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A CHARACTERIZATION OF THE POLYHEDRAL METRICS ON

TRIANGULATED SURFACES

TIANQI WU

Abstract. Given a triangulated surface, a polyhedral metric could be con-
structed by gluing Euclidean triangles edge-to-edge. We carefully describe
the construction and prove that such a polyhedral metric is the only intrin-
sic metric on the glued surface that preserves the lengths of the curves on
the Euclidean triangles. We also discuss the edge length coordinates of the
Teichmüller space of the polyhedral metrics on a marked surface.

1. Introduction

Polyhedral metrics and (geodesic) triangulations on surfaces have been widely
studied and relied on in mathematical theories and computational geometry. Given
a triangulation of a surface, a polyhedral metric could be constructed by gluing
Euclidean triangles edge-to-edge. Such a construction seems obvious. In this paper,
we carefully describe the construction in details, and rigorously justify fundamental
properties of such a constructed polyhedral metrics. Specifically, we defined the
“glued metric” based on the idea of quotient metric, and proved that arc lengths
are preserved after gluing. We also discuss the edge length coordinates of the
Teichmüller space of polyhedral metrics, briefly explaning the connection with the
Teichmüller theory of hyperbolic surfaces with cusps and the theory of discrete
conformal geometry.

In Section 2, we give a detailed specific construction of ∆-complexes by gluing
Euclidean triangles. Then in Section 3, we construct polyhedral metrics on trian-
gulated surfaces and justify that the constructed one is indeed a metric. In Section
4, we proved the arc lengths preserving property. In section 5, we define the Te-
ichmüller space TPL of polyhedral metrics, and introduced a R

n-parameterization
with the help of the Teichmüller space of hyperbolic surfaces with cusps. We also
discuss the edge lengths coordianates and the connection with discrete conformal
geoemetry.

2. Triangulations of a closed surface

Denote
(a) D as a fixed closed regular triangle in R

2 with the edge length 1,
(b) V0 as the set of the three vertices of D,
(c) E0 as the set of the three closed edges of D,
(d) Do as the interior of D in R

2, and
(e) eo = e− V0 as an open edge for all e ∈ E0.

1

http://arxiv.org/abs/2312.01704v1


2 TIANQI WU

Definition 2.1. A triangulation T of a connected closed surface S is represented
by a finite index set I = {1, 2, ..., n} for some n ∈ Z>0 and continuous maps
σi : D → S for i ∈ I such that

(a) σi|eo is injective for all i ∈ I and e ∈ E0,
(b) σi|Do is injective for all i ∈ I,
(c) S is a disjoint union of ∪iσi(V0), σi(D

o) for i ∈ I, and elements in

{σi(e
o) : e ∈ E0, i ∈ I},

and
(d) if σi1(e

o
1) = σi2 (e

o
2) for some i1, i2 ∈ I and e1, e2 ∈ E0, then there exists a

linear homeomorphism (i.e., an isometry) h : e1 → e2 such that

σi2(h(x)) = σi1(x)

for all x ∈ e1.
We denote such a triangulation as T = (σi)i∈I .

Remark 2.2. Notice that by part (c) of Definition 2,1, for all (e1, i1), (e2, i2) ∈
E0 × I, σi1(e

o
1) = σi2 (e

o
2) if σi1(e

o
1) ∩ σi2(e

o
2) 6= ∅.

Remark 2.3. Such a triangulation T is naturally a ∆-complex, but not necessary
a simplicial complex. Two edges of the same triangle could possibly be glued to-
gether, and two triangles may be glued along more than one pairs of edges. As
a consequence, such a triangulation T is naturally a CW-complex but may not be
regular.

Given a triangulation T = (σi)i∈I of a closed surface S,
(a) the maps σi for i ∈ I are called the characteristic maps of T ,
(b) σi(v) is called a vertex of T if v ∈ V0 and i ∈ I,
(c) V (T ) = ∪i∈Iσi(V0) denotes the set of vertices of T ,
(d) σi(e) is called an edge of T if e ∈ E0 and i ∈ I,
(e) E = E(T ) denotes the set of edges of T ,

3. Construction of polyhedral metrics

In this section we will construct polyhedral metrics on S, with a given triangu-
lation and prescribed edge lengths.

Given l ∈ R
E0

>0 satisfying the triangle inequality, there exists a linear map f :
R

2 → R
2 such that f(D) is a Euclidean triangle where the edge length of f(e) is le

for all e ∈ E0. Let d[l] be the induced metric on D, defined by

d[l](x, y) = |f(x)− f(y)|2.

Notice that the metric d[l] is independent on the choice of f . Suppose T = (σi)i∈I

is a triangulation of S, denote R
E(T )
∆ as a real-valued function on E(T ) satisfying

the triangle inequalities. Specifically,

R
E(T )
∆ = {l ∈ R

E(T )
>0 : lσi(e1) + lσi(e2) > lσi(e3) if {e1, e2, e3} = E0 and i ∈ I}.

Suppose l ∈ R
E(T )
∆ and l(i) ∈ R

E0

>0 denotes the restricted edge length on σi(D), i.e.,

l(i)e = lσi(e)

for all e ∈ E0.
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A potential metric on σi(D) could be

di(x, y) = min{d[l(i)](x′, y′) : x′ ∈ σ−1
i (x), y′ ∈ σ−1

i (y)}

for all x, y ∈ σi(D). Notice that in general σi is not injective on D and σ−1
i (x) may

contain more than one point. Such di actually may not be a metric on σi(D). This
is fine and we can still construct a metric d[l] on S as

d[l](x, y) = inf

{ k
∑

j=1

dij (xj−1, xj) : xj−1, xj ∈ σij (D) for some ij ∈ I, x = x0, y = xk

}

for all x, y ∈ S. To justify that d[l] is indeed a metric on S, we need to prove that
for all x, y, z ∈ S,

(a) d[l](x, y) < ∞ ,
(b) d[l](x, y) ≥ 0,
(c) d[l](x, y) = 0 only if x = y,
(d)

d[l](x, y) = d[l](y, x),

and
(e)

d[l](x, z) ≤ d[l](x, z) + d[l](y, z).

Here part (a) is indeed Proposition 3.1 below. Part (b) is obvious from the def-
inition. Part (c) is an immediate consequence of Proposition 3.4 below. It is
straightforward to verify part (d) and (e) from the definition of d[l].

Furthermore, d[l] is compatible with the quotient topology on S (see Proposition
3.5).

Proposition 3.1. For all x, y ∈ S, d[l](x, y) < ∞, i.e., there exists

x0, x1, ..., xk ∈ S

such that x0 = x, xk = y, and for all j = 1, ..., k, xj−1, xj ∈ σij (D) for some ij ∈ I.

Proof. Given x ∈ S, denote

C(x) = {y ∈ S : d[l](x, y) < ∞}.

It suffices to show that C(x) is the whole space S. Since S is connected and
x ∈ C(x), we only need to show that C(x) is both open and closed. It is easy to
see that σi(D) ⊂ C(x) if σi(D) ∩ C(x) 6= ∅. Let

J =

{

i ∈ I : σi(D) ∩ C(x) 6= ∅

}

.

and then
C(x) =

⋃

i∈J

σi(D)

is compact and closed. For all i ∈ I − J ,

C(x) ∩ σi(D) = ∅.

So
⋃

i∈I−J

σi(D)

is the complement of C(x) in S and is compact. So C(x) is open.
�
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For all x ∈ D, denote

K(x) = ∪{e ∈ E0 : x /∈ e}

as the union of the edges not containing x. In particular,
(a) if x ∈ Do, then K is the union of all the three edges of D,
(b) if x ∈ eo for some e ∈ E0, then K is the union of the other two edges of D,

and
(c) if x ∈ V0, then K is the edge opposite to x in D.

For all x ∈ D and i ∈ I, denote ri(x) > 0 as the distance between K(x) and x in
(D, d[l(i)]). For all x ∈ S, let

r(x) = min

{

ri(x
′) : i ∈ I, x′ ∈ σ−1

i (x)

}

.

Lemma 3.2. If x, z ∈ σi(D), di(x, z) < r(x), and z′ ∈ σ−1
j (z), then there exists

x′ ∈ σ−1
j (x) such that

d[l(j)](x′, z′) = di(x, z).

Proof. Assume

di(x, z) = d[l(i)](x′′, z′′) < r(x)

for some x′′ ∈ σ−1
i (x), z′′ ∈ σ−1

i (z). The conclusion is trivial if x = z or (z′′, i) =
(z′, j). So we may assume that x 6= z and (z′′, i) 6= (z′, j). By the definition of r(x),

z′′ /∈ K(x′′) ∪ {x′′} ⊃ V0.

Then by (z′, i) 6= (z′′, j) and part (c) of the definition of a triangulation, there exists
e, e′ ∈ E0 such that

z′′ ∈ eo,

z′ ∈ e′,

and

σi(e) = σj(e
′).

Furthermore, e 6⊂ K(x′′) and thus x′′ ∈ e.
By part (d) of the definition of a triangulation, there exists a linear homeomor-

phism h : e → e′ such that σj(h(w)) = σi(w) for all w ∈ e. Such h is an isometry

from (e, d[l(i)]) to (e′, d[l(j)]) since
(a) lσi(e) = lσj(e′),

(b) the metrics d[l(i)], d[l(j)] are induced from linear maps to Euclidean triangles
in R

2, and
(c) the map h is linear.

Then h(z′′) = z′, h(x′′) ∈ σ−1
j (x), and

d[l(j)](h(x′′), z′) = d[l(j)](h(x′′), h(z′′)) = d[l(i)](x′′, z′′) = di(x, z).

�

Corollary 3.3. If x, z ∈ σi(D), di(x, z) < r(x), and z ∈ σj(D), then

x ∈ σj(D)

and

di(x, z) = dj(x, z).
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Proof. Let z′ ∈ σ−1
j (z). By Lemma 3.2, there exists x′ ∈ σ−1

j (x) such that

dj(x, z) ≤ d[l(j)](x′, z′) = di(x, z) < r.

By the same reason

di(x, z) ≤ dj(x, z)

and thus

di(x, z) = dj(x, z).

�

Proposition 3.4. Given x, y ∈ S,

d[l](x, y) ≥ r(x)

or

d[l](x, y) = di(x, y)

for some i ∈ I with x, y ∈ σi(D).

Proof. Let us prove by contradiction and assume that this is not true. By the
definition of d[l] there exists y ∈ S and x0, ..., xk such that

(a) for all j ∈ {1, ..., k}, xj−1, xj ∈ Dij for some ij ∈ I,
(b) x0 = x and xk = y,
(c)

k
∑

j=1

dij (xj−1, xj) < r,

and
(d)

k
∑

j=1

dij (xj−1, xj) < di(x, y)

if i ∈ I and x, y ∈ σi(D).
Now let m ≥ 1 be the maximum integer in {1, ..., k} such that for all j = 1, ...,m,
(a) x ∈ σij (D), and
(b) dij (x, xj−1) < r(x).

If m = k, then x, y ∈ σim (D) and

dim(x, xm) = dim(x, y).

If k′ < k, then

dim(x, xm) ≥ r(x),

since otherwise by Corollary 3.3 we have that

x ∈ σim+1
(D)

and

dim+1
(x, xm) < r(x)

contradicting with the maximality of m.
So it suffices to show that

m
∑

j=1

dij (xj−1, xj) ≥ dim(x, xm).
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Since

di1(x0, x1) = di1 (x, x1),

it suffices to show that for all j = 2, ...,m,

dij (xj−1, xj) ≥ dij (x, xj)− dij−1
(x, xj−1),

which by Corollary 3.3 is equivalent to

dij (x, xj−1) + dij (xj−1, xj) ≥ dij (x, xj).

Here we prove a general fact that

di(x, z) + di(z, w) ≥ di(x,w)

if x, z, w ∈ σi(D) and di(x, z) < r(x).
Suppose x′ ∈ σ−1

i (x), z′, z′′ ∈ σ−1
i (x), w′′ ∈ σ−1

i (w) are such that

di(x, z) = d[l(i)](x′, z′) < r(x)

and

di(z, w) = d[l(i)](z′′, w′′).

Then by Lemma 3.2, there exists x′′ ∈ σ−1
i (x) such that

d[l(i)](x′′, z′′) = d[l(i)](x′, z′) = di(x, z).

So

di(x, z) + di(z, w) = d[l(i)](x′′, z′′) + d[l(i)](z′′, w′′) ≥ d[l(i)](x′′, w′′) ≥ di(x,w).

�

Proposition 3.5. Given a triangulation T of S and l ∈ R
E(T )
∆ , the metric d[l] is

compatible with the original topology on S.

Proof. Let Ω be the original topology on S. Let Ωd be the topology on S induced
by d[l]. Specifically

Ωd = {U ⊂ S : for all x ∈ U there exists ǫ > 0 such that y ∈ U if d[l](x, y) < ǫ}.

We will first prove that (S, d[l]) induces a weaker topology, i.e., Ωd ⊂ Ω. It
suffices to prove that for all x ∈ S and r > 0,

B(x, r) := {y ∈ S : d[l](x, y) < r}

contains some open set U ∋ x in (S,Ω). Fix x ∈ S and let

Ki =

{

y′ ∈ D : d[l(i)](x′, y′) ≥ r for all x′ ∈ σ−1
i (x)

}

for all i ∈ I. Notice that Ki = D if x /∈ σi(D). Then Ki is compact and

σi(D)−σi(Ki) ⊂ σi

(

{

y′ ∈ D : d[l(i)](x′, y′) < r for some x′ ∈ σ−1
i (x)

}

)

⊂ B(x, r)

for all i ∈ I. It is easy to see that x is contained in the open set

S −
⋃

i∈I

σi(Ki) ⊂
⋃

i∈I

(σi(D)− σi(Ki)) ⊂ B(x, r).

So we proved that Ωd is a weaker topology than Ω.
Then Ω = Ωd since the identity map

IdS : (S,Ω) → (S,Ωd)
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is a homeomorphism, as a continuous bijection from a compact space to a Hausdorff
space.

Here we give a detailed direct argument. We only need to show that any closed
subset in (S,Ω) is compact in (S, d[l]) and thus is also closed in (S, d[l]). Suppose
Y is a closed subset in the compact space (S,Ω), and

Y = ∪λ∈ΛUλ

is an open cover of Y in (S,Ωd). Then Y is compact in (S,Ω) and Y = ∪λ∈ΛUλ is
also an open cover in the stronger topology Ω. Then there exists a finite subcover
of Y = ∪λ∈ΛUλ. So Y is compact in Ωd. �

4. Lengths-preserving property

It is straightforward to verify that d[l] constructed in the previous section is an
intrinsic metric, meaning that the distance between two points x, y is the infimum
of the lengths of the curves connecting x, y. Specifically,

d[l](x, y) = inf

{

L(γ) : γ ∈ C([0, 1], S), γ(0) = x, γ(1) = y

}

where C([0, 1], S) is the set of the continuous maps from [0, 1] to S and L(γ) =
L(γ, d) ∈ [0,∞] measures the length of γ as

L(γ) = sup

{ k
∑

i=1

d[l](γ(ti−1), γ(ti)) : 0 = t0 < t1 < ... < tk = 1

}

.

Since we view d[l] as the metric on a surface glued from Euclidean triangles (D, d[l(i)]),
d[l] should preserve the lengths of the curves on (D, d[l(i)]). Theorem 4.1 says that
d[l] is indeed the only intrinsic metric on S preserving these lengths.

Theorem 4.1. (a) For all i ∈ I and all continuous maps γ : [0, 1] → D,

L(γ, d[l(i)]) = L(σi ◦ γ, d[l]).

(b) Suppose d is an intrinsic metric on S. If for all i ∈ I and all continuous
maps γ : [0, 1] → D,

L(γ, d[l(i)]) = L(σi ◦ γ, d),

then d = d[l].

Proof. (a) It is straightforward to verify that

L(γ, d[l(i)]) ≥ L(σi ◦ γ, d[l]),

since

d[l(i)](x, y) ≥ di(σi(x), σi(y)) ≥ d[l](σi(x), σi(y))

for all x, y ∈ D.
Now we show

L(γ, d[l(i)]) ≤ L(σi ◦ γ, d[l]).

It suffices to show that for all 0 = t0 < t1 < ... < tk = 1,

k
∑

j=1

d[l(i)](γ(tj−1), γ(tj)) ≤ L(σi ◦ γ, d[l]) =
k

∑

j=1

L(σi ◦ γ|[tj−1,tj ], d[l]).
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Comparing the terms on both sides and by a scaling it suffices to show that for all
i ∈ I and α ∈ C([0, 1], D),

d[l(i)](α(0), α(1)) ≤ L(σi ◦ α, d[l]).

For all x ∈ S, let

r′(x) = min

{

1

2
d[l(i)](x′, x′′) : i ∈ I, x′, x′′ ∈ σ−1

i (x), x′ 6= x′′

}

,

and
r′′(x) = min{r(x), r′(x)} > 0.

Then if x′, z′ ∈ D and
d[l(i)](x′, z′) < r′′(x),

by Lemma 3.2 there exists x′′ ∈ D with σi(x
′′) = σi(x) such that

d[l(i)](x′′, z′) = di(σi(x
′), σi(z

′)) < r′′(x)

and then by the definition of r′(x) we have x′ = x′′ and

d[l(i)](x′, z′) = di(σi(x
′), σi(z

′)).

We will find 0 = t0 < ... < tk = 1 such that

d[l(i)](α(tj−1), α(tj)) < max{r′′(σi ◦ α(tj−1)), r
′′(σi ◦ α(tj))}

for all j = 1, ..., k, and then by the above discussion, Proposition 4.4, and Corollary
4.3,

d[l(i)](α(tj−1), α(tj)) = di(σi(α(tj−1)), σi(α(tj))) = d[l](σi ◦ α(tj−1), σi ◦ α(tj))

and we are done by the triangle inequality on (D, d[l(i)]) and the definition of
L(σi ◦ α, d[l]).

Let A be the set of t∗ ∈ [0, 1] such that there exist 0 = t0 < ... < tk = t∗ with

d[l(i)](α(tj−1), α(tj)) < max{r′′(σi ◦ α(tj−1)), r
′′(σi ◦ α(tj))}.

If 1 ∈ A we are done. Suppose 1 /∈ A and t̄ = supA. Then it is elementary to verify
that

max

{

1, t∗ +
1

2
r′′(σi ◦ α(t∗))

}

∈ A,

contradicting with 1 /∈ A or t∗ = supA.
(b) We first prove that

d(x, y) ≤ d[l](x, y) = inf

{ k
∑

j=1

dij (xj−1, xj) : xj−1, xj ∈ σij (D), x = x0, y = xk

}

.

Suppose x0, ..., xk are such that x0 = x, xk = y, and for all j = 1, ..., k, xj−1, xj ∈
σij for some ij ∈ I. Then construct a curve γ by connecting xj−1, xj by a “shortest
arc” for all j = 1, ..., k. Specifically, for all t ∈ [0, 1/k] and j = 1, ..., k, let

γ

(

j − 1

k
+ t

)

= σj

(

ktx′′
j + (1 − kt)x′

j−1

)

where x′′
j−1 ∈ σ−1

ij
(xj−1), x

′
j ∈ σ−1

ij
(xj) are such that

dij (xj−1, xj) = d[l(ij)](x′′
j−1, x

′
j).

Then
d(x, y) ≤ L(γ, d)
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=

k
∑

j=1

L(γ|[(j−1)/k,j/k], d)

=

k
∑

j=1

L

(

(

t 7→ (ktx′′
j + (1− kt)x′

j−1)
)

|[0,1/k], d[l(ij)]

)

=

k
∑

j=1

d[l(ij)](x′′
j−1, x

′
j)

=

k
∑

j=1

dij (xj−1, xj).

Notice that the above inequality only uses the fact that γ is map from [0, 1] to (S, d)
and does not require that γ is continuous from [0, 1] to (S, d).

Now we prove that

d(x, y) ≥ d[l](x, y)

for all x, y ∈ D. Since d(x, y) ≤ d[l](x, y) for all x, y ∈ D,

Id : (S, d[l]) → (S, d)

is a continuous bijection from a compact space to a Hausdorff space, so it is a
homeomorphism and (S, d) is also compact. Let us prove by contradiction and
assume

d(x, y) < d[l](x, y)

for some x, y ∈ D. Since (S, d) is compact, by the Arzelà–Ascoli Theorem it is
easy to see that there exists a shortest arc in (S, d) connecting x, y. Speicifically,
there exists a continuous map γ : [0, 1] → S such that γ(0) = x, γ(1) = y, and
L(γ, d) = d(x, y). As a shortest arc, γ is injective. Let

0 = t0 ≤ t1 < t2 < .... < tk−1 ≤ tk = 1

be such that

{t1, ..., tk−1} = {t ∈ [0, 1] : γ(t) ∈ V (T )}.

Then by the triangle inequality and the additivity of the length of a curve,

d[(γ(tj−1), γ(tj))] = L(γ|[tj−1,tj ]) < d[l](γ(tj−1), γ(tj))

for some j ∈ {1, ..., k}. So without loss of generality, by replacing γ with γ|[tj−1,tj]

we may assume that

γ(0, 1) ∩ V (T ) = ∅.

Then by the continuity, we can replace γ with γ|[ǫ,1−ǫ] for sufficiently small ǫ > 0
we may assume that

γ[0, 1] ∩ V (T ) = ∅.

If γ(t) ∈ σi(D
o) for some i ∈ I and t ∈ [0, 1], then

(a) there exists a maximal open interval A = At ⊂ [0, 1] such that t ∈ A and

γ(A) ⊂ σi(D
o),

(b) σ−1
i ◦ γ(A) is an open straight line since γ is locally shortest,

(c)

L(γ|A, d) = L(σ−1
i ◦ γ|A, d[l

(i)]) ≥ ǫ

for some constant ǫ = ǫ(S, T, l, γ) > 0 by a standard compactness argument,
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(d) the length of the interval A is at least δ for some δ = δ(S, T, l, γ) > 0 by the
uniform continuity of γ,

(e)

A = {At : t ∈ [0, 1], γ(t) ∈ σi(D
o) for some i ∈ I}

is finite,
(f) [0, 1]− supA∈A A is a finite disjoint union of points {t1, ..., tk−1} and closed

nondetenerate intervals {B1, ..., Bm}.
For all Bj , suppose Aj is an open interval adjacent to Bj , then it is easy to find

a map γ̃ : Aj ∪Bj → D such that

σi ◦ γ̃ = γ

on Aj ∪ Bj . Then γ̃ is not locally shortest, and then neither is γ = σi ◦ γ̃. So
{B1, ..., Bm} is actually empty. Let t0 = 0, tk = 1 and we have that (tj−1, tj) = ∅
or (tj−1, tj) ∈ A. Then

d(x, y) = L(γ, d) =
k

∑

j=1

L(γ|[tj−1,tj ], d) =
k

∑

j=1

L(σ−1
ij

◦ γ|(tj−1,tj), d[l
(i)])

≥
k

∑

j=1

dij (γ(tj−1), γ(tj)) ≥
k

∑

j=1

d[l](γ(tj−1), γ(tj)) ≥ d[l](x, y).

�

5. Teichmüller space of polyhedral metrics

(S, V ) is called amarked surface if S is a connected closed surface and V is a finite
subset of S. T is a triangulation of a marked surface (S, V ) if T is a triangulation
of S with V (T ) = V . By an elementary calculation,

|E(T )| = 3|V | − 3χ(S)

where |X | denotes the number of elements in the set X . From now on, we always
assume that |V | − χ(S) > 0.

A metric d on S is called a polyhedral metric of a marked surface (S, V ) if there

exists a triangulation T of (S, V ) and l ∈ R
E(T )
∆ such that d = dT [l]. There is an

equivalent definition of the polyhedral metrics.
A standard cone of angle θ ∈ (0,∞) is defined to be the quotient topological

space

Cθ = {(r, t) : r ≥ 0, t ∈ R/θZ}/(0,t)∼(0,t′)

with a Riemannian metric ds2 = dr2 + r2dt2 on Co
θ = Cθ − {[(0, 0)]}. This Rie-

mannian metric ds2 naturally induces an intrinsic metric dθ on Cθ.

Definition 5.1. An intrinsic metric d on a closed surface (S, V ) is called polyhe-
dral if

(a) for all x ∈ S − V there exists an open neighborhood of x isometric to some
open domain in the Euclidean plane, and

(b) for all x ∈ V there exists an open neighborhood of x isometric to a neighbor-
hood of [(0, 0)] in (Cθ, dθ) with x mapped to [(0, 0)] for some θ > 0.
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It is intuitively correct and routine to verify that the metric d[l] constructed in
Section 3 is a polyhedral metric defined in Definition 5.1. It is also well-known
that a polyhedral metric defined in Definition 5.1 could always be represented by

d[l] for some triangulation T on (S, V ) and l ∈ R
E(T )
∆ . For example, [1] describes a

construction of such representation. In a summary,

Theorem 5.2. Given (S, V ),

{polyhedral metrics on (S, V )}

= {d[l] : l ∈ R
E(T )
∆ where T is a triangulation of (S, V )}

In many cases, we do not care about the differences between two isometric poly-
hedral metrics on a marked surface (S, V ). So it would be convenient and useful to
reduce the space of polyhedral metrics to a finitely dimensional space.

Definition 5.3. Given a polyhedral metric d on (S, V ), denote

[d] = {f∗d : f ∈ H0(S, V )}

where
(a) f∗d is the pullback metric on S defined as

f∗d(x, y) = d(f(x), f(y)),

and
(b)

H0(S, V ) = {f : S → S
∣

∣ f is a homeomorphism and f |S−V is isotopic to Id|S−V }.

The resulted quotient set

{[d] : d is a polyhedral metric on (S, V )}

is denoted as TPL(S, V ) and called the Teichmüller space of the polyhedral metrics
on (S, V ).

5.1. Manifold structure of TPL and the edge lengths coordinates. By a
standard argument, one can show that

Proposition 5.4. Given a triangulation T of (S, V ), l 7→
[

dT [l]
]

is injective from

R
E(T )
∆ to TPL(S, V ).

By relating to the Teichmüller space of hyperbolic metrics, we will briefly show
that

(a) TPL(S, V ) is naturally homeomorphic to R
3|V |−3χ(S) when |V | − χ(S) > 0,

and
(b) l 7→

[

dT [l]
]

induces an atlas on TPL(S, V ).
Given a marked surface (S, V ) and a complete hyperbolic metrics d of finite area

on S − V , denote
[d] = {f∗d : f ∈ H0(S − V )}

where H0(S − V ) is the collection of homeomorphisms from S − V to S − V that
are isotopic to id|S−V . We denote

T (S − V ) = {[d] : d is a complete hyperbolic metrics on (S − V ) of finite area}

and recall that T (S− V ) is called the Teichmüller space of the complete hyperbolic
metrics of finite area on S − V . It is well-known that T (S − V ) is homeomorphic
to R

2|V |−3χ(S).
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Given a polyhedral metric d on (S, V ), denote dh as the unique complete hy-
perbolic metric on S − V that is conformal to d on S − V . By estimating the
extremal lengths, it is routine to verify that all the topological ends of (S − V, dh)
are cusp ends. So dh is a complete hyperbolic metric on S − V of finite area and
[dh] ∈ T (S − V ).

Given a polyhedral metric d on (S, V ), denote A(d) as the area of (S, d) and
θ(d) ∈ R

V
>0 as the cone angles on V . By the Gauss–Bonnet theorem

∑

v∈V

(2π − θv(d)) = 2πχ(S).

Troyanov (1986) proved that every compact Riemann surface carries a unique,
up to homothety, Euclidean (flat) conformal metric with prescribed conical singu-
larities of given angles, provided the Gauss-Bonnet relation is satisfied. In other
words, he proved that

Theorem 5.5 (Troyanov). d 7→ (dh, θ(d), A(d)) is a bijection from T̃PL(S, V ) to

T̃ (S − V )×GB × R>0

where
(a) T̃PL(S, V ) is the set of the polyhedral metric on (S, V ),

(b) T̃ (S−V ) is the set of the complete hyperbolic metric of finite area on S−V ,
and

(c)

GB = {θ ∈ R
V
>0 :

∑

v∈V

(2π − θi(d)) = 2πχ(S)}.

As a consequence, we have that

Corollary 5.6. [d] 7→ ([dh], θ(d), A(d)) is a bijection from TPL(S, V ) to

T (S − V )×GB × R>0.

This bijection naturally assign TPL(S, V ) a topology that is homeomorphic to
R

3|V |−3χ(S). We will see that for any triangulation T of (S, V ), l 7→ dT [l] is an

embedding from R
E(T )
∆ to TPL(S, V ). So l 7→ dT [l] naturally induces an atlas on

TPL(S, V ). To see that l 7→ dT [l] is an embedding, by Proposition 5.4 and the open

mapping theorem it suffices to show that l 7→ (dT [l])h is continuous. Fix l̄ ∈ R
E(T )
∆

and then

Id|S : (S, dT [l̄]) → (S, dT [l])

is Kl-quasiconformal where Kl → 1 as l → l̄. So the Teichmüller distance between
[(dT [l])h] and [(dT [l̄])h] goes to 0 as l → l̄.

5.2. Another approach using discrete conformal geometry. Gu et al. [5]
introduced the discrete uniformization theorem in the Teichmüller space of poly-
hedral metrics on marked surfaces. This discrete uniformization theorem gives an-
other Rn-parameterization of TPL, by a similar argument. Related work on discrete
conformality and geodesic triangulations could be found in [2–18].
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