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The Grover algorithm is a crucial solution for addressing unstructured search problems and has
emerged as an essential quantum subroutine in various complex algorithms. This research ex-
tensively investigates Grover’s search methodology within non-uniformly distributed databases, a
scenario frequently encountered in practical applications. Our analysis reveals that the behavior of
the Grover evolution differs significantly when applied to non-uniform databases compared to uni-
form or ‘unstructured databases.’ It is observed that the search process facilitated by this evolution
does not consistently result in a speed-up, and we have identified specific criteria for such situations.
Furthermore, we have extended this investigation to databases characterized by coherent states,
confirming the speed-up achieved through Grover evolution via rigorous numerical verification. In
conclusion, our study provides an enhancement to the original Grover algorithm, offering insights
to optimize implementation strategies and broaden its range of applications.

I. INTRODUCTION

The Grover algorithm, conceived by L. K. Grover in
1997 [1], marked a significant advancement in the field
of quantum computing [2], particularly in addressing the
challenge of query complexity. In the classical paradigm,
searching an unstructured database typically necessitates
n steps, where n is the size of the database. Grover’s
groundbreaking algorithm, however, revolutionizes this
approach by reducing the required steps to merely

√
n.

This quantum search algorithm has emerged as a corner-
stone in the development of quantum computational rou-
tines, celebrated for its ability to significantly amplify the
amplitude of the quantum state that encodes the desired
information. The versatility and applicative potential of
the Grover algorithm have been demonstrated across a
spectrum of challenging problems. For instance, it has
provided innovative solutions to the satisfiability prob-
lem [3], as well as in the burgeoning field of quantum
machine learning [4]. Further applications include tack-
ling constrained polynomial binary optimization [5] and
enhancing quantum amplitude estimation techniques [6],
showcasing a clear computational superiority over tradi-
tional methods. Recent explorations have extended the
utility of the Grover algorithm [7] to the domain of adia-
batic quantum computing [8–10], underscoring its adapt-
ability and relevance in the rapidly evolving landscape
of quantum research. This paper specifically delves into
the algorithm’s seminal application in database search-
ing, highlighting its transformative impact and ongoing
significance in the quest for efficient quantum computing
solutions. Through this focus, we aim to illuminate the
enduring value and broad applicability of Grover’s algo-
rithm [1, 11, 12], from its initial proposal to its current
and potential future contributions to quantum comput-
ing and beyond.

The search problem unfolds as follows: within a given
database, each element is distinctly indexed. When the

database is of finite size, locating a specific element ne-
cessitates iterative queries to its index. Typically, the
query count scales with the database size. Grover’s sem-
inal work explored this quandary in the realm of quan-
tum computing. Through specific evolution operators,
the amplitude of the basis state housing the target data
can be boosted to unity. The steps required for such en-
hancement scale proportionally to the square root of the
database size, ensuring a guaranteed quadratic acceler-
ation. This concept has been integrated into numerous
platforms [13–15], with additional advancements show-
cased in recent proposals [16–19].

The initial discourse on the search dilemma predomi-
nantly centers on managing unstructured databases, fol-
lowing a conventional approach in theoretical computa-
tional discussions that remains detached from specific
physical contexts. However, as we transcend the lim-
its imposed by current computing platforms and strive
for advancements, particularly in the evolution of novel
computing architectures, data encoding states may not
uniformly distribute. Thus, delving into the potential en-
hancements of the Grover search algorithm in such sce-
narios presents an opportunity to broaden its utility and
applicability significantly.

Moving forward, we conduct an analysis of the afore-
mentioned issue. The database under scrutiny is compre-
hensive, characterized by distributions spanning various
types. We define the Grover evolution tailored to such a
database and calculate the necessary steps for executing
the search operation. By comparing our approach with
classical methodologies, we methodically identify the pre-
requisites for achieving acceleration through Grover evo-
lution. Subsequently, we showcase two illustrative ex-
amples to elucidate our observations: the first example
validates the harmony between our theory and Grover’s
established results, while the second example exemplifies
that employing the Grover search on a database governed
by coherent state probabilities leads to acceleration com-
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pared to conventional methods. This is followed by an
elaborate exposition of our overarching methodology.

II. GROVER SEARCH ON WEIGHTED
DATABASES

Consider a database {x1, . . . , xM}, with integerM . An
arbitrary element xn in the database is a real number,
which represents a certain characteristic of objects. In
the original version of search problems, all xms are dis-
tinct to each other. Here we assume that parts of the ele-
ments in the database are the same. This is also common
for the real-world databases. Suppose that there are N
distinguished types of elements in the database, denoted
by y1, . . . , yN . Therefore, the database {x1, . . . , xM}
can be re-organized by {(y1, p1), . . . , (yN , pN )}, where
p1, . . . , pM represent the proportions of distinct charac-
teristics y1, . . . , yN in the total database. An illustration
of the search problem on the databases is given by Fig.
1.

FIG. 1. An illustration of the search problem on unstructured
database (a) and weighted database(b). “0” and “1” mark the
ordinary and the target data sample respectively. The widths
of the squares of the samples represent the proportions.

To search for a certain characteristics in {(y1, p1),
. . . , (yN , pN )} by using classical algorithms, the required
number of steps s is proportional to the reciprocal num-
ber of its proportion. Therefore, in general, s satisfies

min
j=1,...,N

{
1

pj

}
⩽ s ⩽ max

j=1,...,N

{
1

pj

}
. (1)

To perform the same task by using Grover evolution [20],
one can consider the following state

|D⟩ =
N∑

n=0

P (n)|n⟩. (2)

{|1⟩, |2⟩, · · · , |N⟩} is a set of orthonormal basis and |D⟩
is a superposition of them. P (n) is the complex ampli-
tude of the basis state |n⟩, yielding that |P (n)|2 = pn,

and
∑N

n=0 |P (n)|2 = 1. According to the idea of Grover
search, the amplitude of the target state can be amplified

by repetitive evolution so that the search can be com-
pleted by only one step. Then, the total step number of
performing the search equals to the repeat number of the
evolution operators. Suppose that the target state is |k⟩,
the basic two operators for evolution are defined by

UD = 2|D⟩⟨D| − 1, Uk = 1− 2|k⟩⟨k|. (3)

The amplification operator required by Grover search is
defined by G := UDUk. Suppose that after performing G
for t times on |D⟩, the whole state evolves to |k⟩. Then,
the step number for searching |k⟩ is given by t.
The next key problem is to compare the step numbers

of the two methods, validating whether a speed-up exists.
For such purpose, we analyze the above evolution under
G as follows. Applying G once to the state |D⟩, one has

G|D⟩ = (1− 4|P (k)|2)|α⟩ − 2P ∗(k)|k⟩. (4)

Furthermore, if G is applied for r times, a recurrence
relation can be obtained,

Gr|D⟩ = ar|D⟩+ br|k⟩, (5)

where

ar = [1− 4|P (k)|2]ar−1 − 2P ∗(k)br−1,

br = br−1 + 2P (k)ar−1.
(6)

For sufficient large r, the amplification leads to that
ar → 0 and br → 1. This asymptotic behaviour can
be seen by approximating ar with a continue function
fa(x) with real variable x, such that fa(r) = ar. Apply
the approximation ar−ar−1 ∼ ∂fa/∂x, and the same for
br. Thereafter, two partial differential equations can be
obtained, shown by

∂fa
∂x

= −4fa|P (k)|2 − 2fbP
∗(k),

∂fb
∂x

= 2faP (k).

(7)

Substitute the second equation to the first equation, one
has

∂2fa
∂x2

+ 4|P (k)|2 ∂fa
∂x

+ 4|P (k)|2fa = 0. (8)

Notice that such equation is a standard second-order par-
tial differential equation. Its solution has been discussed
thoroughly. In general, the solution of can be given by

fa = C1e
q1x + C2e

q2x, ∆ > 0

fa = (C1 + C2x)e
q1x, ∆ = 0

fa = eγx(C1 cosβx+ C2 sinβx), ∆ < 0

(9)

where q1,2 = (−4|P (k)|2 ±
√
∆)/2 with ∆ = 16|P (k)|4 −

16|F (k)|2. C1 and C2 are constants depending on initial
conditions. γ and β are the real and imaginary part of
complex q1,2 when ∆ < 0. In our case, |P (k)| < 1 so that
∆ < 0. The case when |P (k)| = 1 means that state |k⟩
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can be searched with one step, which is trivial and is not
considered here. Thus, the solution to Eq. (8) is

fa = e−2|P (k)|x(C1 cos (2∆̃x) + C2 sin (2∆̃x)), (10)

where ∆̃ =
√

|P (k)|2 − |P (k)|4. The dynamics given by
Eq. (10) is a damping oscillation. The period of the

oscillation is T = π/∆̃. It indicates that in the time
of T , there is a moment when fa takes its maximum,
approaching to be one. Therefore, the steps number for
the search is in the order of T . The speedup of the Grover
search under the condition can be verified by comparing
the order of T and s. More strictly, one has the condition

min
k=1,...,N

{
∆̃−1(k)

}
< min

j=1,...,N

{
1

pj

}
. (11)

The condition given by Eq. (11) indicates a global speed
up over the classical treatment. Notice that we omit the
constant factor π because it does not affect the order. If
one limits the problem to searching the kth element in
the database, the condition can be loosen to

∆̃−1(k) <
1

pk
=

1

|P (k)|2
. (12)

Then, because |P (k)| is not zero generally,

|P (k)| <
√
1− |P (k)|. (13)

Such a condition indicates a local speed up over the
classical treatment, which is only effective for search-
ing one element. Obviously, the inequality holds when
|P (k)| < 1/2. It is easy to satisfy such condition when
N is sufficiently large.

In what follows, we provide two specific examples of
the above general analysis. In the first example, we show
that the original unstructured search by Grover’s idea
can be obtained from our consideration. In the second,
we show the results when the distribution of database is
that of a coherent state.

III. TWO EXAMPLES

I. Back to unstructured search. The case of unstruc-
tured search can be easily obtained by setting P (k) =

1/
√
N . Then,

∆̃ =

√
1

N
− 1

N2
=

√
N − 1

N2
. (14)

When N is big enough, one has
√
(N − 1)/N2 ≈ 1/

√
N .

Therefore, the step number for Grover search is in the or-
der of

√
N . It worth mentioning that, in such a case, be-

cause |P (k)| = 1/
√
N → 0 for bigN , the factor e−2|P (k)|x

is close to one. It guarantees fa finally approaches to one.
The classical search algorithm on the unstructured

database is basically checking each elements in the

database one by one. Because the probability of find-
ing one element is 1/N , the step number for the search-
ing by classical treatment is in the order of N . Hence,
a quadratic speedup can be observed by comparing the
order of the two step numbers.
II. Grover search by using coherent state. In this part,

we consider the case when the distribution of database
{(y1, p1), . . . , (yN , pN )} satisfies (or partially satisfies)
the distribution of the coherent state. The coherent state
in the particle number basis can be expressed by

|α⟩ = e−
1
2 |α|

2
∞∑
q=0

αq

√
q!
|q⟩, (15)

where α is a complex number. Such a state naturally

FIG. 2. The probability distribution of |α′⟩ when |α| =
0.8, 1.6, 2.4, . . . , and 3.2. We take q1 = 1 and N = 20.
The cases of other q1 and N are similar.

occurs in optical amplification cavity. Notice that there
are infinite basis states in the coherent state. There-
fore, for finite databases, one can consider encoding them
into parts of the state (15). Define the N -dimensional
database state |α′⟩,

|α′⟩ = Nq

q1+N∑
q=q1

e−
1
2 |α|

2

αq

√
q!

|q⟩, (16)

where Nq is the normalization factor, given by

Nq =

[
q1+N∑
q=q1

e−|α|2 |α|2q

q!

]− 1
2

. (17)

Thus, for a target state |k⟩ in the database, one has,

|P (k)| = e−
1
2 |α|

2 |α|k√
k!

·Nq

=
|α|k√
k!

[
q1+N∑
q=q1

|α|2q

q!

]− 1
2

. (q1 ≤ k ≤ q1 +N)

(18)

Notice that, when q1 is large enough, |α|k/
√
k! slowly

varies with k. Thus, the case will go back to the unstruc-
tured database, as shown in the first part of section III.
When q1 is not large enough, the magnitude of |P (k)|
is given by α and q1. We numerically provide several
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FIG. 3. The comparison of reciprocals of step numbers when
searching a basis state |k⟩ (k = 1, ..., 21) by classical and
Grover treatments. The y-axis represents the reciprocal of
the step numbers. The value of α is 0.8 in (a), 1.6 in (b), 2.4
in (c), and 3.2 in (d).

FIG. 4. The comparison of the natural logarithm of step
numbers when searching a basis state |k⟩ (k = 1, ..., 21) by
classical and Grover treatments. The y-axis represents the
natural logarithm of the step numbers. The value of α is also
0.8 in (a), 1.6 in (b), 2.4 in (c), and 3.2 in (d).

cases shown in Fig. 2. By substituting the probability
distribution to ∆̃, the order of the step number can be
estimated. The step number of the classical treatment
is obtained by 1/pk when searching for yk. In order to
show a clear comparison, we firstly compare the recipro-
cal of the step numbers of the two cases, and the results
is shown in Fig. 3. From the results, we can see that

in general, the Grover evolution is a better strategy over
the classical treatment. An exception occurs in Fig. 3(a),
when searching for the first element. This is because α
is relatively small in such a case. We secondly compare
the natural logarithm of the step numbers of the cases,
and the results are shown in Fig. 4. By Fig. 4, a clear
advance in steps number can be observed, and the excep-
tion also occurs in (a). The results in Fig. 3 and Fig. 4
indicate that the Grover search on a database distributed
in the probability given by the coherent state is able to
show an advance over the classical methods. According
to our conditions in section II, such an advance belongs
to the local speedup.

IV. CONCLUSION

We investigate the application of Grover’s algorithm
for weighted database searches, a prevalent scenario in
practical settings. Utilizing Grover’s evolution, we calcu-
late the requisite steps for the search and contrast these
calculations with classical methodologies. Through de-
tailed analysis, we pinpoint the specific conditions con-
ducive to acceleration through Grover’s algorithm. To
illustrate our discoveries, we showcase two compelling
examples. The first example validates our theoretical
framework by aligning closely with Grover’s seminal out-
comes. In the second example, we demonstrate how im-
plementing Grover’s search on a database governed by
a probability distribution resembling a coherent state
yields significant speed enhancements compared to tra-
ditional methods. These results represent a significant
advancement of the original Grover algorithm, enriching
its implementation strategies and broadening its scope of
potential applications.
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