2312.00793v1 [cs.Al] 16 Nov 2023

arxXiv

Variants of Tagged Sentential Decision Diagrams

Deyuan Zhong Mingwei Zhang

Quanlong Guan Liangda Fang

Department of Computer Science Department of Computer Science Department of Computer Science Department of Computer Science

Jinan University Jinan University
Guangzhou, China Guangzhou, China
zhongdeyuan @stu2021.jnu.edu.cn mingweizhang @stu2022.jnu.edu.cn

Zhaorong Lai
Department of Computer Science
Jinan University
Guangzhou, China
laizhr@jnu.edu.cn

Abstract—A recently proposed canonical form of Boolean functions,
namely tagged sentential decision diagrams (TSDDs), exploits both
the standard and zero-suppressed trimming rules. The standard ones
minimize the size of sentential decision diagrams (SDDs) while the zero-
suppressed trimming rules have the same objective as the standard
ones but for zero-suppressed sentential decision diagrams (ZSDDs). The
original TSDDs, which we call zero-suppressed TSDDs (ZTSDDs), firstly
fully utilize the zero-suppressed trimming rules, and then the standard
ones. In this paper, we present a variant of TSDDs which we call standard
TSDDs (STSDDs) by reversing the order of trimming rules. We then
prove the canonicity of STSDDs and present the algorithms for binary
operations on TSDDs. In addition, we offer two kinds of implementations
of STSDDs and ZTSDDs and acquire three variations of the original
TSDDs. Experimental evaluations demonstrate that the four versions of
TSDDs have the size advantage over SDDs and ZSDDs.

Index Terms—Boolean functions, Combination sets, Decision diagrams

I. INTRODUCTION

Knowledge compilation aims to transform a Boolean function
into a tractable representation. Binary decision diagrams (BDDs) [1]]
is one of the most notable representations that is widely employed
for numerous fields of computer science including computer-aided
design [2]], [3]], cryptography [4], [S], formal method [6], [7].
Interestingly, BDDs are a canonical form under the two restrictions:
ordering and reduction, that means, any Boolean function has a
unique BDD representation. This property reduces the storage space
of BDDs and enables an O(1) time equality-test on BDDs.

Following the success of BDDs, a variant zero-suppressed BDDs
(ZDDs) was proposed in [8]. ZDDs enjoy the same properties:
canonicity and supporting polytime Boolean operations as BDDs.
The main difference between BDDs and ZBDDs lies in their different
reduction rules. Some applications inspire several extensions of BDD
that combine the reduction rules of BDDs and ZBDDs, including
tagged BDDs (TBDDs) [9], chain-reduced BDDs (CBDDs) [10],
chain-reduced ZDDs (CZDDs) [10] and edge-specified-reduction
BDDs (ESRBDDs) [[11]]. Thanks to the integration of two reduction
rules, the above extensions are more compact representations than
BDDs and ZDDs.

The theoretical foundation of BDDs is the Shannon decomposition
[12], which splits a Boolean function into two subfunctions based on
a single variable. Structured decomposition [13]], an extension to the
Shannon decomposition, splits a Boolean function according to a set
of mutually exclusive subfunctions. By using structured decomposi-
tion instead of the Shannon decomposition, a novel decision diagram,
namely sentential decision diagram (SDD), was developed in [14].

Jinan University
Guangzhou, China
guangl@jnu.edu.cn

Jinan University
Guangzhou, China
fangld@jnu.edu.cn

Yong Lai

College of Computer Science and Technology

JiLin University
Changchun, China
laiy @jlu.edu.cn

Just as BDDs are characterized by a total order of variables, SDDs
are characterized by a variable tree (vtree), that is, a full and binary
tree whose leaves are variables. The advantage of SDDs over BDDs is
providing a more succinct representation in theory and practice [[15],
[16]. In addition, [[17] proposed the zero-suppressed variant of SDDs
(called ZSDDs), which is also based on structured decomposition,
and applies the zero-suppressed trimming rules instead of the
standard rules used in SDDs. ZSDDs offer a more compact form
for spare Boolean functions compared to SDDs. In contrast, SDDs
are more suitable for homogeneous Boolean functions. In order to
harness the relative strengths of SDDs and ZSDDs, [18] designed
a novel decision diagram, namely tagged SDDs (TSDDs), which
combines the standard and zero-suppressed trimming rules.

In this paper, we investigate the variants of TSDDs. To distinguish
it from its variants, we call the original TSDD zero-suppressed
TSDD (ZTSDD). ZTSDD firstly fully utilizes the zero-suppressed
trimming rules before adopting the standard ones. By reversing the
order of the trimming rules, we propose the first variant, namely
standard TSDD (STSDD). The syntactical definition of STSDD
is the same as ZTSDD that is made up of two vtrees and a
decomposition node. However, STSDD uses the standard trimming
rules as the first rule and the zero-suppressed ones as the second
rule. We also propose the semantics for STSDDs and design the
trimming rules for STSDDs, obtaining the canonicity property of
STSDDs. In addition, we implement these two types of TSDDs in
two ways: node-based and edge-based. Basically, the node-based
implementation specifies two vtrees and the decomposition node in a
TSDD node. In contrast, the edge-based implementation only keeps
the secondary vtree in a TSDD node and associate the edge pointing
to each STSDD subnode of the decomposition node with its primary
vtree. When a large number of nodes share the same secondary vtree
and decomposable node, edge-based implementation utilizes less
memory than node-based one. Node-based implementation, on the
other hand, uses less memory space to save TSDDs. [18]] developed
only edge-based implementation of ZTSDDs using C++ language.
Some critical data structures, such as unique table and cache table,
were built directly on standard template library, making them less
efficient. We provide more efficient implementations of four TSDD
variations by rewriting such data structures in C language. We
also compare SDDs and ZSDDs with the four TSDD variations
in terms of size and compilation time of decision diagrams on an
extensive set of benchmarks. The experimental results support the
effectiveness of our implementation and the relative compactness of

TABLE I: Operations on combination sets.

l Operation ‘ Description ‘ Definition ‘
QnNnQ’ intersection {(X|XeQad X € Q'}
QuUQ’ union {X|XeQoaXecQ'}
Q\Q difference {X|XeQand X ¢ Q'}
QuUQ’ orthogonal join | {XUX’ | X € Qand X' € Q'}

Change(Q,) change {{(Uieh|):(€Qundz¢ i(}u
{X\{z} | X € Qandz € X}

TSDDs over SDDs and ZSDDs on the majority of test-cases.

The rest of this paper is organized as follows. Section 2 provides
the preliminaries of Boolean function, combination set, the standard
and zero-suppressed trimming rules. In Section 3, we give the syntax
of TSDDs and two semantics for TSDDs, obtaining two versions of
TSDDs: STSDDs and ZTSDDs. We also design the compressness
and trimming rules for STSDDs, gaining the canonicity property of
STSDDs and offer two implementations for TSDDs. In Section 4,
we develop the algorithm for binary operations of combination sets
on STSDDs. Experimental evaluation for comparison among four
variations of TSDDs with SDDs and ZSDDs appears in Section 5.
Finally, Section 6 concludes this paper.

II. PRELIMINARIES

Throughout this paper, we use lower case letters (e.g., x1,x2) for
variables, and bold upper case letters (e.g., X, Y) for sets of variables.
For a variable x, we use T to denote the negation of x. A literal is a
variable or a negated one. A truth assignment over X is a mapping
o : X +— {0,1}. We let Xx be the set of truth assignments over
X. We say f is a Boolean function over X, which is a mapping:
¥x + {0,1}. We use 1 (resp. 0) for the Boolean function that
maps all assignments to 1 (resp. 0). A combination X on X is a
subset of X. Every combination X corresponds to exactly one truth
assignment o, that is, z € X iff o(z) = 1. A combination set Q
over X is a collection of combinations on X. It was shown that
every combination set can be transformed into a Boolean function,
and vice versa [8]], [[17]. The operations on combination sets include:
union U, intersection N, difference \, orthogonal join LI and change
[17]. The definitions of the above operations are illustrated in Table[l]
We use Ux for the universe set of combinations on X. For example,
Uler 20 = {{z1, 22}, {@1}, {@2}, 0}. We remark that Uy = {0}.

Let X and Y be two disjoint and non-empty sets of variables. We
say the set {(P1,S1),- -, (Pn,Sn)} is an (X, Y)-decomposition
of a combination set Q, iff Q = [P1 US1]U - U [P, US,]
where every P; (resp. S;) is a combination set over X (resp. Y).
A decomposition is compressed iff S; # S; for i # j. An (X,Y)-
decomposition is called an (X, Y)-partition, iff (1) every P; is non-
empty, (2) P; NP; =0 for i # j, and (3) P, U---UP, = Ux.

A vtree is a full binary tree whose leaves are labeled by variables,
which generalizes variable orders. For a vtree T, we use v(T) for
the set of variables appearing in leaves of T, and T; and T, for the
left and right subtrees of T respectively. There is a special leaf node
labeled by O that can be considered as a child of any vtree node and
v(0) = . The notation T* < T2 denotes that T is a subtree of T?
and T! < T? means that T' is a proper subtree.

Based the notion of vtrees, a combination set can be graphically
represented by a structured decomposable diagram [18|.

Definition 1: A structured decomposable diagram is a pair (T, a)
where T is a vtree and « is recursively defined as follows

e « is a terminal node labeled by one of the four symbols: 1, O,
€ and &, and T is any vtree.

e « is a decomposition node {(p1,s1), -, (Pn,sn)} satisfying
the following conditions:

1) each p; is a structured decomposable diagram (T%7 B) where
T < Tu;

2) each s; is a structured decomposable diagram (T%,~) where
T < T

Every pair (p;, s;) of a decomposition node is called an element
where p; is called a prime and s; is called a sub.

We hereafter provide two ways to interpret a structured decompos-
able diagram (T2,) as a combination set, which we call standard
and zero-suppressed semantics. Since the standard semantics depends
on an extra vtree T, it is a mapping from structured decomposable
diagrams and vtrees into combination sets.

Definition 2: Let T' be a vtree and (T2 a) be a structured
decomposable diagram where T? < T'. The standard semantics
(T, (T?,) is recursively defined as follows:

e (T',(T%1))s = Uq and (T', (T?,0)), = 0;

. <r]:‘17 (r]:‘27 €)>3 = U’U(Tl)\v(TQ) and <T1, (Tz, §)>s =

U, (ripnwer2) U (Uyerzy \ {0});
. <T17(T2,{(p1781)7~-~ 7(pnvs’ﬂ)})>5 =

n

[Ot uasg.).

i=1

The standard semantics (T, (T,)5 contains two combination
sets. The main combination set is based on T2 and «. The four
terminal nodes 1, 0, € and & represent U, (2), §, {0} and U, (2, \
{0}, respectively. The decomposition node {(p1,$1),-* - , (Pn, Sn)}
denotes the combination set that is the union of the orthogonal join of
(pi)s and (s;)s for every pair (p;, s;). The auxiliary combination set
is the universe set over v(T")\ v(T?). The standard semantics is the
orthogonal join of main and auxiliary combination sets. For example,
the combination set of (T*, T2, 1) is U, 12y U Uyeriy\o(T2), and
hence being U, (g1).

The zero-suppressed semantics (T', (T2, «)), is only the main
combination set, which can be -easily clleﬁned. For example,
(T (T2, {(pr,51), -, (Pny s0)}))= = U ({pi)s U {si)s). We
introduce the extra vtree T! in the zero-suppressed semantics in
accordance with the standard semantics though it is not required for
the zero-suppressed semantics.

Based on the standard semantics, we impose some restrictions
on structured decomposable diagram and obtain the definition of
sentenial decision diagram (SDD).

Definition 3: A structured decomposable diagram (T, «) is a
sentenial decision diagram, if one of the following holds:

1) «a is a terminal node labeled by 1 or O, and T = 0.

2) « is a terminal node labeled by € or £, and T is a leaf node.

3) « is a decomposition node {(p1,51), ", (Pn,sn)}, and all of

the following hold:
e (Ty,pi)s #0for1<i<m;
o (Ti,pi)s N (Tu,pj)s = 0 for i # j;
+ U(Tip)s = Uyer,.

The dé:ﬁnition of zero-suppressed sentenial decision diagram
(ZSDD) is the same as SDD, except that (1) we require T to be
the special vtree 0 when « is a terminal node labeled by ¢; (2) the
vtree T can be any leaf node when « is labeled by 1; (3) we use
the zero-suppressed semantics for the decomposition node.

An SDD can be transformed to an equivalent one with smaller size
by the following the standard compressness and trimming rules.

U, (tiypwer2y U

4 4

A\
A4

Enltsllens] EerlEniOnl Bl

(a) A viree

(c) AZSDD

(d) A node-based STSDD

(e) A node-based ZTSDD

(f) A edge-based STSDD (9) A edge-based ZTSDD

Fig. 1: The vtree and the SDD, ZSDD and TSDD representations of the combination set {{z1,z2,23,24},{x2,73,24},{z1,75,24},{71,24}}.

o Standard compression rule (S-compression rule): if
(Tr,si)s = (Tr, s;)s, then replace (T, {(p1,$1), - , (Pi, Si),
T (pjv Sj)7 T (pna S")}) with (T7 {(p17 31)7 Ty (pl7 Si)a
e ,(pn,Sn)}) where <Tlvpl>5 = <Tlvp’i>5 U <Tlvpj>3'

o Standard trimming rule (S-trimming rule):

(a) replace the diagram (T, {(p, s)}) by the diagram s.

() if (Tr,s1)s = Uyr,) and (T, s2)s = 0, then replace the

diagram (T, {(p1, s1), (p2, s2)}) by the diagram p;.

The S-compression rule combines two elements (p;,s;) and
(pj,s;) when s; and s; denotes the same combination set. The
two S-trimming rules aim to remove the universe set over a subset
of variables in a decomposition node. By repeatedly applying the
S-compression and trimming rules, we can create the unique SDD.

Similarly, we can define the zero-suppressed compression and
trimming rules for ZSDD.

o Zero-suppressed compression rule (Z-compression rule): if
(Tr, si)> = (Tr, s;)=, thenreplace (T, {(p1,$1), - , (Pi, Si),
T (pjv 8j)7 T (pn7 Sn)}) with (T’ {(plv 51)’) (p/v Si)v
“+(pn,sn)}) where (Ty,p")z = (Ti,pi)= U (T1,p;)-

e Zero-suppressed trimming rule (Z-trimming rule):

@ if (Tip). = {0} Gesp. (Toos). = {0
and (T,,s2). = 0, then replace the diagram
(T, {(p1, s1), (p2,s2)}) by the diagram s1 (resp. p1);

(b) if (T,,s), = 0, then replace the diagram (T, {(p,s)}) by
the diagram s;

The Z-compression rule is similar to the S-compression rule except
that it uses the zero-suppressed semantics. The two Z-trimming rules
seek to eliminate {()}. We acquire the canonical representation via
utilizing the Z-trimming rule on ZSDDs.

Example 1: Fig.[I[a) shows the vtree T where its left subtree T
involves X : {x1, z2} while its right one T, involves Y : {z3,z4}.
Fig. [[[b) depicts an SDD representing the combination set
Q = {{$1,£E2,$3,1’4},{$2,$3,£E4},{$1,$3,$4},{x1,$4}}

based on T. The (X,Y)-partition of Q contains three elements:
Py S Py S2

—_———— —N ———
({{zr, 22}, {23}, {{ws, 2a}}), ({21}, {{ws, 24}, {z4}}) and

ol

(a) A terminal node

Fig. 2: Two types of nodes of ESDDs

(b) A decomposition node

P; S
—
({0}, ©). Each combination subset P; (resp. S;) corresponds to

the node p; (resp. s;) of the SDD. The ZSDD representation for Q
with smaller nodes than the SDD one is shown in Fig. [[c). (]

I1I. TAGGED SENTENTIAL DECISION DIAGRAMS

In this section, we will first provide a general structure, namely
extended structured decomposable diagram (ESDD), that is, the
syntactic definition for TSDDs, and then with two different semantics,
that are, a mapping from ESDDs to combination sets. The ESDD with
the standard semantics is called standard TSDD (STSDD) while it is
called zero-suppressed TSDD (ZTSDD) under the zero-suppressed
semantics. We also present the trimming rules for STSDD so as
to reduce the size of STSDD and obtain the canonicity theorem of
STSDDs. Finally, we provide two implementations for TSDDs: node-
based and edge-based. Hence, we obtain four versions of TSDDs.

A. The Syntax and semantics

In order to facilitate combining two types of trimming rules,
we first provide a general structure, namely extended structured
decomposable diagram (ESDD).

Definition 4: An ESDD is a tuple (T', T2, o) s.t. T? < T*, which
is recursively defined as:

e « is a terminal node labeled by one of the four symbols: 1, O,

€ and &;

e « is a decomposition node {(p1,s1), -, (pn,sn)} satisfying

the following:
— each p; is an ESDD (T%, T*, 8) where T* < T? < T?;
— each s; is an ESDD (T®, T, ~) where T® < T® < T?.

An ESDD F = (T',T? a) consists of three components: the
primary vtree T', the secondary vtree T2 and the terminal (or
decomposition) node . As seen in Fig. 2fa), when « is a terminal
node, the above three components are represented by a square where
a is shown in the left side of the square, T' in the upper-right
corner and T2 in the lower-right corner. When « is a decomposition
node, the primary and secondary vtrees are displayed as a circle with
outgoing edges pointing to the elements as shown in Fig. 2Jb). Each
element (p;, s;) is represented by a paired box where the left box
represents the prime p; and the right box stands for the sub s;. We use
pv(F') for the primary vtree of F' and sv(F') for the secondary vtree.
The size of «, denoted by |, is the sizes of all of its decompositions.

To interpret ESDDs, we provide the semantics, that is, a mapping
from ESDDs into combination sets.

Definition 5: Let (T*, T?, a) be an ESDD. The standard semantics
(T, T2,)||s is recursively defined as:

e (T, T2 1)|ls = Uy(r1) and ||(T', T%,0)|s = 0;

« (TLT%e)lls = Uyeriyperz) and (T, T8 =

Uy riyw(r2) U (Uyer2y \ {0});
* H(TI,T27{(plvsl)7"' 7(pn,5n)})||s =

n

[0l s

i=1
Since every ESDD involves an extra vtree T' compared to
structured decision diagrams, the standard semantics for ESDDs is
similar to structured decision diagrams (cf. Definition [2).
A standard tagged sentential decision diagram (STSDD) is an
ESDD with the following constraints.

Definition 6: An ESDD (T, T? «) is an STSDD, if one of the

following holds:

o «is a terminal node labeled by 0 and T' = T2 = 0.

e « is a terminal node labeled by & and T? = 0.

e « is a terminal node labeled by & and T? is a leaf node.

e o is a decomposable node {(pi,s1), -, (pn,sn)} and
{(lprlls; [[s1lls), -+ s (lpnlls, Isnlls)} is an (X, Y)-partition
where X = v(T?) and Y = v(T?2).

We remark that we use the terminal node ¢ instead of 1 in STSDDs

since ||(T*, T?,1)||s = ||(T*,0,¢)||s for any vtrees T* and T2

Uyriyw(r2) U

B. Canonicity

We hereafter design the standard tagged compression and trimming
rules for reducing the size of STSDD and obtaining the canonicity
property of STSDDs.

« Standard tagged compression rule (ST-compression rule):
if IIs:l]s = Is5llss then replace
(T17 T27 {(ph 31)7) (pi, 51’)7) (pj’ S]'),) (pny Sn)})
with (T, T2, {(p1,51), -+, (®},51), -, (Pn,sn)}) where
Ipills = lIpills U llpslls-

« Standard tagged trimming rule (ST-trimming rule) (Fig [3):

@ if pr = (T%T%a), Jsufls = {0} and [soflc = 0, or
llp1lls = {0}, s1 = (T%, T3, &) and ||s2||s = @, then replace
(T17 T17 {(ph 81)7 (p2’ 52)}) with (T27 TB’ a);

(b) if |Ipills = llsills = {0}, ||s2]ls = @ and T? is T} or T4,
then replace (T*, TZ, {(p1,51), (p2,s2)}) with (T3,0,¢),
where T® =T} when T?=T{ and T® =T} when T>="T;.

() if p = (T},0,¢) and |s|ls = @, then replace
(T, T2, {(p, s)}) with (0,0,0).

(d) if p1 = (TF, T?, @), s1 = (T2,0,¢) and ||s2]|s = 0 (resp.
p = (T30,e) and s = (T2, T%a)), then
replace (T*, TZ,{((0,0,¢),s1), (p2,(0,0,0))}) (resp.
(T, T2, {(p, s)})) with (T, T3 «a);

(e) if p1 = (T?,0,¢), s1 = (T, T*) and T? < (T2);, then
replace (T, T2 {(p1, s1)}) with (T, T2, {(s1, (0,0,¢)),
(p27 (07070))}) where Hp?HS = U(T%)l \ H51||5;

) if p1 = (T%,0,¢), s1 = (T3, T*) and T? < (T2),, then
replace (T*, T2, {(p1,s1)}) with (T*, T2, {((0,0,¢), 1),
(p2,(0,0,0))}) where [|p2[|s = Upzy, \ {0};

(@ if p1 = (T3, T a), s1 = (T2,0,¢), ||s2]ls = 0§ and
T? < (T?);,then replace (T, T?, {(p1, 51), (p2, s2)}) with
(T, T7,(p1, (0,0, €)),(ps,s2)) where||ps]| =U (x2) \|lp1 |

() if pp = (T*, T a), s1 = (T%,0,¢), ||s2]ls = 0 and
T3 < (T7?), then replace (T", T2, {(p1, 51), (p2, $2)}) with
(T, T7.{((0,0,€),p1), (Ps,s2)}) where[ps||s =U x2), \{0}.

The goal of ST-compression rule is to combine elements with the
same subs. The ST-trimming rules are shown in Fig. 3] Rules (a)
and (b) are used to eliminate the sub-diagram representing the set
{0} whereas rules (c) — (h) aim to reduce the sub-diagram denoting
the universe set over a subset of variables. A STSDD is compressed
(resp. trimmed), if no ST-compression (resp. trimming) rule can be
applied in it. We hereafter state the important property of compressed
and trimmed STSDDs.

Theorem 1: Given a vtree T over X, for any combination set
Q over X, there is a unique compressed and trimmed STSDD
(T',T% o) st. T' g T and ||(T', T?,a)||s = Q.

Thanks to the additional vtree and the above trimming rules,
STSDD has compactness advantages over both SDD and ZSDD.

Example 2: We continue to Example 1. The combination set Q
in SDD, ZSDD and STSDD representations are shown in Fig. [T[b)
— (d), respectively. The combination subsets P;, So and S3 can
be represented as terminal nodes in SDD while P2, P3 and S3
can be in ZSDD. Hence, the combination set has SDD and ZSDD
representations of size 9. All of the above 5 combination subsets are
represented by terminal nodes in STSDD. The STSDD representation,
in comparison, is only 5 in size smaller than SDD and ZSDD. [

C. Zero-suppressed Variant

In a STSDD (T*, T?,), S-trimming rules are applied from the
primary vtree T to the secondary one T2 and Z-trimming rules
are applied from the secondary vtree T2 to the primary vtree of
each of the terminal node «, or the prime p; and the sub s; of the
decomposition node . We hereafter define a variant of STSDD by
reversing the order of trimming rules, that is, Z-trimming rules are
implied first and S-trimming rules second.

Definition 7: Let (T*, T2,) be an ESDD. The zero-suppressed
semantics ||(T*, T?,&)||. is recursively defined as:

o (T, T2 1)||l: = Uy(pe) and [|(T', T2, 0)] = 0;

o [I(T, T2, €)|l. = {0} and [|(T*, T%,&)[|. = Uyere) \ {0}

b ||£T17T2> {(ph 51)> R (p’ru Sn)})”z =

U [Uurznwotmovpe D lpills Dllsil-].

When « is the terminal node, the zero-suppressed semantics is only
the main combination set of a. When « is the decomposition node,
besides the main combination set, the zero-suppressed semantics
contains an extra combination set, that is, the universal set of
v(T?) \ (pv(p:) Upv(s;)) for each element (p;, s;).

Based on the zero-suppressed semantics, we provide the zero-
suppressed variant of TSDD, namely zero-suppressed TSDD
(ZTSDD).

Definition 8: An ESDD (T, T?, «) is an ZTSDD, if one of the
following holds:

e « is a terminal node labeled by 0 and T! = T? = 0.

5

(c)

(T
\1'/
(T g
— &) — 8 1 b, 0 —
A /T P, OO
A
(a) (b)

A

G 1] — Lplelol p O8] | bl 1] — lef6] 1 |[p100] | [1 lef6] 0. 106] — [1 lefa] 0O | [1 lefGlp2106] +— [gfe] 7 [2 JOFS]
(T (TN (TN (TN (TN (T (TN
VAN AN /o 2\ /2\ /\ /2

(@ (h)

Fig. 3: Trimming rules for STSDD

Primary viree / 8

Secondary vtree / 8

Reference count/ 4

Elements /8

Size / 4 P,/ 8 sn/8‘

(a) Node-based TSDD node

Secondary viree / 8

Id/8

Reference count/ 4

Primary vtree py/8 Primary vitree s /3‘
Type / 4 forp1/8 forsi/8
Elements / 8 .
i Primary vtree |, /g| Primary viree | g
Size /4 ‘ forpn/8 | " forsn/g8 |

(b) Edge-based TSDD node

Fig. 4: Two implementations for TSDDs

e « is a terminal node labeled by 1 and T? = 0.

e « is a terminal node labeled by & and T? is a leaf node.

e « is a decomposable node {(pi,s1), -, (pn,sn)} and
{(lpall=s Isall=),-- -, (lpall=s lsa]l)} is an (X, Y)-partition
where X = v(T?) and Y = v(T?2).

We remark that the terminal node € is omitted in ZTSDD due to
the fact that ||(T*, T?,¢)||. = ||(T*,0,1)||. for any vtrees T* and
T?2. In addition, ZTSDD is a canonical form for combination set by
applying zero-suppressed tagged compression and trimming rules.

Fig. [[fe) shows the ZTSDD for representing the example. Since
ZTSDD both enjoy the advantages of SDD and ZSDD, it has smaller
size 5 than SDD and ZSDD, which is the same as STSDD. We
remark that ZTSDDs and STSDDs in general have different sizes for
representing the same combination set given the same vtree.

D. Edge-based Variant

In Definition @ both the primary vtree T and the secondary
one T? are kept in each TSDD node. Such TSDD node is called
node-based TSDD node. We now introduce the edge-based variant of
TSDD. The main distinctions between node-based and edge-based
TSDD are: (1) Each edge-based TSDD node only includes the
secondary vtree T? and the terminal/decomposition node o; (2)
Each element of a decomposition node consists of not only the prime
p and the sub s but also two vtrees T, and T that are the primary
vtrees of p and s, respectively; (3) There is an extra edge pointing
to the root node denoting the primary vtree of the root node.

The main data structures of node-based TSDDs and edge-based
TSDDs are shown in Fig. [] respectively. Suppose that the TSDD
node has n pairs of primes and subs. We remark that n = 0 when
the node is a terminal node. In the node-based TSDDs, each node
requires at least 41+ 16n bytes: 8 bytes for the pointer to the primary
vtree, 8 bytes for the pointer to the secondary vtree, 8 bytes for the
id of the node in the unique table that ensures no two equivalent
TSDD nodes are stored, 4 bytes for the reference count that is used to
garbage collection, 1 byte for the type of this node: terminal node or
decomposition node, 8 bytes for the pointer to a singly-linked list of
pairs of primes nd subs, and 4 bytes for the number of elements. The
node of edge-based TSDD has the similar data structure with node-
based TSDD. However, each edge-based TSDD node do not have the
primary vtree and each element has two additional primary vtrees for
the prime and the sub. The size of a edge-based node is 33 + 32n.

Fig. [1{f) and (g) show the edge-based STSDD and ZTSDD repre-
sentations for the same example. Node-based STSDD representation
for Q needs 449 bytes whereas that of edge-based one requires 432
bytes. Due to this sharing mechanism, edge-based variant consumes
less memory than node-based one when numerous nodes share
the same secondary vtree and terminal (or decomposable) node.
Otherwise, node-based variant is a data structure occupying less
memory space for storing TSDDs.

IV. OPERATIONS ON STSDD

In this section, we will design the algorithms of STSDDs for
achieving the five operations on combination sets. We first introduce
a normalization algorithm that serves as the basis of the above
algorithms, and then introduce a unified algorithm that accomplishes

Algorithm 1: Apply(F, G, o)

Input : F:aSTSDD (T!, T2, «);
G:aSTSDD (T3, T4, B);
o: an operator on combination sets (N, U or \).
Output: H: The resulting STSDD (T, TS, ~).
if Some cases are satisfied then return predefined results
if Cache(F, G, 0) # nil then return Cache(F, G, o)
if T' and T are incomparable then
T® + Lea(T?!, T?) and TS « T®
F’ < Normalizel1(F,T®) and G’ + Normalizel(G, T?)
6 elseif T! < T then
7 T% + T2 and T® + T3
8 F' + Normalizel(F, T®)and G’ < Normalize2(G, T°)
9 elseif T2 < T then
10 T® «+ T!and T® + T!
1 F' + Normalize2(F, T®)and G’ + Normalizel(G,T?)
12 else
13 T5 < T! and T® + Lca(T?, T%)
14 | F’' < Normalize2(F,T®)and G’ < Normalize2(G,T?)

AW R =

o

1570

16 foreach element (p;, s;) of F’ do

17 foreach element (q;,7;) of G’ do
18 p < Apply(pi; ¢;, 1)

19 if |p||s # O then

20 s < Apply(s;,T;,0)
21 L add element (p, s) to

n H« Trim(Compress(T?, T, ~v)))
Cache(F,G,0) « H
24 return H

N
P

the three operations: intersection, union and difference, and followed
by two algorithms for orthogonal join and change operations.

A. Apply

The normalization rules can be considered as a reverse of trim-
ming rules. There are two types of normalization rules. Given
a vtree T? st. T' < T3, the first one is to transform a
STSDD (T, T?, o) into an equivalent one (T?, T*, 3), denoted by
Normalize1((T', T?, «), T?).

(a) if T' = T2, then T* =T? and 3 = a.

(b) if T' < T}, then T* = T® and 8 = {((T*, T?, a), (0,0,¢)),
(p,(0,0,0))} where [|p|[s = Ugs \ [(T", T?, o).

(c) if T* < T3, then T* = T3 and 8 = {((0,0,¢), (T}, T?, a)),
(p,(0,0,0))} where [[p[ls = Uqgs \ {0}.

The second type of normalization rules takes a STSDD
(T',T?,a) and a vtree T! where T? < T' < T!
as input, and outputs the resulting STSDD, denoted by
Normalize2((T', T?,«), T*), with the same combination set
as (T, T?, 0).

(a) if T2 =T*, then T> =T! and 3 = a.

(b) if T? < T}, then T®> = T' and 8 = {((T}, T?, @), (T},0,¢)),
(p,(0,0,0))} where [|p[|s = UT? \ H(TlvTZ’a)HS'

(c) if T2<T%, then T*=T" and 8 = {((T},0,¢),(T% T?, a))}.

The Apply algorithm, illustrated in Algorithm [I] aims to com-
pute the binary operation o on two STSDDs F : (T!,T? a)
and G : (T3, T 3) where o is one of the three operations on
combination sets: intersection (N), union (U) or difference (\). For
some simple cases, we can directly return the predefined results
(line 1). For example, if ¥ = (0,0,0) and o = U, then the
resulting STSDD H is G. Now we consider the case where o and

Algorithm 2: OrthogonalJoin(F, G)

Input : F:aSTSDD (T!, T2, «);
G:aSTSDD (T3, T4, B);
Output: H: The resulting STSDD.
if F = (0,0,0) or G = (0,0, 0) then return (0,0,0) /+ ||F|;=10
or [|Glls =0 «/
if ' = (0,0, ¢) then return G
if G = (0,0, ¢) then return F’
T < the least common ancestor of T and T
if T' < T, then
L F < anSTSDD s.t. || Fls = U, \ || F|ls

-

[NFlls = {0} «/
[+ 1Glls = {0} «/

)

a u s W

H + Trin((T, T, {(F,G), (F,(0,0,0))}))

<

else ~ _
L G + anSTSDD s.t. ||G|s = U, \ |Gl

[

H + Trin((T, T, {(G, F), (G, (0,0,0))}))

return H

B are decomposition nodes. In general, T! # T2 and T® # T*.
Therefore, it is necessary to convert F' and G into their equivalent
STSDD F’ and G’ with the same primary vtree T® and secondary
vtree TS via normalization rules (lines 3 — 14). If T and T® are
incomparable, then both T5 and T are the least common ancestor
of T and T3, The transformed STSDDs I’ and G’ can be obtained
via the first type of normalization rules. The other cases can be
handled similarly. Let F' = (T°,T% {(p1,51), - , (Pn,sn)}) and
G' = (T°,T% {(q1,71), -, (gm,Tm)}). It is easily verified that
H = (T?,T5,7) where vy = {(piNgj,s;07;) | 1 <i<mnand 1<
j < mandp; Ngq; # 0} (lines 16 — 21). Finally, compressing
and trimming rules will be performed on H to gain the canonicity
property (line 22). In addition, we use the cache table to avoid the
recomputation on the same TSDDs and operation (lines 2 & 23). Let
n be the number of subvtrees of T, and |« and || the size of « and
B, respectively. The Apply algorithm runs in O(n- |« -|3|) without
the compression rules. When we consider compressing TSDDs, the
time complexity is exponential in || and |3] in the worst case. The
above time complexity result of the Apply algorithm still holds
for SDDs. It however was demonstrated in [[19] that compiling any
combination set into compressed SDDs is significantly more efficient
than without compressed SDDs. The application of compression rules
results in a canonical form of SDDs and hence stipulating that no
two SDDs representing the same combination set are stored in the
unique table, and facilitating caching in practice. As an extension to
SDDs, TSDDs have many characteristics in common with SDDs. We
focus on only compressed TSDDs in the remaining of this paper.

B. Orthogonal Join and Change

We begin by introducing the algorithm for orthogonal join, il-
lustrated in Algorithm [2] Assume that we are given two STSDDs
F = (T',T? «) and G = (T3, T*, B). Algorithm requires that
F and G are orthogonal, that is, T and T? are incomparable. The
resulting STSDD is also the empty set, if one of the STSDDs F' and
G is the empty set () (line 1). In the case where F (resp. GG) denotes
the combination set {@}, the outcome is G (resp. F') (lines 2 & 3).
In general, we let T be the least common ancestor of T' and T?. If
T! is a subvtree of the left child of T, tl}en the result STSDD H is
(T, T, {(F7 G)7 (F7 (07 0, 0))}) where HFHS =Ur, \ HFHS (lines 5
— 7). The opposite direction can be similarly handled (lines 8 — 10).
Algorithm [2] runs in a constant time.

Another basic operation for combination set is change. It takes
a STSDD F' and a variable x as inputs, and outputs a STSDD G

Algorithm 3: Change(F, x)

Input : F:aSTSDD (T!, T2, «);
x: a variable.
Output: G: The resulting STSDD.
T3 < the leaf node labeled by x
if ' = (0,0, ¢) then return (T3, T3 ¢) /x ||Flls = {0} =/
if ' = (T3, T3, ¢) then return (0,0, ¢) /x |F|ls = {{z}} =/
if F = (0,0,0) or ' = (T?,0,¢) then return I/« |F||s =0 or
IFlls = {{=},0} «/
if T3 < T! and T3 is not a subvtree of T? then return F'
if Cache(F, z, Change) # nil then return Cache(F, x,Change)
if T' and T are incomparable then
| G < OrthogonalJoin(F, (T?,T?,¢))
9 else if T2 = T? then
10 T? < the parent node of T?
1 it T? = (T}); then
12 H <+ anSTSDD s.t. | H||s = U(T%)L \ {0}
3 G+ (T, 7T3,{((0,0,¢), ((T2),,0,¢)), (H,(0,0,0))})
14 else /% T? = (T2), +/
5| | G+ (T, T3, {(((T2):,0,¢),(0,0,¢€))})

A W o =

® N & w

16 else /x T3 < T2 «/
17 v 0

18 foreach element (p;, s;) of « do

19 if T2 < T? then

20 | add element (Change(pi, X),s;) to~y

21 else /+ T3 T2 «/
2 | add element (p;, Change(s;, X)) toy

3 | G+ (T, T?~)

24 G < Trim(G)

25 Cache(F,z,Change) + G
26_return G

s.t. ||G||s = Change(||F||s,). Let T be the leaf vtree node with
the label x. We first consider three special cases. If F' denotes the
combination set {(}}, then the resulting STSDD G represents {{z}},
and vice versa (lines 2 & 3). If one of the following three cases
hold: (1) F = (0,0,0); or (2) F = (T?,0,¢); or 3) T? < T*
and T3 is not a subtree of T2, then the change operation do not
modify the input STSDD F (lines 4 & 5). In the case where T and
T3 are incomparable, then the change of F' by x is the orthogonal
join of the two STSDDs F and (T3, T% &). If none of the above
cases holds, then T® < T2. We analyze the following two cases:
T3 = T? and T? < T2 In the case where T® = T2, we construct
G as (T, T7, {((0,0,¢),((T})r,0,¢)), (H,(0,0,0))}) where H
denotes the complement of {(}} if T2 is the left child of its parent
T2 (lines 9 — 13); and as (T', T2, {(((T3):,0,¢),(0,0,€))}) if
T? is the right child of Tf) (lines 14 & 15). In the case where
T? < T2, o must be a decomposition node. We recursively apply
the change operation on the prime p; of elements of « if T® < T?
(lines 19 & 20), and on the sub s; if T2 < T2 (lines 21 & 22).
Finally, we use the trimming rules on G (line 24). The algorithm
uses the cache table to avoid the recomputation on the same STSDD
and variable (lines 6 & 25) and runs in linear time w.r.t. | F|.

V. EXPERIMENTAL RESULTS

In this section, we compare four variants of TSDDs against
SDDs and ZSDDs with respective to their compactness in four
categories of benchmarks: dictionary, n-queens problems, safe petri
nets and digital circuits. For convenience, NSTSDD, NZTSDD,
ESTSDD, and EZTSDD are the abbreviations for node-based

STSDD, node-based ZTSDD, edge-based STSDD, and edge-based
ZTSDD, respectively. We implemented an efficient TSDD package
with the proposed algorithms in C language. We have also devised
minimization algorithm for TSDDs via so as to searching a good
vtree and integrate this algorithm into our package because the size
of TSDDs is sensitive to the vtree. Due to the space limit, we do not
present minimization algorithm in this paper, which will be clarified
in future work. All experiments were carried out on a machine
equipped with an Intel Core 17-8086K 4GHz CPU and 64GB RAM.
Table [lIf shows the experimental results of 6 decision diagrams for
85 test cases across 4 benchmark categories on size and time. The
columns “size” denotes the size of compiled decision diagrams and
“time” the overall compilation runtime in seconds. The smallest sizes
among six decision diagrams are highlighted in bold font. The last
column shows the smallest size among 4 variants of TSDDs. The
entry “-” denotes a failed compilation due to the timeout of 2 hours.

The dictionaries we use are the English words in file
/usr/shar/dict/words on MacOS system with 235,886
words of length up to 24 from 54 symbols and the password list
with 979,247 words of length up to 32 from 79 symbols [20]. A
dictionary will be encoded in two ways: binary and one-hot. We
consider two sets of symbols: the compact form consisting of the
symbols only found in the dictionary, and the ASCII form consisting
of all 128 characters. We can compile all of the 8 test cases of
dictionaries in ZSDDs and 4 variants of TSDDs. However, SDD
compilation fails in the password dictionary. In addition, ZSDDs
and TSDDs have a significant size advantage over SDDs. Especially
for words in one-hot encoding, NSTSDDs and ESTSDDs have over
96% fewer size than SDDs. This is because the zero-suppressed
trimming rule has a tremendous benefit to reduce the size of decision
diagrams for dictionaries. Finally, NSTSDD performs the best in 6
out of 8 test cases and hence being an efficient representation for
dictionaries in terms of time.

The n-Queens problem aims to place n queens in such a manner
on an n X n chessboard that no two queens can attack each other
by being in the same row, column or diagonal. We also have two
ways (one-hot and binary) to encode this problem. Firstly, one of
the variants of TSDDs is the most compact representation in 13
out of 14 test cases. This indicates that combining two trimming
rules can result in a smaller decision diagram than using one
trimming rule. Secondly, compilations in SDDs, NZTSDDs and
EZTSDDs are more effective than the other three. However, the size
of SDD representation is obviously larger than others. Specifically,
13- and 14-Queens problems in one-hot encoding are of size
2,096,517 and 8,604,470 that are approximately 5.12 and 4.62 times
larger than NSTSDDs, respectively. Finally, ZSDD compilation is
time-consuming, especially, 13- and 14-Queens problem in binary
encoding take 5,061 and 5,943 seconds longer than NZTSDDs by
high factors of 40.50 and 13.20, respectively.

Petri nets are a popular graphical modeling tool for representing
and analyzing concurrent systems. A Petri net is safe iff there is
at most one token in each one of its places. We utilize decision
diagrams to denote the set of reachable states of safe Petri net.
The Petri net benchmark comes from the 2018 Model Checking
Contest (https://mcc.lip6.fr/2018/). As for the size,
one of the variants TSDDs performs the best in 20 out of 21 test
cases. In particular, for the two large test cases: NQueens-PT-08
and ParamProductionCell-PT-4, the minimal size among TSDDs are
20.3% and 97.6% smaller than the size of SDDs. Moreover, ZSDDs
fails in compilation of the above two test cases.

The final benchmark we consider is digital circuits. We use

TABLE II: The comparison among SDDs, ZSDDs, NSTSDDs, NZTSDDs, ESTSDDs and EZTSDDs over 4 categories of benchmarks

Benchmarks SDD ZSDD NSTSDD NZTSDD ESTSDD EZTSDD
size time size time size time size time size time size time best size
Words-Binary-Compact 1,562,787 100.735 922,405 34.884 935,605 23.289 636,393 41.198 937,770 41.463 1,005,408 60.207 636,393
Words-Binary-ASCII 2,356,875 110.015 1,610,952 64.302 1,602,317 38.075 802,562 65.870 1,683,324 78.939 1,780,959 98.862 802,562
‘Words-OneHot-Compact 19,205,734 755.775 593,762 26218 593,624 18.800 706,927 68.202 593,766 28.809 706,968 86.394 593,624
‘Words-OneHot-ASCII 46,281,905 2,472.188 594,124 27.261 594,100 16.834 707,912 61.939 594,126 31.508 707,914 80.362 594,100
Passwords-Binary-Compact - - 3,488,141 339.656 3,440,014 369.770 3,464,514 437.667 3,488,592 755.580 3,834,894 767.570 3,440,014
Passwords-Binary-ASCII - - 5,664,643 764.867 5,579,382 711.813 5,733,694 721.128 5,732,059 1,337.874 6,061,272 1,336.517 5,579,382
Passwords-OneHot-Compact - - 2,243,018 266.236 2,243,016 265.143 2,663,610 1,620.616 2,243,018 457.473 2,663,610 1,965.936 2,243,016
Passwords-OneHot-ASCII - - 2,258,146 257.638 2,258,216 284.455 2,681,843 1,052.822 2,258,146 512.400 2,681,843 1,190.616 2,258,146
8-Queens-Binary 1,336 0.045 858 0.092 830 0.083 960 0.065 854 0.068 952 0.07 830
9-Queens-Binary 4,696 0.185 3,001 0.311 2,897 0.332 3,398 0.193 3,052 0.302 3422 0.216 2,897
10-Queens-Binary 6,017 2.263 6,839 1.013 6,222 0.664 6,568 1617 7,450 0.794 8,168 0.692 6,222
11-Queens-Binary 32,835 6.668 21,314 30.874 19,441 2.