSDDs
since ∥(T1,T2,1)∥s = ∥(T1, 0, ε)∥s for any vtrees T1 and T2.

B. Canonicity

We hereafter design the standard tagged compression and trimming
rules for reducing the size of STSDD and obtaining the canonicity
property of STSDDs.

• Standard tagged compression rule (ST-compression rule):
if ∥si∥s = ∥sj∥s, then replace
(T1,T2, {(p1, s1), · · · , (pi, si), · · · , (pj , sj), · · · , (pn, sn)})
with (T1,T2, {(p1, s1), · · · , (p′i, si), · · · , (pn, sn)}) where
∥p′i∥s = ∥pi∥s ∪ ∥pj∥s.

• Standard tagged trimming rule (ST-trimming rule) (Fig 3):
(a) if p1 = (T2,T3, α), ∥s1∥s = {∅} and ∥s2∥s = ∅, or

∥p1∥s = {∅}, s1 = (T2,T3, α) and ∥s2∥s = ∅, then replace
(T1,T1, {(p1, s1), (p2, s2)}) with (T2,T3, α);

(b) if ∥p1∥s = ∥s1∥s = {∅}, ∥s2∥s = ∅ and T2 is T1
l or T1

r ,
then replace (T1,T2, {(p1, s1), (p2, s2)}) with (T3, 0, ε),
where T3=T1

l when T2=T1
l and T3=T1

r when T2=T1
r .

(c) if p = (T2
l , 0, ε) and ∥s∥s = ∅, then replace

(T1,T2, {(p, s)}) with (0, 0,0).
(d) if p1 = (T2

l ,T
3, α), s1 = (T2

r, 0, ε) and ∥s2∥s = ∅ (resp.
p = (T2

l , 0, ε) and s = (T2
r,T

3, α)), then
replace (T1,T2

r, {((0, 0, ε), s1), (p2, (0, 0,0))}) (resp.
(T1,T2, {(p, s)})) with (T1,T3, α);

(e) if p1 = (T2
l , 0, ε), s1 = (T3,T4, α) and T3 ≼ (T2

r)l, then
replace (T1,T2, {(p1, s1)}) with (T1,T2

r, {(s1, (0, 0, ε)),
(p2, (0, 0,0))}) where ∥p2∥s = U(T2

r)l
\ ∥s1∥s;

(f) if p1 = (T2
l , 0, ε), s1 = (T3,T4, α) and T3 ≼ (T2

r)r , then
replace (T1,T2, {(p1, s1)}) with (T1,T2

r, {((0, 0, ε), s1),
(p2, (0, 0,0))}) where ∥p2∥s = U(T2

r)l
\ {∅};

(g) if p1 = (T3,T4, α), s1 = (T2
r, 0, ε), ∥s2∥s = ∅ and

T3 ≼ (T2
l)l,then replace (T1,T2, {(p1, s1), (p2, s2)}) with

(T1,T2
l ,(p1, (0, 0, ε)),(p3,s2)) where∥p3∥s=U(T2

l
)l
\∥p1∥s;

(h) if p1 = (T3,T4, α), s1 = (T2
r, 0, ε), ∥s2∥s = ∅ and

T3 ≼ (T2
l)r , then replace (T1,T2, {(p1, s1), (p2, s2)}) with

(T1,T2
l ,{((0, 0, ε),p1), (p3,s2)}) where∥p3∥s=U(T2

l
)l
\{∅}.

The goal of ST-compression rule is to combine elements with the
same subs. The ST-trimming rules are shown in Fig. 3. Rules (a)
and (b) are used to eliminate the sub-diagram representing the set
{∅} whereas rules (c) – (h) aim to reduce the sub-diagram denoting
the universe set over a subset of variables. A STSDD is compressed
(resp. trimmed), if no ST-compression (resp. trimming) rule can be
applied in it. We hereafter state the important property of compressed
and trimmed STSDDs.

Theorem 1: Given a vtree T over X, for any combination set
Q over X, there is a unique compressed and trimmed STSDD
(T1,T2, α) s.t. T1 ≼ T and ∥(T1,T2, α)∥s = Q.

Thanks to the additional vtree and the above trimming rules,
STSDD has compactness advantages over both SDD and ZSDD.

Example 2: We continue to Example 1. The combination set Q
in SDD, ZSDD and STSDD representations are shown in Fig. 1(b)
– (d), respectively. The combination subsets P1, S2 and S3 can
be represented as terminal nodes in SDD while P2, P3 and S3

can be in ZSDD. Hence, the combination set has SDD and ZSDD
representations of size 9. All of the above 5 combination subsets are
represented by terminal nodes in STSDD. The STSDD representation,
in comparison, is only 5 in size smaller than SDD and ZSDD. □

C. Zero-suppressed Variant

In a STSDD (T1,T2, α), S-trimming rules are applied from the
primary vtree T1 to the secondary one T2 and Z-trimming rules
are applied from the secondary vtree T2 to the primary vtree of
each of the terminal node α, or the prime pi and the sub si of the
decomposition node α. We hereafter define a variant of STSDD by
reversing the order of trimming rules, that is, Z-trimming rules are
implied first and S-trimming rules second.

Definition 7: Let (T1,T2, α) be an ESDD. The zero-suppressed
semantics ∥(T1,T2, α)∥z is recursively defined as:

• ∥(T1,T2,1)∥z = Uv(T2) and ∥(T1,T2,0)∥z = ∅;
• ∥(T1,T2, ε)∥z = {∅} and ∥(T1,T2, ε̄)∥z = Uv(T2) \ {∅};
• ∥(T1,T2, {(p1, s1), · · · , (pn, sn)})∥z =

n⋃
i=1

[
Uv(T2)\(pv(pi)∪pv(si))

⊔ ∥pi∥z ⊔ ∥si∥z
]
.

When α is the terminal node, the zero-suppressed semantics is only
the main combination set of α. When α is the decomposition node,
besides the main combination set, the zero-suppressed semantics
contains an extra combination set, that is, the universal set of
v(T2) \ (pv(pi) ∪ pv(si)) for each element (pi, si).

Based on the zero-suppressed semantics, we provide the zero-
suppressed variant of TSDD, namely zero-suppressed TSDD
(ZTSDD).

Definition 8: An ESDD (T1,T2, α) is an ZTSDD, if one of the
following holds:

• α is a terminal node labeled by 0 and T1 = T2 = 0.

α

· ε 0p
α

2

T1

T1

T2

T3

T2

T3

0
0

0
0

α

·ε 0p2

T1

T1

T2

T3

0
0

0
0

ε 0p2

T1

T
2

0
0

0
0ε 0

0

ε 0
T3

0

T1

T
2

0
0ε 0

T2

l

α

·
α

T1

T
3

T2

T
3

r

T1

T
2

ε 0
T2

l

α

·

T3

T4

T1

T
2

ε 0
T2

l

α

· ε 0p3

T1

T
2

T3

T4

0
0

0
0

r

α

·ε 0p2

T1

T
2

T3

T4

0
0

0
0

r

α

· ε 0p2

T1

T
2

T2

T
3

0
0
0

T2

r

α

·

T3

T4

T1

T
2

ε 0
T2

l

l

α

· ε 0p2

T1

T
2

T3

T4

0
0
0

T2

r

α

· ε 0p3

T1

T
2

T3

T4

0
0

0
0

l

α

· ε 0p2

T1

T
2

T3

T4

0
0
0

T2

r

α

·ε 0p2

T1

T2

T3

T4

0
0

0
0

l

(a) (b) (d)(c)

(e) (f) (h)(g)

0 0
0

Fig. 3: Trimming rules for STSDD

Id / 8

Reference count / 4

Size / 4

Elements / 8

Primary vtree / 8

Secondary vtree / 8

Type / 1 p1 / 8 s1 / 8

pn / 8 sn / 8

···

(a) Node-based TSDD node

Id / 8

Reference count / 4

Size / 4

Elements / 8

Secondary vtree / 8

Type / 4
p1 / 8 s1 / 8

pn / 8 sn / 8

Primary vtree

for s1 / 8
Primary vtree

for p1 / 8

Primary vtree

for sn / 8
Primary vtree

for pn / 8

···

(b) Edge-based TSDD node

Fig. 4: Two implementations for TSDDs

• α is a terminal node labeled by 1 and T2 = 0.
• α is a terminal node labeled by ε̄ and T2 is a leaf node.
• α is a decomposable node {(p1, s1), · · · , (pn, sn)} and

{(∥p1∥z, ∥s1∥z), · · · , (∥pn∥z, ∥sn∥z)} is an (X,Y)-partition
where X = v(T2

l) and Y = v(T2
r).

We remark that the terminal node ε is omitted in ZTSDD due to
the fact that ∥(T1,T2, ε)∥z = ∥(T1, 0,1)∥z for any vtrees T1 and
T2. In addition, ZTSDD is a canonical form for combination set by
applying zero-suppressed tagged compression and trimming rules.

Fig. 1(e) shows the ZTSDD for representing the example. Since
ZTSDD both enjoy the advantages of SDD and ZSDD, it has smaller
size 5 than SDD and ZSDD, which is the same as STSDD. We
remark that ZTSDDs and STSDDs in general have different sizes for
representing the same combination set given the same vtree.

D. Edge-based Variant

In Definition 6, both the primary vtree T1 and the secondary
one T2 are kept in each TSDD node. Such TSDD node is called
node-based TSDD node. We now introduce the edge-based variant of
TSDD. The main distinctions between node-based and edge-based
TSDD are: (1) Each edge-based TSDD node only includes the
secondary vtree T2 and the terminal/decomposition node α; (2)
Each element of a decomposition node consists of not only the prime
p and the sub s but also two vtrees Tp and Ts that are the primary
vtrees of p and s, respectively; (3) There is an extra edge pointing
to the root node denoting the primary vtree of the root node.

The main data structures of node-based TSDDs and edge-based
TSDDs are shown in Fig. 4, respectively. Suppose that the TSDD
node has n pairs of primes and subs. We remark that n = 0 when
the node is a terminal node. In the node-based TSDDs, each node
requires at least 41+16n bytes: 8 bytes for the pointer to the primary
vtree, 8 bytes for the pointer to the secondary vtree, 8 bytes for the
id of the node in the unique table that ensures no two equivalent
TSDD nodes are stored, 4 bytes for the reference count that is used to
garbage collection, 1 byte for the type of this node: terminal node or
decomposition node, 8 bytes for the pointer to a singly-linked list of
pairs of primes nd subs, and 4 bytes for the number of elements. The
node of edge-based TSDD has the similar data structure with node-
based TSDD. However, each edge-based TSDD node do not have the
primary vtree and each element has two additional primary vtrees for
the prime and the sub. The size of a edge-based node is 33 + 32n.

Fig. 1(f) and (g) show the edge-based STSDD and ZTSDD repre-
sentations for the same example. Node-based STSDD representation
for Q needs 449 bytes whereas that of edge-based one requires 432
bytes. Due to this sharing mechanism, edge-based variant consumes
less memory than node-based one when numerous nodes share
the same secondary vtree and terminal (or decomposable) node.
Otherwise, node-based variant is a data structure occupying less
memory space for storing TSDDs.

IV. OPERATIONS ON STSDD

In this section, we will design the algorithms of STSDDs for
achieving the five operations on combination sets. We first introduce
a normalization algorithm that serves as the basis of the above
algorithms, and then introduce a unified algorithm that accomplishes

Algorithm 1: Apply(F,G, ◦)
Input : F : a STSDD (T1,T2, α);

G: a STSDD (T3,T4, β);
◦: an operator on combination sets (∩, ∪ or \).

Output: H: The resulting STSDD (T5,T6, γ).
1 if Some cases are satisfied then return predefined results
2 if Cache(F,G, ◦) ̸= nil then return Cache(F,G, ◦)
3 if T1 and T3 are incomparable then
4 T5 ← Lca(T1,T3) and T6 ← T5

5 F ′ ← Normalize1(F,T5) and G′ ← Normalize1(G,T5)

6 else if T1 ≺ T3 then
7 T5 ← T3 and T6 ← T3

8 F ′ ← Normalize1(F,T5) and G′ ← Normalize2(G,T6)

9 else if T3 ≺ T1 then
10 T5 ← T1 and T6 ← T1

11 F ′ ← Normalize2(F,T6) and G′ ← Normalize1(G,T5)

12 else
13 T5 ← T1 and T6 ← Lca(T2,T4)

14 F ′ ← Normalize2(F,T6) and G′ ← Normalize2(G,T6)

15 γ ← ∅
16 foreach element (pi, si) of F ′ do
17 foreach element (qj , rj) of G′ do
18 p← Apply(pi, qj ,∩)
19 if ∥p∥s ̸= ∅ then
20 s← Apply(si, rj , ◦)
21 add element (p, s) to γ

22 H ← Trim(Compress(T5,T6, γ)))

23 Cache(F,G, ◦)← H

24 return H

the three operations: intersection, union and difference, and followed
by two algorithms for orthogonal join and change operations.

A. Apply

The normalization rules can be considered as a reverse of trim-
ming rules. There are two types of normalization rules. Given
a vtree T3 s.t. T1 ≼ T3, the first one is to transform a
STSDD (T1,T2, α) into an equivalent one (T3,T4, β), denoted by
Normalize1((T1,T2, α),T3).
(a) if T1 = T3, then T4 = T2 and β = α.
(b) if T1 ≺ T3

l , then T4 = T3 and β = {((T1,T2, α), (0, 0, ε)),
(p, (0, 0,0))} where ∥p∥s = UT3

l
\ ∥(T1,T2, α)∥s.

(c) if T1 ≺ T3
r , then T4 = T3 and β = {((0, 0, ε), (T1,T2, α)),

(p, (0, 0,0))} where ∥p∥s = UT3
l
\ {∅}.

The second type of normalization rules takes a STSDD
(T1,T2, α) and a vtree T4 where T2 ≼ T4 ≼ T1

as input, and outputs the resulting STSDD, denoted by
Normalize2((T1,T2, α),T4), with the same combination set
as (T1,T2, α).
(a) if T2 = T4, then T3 = T1 and β = α.
(b) if T2 ≺ T4

l , then T3 = T1 and β = {((T4
l ,T

2, α), (T4
r, 0, ε)),

(p, (0, 0,0))} where ∥p∥s = UT4
l
\ ∥(T1,T2, α)∥s.

(c) if T2≺T4
r , then T3=T1 and β = {((T4

l , 0, ε),(T
4
r,T

2, α))}.
The Apply algorithm, illustrated in Algorithm 1, aims to com-

pute the binary operation ◦ on two STSDDs F : (T1,T2, α)
and G : (T3,T4, β) where ◦ is one of the three operations on
combination sets: intersection (∩), union (∪) or difference (\). For
some simple cases, we can directly return the predefined results
(line 1). For example, if F = (0, 0,0) and ◦ = ∪, then the
resulting STSDD H is G. Now we consider the case where α and

Algorithm 2: OrthogonalJoin(F , G)

Input : F : a STSDD (T1,T2, α);
G: a STSDD (T3,T4, β);

Output: H: The resulting STSDD.
1 if F = (0, 0,0) or G = (0, 0,0) then return (0, 0,0) /* ∥F∥s = ∅

or ∥G∥s = ∅ */

2 if F = (0, 0, ε) then return G /* ∥F∥s = {∅} */

3 if G = (0, 0, ε) then return F /* ∥G∥s = {∅} */

4 T← the least common ancestor of T1 and T3

5 if T1 ≼ Tl then
6 F̃ ← an STSDD s.t. ∥F̃∥s = UTl

\ ∥F∥s
7 H ← Trim((T,T, {(F,G), (F̃ , (0, 0,0))}))
8 else
9 G̃← an STSDD s.t. ∥G̃∥s = UTl

\ ∥G∥s
10 H ← Trim((T,T, {(G,F), (G̃, (0, 0,0))}))
11 return H

β are decomposition nodes. In general, T1 ̸= T2 and T3 ̸= T4.
Therefore, it is necessary to convert F and G into their equivalent
STSDD F ′ and G′ with the same primary vtree T5 and secondary
vtree T6 via normalization rules (lines 3 – 14). If T1 and T3 are
incomparable, then both T5 and T6 are the least common ancestor
of T1 and T3. The transformed STSDDs F ′ and G′ can be obtained
via the first type of normalization rules. The other cases can be
handled similarly. Let F ′ = (T5,T6, {(p1, s1), · · · , (pn, sn)}) and
G′ = (T5,T6, {(q1, r1), · · · , (qm, rm)}). It is easily verified that
H = (T5,T6, γ) where γ = {(pi∩qj , si ◦rj) | 1 ≤ i ≤ n and 1 ≤
j ≤ m and pi ∩ qj ̸= ∅} (lines 16 – 21). Finally, compressing
and trimming rules will be performed on H to gain the canonicity
property (line 22). In addition, we use the cache table to avoid the
recomputation on the same TSDDs and operation (lines 2 & 23). Let
n be the number of subvtrees of T5, and |α| and |β| the size of α and
β, respectively. The Apply algorithm runs in O(n · |α| · |β|) without
the compression rules. When we consider compressing TSDDs, the
time complexity is exponential in |α| and |β| in the worst case. The
above time complexity result of the Apply algorithm still holds
for SDDs. It however was demonstrated in [19] that compiling any
combination set into compressed SDDs is significantly more efficient
than without compressed SDDs. The application of compression rules
results in a canonical form of SDDs and hence stipulating that no
two SDDs representing the same combination set are stored in the
unique table, and facilitating caching in practice. As an extension to
SDDs, TSDDs have many characteristics in common with SDDs. We
focus on only compressed TSDDs in the remaining of this paper.

B. Orthogonal Join and Change

We begin by introducing the algorithm for orthogonal join, il-
lustrated in Algorithm 2. Assume that we are given two STSDDs
F = (T1,T2, α) and G = (T3,T4, β). Algorithm 2 requires that
F and G are orthogonal, that is, T1 and T3 are incomparable. The
resulting STSDD is also the empty set, if one of the STSDDs F and
G is the empty set ∅ (line 1). In the case where F (resp. G) denotes
the combination set {∅}, the outcome is G (resp. F) (lines 2 & 3).
In general, we let T be the least common ancestor of T1 and T3. If
T1 is a subvtree of the left child of T, then the result STSDD H is
(T,T, {(F,G), (F̃ , (0, 0,0))}) where ∥F̃∥s = UTl \∥F∥s (lines 5
– 7). The opposite direction can be similarly handled (lines 8 – 10).
Algorithm 2 runs in a constant time.

Another basic operation for combination set is change. It takes
a STSDD F and a variable x as inputs, and outputs a STSDD G

Algorithm 3: Change(F , x)

Input : F : a STSDD (T1,T2, α);
x: a variable.

Output: G: The resulting STSDD.
1 T3 ← the leaf node labeled by x

2 if F = (0, 0, ε) then return (T3,T3, ε̄) /* ∥F∥s = {∅} */

3 if F = (T3,T3, ε̄) then return (0, 0, ε) /* ∥F∥s = {{x}} */

4 if F = (0, 0,0) or F = (T3, 0, ε) then return F /* ∥F∥s = ∅ or
∥F∥s = {{x}, ∅} */

5 if T3 ≺ T1 and T3 is not a subvtree of T2 then return F

6 if Cache(F, x, Change) ̸= nil then return Cache(F, x, Change)

7 if T1 and T3 are incomparable then
8 G← OrthogonalJoin(F, (T3,T3, ε̄))

9 else if T3 = T2 then
10 T2

p ← the parent node of T2

11 if T2 = (T2
p)l then

12 H ← an STSDD s.t. ∥H∥s = U(T2
p)l
\ {∅}

13 G← (T1,T2
p, {((0, 0, ε), ((T2

p)r, 0, ε)), (H, (0, 0,0))})
14 else /* T2 = (T2

p)r */
15 G← (T1,T2

p, {(((T2
p)l, 0, ε), (0, 0, ε))})

16 else /* T3 ≺ T2
*/

17 γ ← ∅
18 foreach element (pi, si) of α do
19 if T3 ≼ T2

l then
20 add element (Change(pi, X), si) to γ

21 else /* T3 ≼ T2
r */

22 add element (pi, Change(si, X)) to γ

23 G← (T1,T2, γ)

24 G← Trim(G)

25 Cache(F, x, Change)← G

26 return G

s.t. ∥G∥s = Change(∥F∥s, x). Let T3 be the leaf vtree node with
the label x. We first consider three special cases. If F denotes the
combination set {∅}, then the resulting STSDD G represents {{x}},
and vice versa (lines 2 & 3). If one of the following three cases
hold: (1) F = (0, 0,0); or (2) F = (T3, 0, ε); or (3) T3 ≺ T1

and T3 is not a subtree of T2, then the change operation do not
modify the input STSDD F (lines 4 & 5). In the case where T1 and
T3 are incomparable, then the change of F by x is the orthogonal
join of the two STSDDs F and (T3,T3, ε̄). If none of the above
cases holds, then T3 ≼ T2. We analyze the following two cases:
T3 = T2 and T3 ≺ T2. In the case where T3 = T2, we construct
G as (T1,T2

p, {((0, 0, ε), ((T2
p)r, 0, ε)), (H, (0, 0,0))}) where H

denotes the complement of {∅} if T2 is the left child of its parent
T2

p (lines 9 – 13); and as (T1,T2
p, {(((T2

p)l, 0, ε), (0, 0, ε))}) if
T2 is the right child of T2

p (lines 14 & 15). In the case where
T3 ≺ T2, α must be a decomposition node. We recursively apply
the change operation on the prime pi of elements of α if T3 ≼ T2

l

(lines 19 & 20), and on the sub si if T3 ≼ T2
r (lines 21 & 22).

Finally, we use the trimming rules on G (line 24). The algorithm
uses the cache table to avoid the recomputation on the same STSDD
and variable (lines 6 & 25) and runs in linear time w.r.t. |F |.

V. EXPERIMENTAL RESULTS

In this section, we compare four variants of TSDDs against
SDDs and ZSDDs with respective to their compactness in four
categories of benchmarks: dictionary, n-queens problems, safe petri
nets and digital circuits. For convenience, NSTSDD, NZTSDD,
ESTSDD, and EZTSDD are the abbreviations for node-based

STSDD, node-based ZTSDD, edge-based STSDD, and edge-based
ZTSDD, respectively. We implemented an efficient TSDD package
with the proposed algorithms in C language. We have also devised
minimization algorithm for TSDDs via so as to searching a good
vtree and integrate this algorithm into our package because the size
of TSDDs is sensitive to the vtree. Due to the space limit, we do not
present minimization algorithm in this paper, which will be clarified
in future work. All experiments were carried out on a machine
equipped with an Intel Core i7-8086K 4GHz CPU and 64GB RAM.
Table II shows the experimental results of 6 decision diagrams for
85 test cases across 4 benchmark categories on size and time. The
columns “size” denotes the size of compiled decision diagrams and
“time” the overall compilation runtime in seconds. The smallest sizes
among six decision diagrams are highlighted in bold font. The last
column shows the smallest size among 4 variants of TSDDs. The
entry “-” denotes a failed compilation due to the timeout of 2 hours.

The dictionaries we use are the English words in file
/usr/shar/dict/words on MacOS system with 235, 886
words of length up to 24 from 54 symbols and the password list
with 979, 247 words of length up to 32 from 79 symbols [20]. A
dictionary will be encoded in two ways: binary and one-hot. We
consider two sets of symbols: the compact form consisting of the
symbols only found in the dictionary, and the ASCII form consisting
of all 128 characters. We can compile all of the 8 test cases of
dictionaries in ZSDDs and 4 variants of TSDDs. However, SDD
compilation fails in the password dictionary. In addition, ZSDDs
and TSDDs have a significant size advantage over SDDs. Especially
for words in one-hot encoding, NSTSDDs and ESTSDDs have over
96% fewer size than SDDs. This is because the zero-suppressed
trimming rule has a tremendous benefit to reduce the size of decision
diagrams for dictionaries. Finally, NSTSDD performs the best in 6
out of 8 test cases and hence being an efficient representation for
dictionaries in terms of time.

The n-Queens problem aims to place n queens in such a manner
on an n × n chessboard that no two queens can attack each other
by being in the same row, column or diagonal. We also have two
ways (one-hot and binary) to encode this problem. Firstly, one of
the variants of TSDDs is the most compact representation in 13
out of 14 test cases. This indicates that combining two trimming
rules can result in a smaller decision diagram than using one
trimming rule. Secondly, compilations in SDDs, NZTSDDs and
EZTSDDs are more effective than the other three. However, the size
of SDD representation is obviously larger than others. Specifically,
13- and 14-Queens problems in one-hot encoding are of size
2,096,517 and 8,604,470 that are approximately 5.12 and 4.62 times
larger than NSTSDDs, respectively. Finally, ZSDD compilation is
time-consuming, especially, 13- and 14-Queens problem in binary
encoding take 5,061 and 5,943 seconds longer than NZTSDDs by
high factors of 40.50 and 13.20, respectively.

Petri nets are a popular graphical modeling tool for representing
and analyzing concurrent systems. A Petri net is safe iff there is
at most one token in each one of its places. We utilize decision
diagrams to denote the set of reachable states of safe Petri net.
The Petri net benchmark comes from the 2018 Model Checking
Contest (https://mcc.lip6.fr/2018/). As for the size,
one of the variants TSDDs performs the best in 20 out of 21 test
cases. In particular, for the two large test cases: NQueens-PT-08
and ParamProductionCell-PT-4, the minimal size among TSDDs are
20.3% and 97.6% smaller than the size of SDDs. Moreover, ZSDDs
fails in compilation of the above two test cases.

The final benchmark we consider is digital circuits. We use

TABLE II: The comparison among SDDs, ZSDDs, NSTSDDs, NZTSDDs, ESTSDDs and EZTSDDs over 4 categories of benchmarks
Benchmarks SDD ZSDD NSTSDD NZTSDD ESTSDD EZTSDD

size time size time size time size time size time size time best size
Words-Binary-Compact 1,562,787 100.735 922,405 34.884 935,605 23.289 636,393 41.198 937,770 41.463 1,005,408 60.207 636,393
Words-Binary-ASCII 2,356,875 110.015 1,610,952 64.302 1,602,317 38.075 802,562 65.870 1,683,324 78.939 1,780,959 98.862 802,562

Words-OneHot-Compact 19,205,734 755.775 593,762 26.218 593,624 18.800 706,927 68.202 593,766 28.809 706,968 86.394 593,624
Words-OneHot-ASCII 46,281,905 2,472.188 594,124 27.261 594,100 16.834 707,912 61.939 594,126 31.508 707,914 80.362 594,100

Passwords-Binary-Compact - - 3,488,141 339.656 3,440,014 369.770 3,464,514 437.667 3,488,592 755.580 3,834,894 767.570 3,440,014
Passwords-Binary-ASCII - - 5,664,643 764.867 5,579,382 711.813 5,733,694 721.128 5,732,059 1,337.874 6,061,272 1,336.517 5,579,382

Passwords-OneHot-Compact - - 2,243,018 266.236 2,243,016 265.143 2,663,610 1,620.616 2,243,018 457.473 2,663,610 1,965.936 2,243,016
Passwords-OneHot-ASCII - - 2,258,146 257.638 2,258,216 284.455 2,681,843 1,052.822 2,258,146 512.400 2,681,843 1,190.616 2,258,146

8-Queens-Binary 1,336 0.045 858 0.092 830 0.083 960 0.065 854 0.068 952 0.07 830
9-Queens-Binary 4,696 0.185 3,001 0.311 2,897 0.332 3,398 0.193 3,052 0.302 3,422 0.216 2,897

10-Queens-Binary 6,017 2.263 6,839 1.013 6,222 0.664 6,568 1.617 7,450 0.794 8,168 0.692 6,222
11-Queens-Binary 32,835 6.668 21,314 30.874 19,441 2.246 20,453 8.654 19,826 140.624 19,123 21.130 19,123
12-Queens-Binary 118,925 30.833 102,345 26.736 81,192 11.592 117,215 20.406 97,545 2,247.166 89,546 54.305 81,192
13-Queens-Binary 666,910 52.210 433,856 5,061.758 35,2637 160.228 511,928 124.993 466,128 1,171.961 48,6257 241.812 35,2637
14-Queens-Binary 2,610,502 556.376 1,871,878 5,943.739 1,554,825 682.726 2,340,878 450.193 2,134,480 511.551 2,371,137 366.242 1,554,825
8-Queens-OneHot 2,691 0.178 953 0.266 763 0.167 832 0.144 730 0.147 837 0.208 730
9-Queens-OneHot 12,526 0.359 3,213 0.549 2,616 0.344 3,170 0.301 2,604 0.349 3,171 0.338 2,604

10-Queens-OneHot 24,542 0.903 7,213 1.517 6,677 3.525 7,462 1.368 6,520 4.481 7,467 1.099 6,520
11-Queens-OneHot 95,390 4.049 22,729 15.659 21,340 19.492 25,780 4.614 21,585 138.004 26,015 40.781 21,340
12-Queens-OneHot 376,669 77.366 98,148 168.901 94,134 798.095 100,139 182.361 91,622 798.389 115,873 117.148 91,622
13-Queens-OneHot 2,096,517 231.321 431,436 92.528 409,525 677.2 491,912 279.847 416,729 974.899 523,479 278.24 409,525
14-Queens-OneHot 8,604,470 623.433 1,923,847 4,313.754 1,863,942 3,102.857 2,348,386 620.163 1,822,922 1,111.114 2,348,381 603.111 1,822,922
AutoFlight-PT-06a 2,276 167.958 - - 855 5060.282 1,228 254.188 889 7,185.497 - - 855

Dekker-PT-015 606 5.094 3,562 216.347 408 7.699 393 5.665 418 7.349 399 5.949 393
DiscoveryGPU-PT-14a 1,188 3,758.586 - - 372 627.382 - - 496 1,681.220 739 6,228.986 372

DLCround-PT-04a 1,016 49.017 734 742.783 463 157.861 547 16.599 514 335.422 571 16.350 463
FlexibleBarrier-PT-12a - - - - 445 2,447.236 732 2,924.438 474 2,282.550 - - 445

IBM319-PT-none 3,013 3.606 726 16.185 837 19.177 810 11.799 873 9.773 - - 810
LamportFastMutEx-PT-4 43,597 418.267 - - 11,087 1,131.252 24,759 614.258 4,241 843.778 7,210 204.395 4,241

MAPKbis-PT-5320 558 64.483 771 1,997.135 - - 415 86.565 - - 372 66.46 372
NeoElection-PT-3 6,039 29.293 - - 2,395 3,800.556 1,908 148.984 - - 1,882 83.911 1,882
NQueens-PT-08 243,080 170.705 - - 229,506 2,136.447 271,281 173.608 193,757 1,290.575 316,199 240.006 193,757

ParamProductionCell-PT-4 322,645 1,214.601 - - - - 7,755 1,764.348 - - 20,939 797.247 7,755
Peterson-PT-2 3,477 4.727 1,821 24.098 2,207 38.392 1,128 9.160 1,737 48.345 1,164 19.055 1,128

Philosophers-PT-000010 1,330 2.420 755 114.018 6,165 39.386 496 1.365 221 7.882 505 1.540 221
Raft-PT-03 375 1.955 432 2.423 234 1.314 292 1.937 239 1.462 314 1.508 234

Railroad-PT-010 2,462 6.619 16,033 694.707 1,191 20.191 1,249 8.802 1,352 8.949 - - 1,191
ResAllocation-PT-R020C002 1,876 228.02 - - 1,334 2,935.194 1,162 658.513 965 1,564.616 808 186.662 808

Referendum-PT-020 413 1.598 267 328.033 173 1.497 258 3.005 238 1.689 224 1.458 173
RwMutex-PT-r0020w0010 829 0.918 797 2.007 455 4.042 586 1.377 52,032 5,796.452 465 1.831 455

SafeBus-PT-03 3,113 1.525 6,871 7.664 1,565 1.829 2,152 2.520 1,360 2.596 1,543 2.104 1,360
SharedMemory-PT-000010 2,339 3.768 1,746 11.448 809 3.592 1,414 6.219 680 3.438 739 10.231 680

SimpleLoadBal-PT-10 16,136 1,040.229 - - - - 5,365 499.745 - - 85,566 5,353.878 5,365
9symml 27,119 80.097 22,152 2,102.474 19,729 23.757 24,399 120.719 22,520 585.506 16,442 100.958 16,442

alu2 - - - - - - 13,658 573.479 - - 13,208 1,219.279 13,208
apex6 - - - - - - 1,166,371 5,573.009 - - - - 1,166,371
apex7 7,800 13.541 8,688 17.721 20,022 173.013 5,958 18.721 - - 12,972 37.326 5,958

b9 8,096 9.849 19,066 121.499 24,115 696.112 18,192 18.052 69,642 210.751 12,719 20.033 12,719
C432 11,190 9.503 - - - - 12,990 205.840 17,113 101.410 30,777 69.729 12,990
C499 294,686 1,560.059 - - - - - - - - - - -

c8 19,656 49.683 66,069 972.876 19,681 177.154 15,849 67.920 14,644 29.474 17,382 76.453 14,644
count 4,027 2.018 4,126 3.008 5,175 6.823 6,051 7.400 199,478 248.969 2,864 6.569 2,864

example2 9,246 18.161 9,925 54.859 8,597 204.963 11,172 31.125 19,650 27.535 18,079 64.686 8,597
frg1 137,905 60.219 - - - - 200,455 1,501.116 190,457 3,129.121 121,959 638.711 121,959
lal 8,540 4.178 8,172 48.631 40,712 266.991 5,978 9.787 12,061 8.583 75,768 40.378 5,978

mux 2,071 0.884 8,588 6.445 5,272 3.578 1,718 1.701 1,788 0.895 3,339 1.995 1,718
sct 8,078 6.147 71,845 90.752 39,136 89.677 7,529 9.910 15,638 11.557 7,777 9.230 7,529

term1 100,589 371.290 - - - - 126,324 554.553 - - 3,500,493 4,524.447 126,324
ttt2 24,619 53.182 - - 29,290 526.672 17,382 123.076 19,868 201.311 32,908 224.050 17,382

unreg 3,973 2.256 4,178 2.297 8,188 7.457 3,782 3.724 24,445 11.645 3,850 4.620 3,782
vda - - - - - - 17,338 652.971 - - - - 17,338
x4 36,364 272.750 - - - - 24,667 316.670 - - 25,358 439.805 24,667

c1908 85,725,495 5,324.091 - - - - - - - - - - -
c432 11,647 25.205 - - - - 19,277 21.255 126,779 1516.911 117,939 117.537 19,277
c499 131,517 29.554 - - - - 245,306 81.118 307,962 297.176 160,305 70.929 160,305
s1196 - - - - - - - - - - 174,796 1631.269 174,796
s1238 96,122 1,169.499 - - - - - - - - - - -
s1494 - - - - - - - - - - 210,342 3,330.731 210,342
s298 3,864 2.860 4,177 2.326 9,880 87.201 3,631 5.504 4,979 5.565 4,110 3.872 3,631
s344 3,819 2.676 5,047 5.611 7,114 11.225 4,380 4.612 6,285 8.446 4,296 5.904 4,296
s349 4,291 3.715 5,760 3.233 7,047 10.201 9,364 6.520 3,856 7.049 6,783 7.731 3,856
s382 5,326 3.631 6,017 7.018 5,725 8.781 3,374 11.541 - - 4,182 7.822 3,374
s386 8,920 5.996 25,225 85.237 78,638 892.482 10,193 9.641 27,644 49.346 9,369 10.551 9,369
s400 4,319 4.152 5,988 5.581 5,397 10.359 4,694 22.990 13,059 9.187 40,038,280 3,738.312 4,694
s420 4,888 5.019 9,711 13.000 5,958 11.267 18,836 24.126 10,050 165.934 5,030 7.952 5,030
s444 4,955 3.894 6,656 6.771 4,359 5.135 4,615 16.479 7,049 235.753 3,898 6.436 3,898
s510 21,173 16.945 - - - - 13,440 15.398 - - 23,496 57.638 13,440

s526N 8,247 10.277 - - - - 7,088 16.894 - - - - 7,088
s526 7,100 6.656 31,253 459.766 14,385 69.232 6,361 7.607 - - 6,891 18.935 6,361
s641 11,581 12.924 51,062 113.329 21,219 103.634 18,208 384.775 71,137 72.105 16,758 24.438 16,758
s713 20,526 11.598 56,896 773.796 45,448 371.679 33,829 29.134 - - 27,558 28.119 27,558
s832 28,080 59.900 - - - - 31,081 704.611 - - 21,719 175.599 21,719

s838.1 10,108 24.724 12,307 56.800 17,204 71.095 8,136 49.535 - - - - 8,136
s838 13,493 30.427 22,807 54.466 15,442 124.552 15,836 204.722 - - 23,702 108.166 15,442
s953 119,689 326.609 - - - - - - - - 251,112 1,564.516 251,112

the test cases from the three sets of LGSynth89, iscas85, and
iscas89 benchmarks that are widely used in CAD community. We
only present the test cases if (1) at least one decision diagrams is
successfully created within the timeout of 2 hours, and (2) at least
one decision diagrams has size of more than 5,000. It can be observed
that NZTSDD and EZTSDD together are able to compile the 5
test cases: alu2, apex6, vda, s1196 and s1494 while other decision
diagrams cannot. SDDs can successfully compile the 2 test cases:
C499 and c1908 which the others fails. Regarding on size, TSDDs
are the most compact representation in 26 out of 42 test cases, with
1 cases in NSTSDD, 15 cases in NZTSDD, 2 cases in EZTSDD and
8 cases in ESTSDD. SDDs provide the most succinct representation

in 16 test cases. ZSDD-representation is not the smallest one in any
test case. Apart from the size, we can see that TSDD compilation
is comparatively slower than SDD compilation. This is because
the underlying data structure of TSDD is more complicated than
SDD and the minimization algorithm for TSDD needs more time.
However, finding a decision diagram with smaller size is of utmost
importance. First, keeping decision diagrams compact improves the
effectiveness of subsequent Boolean operations. Secondly, the size
of decision diagrams is crucial for specific application. For example,
BDD-based logic synthesis generates electronic circuit of fewer size
with smaller decision diagrams [21], [22]. Therefore it is worthy to
spend extra time in producing more compact decision diagrams.

In summary, we can observe that no single decision diagram
dominates all categories of benchmarks in terms of size and
compilation time. TSDDs are a significant representation of Boolean
functions as an important addition to SDDs and ZSDDs,

VI. CONCLUSION

In this paper, we design four variants of TSDDs that mixes standard
and zero-suppressed trimming rules. We divide TSDDs into STSDDs
and ZTSDDs according to the order of trimming rules. The former
requires the standard trimming rules to be applied first, and the latter
requires the zero-suppressed trimming rules to be utilized first. In
addition, we provide two approaches to implementing TSDDs: node-
based and edge-based. Node-based implementation stores both pri-
mary vtree and secondary vtree in a TSDD node, and edge-based im-
plementation store primary vtree as an edge pointing to a TSDD node.
Therefore, we obtain four different kinds of TSDDs: node-based
STSDDs, node-based ZTSDDs, edge-based STSDDs and edge-based
ZTSDDs. We design their syntax and semantics and provide design
three algorithms: Apply, OrthogonalJoin and Change for STSDDs to
implement the corresponding operations over combination sets. We
finally conduct experiments on four benchmarks, which confirms that
TSDDs are a more compact form compared to SDDs and ZSDDs.

REFERENCES

[1] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipu-
lation,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 677–691,
1986.

[2] S. Thijssen, S. K. Jha, and R. Ewetz, “COMPACT: Flow-Based Comput-
ing on Nanoscale Crossbars With Minimal Semiperimeter and Maximum
Dimension,” IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, vol. 41, no. 11, pp. 4600–4611, 2022.

[3] R. Matsuo and S. Minato, “Space and Power Reduction in BDD-based
Optical Logic Circuits Exploiting Dual Ports,” in Proceedings of 2022
Design, Automation & Test in Europe Conference & Exhibition (DATE-
2022), 2022, pp. 1071–1076.

[4] J. Zhang, W. Qi, T. Tian, and Z. Wang, “Further Results on the
Decomposition of an NFSR Into the Cascade Connection of an NFSR
Into an LFSR,” IEEE Transactions on Information Theory, vol. 61, no. 1,
pp. 645–654, 2015.

[5] D. Knichel, P. Sasdrich, and A. Moradi, “SILVER - Statistical In-
dependence and Leakage Verification,” in Proceedings of the 26th
International Conference on the Theory and Application of Cryptology
and Information Security (ASIACRYPT-2020), ser. Lecture Notes in
Computer Science. Springer, 2020, vol. 12491, pp. 787–816.

[6] A. Mahzoon and R. Drechsler, “Late Breaking Results: Polynomial For-
mal Verification of Fast Adders,” in Proceedings of the 58th ACM/IEEE
Design Automation Conference (DAC-2021), 2021, pp. 1376–1377.

[7] C. Wei, Y. Tsai, C. Jhang, and J. R. Jiang, “Accurate bdd-based
unitary operator manipulation for scalable and robust quantum circuit
verification,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference (DAC-2022), 2022, pp. 523–528.

[8] S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combi-
natorial Problems,” in Proceedings of the 30th International Design
Automation Conference (DAC-1993), 1993, pp. 272–277.

[9] T. van Dijk, R. Wille, and R. Meolic, “Tagged BDDs: Combining Re-
duction Rules from Different Decision Diagram Types,” in Proceedings
of the 17th International Conference on Formal Methods in Computer-
Aided Design (FMCAD-2017). IEEE, 2017, pp. 108–115.

[10] R. E. Bryant, “Chain Reduction for Binary and Zero-Suppressed Deci-
sion Diagrams,” Journal of Automated Reasoning, vol. 64, p. 1361–1391,
2020.

[11] J. Babar, C. Jiang, G. Ciardo, and A. Miner, “CESRBDDs: binary deci-
sion diagrams with complemented edges and edge-specified reductions,”
International Journal on Software Tools for Technology Transfer, vol. 24,
p. 89–109, 2022.

[12] C. E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,”
Transactions of the American Institute of Electrical Engineers, vol. 57,
no. 12, pp. 713–723, 1938.

[13] K. Pipatsrisawat and A. Darwiche, “New Compilation Languages Based
on Structured Decomposability,” in Proceedings of the 23rd AAAI
Conference on Artificial Intelligence (AAAI-2008), 2008, pp. 517–522.

[14] A. Darwiche, “SDD: A New Canonical Representation of Propositional
Knowledge Bases,” in Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI-2011), 2011, pp. 819–826.

[15] S. Bova, “SDDs Are Exponentially More Succinct than OBDDs,” in
Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI-2016), 2016, pp. 929–935.

[16] A. Choi and A. Darwiche, “Dynamic Minimization of Sentential De-
cision Diagrams,” in Proceedings of the 27th AAAI Conference on
Artificial Intelligence (AAAI-2013), 2013, pp. 187–194.

[17] M. Nishino, N. Yasuda, S. ichi Minato, and M. Nagata, “Zero-
Suppressed Sentential Decision Diagrams,” in Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI-2016), 2016, pp. 1058–
1066.

[18] L. Fang, B. Fang, H. Wan, Z. Zheng, L. Chang, and Q. Yu,
“Tagged Sentential Decision Diagrams: Combining Standard and Zero-
suppressed Compression and Trimming Rules,” in Proceedings of the
38th IEEE/ACM International Conference on Computer-Aided Design
(ICCAD-2019), 2019, pp. 1–8.

[19] G. V. den Broeck and A. Darwiche, “On the Role of Canonicity in
Knowledge Compilation,” in Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI-2015), 2015, pp. 1641–1648.

[20] R. E. Bryant, “Supplementary Material on Chain Reduction for Bi-
nary and Zero-Suppressed Decision Diagrams,” http://www.cs.cmu.edu/
∼bryant/bdd-chaining.html, 2020.

[21] R. Wille and R. Drechsler, “BDD-Based Synthesis of Reversible Logic
for Large Functions,” in Proceedings of the 46th Annual Design Au-
tomation Conference (DAC-2009), 2009, p. 270–275.

[22] L. Amarú, P.-E. Gaillardon, and G. D. Micheli, “BDS-MAJ: A BDD-
Based Logic Synthesis Tool Exploiting Majority Logic Decomposition,”
in Proceedings of the 50th Annual Design Automation Conference (DAC-
2013), 2013.

http://www.cs.cmu.edu/~bryant/bdd-chaining.html
http://www.cs.cmu.edu/~bryant/bdd-chaining.html

	Introduction
	Preliminaries
	Tagged Sentential Decision Diagrams
	The Syntax and semantics
	Canonicity
	Zero-suppressed Variant
	Edge-based Variant

	Operations on STSDD
	Apply
	Orthogonal Join and Change

	Experimental Results
	Conclusion
	References

