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ABSTRACT

Autonomous Driving (AD) encounters significant safety hurdles in long-tail unfore-
seen driving scenarios, largely stemming from the non-interpretability and poor
generalization of the deep neural networks within the AD system, particularly in
out-of-distribution and uncertain data. To this end, this paper explores the integra-
tion of Large Language Models (LLMs) into AD systems, leveraging their robust
common-sense knowledge and reasoning abilities. The proposed methodologies
employ LLMs as intelligent decision-makers in behavioral planning, augmented
with a safety verifier shield for contextual safety learning, for enhancing driving
performance and safety. We present two key studies in a simulated environment: an
adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled
interactive behavior planning scheme with a state machine. Demonstrating supe-
rior performance and safety metrics compared to state-of-the-art approaches, our
approach shows the promising potential for using LLMs for autonomous vehicles.

1 INTRODUCTION

The current mainstream of autonomous vehicle (AV) software pipeline consists of key modules:
perception (Feng et al.| [2020; [Man et al., 2023), prediction (Nayakanti et al., 2023} [Jiao et al., 2022,
planning(Liu et al.l [2023b), and control. Deep neural networks (DNNs) have become integral to
perception and prediction, with a growing interest in planning and control. However, the black-
box nature of DNNs, along with their inherent uncertainties from learning algorithms, presents
challenges in ensuring the safety of closed-loop AV systems. These challenges are exacerbated by the
generalizability issue of DNNs and the prevalence of long-tail driving scenarios not covered during
training and design time (Jiao et al., |2023b; [Fu et al.,|2024; |Ding et al., |2023a} [Jiao et al., 2023a).

To this end, researchers and engineers in the AV industry are exploring the potential of Large
Language Models (LLMs) (Touvron et al., 2023; OpenAlL |2020; [Devlin et al., 2018)) for their ability
for human interaction, adept reasoning capabilities, and comprehensive knowledge, particularly in
handling long-tail driving scenarios (Yang et al.| 2023} |[Fu et al.,[2024)). Nevertheless, the practical
integration of LL.Ms into the AV software pipeline for safety purposes remains an open question.
Therefore, this paper delves into the application of LLMs in autonomous driving from a safety
perspective, highlighting its implementation through a couple of illuminating case studies.

From a safety perspective, figure|l|shows the possible integration of LLMs for different modules in
the AV software pipeline. As a safety-critical system, we equip the AV with a safety verifier for the
proposed control input generated from the software stack with assistance from LLMs. The verifier
returns safety-checking results to LLM for in-context safety learning which could affect the outputs
from different components in various ways. In this paper, we conduct two case studies to leverage
LLM as a behavior-level decision-maker which interacts with a high-level predictor for evaluating
the intention and aggressiveness of other agents, and with the low-level trajectory planner and safety
verifier. These case studies show that LLM can improve system performance while achieving safety
assurance. We hope this paper can provide the AV community with a comprehensive safety standpoint
to explore and evaluate the usage of LLM in their AV software stack.
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Figure 1: Overview of possible LLM integration for AV with a safety verifier as a shield. Most
directly, LLM can make behavior-level decisions such as lane changing by scene understanding via
text, which affects the trajectory planning with different safety constraints, as shown in our case
studies. The safety verifier checks the safety of the proposed control input from the decision-making
and conducts in-context learning if the action is verified to be unsafe, as shown in green arrows. The
unsafe feedback can be traced back to the behavior maker, predictor, and perception module as shown.
Besides, LLM can assist the perception module in understanding the scene for decision-making better.
LLM can also help intention prediction by reading the recent history of the surroundings to better
guess their driving habit and intentions (e.g., whether lane changing) for safer decision-making.

This paper is organized as follows. We first introduce related works in Section [2] Section [3]and
Section [4] show our proposed designs integrating LLM as an intelligent safety-aware behavioral
decision-maker with a safety verifier and an interactive state machine. Section [3] discusses the
possible integration of LLM for other components including perception, prediction, and simulation in
the AV system for safety purposes. Section [6]concludes the paper.

2 RELATED WORKS

The integration of LLMs such as GPT-3 (OpenAl, 2020) into AD has garnered significant attention
in recent years, revolutionizing natural language understanding and enhancing the capabilities of
self-driving vehicles [2023). The related literature from different perspectives is as follows.

Human-Oriented: One direct application is enabling human-vehicle interaction through natural
language. LLMs have been leveraged to interpret, respond, and provide suggestions in natural
language to human riders and drivers (Zhang et all, 2023} [Wayve}, [2023; [Xu et al, 2023)). These
models generate natural language narrations that assist human driving for decision-making and
improve the interpretability of AD systems by explaining driving behaviors. Recent works have gone
beyond interaction and employed LLMs to learn human driving behaviors and trajectory data through
chain-of-thoughts (Wei et all, 2022} Jin et all,[2023b). This approach enables the LLM driver to
behave like humans to solve complex driving scenarios and even allows LLMs to function directly as

motion planners (Mao et al.| [2023).

Perception, Prediction, and Planning (Decision-making): The reasoning, interpretation, memoriza-
tion, and decision-making abilities of LLMs contribute to solving long-tail corner cases, improving
generalizability, and increasing the interpretability of AD systems. Specifically, there is a grow-
ing interest in integrating LLMs into the planning (decision-making) module, which significantly
improves user trust and generalizes to various driving cases 20234). This integration is
achieved through fine-tuning pre-trained LLMs or by prompt engineering with
chain-of-thought, which usually enable the AD motion planner to process multilabel inputs, e.g.,
ego-vehicle information, maps, and perception results (Wen et al.,[2023} [Cui et al.| 2023}, [Fu et al]
2024; [Mao et al,2023)). Additionally, researchers are exploring LLMs in the perception module to
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enable self-aware perception, and fast and efficient adaptation to changing driving environments,
including tracking, detection, and prediction (Malla et al.| 2023} Radford et al., 2021} [Wu et al., 2023}
Ding et al.;|2023b). Zhou et al summarize the state-of-the-art works in this field (Zhou et al.|, |2023)).

Nevertheless, the aforementioned references fail to address safety concerns associated with LLM in
AD. We prioritize safety under the context of LLM, a perspective evident in our case studies. We
allow LLM decisions to directly formulate safety constraints for low-level Model Predictive Control
(MPC) under prediction uncertainties. Our case studies align closely with the LanguageMPC (Sha
et al.,[2023), where the authors also employ LLMs as a decision-maker for AD. They convert LLM
decisions into the mathematical representations needed for the low-level controllers, MPC, through
guided parameter matrix adaptation. However, LanguageMPC has not been extensively validated in
complex driving environments. Additionally, it does not consider uncertainty from predictions nor
include safety analysis or optimization in its methodology.

Generation and Simulation: LLMs’ generative capabilities have facilitated the acquisition of
complex driving data samples, which were previously difficult to gather due to certain environmental
constraints. The diffusion model, a method that has recently reached significant success in the
text-to-image domain, has become increasingly popular (Sohl-Dickstein et al.l 2015} [Ho et al.,2020).
Some efforts have been put into the area of generating the driving scenarios using diffusion models (L1
et al.| 2023} |Gao et al., [2023; [Wang et al.| 2023a; Hu et al.| [2023; Zhong et al., [2023)).

Our work is related to the safety verification for ML-based autonomous systems where AD systems
are representative. Safety verification, in general, can be categorized into two groups: 1) explicit
reachable set computation (Wang et al.| [2023d; Huang et al.| |2022; Ivanov et al., 2021} [Kochdumper
et al.} 2023 |Goubault & Putot, [2022; |Schilling et al., 2022} [Huang et al.| [2019) and 2) inexplicit
reachable set evaluation, such as barrier certificate (Prajna, |2006; Wang et al., |2023b), control barrier
function (Ames et al., 2019;|Yang et al.| 2022), forward invariance (Wang et al., 2020; |Chen et al.|
2018), etc. There have been emerging works for integrating verification modules into the control
learning or reinforcement learning for safety-assured autonomy (Dawson et al.||2022; 'Wang et al.,
2023cib; [Zhan et al.| [2023; Jin et al., 2020). Our paper follows a similar idea where we develop the
safety verifier as a shield for the LLM decision-maker to generate safe actions.

3 LLM CONDITIONED ADAPTIVE MPC FOR TRAJECTORY PLANNING WITH
SAFETY ASSURANCE

Here we conduct a case study for LLM as a behavior planner via prompt engineering, as shown in
Figure[2] Next, we introduce the components of this case study as follows.

Environment and System: Given the safety cost of driving, we primarily focus on a simulated
highway-driving environment by using HighwayEnv [Leurent (2018). As shown in Figure 4] we
consider a one-way three-lane driving scenario. We assume that the vehicle dynamics is known and
available to MPC, which can be expressed as s;41 = f(s¢, ut) where s = (z,y,v,,v,) € S C R?
with z, y, v, v, denote longitudinal position, lateral position, longitudinal speed, and lateral speed,
respectively. The continuous control input to the ego vehicle u; € U C R? includes acceleration and
steering signal. f : S X U — S denotes the bicycle model dynamics (Jiao et al., [2023c).

Input and Output of LLM: We call OpenAl GPT-4 API as our LLM driver agent. We input a
template-generated text description of the surroundings within a specific perception range including
their relative position (such as "the car i is driving in front of the ego on the right lane" or "the car
1 is driving behind the ego in the middle lane"), their relative speed (such as "the car ¢ is driving
faster/slower than the ego"), the estimation of time to the collision to other agents (relative distance
/ relative speed), along with other vehicle’s intention predictions. The output of the LLM decision
maker is constrained to select a target lane for lower level MPC (such as "Middle Lane, Left Lane,
Right Lane") with the reasoning. Every decision made by LLM will have 5 consecutive control steps.

Prediction Module: The prediction module on the AV predicts the future state §{ of surrounding
car j at time step ¢. To be realistic and considering uncertainties, we assume the predicted position

results are intervals on a specific time step, i.e, instead of #7, §;, we now have (27, ] and [g7, 9;].

We assume the position intervals contain the ground truth x{, yg of the surroundings in the future,
ie., i € [2,7], y; € [§],9?]. Because of the receding horizon nature of MPC, we need to call
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Figure 2: This framework shows LLM as a behavior planner that provides safety constraints for a
low-level MPC trajectory planner. The LLM driver takes high-level intention prediction, scenario
description, behavior state machine, and its memory via text generated by a template and makes a
behavior decision based on its understanding of the driving scene. LLM decisions will formulate
safety constraints for low-level MPC-based trajectory planning. Serving as a verifier, the feasibility of
the MPC problem will be sent back to LLM to (re)-evaluate its decision for in-context safety learning.

the prediction module to get the prediction results for safety constraint formulation in MPC. Before
introducing our LLM-conditioned MPC, we first show that a naive MPC formulation of trajectory
planning as

t+k—1
min . —Tt4k + Z ||ui+1 - ui||27

Ut Ut 41, Ut i—t
= (D
sty Sit1 = f(si,w), Vi € [t,t + k],  Ying < Yi < Ysup, Vi € [t,t+ k] (Road boundary),
lz; — &7 — L >0,|z; — 2| — L > 0, where Lane([@f,gj{]) == Lane(y;) (Safety)

where Lane(y) € 0, 1, 2 is an indicator function that determines which lane the car is driving on by
its lateral position ¥, specifically 0, 1, 2 denotes "Left", "Middle", and "Right". The objective function
aims to maximize the performance (longitudinal position or speed) with minimal control jerks.

LLM Conditioned Adaptive MPC for Trajectory Planning: To reduce the complexity, we leverage
the reasoning ability and common sense knowledge of LLM to decide which lane to drive for
the MPC, by providing the scene text description to LLM and ask for a decision that relaxes the
constraints in MPC. Specifically, at time step ¢, our LLM conditioned MPC tries to solve the
following optimization problem

t+k—1
min —zik Y Mg —willa,
Ut Ut 41, Utk i—t

Sty Sip1 = f(si,u), Vi € [+ k), Ying < Yi < Ysup, Vi € [t,¢+k] (Road boundary) (2)
Lane(y;) = Lane(LLM) (Behavior provided by LLM)

| — &| = L > 0, |z; — | — L > 0, where Lane([§, §/]) == Lane(LLM) (Safety)

The problem [I]is harder to solve than problem 2] The increased complexity originates from the
constraint Lane([j7, 97]) == Lane(y;), where Lane(y;) is undetermined and can choose from
{0,1,2}. Therefore problem is a mixed integer nonlinear programming problem. In practice, this
problem is often infeasible, which is also observed in our case studies. With the decision from LLM
by its knowledge, we remove the integer decision variable in problem 2]and thus it is easier to solve.
Our approach shares a similar philosophy of hierarchical MPC as introduced in (Huang et al.,[2016)
where we decompose a hard trajectory planning into a two-phase problem that is easier to solve.
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You are driving on a highway and currently you are driving on the Middle
lane. There are cars driving on the Middle and Left lane which are in front
of you and driving slower than you. Therefore, if you choose to their lane,
you should be careful. There is a car driving the Right lane, which is in front
and faster than you. You can merge into its lane without too much caution.

Perception ﬂg -
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LLM

h a? You should choose to change to the Right Lane, because the Right Lane has
Behavior the largest value of time to collision of 50.11 seconds, which means lower
Planner collision risk after lane changing.

MPC &

’ The Right Lane behavior is infeasible for the trajectory planning. .
Prediction

LLM with New proposed behavior: Left Lane. Since the Right Lane is not feasible, the
Infeasibility Left lane is the preferable option because it's clear and safe. If conditions
Feedback are erratic or unpredictable, it might be best to stay in the current lane.

A. The Left Lane behavior is feasible for the trajectory planning. The
verifier is happy with this decision for safety assurance.
B. Still infeasible, the system is switching to failsafe mode.

&

Figure 3: In-context safety learning for LLM with the feedback from MPC for trajectory planning.

MPC &
Prediction

Okay, | will make decisions according to this feedback in the near future
since the driving scene will keep similar in a short time.

(a) Lane Keeping: The LLM decides to keep the
current lane because it is clear and safe. The MPC

(b) Lane Change: LLM decides to change to the
rightmost lane from the leftmost lane because the

maintains the highest speed for trajectory planning.

(c) Aborted Lane Change: We discover that LLM
can abort its lane-changing if the MPC is infeasible
during lane changing to reduce the collision risk.

target lane has more space with minimal safety risk.

(d) Failsafe: The failsafe mode keeps the current lane
and maintains a minimal distance for safety. It is only
used if LLM’s decisions are infeasible in MPC.

Figure 4: The ego car is in blue and other agents are in yellow. The blue dots are the planned trajectory
waypoints of the ego. The red dots are the sampled waypoints of other agents from the interval-based prediction.
The grey rectangles are the recent trajectory histories of the ego and other agents. The LLM exhibits safe lane
keeping, optimistic lane changing, cautious lane changing abort, and conservative failsafe in the simulations.

In-context Safety Learning with Verifier: For safety purposes, control input to the ego vehicle
has to go through a verifier for safety checking and provide the verification result back to the LLM
to reevaluate the behavior decision. In general, the verifier could be in the form of reachability
analysis (Wang et al.,[2023d), barrier theory, etc (Wang et al,[2023¢), as we detailed in the related
work. In this case study, we use the feasibility of the LLM-conditioned MPC 2 as the safety verifier.
If the MPC is feasible which means there exists a safe control signal, we then feedback “the verifier
is happy with the proposed Lane” to LLM. Otherwise, infeasible MPC indicates potential collisions
which we feedback to LLM to reevaluate and regenerate another behavior, as shown in Figure 3]

Failsafe Mode: It is possible that regenerated behavior or all behaviors are still infeasible for the
low-level MPC and thus safety cannot be assured. In this case, we design the AV system switch to a

failsafe mode, to keep the current lane and apply a (possibly hard) brake to keep a minimal distance
2 2

v

from the front leading car as —m where v., v, are the ego and leading velocity, x; is the

lower bound of the estimation for the leading car’s location and z. is the ego position, € > 0. This
failsafe optimistically disregards collision with the following car as the ego is optimized to driving
faster than the rest IDM-based cars. To be more conservative, one can consider the following car.
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Experiments Analysis: We  Table 1: Comparison results of the case study with 5 episodes.
compare our approach with the

state-of-the-art open-source Driv- Safety  Velocity(m/ Lat
eLikeAHuman (Fu et al., 2024) arely elocity(m/s) atency(s)
because it also testfies in the Ours v 34.3(+7.7) 1.7(£2.7)
HighwayEnv simulator. We add  priveLikeAHuman  x 31.9(+5.1)  55.5(+15.2)

the same interval-based predic-
tion uncertainty to the Drive-
LikeAHuman framework and adapt its heuristic safety rule considering the interval uncertainty
for a fair comparison. We simulate 300 control steps in one test episode. The maximum velocity is
set to 40 m/s. We run 5 trials/episodes for each method and record their results as in Table

e Safety: No collision happened in our simulations with 1500 total control steps and more than 300
LLM decision-makings (each decision made by LLLM is followed by 5 consecutive control steps).
Except for an LLM calling error in one trial, DriveLikeAHuman has collisions in 4 trials around
30th ~ 50th steps. This is because it uses a low-level PID control with a naive high-level heuristic
safety rule that does not consider vehicle dynamics and constraints for safety checking.

e Average Velocity: We measure the longitudinal speed average and standard deviation as perfor-
mance metrics. The ego drives faster with our approach. This is because we maximize the
longitudinal location (speed) in the objective function of our LLM-conditioned MPC.

e Latency: The latency of our approach includes the OpenAl API call every 5 control steps and
the timing of solving MPC every step while the baseline spends most of the time on the chain-
of-thought process with the API per control step. Although both latency are not realistic for
real-world driving, ours is significantly shorter than the baseline’s.

4 LLM AS INTERACTIVE DECISION MAKER: INTERACTIVE PLANNING BY
BEHAVIOR PREDICTION AND STATE M ACHINE

As with most existing works on LLM for AD, our previous case study focuses on one-step planning
or single-frame decision-making. We can further improve the performance and safety of LLM
for driving tasks by explicitly considering the ego vehicle’s high-level behavior transitions and the
interaction with surrounding agents in multiple consecutive steps. In Figure [5} besides the MPC
verifier we proposed previously, we further design the state machine framework as behavior transition
guidance, the memory module for intention prediction, and the reflection module for behavior-level
safety checks and in-context learning. We will explain them in detail in the following.

State Machine as Behavior
Guidance for LLM Decision

. - LLM Behavior PI based State Machi
Maker: In pract]cal der- ehavior Planner based on State Machine Behavior

o : 3 4 _ prediction
ng 51Fuat10ns, executing maneu Memory
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nearby traffic and accomplish
these taSks~ ThlS necessitates Feasibility verificationﬁ ﬁMPCoprimizat/'on

that LLMs conform to specific easibil
Infeasibility
=

behavioral constraints. We pro-

pose to integrate a state ma-

gil;rtl:;tn lt:a;?fn];%%ﬁt: ;g;fgalcrlll Figur@ 5: Interactiye mult@-step.decisiop—making based on the

aims to ensure adherence to behavior state.machme and intention prediction. The memory vy111
store the previous observations of other agents and the reflection
module will check hard constraints including state transition rules

and minimum safety requirements.

these essential regulations and
established patterns while main-
taining sufficient flexibility in
decision-making.
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You are driving on a highway and currently you are driving on the Middle lane.
Currently your TTC_front (Time to collision with the vehicle in front of you on the

Perception = lo _ target lane) is 3.6 seconds and the TTC_rear (Time to collision with the vehicle
ﬂ g behind you on the target lane) is 4.1 seconds.
[Plan: Attempt, Pre-State: Stay, Prediction: Cooperative] Because the

previous state is Stay which allows transitioning to Attempt or Stay, as per the rules;
The previous 3 TTC_rear of the following vehicle on the target

LLM as Behavior X ) . L
lane is [3.5,3.4,3.7], this shows a stable and a decent amount of time to collision

Planner
indicating the following vehicle is likely to be cooperative which promotes a safe lane
transition; the TTC_front is 3.6 seconds and TTC_rear is 4.1 seconds,
they are both largely higher than the safety threshold of 3 seconds. Considering the
safety check and prediction check, transitioning from Stay to Attempt is the selected
action.
‘ State Machine Hard Constraints Check (Reflection): Pass ‘ x Behavior
—® Safety Checker
‘ The Attempt behavior is infeasible for the trajectory planning. ‘ < MPC &
g Prediction
LLM with Keep the Stay state as default failsafe behavior.
Infeasibility
Feedback essccssesces
Repeat the decision-making and checking process
cssccsceccns
[Plan: Finish, Pre-State: Attempt, Prediction: Cooperative], Because 1.
LLM as Behavior | glZ=00 | ... ;2. Prediction Check: ...... ; 3. Safety Check: ....... Therefore, given the state check,
Planner prediction check, and safety check, transitioning from Attempt to Finish is the
correct next action.

Behavior
Safety Checker

State Machine Hard Constraints Check (Reflection): Pass ‘ Jx
L

happy with this decision for safety assurance Prediction

The Finish behavior is feasible for the trajectory planning. The verifier is $ . MPC &

Figure 6: An example of our proposed safe interactive decision-making pipeline for lane changing.
With the state machine design and behavior level prediction, the LLM-powered agent can make
explainable and safe decisions continually and interactively in complex scenarios. In each cycle,
the LLM will reason its decision by three behavior-level checks (state, prediction, and safety). The
reflection module will provide feedback for failsafe plans and in-context learning if LLM makes
severe and obvious mistakes. The low-level MPC is in charge of the safety verification and execution.

The state-machine-conditioned LL.M can enhance the safety and interpretability of the decision-
making process in several aspects. First, the state machine can constrain the decision space and
simplify the dependency among time-series decisions. Humans can trust the decision-making pipeline
if the LLM ensures the transition between states is safe. Second, we add some intermediate/interactive
states into the state machine design to help the LLM better understand other vehicles’ behavior. During
these states, the LLM can proactively interact with the surrounding vehicle (e.g. the following vehicle
on the target lane when changing lanes) but still ensure safety.

In Figure[5] we present our pipeline for interactive lane changing using LLM as the decision-maker.
The framework is centered around the state machine which defines the basic behavior pattern of our
LLM. The memory stores important past information about surrounding vehicles, helping the LLM
make predictions of their intentions. The reflection module is to monitor the LLM and make sure the
transition is valid from state to state and to give feedback to the LLM for in-context learning when
the LLM violates hard transition constraints. The LLM determines transitions based on predefined
rules and inferred information. The transition involves several checks:

State Check: The selected state must be valid as per a predefined state machine graph.

Safety Check: The LLM evaluates the possibility of collision if it takes certain actions transiting to the
next state. In this particular lane-changing example, the time-to-collision (TTC) is applied to ensure
the proposed state won’t lead to a collision. The LLM will compare the TTC against a set threshold.

Prediction Check: The LLM predicts the intentions of nearby vehicles based on their historical
behaviors in past multiple frames in the memory modules. If the LLM deems a surrounding vehicle
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(a) Phase 1. The ego (blue, middle) by LLM aims
to cut into the left lane. The LLM notices there isn’t
enough space for a safe lane change, picks the "Stay",
and accelerates to pass the blue car in front.

(c) Phase 3. Ego vehicle (LLM) passed the blue car.
LLM decides to transit the behavior state to "Attempt"
given the comprehensive reasoning including predic-
tion, state transition check and safety analysis. In the
state "Attempt", the ego vehicle moves to the middle
of two lanes and further observes the reaction of the

(b) Phase 2. Ego vehicle (LLM) is passing the blue
car in front and now it only needs to consider and
interact with the leading vehicle on the target left lane.
LLM decides to continue in the "Stay" in this cycle.

(d) Phase 4. During the state "Attempt", the LLM
predicts the following vehicle as a cooperative agent
and updates the collision time estimation for safety
analysis. LLM decides to transit to state "Finish"
given all the analysis and the feedback from the re-
flector and MPC. Finally, it is moving to the target

following vehicle on the target lane. lane safely.

Figure 7: The ego car is in blue on the middle lane, aiming to cut into the left lane. It interacts with two other
blue vehicles in the left lane. The blue dots are the planned trajectory waypoints of the ego. The red dots are
the sampled waypoints of other agents from the interval-based prediction. The grey rectangles are the recent
trajectory histories of the ego and other agents. The LLM exhibits safe interactive lane-changing behaviors in
the multiple-step decision-making process.

too aggressive or uncooperative, it’s unsafe to proceed with the maneuver. The LLM can interact
with the surrounding vehicles in different manners given their different predicted behavior patterns.

Reflection Module: State and safety checks are stringent requirements in the decision-making
process. To ensure compliance with these requirements, a reflection module monitors state transitions.
This module corrects and provides feedback to the LLM, facilitating in-context learning, especially
when decisions breach these strict constraints. For behavior prediction, the reflection module enforces
no constraints to the intention estimation - the LLM independently and flexibly assesses the intentions
of surrounding vehicles, categorizing them as either aggressive or cooperative.

Intention Prediction Module: Unlike the prediction for MPC, the intention prediction is to
estimate the high-level behavior patterns of the surrounding vehicle, which doesn’t need to be
very detailed but is important for interaction. We define the potential intention of surrounding
agents as cooperative and aggressive. We use the time-to-collision (TTC) of surrounding ve-
hicles as input to the LLM for prediction. At every planning step, the LLM decision-maker
will extract the surrounding vehicles’ TTCs with the past 3 steps and predict their correspond-
ing intentions. We give several human-labeled demonstrations when setting up the LLM.

Experimental Analysis: In this study,
we evaluate our proposed framework us-
ing the HighwayEnv simulation platform.
As depicted in Figure[6] our framework

Table 2: Experimental results for lane changing collision
rate and success rate with 17 episodes.

successfully guides the LLM to perform

Collision Rate  Success Rate

safe motion planning in sequential steps,

relying on a state machine, along with ~ DriveLikeAHuman 47.1% 41.2%
prediction and reflection modules. Fig- Ours 0 100%
ure [7) visualizes the lane-changing sce-

nario, showing the LLM’s continuous  Ours w/o failsafe 23.1% 76.9%
reasoning and interaction with nearby ve-  urs w/o reflection 0 92.3%

hicles under complex conditions. This
figure also details the state transitions
within the decision-making process. we compared our approach with the open-source DriveLike AHu-
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man Fu et al.|(2024)) framework in terms of safety (collision rate) and the success rate of lane changes.
The findings, presented in Table 2] indicate a significantly higher rate of collisions and aborts with
the DriveLikeAHuman’s naive chain-of-thoughts strategy. In contrast, our method not only ensures
safety but also exhibits a remarkable success rate in a variety of generated scenarios, highlighting the
efficacy and generalizability of our bi-level interactive planning framework. The final two columns of
Table 2] showcase the significance of our framework’s components through an ablation study.

5 DiScUSSION: LLM AS OTHER ROLES FOR SAFETY

We discuss the possible usage of LLMs for other components in the AD software pipeline, as shown
in Figure[T] We directly ask ChatGPT-3.5 (e.g., prompt as “How can a large language model assist
the perception module for safer autonomous driving?”’) and summarize its responses below.

LLMs for Perception. /) Multimodal Fusion: It is possible to consider multimodal infusion with
language input. By integrating information from both sensor data and language input, the perception
module can create a more comprehensive understanding of the environment. This multimodal fusion
enables the system to make more informed safer decisions by considering both visual information
and contextual cues provided by natural language. 2) Semantic Object Recognition: LLMs can assist
in recognizing and understanding objects in the environment based on their semantic context of
safety. For instance, if a passenger says, “Watch out for the cyclist ahead”, LLMs can understand this
information to prioritize and adapt the behavior accordingly, enhancing safety. 3) Adaptive Object
Detection: LLMs can provide information that helps the perception module adapt its object detection
algorithms based on specific scenarios. For example, if LLMs understand that the vehicle is in a
construction zone, they can convey this information to the perception module, prompting the system
to be more cautious and attentive to potential hazards.

LLMs for Prediction. /) Natural Language Inputs for Contextual Awareness: The language model
in the prediction module can process natural language inputs (possibly from perception) to understand
and infer the potential intentions of other drivers. For example, if the perception model or human
user interprets "heavy traffic ahead," the prediction module with LLMs can understand it and adjust
its expectations and predictions accordingly for safer operation. 2) Human-Centric Predictions:
Language understanding can help the prediction module make more human-centric predictions by
considering factors such as hand gestures, turn signals, or spoken commands from other drivers.
This allows the autonomous vehicle to anticipate and respond to human behaviors more effectively,
improving AV safety. 3) Behavioral Evaluation: The language model can assist in evaluating the
driving behaviors and aggressiveness of surrounding cars. This helps the prediction module adjust its
predictions based on the perceived driving styles of other vehicles.

LLMs for Simulation. /) User Specific Scenario Generation and Variation: The language model can
generate natural language descriptions of diverse driving scenarios by user input for safety concerns,
allowing the simulation module to create a wide range of realistic and challenging situations for
testing and training in a safety perspective. This helps in ensuring that the autonomous system is
well-prepared for various real-world conditions. 2) Human-Like Interaction: The language model can
simulate human-like interactions by generating realistic communication between simulated drivers,
pedestrians, and other entities. This enhances the realism of the simulation, allowing the autonomous
system to practice responding to natural language cues and gestures for safety purposes. 3) Simulation
Annotation and Analysis: The language model can assist in annotating simulation data by generating
descriptions or labels for different events and entities, which further the AV development.

6 CONCLUSION

In conclusion, our presented framework explores the integration of an LLM as an intelligent decision-
maker for autonomous driving, fortified by a safety verifier feedback for in-context safety learning.
Through two case studies, we demonstrate the efficacy of our approach, showcasing notable enhance-
ments in both performance and safety. We further discuss the potential usage of the LLM for other
components. This paper intends to broaden the safety perspective within the autonomous driving com-
munity concerning the utilization of LLMs. The future directions and remaining challenges include
testing this framework in real-world environment and handling ambiguity, biases, and inconsistencies
in LLM outputs.
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