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THE MULTILINEAR RANK AND CORE OF

TRIFOCAL GRASSMANN TENSORS

MARINA BERTOLINI, GIAN MARIO BESANA, GILBERTO BINI,
AND CRISTINA TURRINI

Abstract. Closed formulas for the multilinear rank of trifocal
Grassmann tensors are obtained. An alternative process to the
standard HOSVD is introduced for the computation of the core
of trifocal Grassmann tensors. Both of these results are obtained,
under natural genericity conditions, leveraging the canonical form
for these tensors, obtained by the same authors in a previous work.
A gallery of explicit examples is also included.

1. Introduction

Tensors, either as multidimensional arrays of data in applied set-
tings or, more classically, as representations of multilinear applications
among vector spaces, have recently attracted renewed attention: see,
for instance, [4], [19]. Among the many fascinating and intricate prob-
lems in the study of tensors, the calculation of any of the various estab-
lished notions of their rank marries theoretical interest and practical
applications. In particular, the determination of the multilinear rank of
a tensor, i.e. the ranks of all its flattening matrices, is part of the pro-
cess needed to arrive at a core of a tensor, see Section 2.3. Being able
to successfully and efficiently compute a core of large tensors can be
a crucial step for concrete applications in image processing, computer
engineering, and data management.
The authors have been interested for a while in a class of tensors

that arise naturally in computer vision. In the classical case of recon-
struction of a three-dimensional static scene from two, three, or four
two-dimensional images, these tensors are known as the fundamental
matrix, the trifocal tensor, and the quadrifocal tensor, respectively, and
have been studied extensively, see for example [1, 2, 3, 6, 16, 18, 20]. In
a more general setting, these tensors, called Grassmann tensors, were
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introduced by Hartley and Schaffalitzky, [17], and were studied by three
of the authors in several articles [7, 8, 9, 10, 11, 13] as well as by two
of the authors and other collaborators, [12].
In [5], the authors leveraged the possibility of obtaining a canonical

form for a general trifocal Grassmann tensor to compute its rank with
a closed formula.
In this work we turn our attention to the multilinear rank of trifo-

cal Grassmann tensors and to the related problem of computing their
core. Under the same natural genericity assumption used in [5], see
Assumption 2.1, and similarly leveraging the resulting canonical form,
in Section 3 the multilinear rank of a trifocal Grassmann tensor is
computed, with closed formulas as well.
A standard approach for the computation of a core C of a tensor T is

to utilize the so-called Tucker decomposition [21], often in the form of
a higher order singular-value decomposition (HOSVD), [14, 22]. The
Tucker decomposition combines the singular value decompositions of
all the flattenings Ti = UiΣiW

∗
i of the tensor in a multilinear multi-

plication C = (U∗
1 , . . . , U

∗
i , . . . ) · T where ∗ denotes the adjoint matrix.

Leveraging once again the canonical form for a trifocal Grassmann ten-
sor, Section 4.2 shows how to compute a core in a simpler alternative
way. Properties of the canonical form of trifocal Grassmann tensors
allow for a direct, immediate computation of its core. This canonical
core can then appropriately be pulled back to produce a core for the
original tensor. As part of this process, singular values of appropriate
matrices still need to be computed, but the size of the matrices in-
volved is, in general, significantly smaller than in the standard Tucker
decomposition or HOSVD.
Examples of the explicit computation of the multilinear rank and

the core are provided in Section 5.

2. Notation and Background Material

2.1. Notation. Throughout this work we assume that the underlying
field is the field C of complex numbers. Given a matrix A with complex
entries, A∗ denotes its adjoint matrix. For any positive integer k, Ik
denotes the k × k identity matrix. A vector space V of dimension r
over C is sometimes referred to as an r-space and V ∗ denotes its dual,
i.e. V ∗ = HomC(V,C).

2.2. Preliminaries on tensors. Notation and definitions of tensors
and their ranks (rank, multilinear rank or F -rank, P-rank) used in this
work are relatively standard in the literature. They are all contained
in [19] and briefly summarized below.
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Given vector spaces Vi, i = 1, . . . t, the rank of a tensor T ∈ V1 ⊗
V2⊗...⊗Vt, denoted by R(T ), is the minimum number of decomposable
tensors needed to write T as a sum. Recall that R(T ) is invariant under
changes of bases in the vector spaces Vi (see, for example, [19], Section
2.4 ).
This work focuses on a special class of trilinear tensors. For the con-

venience of the reader, and to fix our notation, it is useful to recall the
explicit construction of the flattening matrices of a three dimensional
tensor.
Let V1, V2, V3 be vector spaces of dimension n1, n2, n3, with chosen

bases {αi}, {βj}, {γk}, respectively.
Let T = [Ti,j,k] ∈ V1 ⊗ V2 ⊗ V3. Interpreting V1 ⊗ V2 ⊗ V3 as V1 ⊗

(V2 ⊗ V3), we get

(1) T =
∑

i

αi ⊗ (
∑

j,k

Ti,j,k(βj ⊗ γk))

and the corresponding matrix, of size n1×(n2n3), which is the flattening
T1, and has the following block structure:

T1 =









T1,1,1 T1,2,1 . . . T1,n2 ,1 T1,1,2 . . . T1,n2,2 . . . T1,1,n3
. . . T1,n2,n3

T2,1,1 T2,2,1 . . . T2,n2 ,1 T2,1,2 . . . T2,n2,2 . . . T2,1,n3
. . . T2,n2,n3

...
... . . .

...

Tn1,1,1 Tn1,2,1 . . . Tn1,n2,1 Tn1,1,2 . . . Tn
,
n2,2 . . . Tn1,1,n3

. . . Tn1,n2,n3









In the same way, paying attention to the cyclic nature of indices i, j, k,
one can define flattenings T2 and T3.
One then defines the mutilinear rank (or F-rank) of the tensor T as

F-rk (T ) = (rk (T1), rk (T2), rk (T3)).

Remark 2.1. Let Mr ∈ GL(nr) be invertible matrices for r = 1, 2, 3.
Let Tr be the r-th flattening of a tensor T as above. Then the F-rk (T )
is invariant under the left action of GL(nr) and the right action of
GL(nsnt) for s, t 6= r. In particular the F-rk (T ) is invariant under the
right multiplication of Ms ⊗Mt ∈ GL(nsnt).

2.3. Core of a Tensor. Let T = [Ti,j,k] ∈ V1 ⊗ V2 ⊗ V3, where, as be-
fore, V1, V2, V3 are vector spaces of dimension, respectively, n1, n2, n3,
with fixed bases and assume that F-rk (T ) = (r1, r2, r3). Standard pro-
cedures in applications associate a core tensor C to T . In this paper,
following [21], by a core tensor of T we mean a tensor C that satisfies
the following properties:

1. C ∈ Z1 ⊗ Z2 ⊗ Z3, where Z1, Z2, Z3 are vector spaces of dimen-
sion, respectively, r1, r2, r3;
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2. there exist semi-orthogonal matrices Uj , i.e. U
∗
j Uj = Irj , of size

nj × rj for j = 1, 2, 3 such that:
a. the multilinear multiplication (U∗

1 , U
∗
2 , U

∗
3 )· gives a map

(U∗
1 , U

∗
2 , U

∗
3 )· : V1 ⊗ V2 ⊗ V3 → Z1 ⊗ Z2 ⊗ Z3

with

(U∗
1 , U

∗
2 , U

∗
3 ) · T = C;

b. the multilinear multiplication (U1, U2, U3)· gives a map

(U1, U2, U3)· : Z1 ⊗ Z2 ⊗ Z3 → V1 ⊗ V2 ⊗ V3

with (U1, U2, U3) · C = T .

We recall here the higher-order singular value decomposition (HOSVD)
procedure which is the standard approach to the computation of a core
of a tensor. It generalizes to tensors the standard (compact) singular
value decomposition process for matrices.
Let T be a tensor of order 3 with flattening matrices T1, T2, T3 and
F-rk (T ) = (r1, r2, r3). Then T1 is a n1 × (n2n3) matrix and one can
perform the (compact) SVD to T1:

T1 = U1Σ1W
∗
1 ,

where Σ1 is a r1 × r1 square diagonal matrix and where U1 and W1

are, respectively, n1 × r1 and (n2n3) × r1 matrices such that U∗
1U1 =

W ∗
1W1 = Ir1 . Similarly, one can consider the SVD of T2 and T3, namely

T2 = U2Σ2W
∗
2 , T3 = U3Σ2W

∗
3 .

The HOSVD procedure for the construction of a core C of T consists
then of the following multilinear multiplication:

(U∗
1 , U

∗
2 , U

∗
3 ) · T = C.

2.4. Multiview Geometry and Grassmann Tensors. For the con-
venience of the reader we recall standard facts and notation in the con-
text of projective reconstruction in computer vision. A scene is a set
of N points {Xi}i=1,...,N in Pk = P(W ), where W is a vector space of
dimension k + 1. A camera P is a projection from Pk onto the tar-
get space (view) Ph = P(V), where V is a vector space of dimension
h + 1, h < k, from a linear center CP = P(K), where K is a vector
space of dimension k − h. Once bases have been chosen in W and V,
P can be identified with a (h+ 1)× (k+ 1)− matrix of maximal rank,
defined up to a constant, for which we use the same symbol P . With
this notation, K is the right annihilator of P, and using the same no-
tation X for the point’s homogeneous coordinates in the chosen bases,
P (X) denotes the image P ·X of a point X in P

k.
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In the context of multiple view geometry, one considers a set of
multiple images of the same scene, obtained from a set of cameras
Pj : P

k \ Cj → P
hj where P

k = P(W ), Phj = P(Vj), and Cj = P(Kj).
Two different images Pl(X) and Pm(X) of the same point X are cor-
responding points and, more generally, r linear subspaces Sj ⊂ Phj ,
j = 1, . . . , r are said to be corresponding if there exists at least one
point X ∈ Pk such that Pj(X) ∈ Sj for j = 1, . . . , r. In [17] Hartley
and Schaffalitzky introduced Grassmann tensors which encode the re-
lations between sets of corresponding subspaces in the various views.
We recall here the basic elements of their construction.
Consider, as above, a set of projections Pj : Pk \ Cj → Phj , j =

1, . . . , r, hj ≥ 2 and a profile, i.e. a partition (α1, α2, . . . , αr) of k + 1,
where 1 ≤ αj ≤ hj for all j, and

∑

αj = k + 1.
Let {Sj}, j = 1, . . . , r, where Sj ⊂ Phj , be a set of general sj-spaces,

with sj = hj − αj , and let Sj be a maximal rank (hj + 1) × (sj +
1)−matrix whose columns are a basis for Sj . By definition, if all the
Sj are corresponding subspaces there exist a point X ∈ Pk such that
Pj(X) ∈ Sj for j = 1, . . . , r. In other words there exist r vectors vj ∈
Csj+1 j = 1, . . . , r, such that:

(2)













P1 S1 0 . . . 0

P2 0 S2 . . . 0
...

...
...

...
...

Pr 0 . . . 0 Sr













·



















X

v1

v2

...

vr



















=













0

0
...

0













The existence of a non trivial solution {X,v1, . . . ,vr} for system (2)
implies that the system matrix has zero determinant. This determinant
can be thought of as an r-linear form, i.e. a tensor, in the Plücker
coordinates of the spaces Sj . This tensor is called the Grassmann tensor
T with profile (α1, . . . , αr).
More explicitly, the entries of the Grassmann tensor are computed

as maximal minors of the matrix:

(3)
[

P1
T P2

T . . . Pr
T
]

,

obtained by selecting αj columns from Pj
T , for j = 1, . . . , r. Notice

that each column in P T
j can be thought of as an element in P(Vj),

where Vj =
∧sj+1((W/Kj)

∗) is the vector space of dimension nj =
(

hj+1
hj−αj+1

)

=
(

hj+1
sj+1

)

such that the Grassmannian G(sj, hj) ⊂ P(Vj) =

P(
∧sj+1((W/Kj)

∗). As a consequence, T ∈ V1⊗V2⊗ ...⊗Vr. Therefore
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for each j = 1, . . . , r, an sj-dimensional subspace Sj can be described
as the intersection of αj = hj − sj hyperplanes of P

k containing P(Kj).
In other words, the columns of each P T

j may be viewed as hyperplanes

of Pk containing the center Cj. Moreover, the choice of αj columns of
P T
j gives an element in Gr(αj − 1, hj) ⊂ P(

∧αj (W/Kj)) which is the
dual Grassmannian of Gr(sj, hj).
It is useful to observe that a right action of GL(k + 1) on (3), i.e.

a change of coordinates in the ambient space Pk, does not alter the
tensor, as all entries are multiplied by the same nonzero constant.
As far as the effect of changes of coordinates in each of the view we

have the following remark:

Remark 2.2. The F-rk (T ) is invariant under change of coordinates in
each of the views Phr . From Remark 2.1 it is enough to show that any
left action of GL(hj + 1) on P T

j , i.e. a change of coordinates in the
corresponding view, induces a linear invertible transformation on Vj.
Indeed, any transformation Hj ∈ GL((W/Kj)) yields the transforma-
tion

∧αj Hj on the Pluc̈ker coordinates of Gr(αj − 1, hj). Since the
tensor is expressed in terms of the Plücker coordinates of the Grass-
manniann Gr(sj, hj), the transformation induced on the tensor by the

matrix Hj is
∧sj+1 (H∗

j

)−1
, where the adjoint (transpose) is needed

because of the dual coordinates and where the inverse appears because
of the action on the coefficients of the tensor T .

2.5. Canonical Form of Trifocal Grassmann Tensors. In [5] the
authors showed that, under some generality assumptions, one can ob-
tain a canonical form T c for a trifocal Grassmann tensor T that leads
to a direct computation of its rank. It turns out that the same canon-
ical form allows us to successfully compute the multilinear rank of T
as well, under the same genericity assumption. For the convenience of
the reader here we summarize the construction of the canonical form
T c for T , referring the reader to [5] for additional details.
Let T be a trifocal Grassman tensor corresponding to projection

matrices Pj : Pk \ Cj → Phj , j = 1, 2, 3, with profile (α1, α2, α3), and
let L1, L2 and L3 be the vector spaces of dimension h1 + 1, h2 + 1 and
h3 + 1 respectively, spanned by the columns of P1

T , P2
T and P3

T . Let
Λ1 = P(L1), Λ2 = P(L2) and Λ3 = P(L3).
We consider, for each triplet of distinct integers r, s, t ∈ {1, 2, 3} the

following integers:
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ir,s = hr + hs + 1− k;(4)

i = h1 + h2 + h3 + 1− 2k;(5)

jr,s = ir,s − i = k − ht.(6)

Notice that the definition of jr,s is independent of the order of the
indices, i.e. jr,s = js,r. Our generality assumption is the following:

Assumption 2.1. For any choice of r, s, t with {r, s, t} = {1, 2, 3},
Lt and the intersection Λrs = Lr ∩ Ls span Ck+1, or, equivalently, the
linear span of each pair of centers does not intersect the third one.

This assumption implies, in particular, that for any choice of a pair
r, s, the span of Lr and Ls is the whole Ck+1, or, in other words, that
the two centers Cr and Cs do not intersect.
Under Assumption 2.1, applying Grassmann formula one sees that

the three numbers above have the following meaning: ir,s = dim(Lr ∩
Ls) ≥ 0, for any choice of r, s , i = dim(L1 ∩ L2 ∩ L3) ≥ 0 and jr,s is
the affine dimension of the center Ct i.e. k−ht = jrs for r, s, t = 1, 2, 3.
In [5] it is shown that under Assumption 2.1 a suitable choice of

bases, realized by Hj ∈ GL(hj +1), for j = 1, 2, 3, and K ∈ GL(k+1),
transforms the matrix (3) as

(7) Φk
h1,h2,h3

:=
[

(H1P1K)T |(H2P2K)T |(H3P3K)T
]

.

so that

(8) Φk
h1,h2,h3

:=













Ii 0 0 Ii 0 0 Ii 0 0

0 Ij1,2 0 0 Ij1,2 0 0 0 0

0 0 Ij1,3 0 0 0 0 Ij1,3 0

0 0 0 0 0 Ij2,3 0 0 Ij2,3













.

As described above, entries of T c are given by the maximal minors
of (8), obtained by selecting αj columns from HjPjK

T , for j = 1, 2, 3.
More precisely, as in [5], let (a1, a2, a3) be a partition of α1 and let
(b1, b2, b3) and (c1, c2, c3) be partitions of α2 and α3, respectively. Each
entry of T c is a maximal minor T c

I,J,K of (8) built by choosing a1
columns from Ii, a2 columns from Ij1,2 , a3 columns from Ij13, appropri-
ately completing them with zero vectors to obtain entire columns of (8)
and proceeding analogously with b1, b2, b3 and the second block of (8)
and with c1, c2, c3 and the third block of (8), where I = (i1, . . . , is1+1),
J = (j1, . . . , js2+1), K = (k1, . . . , ks3+1), with 1 ≤ i1 < · · · < is1+1 ≤
h1+1, 1 ≤ j1 < · · · < js2+1 ≤ h2+1 and 1 ≤ k1 < · · · < ks3+1 ≤ h3+1
are the indices of the columns of the three blocks of (8) that were not
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chosen. As already recalled in [5], the entries T c
I,J,K of the tensor T c

are indexed with respect to the lexicographical order of the families of
multi-indices {I}, {J}, and {K}. If we consider the first flattening T c

1

of T c, one then sees that a row of T c
1 corresponds to one specific choice

of a1 columns from Ii, a2 columns from Ij12 , and a3 columns from Ij1,3,
with a1 + a2 + a3 = α1. Similarly one sees the role of specific choices
of bu columns and cu columns from the corresponding submatrices of
Φk

h1,h2,h3
in determining a chosen row of T c

2 and T c
3 respectively.

Remark 2.3. In the following section we will make use of the canonical
form (8) in order to determine the multilinear rank of a Grassmann
tensor satisfying Assumption 2.1. As mentioned in [5], if Assumption
2.1 doesn’t hold, we cannot obtain a canonical form depending only on
the dimension of the various spaces and, indeed, even the rank of the
Grassmann tensor depends also on the geometric configuration of the
three projections.
This observation is still true as far as the multilinear rank is con-

cerned; this is the reason why in this paper we will always assume that
Assumption 2.1 is satisfied.
As an example, consider the case of three projections from P4 to P2,

with profile (2, 2, 1). Notice that in this case i = −1. We can choose
projection matrices Pj, j = 1, 2, 3 such that:

P T
1 :=

















1 0 0

0 1 0

0 0 a

0 0 b

0 0 c

















, P T
2 :=

















1 0 0

0 0 d

0 1 0

0 0 e

0 0 f

















, P T
3 :=

















0 0 g

1 0 0

0 1 0

0 0 h

0 0 k

















,

with (a, b, c) 6= (0, 0, 0), (d, e, f) 6= (0, 0, 0), (g, h, k) 6= (0, 0, 0).

The first flattening of the corresponding trifocal tensor is







g(ce− bf) a(fh− ek) ch− bk 0 bf − ce 0 0 0 0

d(bk − ch) 0 0 0 0 ce− bf 0 0 0

ek − fh 0 0 0 0 0 0 0 0






,

whose rank is generically 3 and drops to at most 2 if ek = fh.
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3. The multilinear rank of trifocal Grassmann tensors

In this section, T will always be a trifocal Grassmann tensor of di-
mension n1×n2×n3, with profile (α1, α2, α3), satisfying Assumption 2.1
and T c will be its canonical form introduced in Section 2.5. Leveraging
properties of T c we will obtain results on F-rk (T .)

Lemma 3.1. Let T c be the canonical from of a trifocal Grassmann
tensor T of dimension n1 × n2 × n3, satisfying Assumption 2.1. Then
the multilinear rank is F-rk (T c) = (n1 − v1, n2 − v2, n3 − v3) where vr
is the number of zero rows in the flattening matrix T c

r .

Proof. In the proof of [5, Theorem 5.2] the authors showed that, with

our assumptions on T , if T c

î,ĵ,k̂
6= 0 then T c

î,ĵ,k
= 0 for all k 6= k̂.

Considering the cyclic role of the indices i, j, k the above observation
also says that T c

i,ĵ,k̂
= 0 for all i 6= î, and T c

î,j,k̂
= 0 for all j 6= ĵ. Assume

T c

î,ĵ,k̂
6= 0, then the above observation can be visualized in T c

1 as follows:







.. .. .. .. .. .. .. .. .. 0 .. .. .. .. .. ..

.. 0
î,ĵ,1

.. .. .. 0
î,ĵ,2

.. .. 0 ∗
î,ĵ,k̂

0 0 .. 0
î,ĵ,n3

.. ..

.. .. .. .. .. .. .. .. .. 0 .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. 0 .. .. .. .. .. ..







While T c
1 can have more than one nonzero element on the same row,

it cannot contain two nonzero elements on the same column. Hence
any two rows containing non-zero elements are linearly independent.
Therefore, if v1 is the number of zero rows of T c

1 , it is rk (T c
1 ) = n1−v1.

A similar argument can be carried out for T c
2 and T c

3 . �

Lemma 3.2. Let T c be the canonical form of a trifocal Grassmann
tensor T of dimension n1 ×n2 ×n3, with profile (α1, α2, α3), satisfying
Assumption 2.1. Let (r, s, t) be any permutation of {1, 2, 3} and let jr,s
be defined as in (6). Then the flattening matrix T c

r contains zero rows
if and only if

jr,s − αs − 1 ≥ max(0, αr − i− jr,t) or(9)

jr,t − αt + 1 ≥ max(0, αr − i− jr,s).

Moreover, conditions (9) are mutually exclusive.

Proof. For simplicity, let us fix (r, s, t) = (1, 2, 3) and conduct the proof
for T c

1 , noticing that the proof is identical for T c
2 and T c

3 , with a
cyclic adjustment of the role of the three indices and of the param-
eters {aj , bj , cj} introduced in Section 2.5. Recall that T c

1 is the first
flattening matrix of T c = [T c

ℓ,j,k], of dimension n1 × (n2n3) obtained
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by juxtaposing n3 blocks of dimension n1 × n2, where ℓ runs over the
rows of T c

1 , j runs over the columns of each block, and k runs over the
blocks. Let i be as defined in (5), and let {aj , bj , cj}, j = 1, 2, 3 be as
in Section 2.5. As noted in Section 2.5, a row of T c

1 corresponds to
one specific choice of a1 columns from the first block of (8), a2 columns
from its second block, and a3 columns from its thrid block, with ai ≥ 0,
and a1 + a2 + a3 = α1.
Suppose j13 − α3 − 1 ≥ max(0, α1 − i − j1,2), so that j13 ≥ α3 + 1,
and let a1, a2, a3 be such that 0 ≤ a3 ≤ j1,3 − α3 − 1. Notice that the
assumption j13−α3−1 ≥ max(0, α1− i− j1,2) implies that there exists
at least one such triplet with a1 + a2 + a3 = α1. Because c2 ≤ α3, it is

(10) a3 + c2 ≤ j1,3 − 1.

Recalling the canonical structure of the matrix (8), it follows from (10)
that all elements of the row of T c

1 corresponding to a choice of a1, a2, a3
as above are zero, as all the maximal minors corresponding to elements
of this row are now forced to contain at least one duplicate column
coming from Ii, Ij1,2 or Ij2,3 . The proof can be carried out with the
obvious adjustments if j1,2 − α2 − 1 ≥ max(0, α1 − i− j1,3).
Assume now that

j1,2 − α2 − 1 < max(0, α1 − i− j1,3) and(11)

j1,3 − α3 − 1 < max(0, α1 − i− j1,2).(12)

We will show that every row in T c
1 contains at least one non-zero ele-

ment. Let us fix a row of T c
1 by fixing non-negative values for (a1, a2, a3)

with
∑

ℓ aℓ = α1, a1 ≤ i, a2 ≤ j1,2, and a3 ≤ j1,3. As observed in [5],
this row contains a non zero element if the following system of linear
equations

(13)











































b1 + c1 = i− a1

b2 = j1,2 − a2

c2 = j1,3 − a3

b3 + c3 = j2,3

b1 + b2 + b3 = α2

c1 + c2 + c3 = α3

has at least one set of integer solutions in the unknowns (b1, b2, b3, c1, c2, c3),
that satisfy the following conditions:

0 ≤ b1 ≤ i 0 ≤ b2 ≤ j1,2 0 ≤ b3 ≤ j2,3(14)

0 ≤ c1 ≤ i 0 ≤ c2 ≤ j1,3 0 ≤ c3 ≤ j2,3.
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Our assumptions on (a1, a2, a3) imply that the second and third equa-
tion of (13) are already solved, satisfying the relevant (14). Therefore
it remains to show that it is possible to choose 0 ≤ c3 ≤ j2,3 such that
b1 = α2 − j1,2 + a2 − j2,3 + c3 and c1 = α3 − j1,3 + a3 − c3 satisfy the
relevant (14), i.e.

(15) 0 ≤ α2− j1,2+a2− j2,3+ c3 ≤ i and 0 ≤ α3− j1,3+a3− c3 ≤ i.

Recalling that i =
∑

ℓ αℓ − j1,2 − j1,3 − j2,3, (15) give:

j1,2 + j2,3 − α1 − α2 + a3 ≤ c3 ≤ α1 + α3 − j1,3 − a2(16)

j1,2 + j2,3 − α2 − a2 ≤ c3 ≤ α3 − j1,3 + a3.(17)

As
∑

ℓ aℓ = α1 and a1 ≥ 0, it follows that (17) imply (16), hence,
setting LB = j1,2 + j2,3 − α2 − a2 and UB =≤ α3 − j1,3 + a3, we need
to show that under assumptions (11) and (12) we can choose c3 such
that

(18) 0 ≤ c3 ≤ j2,3 and LB ≤ c3 ≤ UB.

First notice that if α1 − j1.2 − i > 0 then j2,3 ≥ α2 and LB ≥ 0.
Indeed in this case it is max(0, α1 − j1,2 − 1) = α1 − j1,2 − i and (11)
gives j2,3 ≥ α2. Because j12 − a2 ≥ 0 then it is LB ≥ 0. A very similar
argument, using (12), shows that if α1− j1.3− i > 0 then j2,3 ≥ α3 and
UB ≤ j2,3.
Four different cases, according to the respective sign of α1−j1,2− i and
α1 − j1,3 − i, need to be considered, as in the table below:

Case α1 − j1,2 − i α1 − j1.3 − i

1 > 0 > 0

2 > 0 ≤ 0

3 ≤ 0 > 0

4 ≤ 0 ≤ 0

Case 1. From above it is LB ≥ 0 and UB ≤ j2,3, hence one can
choose any value LB ≤ c3 ≤ UB to satisfy (18).
Case 2. From above it is LB ≥ 0. Choose c3 = LB. Because α1 −

j1,3−i ≤ 0 it is max(0, α1−j1,3−i) = 0 and thus (12) gives j1,2−α2 ≤ 0.
As a2 ≥ 0, it is LB ≤ j2,3 and (18) are satisfied.
Case 3. From above it is UB ≤ j2,3. Choose c3 = UB. Because

α1 − j1,2 − i ≤ 0 it is max(0, α1 − j1,2 − i) = 0 and thus (11) gives
j1,3 − α3 − 1 ≤ 0. As a3 ≥ 0, it is UB ≥ 0 and (18) are satisfied.
Case 4. In this case we need to further consider the possible relative

sign of LB and UB− j2,3, generating four possible cases as in the table
below. In each case one can choose c3 as indicated in the fourth column.
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Arguments similar to the ones used above in previous cases show that
(18) are satisfied.

Case LB UB c3

i ≥ 0 ≤ j2,3 any LB ≤ c3 ≤ UB

ii ≥ 0 > j2,3 c3 = LB

iii < 0 ≤ j2,3 c3 = UB

iv < 0 > j2,3 any 0 ≤ c3 ≤ j2,3

Finally, notice that conditions (9) cannot both hold. If they did, then
for any 0 ≤ a2 ≤ j1,2−α2−1 and 0 ≤ a3 ≤ j1,3−α3−1 it would follow
that:

(19) a2 + a3 ≤ j1,2 + j1,3 − α2 − α3 − 2.

Recalling that a1 + a2 + a3 = α1,
∑

j αj = k + 1 = i+ j1,2 + j1,3 + j2,3,

(19) would give i+ j2,3 ≤ a1 − 2, which is impossible as a1 ≤ i. �

Claim 3.1. With the notation of this section, let i and ju,v for u, v ∈
{1, 2, 3}, u 6= v, be defined as in (5) and(6) and let T c

1 be the first
flattening matrix of T c. Assume that rk (T c

1 ) < n1, i.e. rk (T c
1 ) is not

maximum, so that, by Lemma 3.2, j1,s − αs − 1 ≥ max(0, α1 − i− j1,t)
for some s, t ∈ {2, 3} t 6= s. Let

A = {(a1, a2, a3)| au ∈ Z≥0,
∑

u

au = α1, a1 ≤ i,

max(0, α1 − i− j1,t) ≤ as ≤ j1,s − αs − 1,

at ≤ j1,t}
The cardinality |A| of the set A can be computed as follows. For each
(a1, a2, a3) ∈ A set m1 = min (i, α1 − as) and m2 = min (j1,t, α1 − as).
Then

|A| =
∑

max(0,α1−i−j1,t)≤as≤j1,s−αs−1

Ns

where

Ns =



















α1 − as + 1 if m1 = m2 = α1 − as
i+ 1 if m1 = i and m2 = α1 − as

j1s + 1 if m1 = α1 − as and m2 = j1,t
|i− α1 + as + j1,t|+ 1 if m1 = i and m2 = j1,t

Similarly, one can define sets B and C, respectively, for flattenings T c
2

and T c
3 , if their ranks are not maximum. In those cases bu and cu
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play the role of au and the ju,v are adjusted accordingly, taking into
consideration their role in (8) and in Lemma 3.2.

Theorem 3.1. Let T be a trifocal Grassmann tensor of dimension
n1 × n2 × n3, with profile (α1, α2, α3), satisfying Assumption 2.1. Let i
and ju,v for u, v ∈ {1, 2, 3}, u 6= v, be defined as in (5) and (6). Then
the rank of the first flattening T1 is:

(20) rk (T1) = n1 −
∑

A

(

i

a1

)(

j1,2

a2

)(

j1,3

a3

)

where A = {(a1, a2, a3)| au ∈ Z≥0,
∑

u au = α1, a1 ≤ i,max(0, α1 − i −
j1,t) ≤ as ≤ j1,s − αs − 1, at ≤ j1,t}.

Proof. Let T c be the canonical form of T and T c
1 be its first flattening

matrix. Remark 2.2 shows that F-rk (T c
1 ) = F-rk (T1), therefore from

now on we will focus on F-rk (T c
1 ). From Lemma 3.1 the rank of the

flattening matrix T c
1 is known if the number v1 of zero rows of T c

1

is known. Assume j1,s − αs − 1 ≥ max(0, α1 − i − j1,t) and let A
be the corresponding set defined in Claim 3.1, which, under our last
assumption, is non empty. As noted above, choosing a row of T c

1 is
equivalent to choosing a1 columns from Ii, a2 columns from Ij1,2 , a3
columns from Ij13 , appropriately completing them with zero vectors to
obtain entire columns of (8), where ai ≥ 0, a1 + a2 + a3 = α1, a1 ≤ i,
a2 ≤ j1,2, and a3 ≤ j1,3. From Lemma 3.2 and Claim 3.1 it follows
that zero rows in T c

1 are exactly all rows that correspond to triplets of
nonnegative integers (a1, a2, a3) ∈ A, hence

rk (T c
1 ) = n1 −

∑

A

(

i

a1

)(

j1,t

at

)(

j1,s

as

)

.

If j1,2−α2−1 < max(0, α1− i− j1,3) and j1,3−α3−1 < max(0, α1−
i − j1,2) then A is the empty set and thus v1 = 0, and F-rk (T c

1 ) is
maximum, i.e. F-rk (T1) = n1. �

Remark 3.1. While Theorem 3.1 gives the result for the first flatten-
ing, one can easily obtain the rank of the second and third flattening
matrices by simply switching the order of the views and proceeding
accordingly.

Corollary 3.1. Let T be a trifocal Grassmann tensor of dimension
n1×n2 ×n3, with profile (α1, α2, α3), satisfying Assumption 2.1. Then
for at least one r ∈ {1, 2, 3} it is rk (Tr) = nr.
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Proof. Suppose that rk (Tr) < nr for all r = 1, 2, 3. From Lemma 3.2 it
follows that three of the six conditions

(21) (r, s, t) : jr,s − αs − 1 ≥ max(0, αr − i− jr,t),

where r, s, t ∈ {1, 2, 3}, must hold, one with r = 1, one with r = 2, and
one with r = 3. First observe that, for fixed values of r, s, t, if (r, s, t)
holds then neither (s, t, r) nor (t, r, s) can hold. Indeed assume (r, s, t)
holds and αr − i − jr,t = jr,s − αs + js,t − αt < 0. Then max(0, αr −
i − jr,t) = 0, and jr,s − αs − 1 ≥ 0, which in turn gives js,t − αt < 0,
and thus (s, t, r) can not hold. Assume instead that (r, s, t) holds and
αr− i− jr,t = jr,s−αs+ js,t−αt ≥ 0. Then (r, s, t) gives js,t−αt ≤ −1,
and thus (s, t, r) is not possible in this case either. Further observe that
(r, s, t) implies jr,s−αs ≥ 1 and if (t, r, s) held it would be jt,r−αr−1 ≥
jt,r−αr+jr,s−αs and thus jr,s−αs ≤ −1 which is impossible. Hence if
(r, s, t) holds neither (s, t, r) nor (t, r, s) can hold. Now assume (r, s, t)
is one of the six conditions that hold. From the above observation it
follows that (s, r, t) must hold. But the same observation then implies
that (t, s, r) must hold, which is incompatible with (s, r, t), again from
the above observation. �

Remark 3.2. Let T be a trifocal Grassmann tensor of dimension n1 ×
n2 × n3, with profile (α1, α2, α3), satisfying Assumption 2.1. As its
canonical form T c is obtained via successive invertible transformations
in the ambient space and in the views, it is rk (T ) = rk (T c).

Remark 3.3. Proposition 3.1 and Claim 3.1 show how to count the
number of zero rows in a flattening matrix T c

r of a tensor T c in canonical
form. Here we describe a procedure that identifies exactly which rows
of the flattening matrix vanish. For simplicity we will set r = 1, as
similar arguments work for r = 2, 3. Let T c

1 be a flattening matrix of a
tensor T c as above, and let a = (a1, a2, a3) ∈ A, where A is as in Claim
3.1. Recall that the rows of T c

1 are indexed by the multi-indices I with
respect to the lexicographic order.
First, choose any a1 columns among the first i columns of the first

block of (8), a2 columns from the next j12 columns, and a3 columns
from the last j13 columns. Each such choice produces entries T c

Ia,J,K
of

the tensor T c, where Ia is any multi-index containing the indices of any
non-chosen i−a1+ j12−a2+ j13−a3 = s1+1 columns of the canonical
form, and J,K are any multi-indices of length, respectively, s2+1 and
s3 + 1, as described above. Therefore, for any triplet a = (a1, a2, a3)

the

(

i

a1

)(

j1,2

a2

)(

j1,3

a3

)

rows with indices Ia of the flattening T c
1

are zero.
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4. Core of Grassmann Tensors

4.1. Core of Grassmann tensors in canonical form. Let T be a
trifocal Grassmann tensor and denote by T c its canonical form. Results
form the previous section allow one to directly find the core of T c. This
approach is similar to HOSVD (see Section 2.3) but the canonical form
of a tensor makes it easier to compute the matrices Uj involved in the
process.
In Section 3 we computed the multilinear rank (r1, r2, r3) of T c. As

seen before, it is given by rj = nj − vj where vj is the number of
zero rows of T c

j . Moreover, Remark 3.3 gives an effective method to
list the zero rows rh1

, . . . , rhvj
, in T c

j . Denote by rk1, . . . , rkrj , with

rk1 < rk2 < · · · < rkrj the non-zero rows of T c
j .

As remarked in the proof of Lemma 3.1, the columns of T c
j are zero

or they are elements of the canonical basis {e1, . . . , enj
} of Cnj , i.e.,

among the columns of T c
j we can find all vectors ekt for t = 1, . . . rj.

Hence it is straightforward to find an orthonormal basis for the image
of each flattening and therefore the matrices Uj quoted in 2.3. Indeed,
the matrix Uj is the matrix whose columns are the vectors ek1, . . . , ekrj .

Notice that deleting the zero rows rh1
, . . . , rhvj

from Uj we get the iden-

tity matrix. What’s more, the multiplication of U∗
j by T c

j deletes the
zero rows of T c

j . As a consequence, the core tensor Cc of T c is obtained
from T c by deleting all zero faces in each of the three directions.

4.2. Core of Grassmann Tensors in the general case. Let T
be a trifocal Grassmann tensor and denote by T c its canonical form.
Recall that T c can be obtained from T via multilinear multiplication,
i.e., T c = (V1, V2, V3) · T where Vi are invertible matrices obtained
from the matrices Hi and K in Section 2.5. More precisely, Vj =

(
∧sj+1H−1

j )∗ for j = 1, 2, 3. As shown in the previous subsection,
our construction of the canonical tensor allows us to introduce suitable
matrices U1, U2, U3 such that the core Cc of T c can be obtained as
follows: Cc = (U∗

1 , U
∗
2 , U

∗
3 ) · T c.

In order to find a core C of T , we proceed as follows. First, we
define an invertible matrix Bj of size rj × rj for j = 1, 2, 3 as Bj =
EjD

−1
j where Dj is the diagonal matrix with the singular values of

V −1
j Uj and Ej is the matrix whose columns are the eigenvectors of

(V −1
j Uj)

∗(V −1
j Uj).

Second, we define the tensor C as (B−1
1 , B−1

2 , B−1
3 ) · Cc. Finally, we

introduce matrices Sj = V −1
j UjBj for j = 1, 2, 3, which are semi-

orthogonal.
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Third, we verify that C is a core of T , i.e., T = (S1, S2, S3)·C because
C = (S∗

1 , S
∗
2 , S

∗
3) · T and the following diagram commutes:

(22) T (V1,V2,V3) // T c

(UT
1
,UT

2
,UT

3
)

��
C

(S1,S2,S3)

OO

Cc

(B−1

1
,B−1

2
,B−1

3
)

oo

The matrices of the diagram above are computed in the following
concrete example.

4.2.1. Example. Let us consider 3 projections from P4 onto, respec-
tively, P3, P2, P2 having profile (2, 2, 1) and corresponding to the fol-
lowing 3 projection matrices A1, A2, A3 such that

AT
1 =

















2 0 3 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 0

















, AT
2 =

















−1 −1 1

0 1 0

0 0 0

0 0 0

1 0 0

















, AT
3 =

















0 0 0

0 0 0

1 0 0

−1 1 0

0 0 1

















.

The associated 6× 3× 3 Grassmann tensor T turns out to be






















0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1

0 0 0 0 −1 −4 0 −1 −4

0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 1 4

1 0 1 0 0 2 0 0 2























The matrices (V1, V2, V3) are given by

V1 =























0 2 0 0 0 −1

2 0 0 −3 −1 0

0 −3 −1 0 0 0

0 0 0 −1 0 0

0 −1 0 0 0 0

−1 0 0 0 0 0























,
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V2 =







−1 −1 1

0 1 0

1 0 0






, V3 =







1 0 0

0 1 0

0 −1 1






.

The matrices (U1, U2, U3) are given by (U1, I3, I3) where

U1 =























1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0























The tensor T c has flattening T c
3 given by























0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0























Removing the last row in T c
3 gives the core Cc that is a 5 × 3 × 3

tensor. For the convenience of the reader, we switch to another notation
in order to describe Cc and C more clearly. Indeed, if we introduce
canonical bases {ai}5i=1, {bj}3j=1, {ck}3k=1 of the corresponding vector
spaces, Cc is a sum of indecomposables as follows:

Cc = −a1 ⊗ b3 ⊗ c1 + (a3 ⊗ b2 − a5 ⊗ b1)⊗ c2 − (a2 ⊗ b2 − a4 ⊗ b1)⊗ c3.

The multilinear multiplication (B−1
1 , B−1

2 , B−1
3 ) · Cc gives the core C

of T . The matrices (B−1
1 , B−1

2 , B−1
3 ) are given by

B−1
1 =

















0
√
17−

√
13

2

√
17−

√
13

2
0 0

0 α β 0 0
3
2

0 0 −13−
√
221

13
−13+

√
221

13√
13+3
2

0 0 γ δ

0 0 0
√
13+

√
17

2

√
13+

√
17

2

















,

where

α =
117

√
3− 117

√
3− 27

√
39 + 507

676
, β =

117
√
3 + 117

√
3− 27

√
39− 507

676
,
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γ =
39
√
13 + 39

√
17 + 9

√
221 + 117

52
, δ =

39
√
13− 39

√
17− 9

√
221 + 117

52
,

and

B−1
2 =







√
2−

√
6

4

√
6
2

√
6
2

0 −
√
3

√
3

√
2+

√
6

4
3
√
2+2

√
6

2
3
√
2+2

√
6

2






, B−1

3 =







0 9
√
5−25
22

15−
√
5

11

1 0 0

0 8
√
5−10
11

8
√
5−10
11






.

If we denote byKi
ji
the ji-th column of B−1

i for 1 ≤ i ≤ 3, 1 ≤ j1 ≤ 5,
1 ≤ j2 ≤ 3 and 1 ≤ j3 ≤ 3, the core of T can be written as

−K1
1⊗K2

3⊗K3
1+(K1

3⊗K2
2−K1

5⊗K2
1 )⊗K3

2−(K1
2⊗K2

2−K1
4⊗K2

1 )⊗K3
3 .

5. Examples

In this section we provide seven different examples of three projec-
tions Pj : P

k −→ Phj j = 1, 2, 3, leading to trifocal Grassman tensors
of dimension n1 × n2 × n3, with profile (α1, α2, α3), whose multilin-
ear rank is explicitly computed following Lemma 3.1, Lemma 3.2, and
Proposition 3.1. In the first example we also explicitly identify the zero
rows responsible for the drop in rank of the first flattening, and we also
provide explicit matrices needed for the calculation of the core. Recall
that k is determined by the profile, i.e., k = α1 + α2 + α3 − 1, i and
jrs are defined in (5) and (6), and m1, m2, A, |A|, and N are defined
in Claim 3.1.
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S
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9

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7

k 7 6 9 5 8 12 9

(h1, h2, h3) (6, 4, 4) (5, 4, 3) (8, 6, 4) (2, 4, 4) (5, 5, 5) (7, 8, 8) (3, 8, 8)

(α1, α2, α3) (3, 3, 2) (3, 2, 2) (4, 3, 3) (2, 2, 2) (1, 4, 4) (1, 6, 6) (3, 3, 4)

i 1 1 1 1 0 0 2

(j1,2, j1,3, j2,3) (3, 3, 1) (3, 2, 1) (5, 3, 1) (1, 1, 3) (3, 3, 3) (4, 4, 5) (1, 1, 6)

(n1, n2, n3) (35, 10, 10) (20, 10, 6) (126, 35, 10) (3, 10, 10) (6, 15, 15) (8, 84, 84) (4, 84, 126)

F-rk (T ) (31,10,10) (19, 10, 6) (105, 35, 10) (3, 9, 9) (6, 12, 12) (8, 50, 50) (4, 65, 75)
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Example 5.1. In this case we consider three projections from P7 to,
respectively, P6, P4, and P4, with profile (3, 3, 2). T is a tensor of di-
mension 35× 10× 10 and the value of the quantities in (5) and (6) are
as in the table above. Notice that Assumption 2.1 is satisfied as i = 1
and hence the construction of T c can be performed. The only values
of r, s that satisfy one of (9) are r = 1, s = 3, as j1,3 − (α3 + 1) = 0.
Hence rk (T c

2 ) and rk (T c
3 ) are both maximal while rk (T c

1 ) drops. For
(r, s, t) = (1, 3, 2) Claim 3.1 shows that A = {(0, 3, 0), (1, 2, 0)}. Ac-
cording to Proposition 3.1, the contribution to the rank deficiency given
by the first triplet in A is

(

1
0

)(

3
3

)(

3
0

)

= 1 while the contribution of the

second triplet is
(

1
1

)(

3
2

)(

3
0

)

= 3. Therefore, rk (T c
1 ) drops by 4, and

F-rk (T ) = (31, 10, 10).
Following Remark 3.3 we will now identify the 4 zero rows of T c

1 .
Notice that the first block of (8) is a submatrix of dimension 9 × 7
while α1 = 3, hence the multi-indices of the sets of columns that are
not chosen in the calculation of each maximal minor, i.e. the row multi-
indices of T c

1 , have length 4 are the following, in proper lexicographic
order, listed above their corresponding row indices:

1234 1235 1236 ... ... ... 3467 3567 4567

1 2 3 ... ... ... 33 34 35.

More specifically, the entries of the first row of T1 are given by
T1234,J,K , where J and K are multi-indices as in Section 2.5.
In correspondence of the first triplet (0, 3, 0), as a2 = j12 = 3, we

are forced to choose the second, the third and the fourth column of the
first block of (8) to compute entries of the tensor. These entries T c

I,J,K

correspond to the multi-index I = {1567}, i.e. the 20th row of T c
1 .

On the other hand, the triplet (1, 2, 0) gives three possible multi-
indices of rows. As i = a1 = 1 we are forced to choose the first
column of the first block of (8). As j12 = 3 and a2 = 2, we have
three possible choices {(2, 3), (2, 4), (3, 4)} for two out of the next three
columns of the same block. Hence we have, respectively, the three rows
T c
1 4567,J,K , T c

1 3567,J,K , T c
1 2567,J,K , i.e. rows 30, 34, and 35.

Example 5.2. In this case we consider three projections from P6 to,
respectively, P5, P4, and P3, with profile (3, 2, 2). T is a tensor of di-
mension 20× 10× 4 and the value of the quantities in (5) and (6) are
as in the table above. Notice that Assumption 2.1 is satisfied as i = 1
and hence the construction of T c can be performed. The only values
of r, s that satisfy one of (9) are r = 1, s = 2, as j1,2 − (α2 + 1) = 0.
Hence rk (T2) and rk (T3) are both maximal while rk (T1) drops. For
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(r, s, t) = (1, 2, 3) Claim 3.1 shows that A = {(1, 0, 2)}. According
to Proposition 3.1, the contribution to the rank deficiency given by
the triplet in A is

(

1
1

)(

3
0

)(

2
2

)

= 1 therefore rk (T 1
c ) drops by 1 and F-

rk (T ) = (19, 10, 4).

Example 5.3. In this case we consider three projections from P9 to,
respectively, P8, P6, and P4, with profile (4, 3, 3). T is a tensor of di-
mension 126 × 35 × 10 and the value of the quantities in (5) and (6)
are as in the table above. Notice that Assumption 2.1 is satisfied as
i = 1 and hence the construction of T c can be performed. In this
case, only one set of values satisfy one of (9), (r, s, t) = (1, 2, 3), as
j1,2−(α2+1) = 1 ≥ max(0, α1−i−j1,3) = 0. Hence rk (T1) drops, while
both rk (T2) and rk (T3) are maximal. For (r, s, t) = (1, 2, 3) Claim 3.1
shows that A = {(1, 0, 3), (0, 1, 3), (1, 1, 2)}. According to Proposition
3.1, the contribution to the rank deficiency given by the first triplet in A
is
(

1
1

)(

5
0

)(

3
3

)

= 1; the contribution of the second triplet is
(

1
0

)(

5
1

)(

3
3

)

= 5;

and the contribution of the third triplet is
(

1
1

)(

5
1

)(

3
2

)

= 15. Therefore
rk (T 1

c ) drops by 21.

Example 5.4. In this case we consider three projections from P5 to,
respectively, P2, P4, and P4, with profile (2, 2, 2). T is a tensor of di-
mension 3× 10× 10 and the value of the quantities in (5) and (6) are
as in the table above. Notice that Assumption 2.1 is satisfied as i = 1
and hence the construction of T c can be performed. The only values
of r, s that satisfy one of (9) are r = 2, s = 3, as j2,3 − (α3 + 1) = 0
and r = 3, s = 2, as j2,3 − (α2 + 1) = 0. Hence rk (T1) is maximal,
while both rk (T2) and rk (T3) drop. For (r, s, t) = (2, 3, 1) Claim 3.1
shows that B = {(1, 1, 0)}. According to Proposition 3.1, the contri-
bution to the rank deficiency of rk (T 2

c ) is given by the triplet in B
which is

(

1
1

)(

1
1

)(

3
0

)

= 1. Therefore rk (T 2
c ) drops by 1. Similarly the

contribution to the rank deficiency of rk (T 3
c ) is given by the triplet in

C = {(1, 1, 0)} which is
(

1
1

)(

1
1

)(

3
0

)

= 1. Therefore rk (T 3
c ) drops by 1

too and F-rk (T ) = (3, 9, 9).

Example 5.5. In this case we consider three projections from P8 to
P5 with profile (1, 4, 4). T is a tensor of dimension 6× 15× 15 and the
value of the quantities in (5) and (6) are as in the table above. Notice
that Assumption 2.1 is satisfied as i = 0 and hence the construction of
T c can be performed. The two sets of values of r, s that satisfy one of
(9) are r = 2, s = 1, as j2,1−(α1+1) = 1 ≥ max(0, α2−i−j2,3) = 0 and
r = 3, s = 1, as j3,1 − (α1 + 1) = 1 ≥ max(0, α1 − i − j3,2) = 0. Hence
rk (T1) is maximal, while both rk (T2) and rk (T3) drop. Proceeding as
in previous examples in this section one gets F-rk (T ) = (6, 12, 12).
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Example 5.6. In this case we consider three projections from P12

to, respectively, P7, P8, and P8, with profile (1, 6, 6). T is a tensor of
dimension 8×84×84 and the value of the quantities in (5) and (6) are
as in the table above. Notice that Assumption 2.1 is satisfied as i = 0
and hence the construction of T c can be performed. The only values of
r, s that satisfy one of (9) are r = 2, s = 1 and r = 3, s = 1,as we have
the strict inequalities: j2,1−(α1+1) = 2 > max(0, α2−i−j2,3) = 1 and
j3,1−(α1+1) = 2 > max(0, α1−i−j3,2) = 1. Hence rk (T1) is maximal,
while both rk (T2) and rk (T3) drop. Proceeding as in previous examples
in this section one gets F-rk (T ) = (8, 50, 50).

Example 5.7. In this last case we have an example of tensor with a
relatively small core. We consider three projections from P

9 to P
3, P8,

and P8, with profile (3, 4, 4). T is a tensor of dimension 4 × 84 × 126,
i = 1. Proceeding as in previous examples in this section one gets
F-rk (T ) = (4, 65, 75).
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