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The Yang-Lee edge singularity was originally studied from the standpoint of mathematical foun-
dations of phase transitions, and its physical demonstration has been of active interest both theo-
retically and experimentally. However, the presence of an imaginary magnetic field in the Yang-Lee
edge singularity has made it challenging to develop a direct observation of the anomalous scal-
ing with negative scaling dimension associated with this critical phenomenon. We experimentally
implement an imaginary magnetic field and demonstrate the Yang-Lee edge singularity through a
nonunitary evolution governed by a non-Hermitian Hamiltonian in an open quantum system, where
a classical system is mapped to a quantum system via the equivalent canonical partition function.
In particular, we directly observe the partition function in our experiment using heralded single
photons. The nonunitary quantum criticality is identified with the singularity at an exceptional
point. We also demonstrate unconventional scaling laws for the finite-temperature dynamics unique
to quantum systems.

Introduction.—Yang-Lee zeros [1, 2] are the zero
points of the partition function appearing only on the
complex plane of the physical parameters and provide
key properties of phase transitions, such as critical ex-
ponents [3]. Yang and Lee [1, 2] showed that zeros
of the partition function of the classical ferromagnetic
Ising model are distributed on the imaginary axis of
the complex magnetic field [4–6]. Yang-Lee zeros are
also related to singularities [7–16] in thermodynamic
quantities. When the distribution of Yang-Lee zeros
pinches (crosses) the real axis, the system exhibits a
second-order (first-order) phase transition. Further-
more, the distribution itself exhibits a singularity at its
edges, and such singularity is called the Yang-Lee edge
singularity, which stands as a prototypical instance of
nonunitary critical phenomena exhibiting anomalous
scaling laws unseen in unitary critical systems [17–20].

Due to their fundamental importance, Yang-Lee ze-
ros and Yang-Lee edge singularity have been of theo-
retical [21–26] and experimental [27–35] interest. How-
ever, the presence of an imaginary magnetic field in
the Yang-Lee edge singularity has made it challeng-
ing to develop a direct observation method and un-
derstand the physical implications of the anomalous
scaling with negative scaling dimension associated with
this phenomenon. Here the negative scaling dimen-
sion indicates that correlation functions diverge alge-
braically under space-time dilations and it is character-
istic of nonunitary critical phenomena. A recent theo-
retical discovery demonstrates that the implementation
of the Yang-Lee edge singularity in quantum systems
is achievable through the utilization of the quantum-
classical correspondence [36, 37]. This correspondence
allows for the mapping of a classical system onto a
quantum system by employing the equivalent canoni-
cal partition function [38].

In this Letter, we experimentally implement an
imaginary magnetic field and demonstrate the Yang-

Lee edge singularity through a nonunitary evolution
governed by a non-Hermitian Hamiltonian in an open
quantum system. The Yang-Lee zeros and the Yang-
Lee edge singularity of the classical ferromagnetic Ising
model are both displayed in the quantum system due
to the quantum-classical correspondence. The nonuni-
tary quantum criticality is identified with the singu-
larity at an exceptional point. We also show uncon-
ventional scaling laws for finite-temperature dynamics
which are unique to quantum systems. Furthermore,
we present the phase diagram of the Yang-Lee quan-
tum critical system, where Yang-Lee zeros appear in
the parity-time (PT )-broken phase. Our work is the
first to measure all the critical exponents of the magne-
tization, magnetic susceptibility, two-time correlation
function, and the density of zeros about the Yang-Lee
edge singularity [39]. In particular, we directly observe
the partition function, which gives a crucial advantage
in the study of Yang-Lee zeros and related topics.

Yang-Lee edge singularity in open quantum
systems.—We consider the Yang-Lee edge sin-
gularity in the classical one-dimensional Ising
model with a pure-imaginary magnetic field
H = −J∑

j σjσj+1 − ih
∑

j σj [9], where J > 0,
h ∈ R, and σj = ±1. This model can be mapped
to a quantum system governed by a PT -symmetric
non-Hermitian Hamiltonian via the quantum-classical
correspondence [40, 41]

HPT = R cosϕσx + iR sinϕσz, (1)

where R > 0, ϕ ∈ (−π/2, π/2), and σx and σz are
the Pauli matrices. The canonical partition function
of H is derived using the path-integral representation
outlined in Eq. (1) for its quantum counterpart. On
the basis of the partition functions’ equivalence, Mat-
sumoto et al. [38] pointed out that the latter quantum
system exhibits a criticality equivalent to the Yang-
Lee edge singularity in the former classical system.
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FIG. 1. Experimental setup. Heralded single photons
are created via type-II spontaneous parametric down-
conversion. The polarization beam splitter (PBS1) and the
half-wave plate (HWP) H0 are used to generate initial po-
larization states |H⟩ and |V ⟩. After photons pass through
a 50 : 50 beam splitter (BS), the transmitted photons enter
the evolution path, and the reflected photons act as refer-
ence photons and interfere with the transmitted photons at
PBS3. The evolution process is divided into four parts. The
elimination of the global phase is realized by wave plates.
The nonunitary evolutions U1 and U2 are realized by two
beam displacers (BDs) and sets of wave plates. The pro-
jector P is realized by two HWPs and PBS2. The mea-
surement part is realized by PBS3, two quarter-wave plates
(QWPs) and two HWPs. Finally, photons are detected by
avalanche photodiodes (APDs), and recording the coinci-
dence counts of D0, D1 and D0, D2, respectively.

The Hamiltonian HPT satisfies the PT symmetry with
[H,PT ] = 0, where P = σx, T = K, and K is complex
conjugation. The eigenenergies of the Hamiltonian are
E± = ±R√cos 2ϕ. The exceptional points [42, 43] are
located at ϕ = ±π/4, separating the PT -unbroken and
broken regimes.
The Yang-Lee edge singularity occurs at the edges of

the distribution of zeros of the partition function

Z = Tr
[
e−βHPT

]
=

∑
p=±

e−βEp , (2)

where β is the inverse temperature. The Yang-Lee
quantum critical phenomena appear in the expectation
value of a certain observable O given by [38, 44–47]

⟨O⟩ = Tr
[
Oe−βHPT

]
Z

=
1

Z

∑
p=±

〈
EL

p

∣∣O ∣∣ER
p

〉〈
EL

p |ER
p

〉 e−βEp ,

(3)

where
∣∣ER

p

〉
(
〈
EL

p

∣∣) is the right (left) eigenvector of
HPT . We simulate the PT -symmetric nonunitary
quantum dynamics using a single-photon interferomet-
ric network, and experimentally investigate the Yang-
Lee quantum criticality.
Experimental demonstration.—To simulate the dy-

namics of the two-level PT -symmetric system governed
by HPT , we employ as the basis states the horizon-
tal and vertical polarization states of a heralded single
photon, i.e., {|0⟩ = |H⟩ , |1⟩ = |V ⟩}. Instead of im-
plementing the non-Hermitian Hamiltonian HPT , we
simulate the nonunitary quantum dynamics by directly
implementing a nonunitary time-evolution operator U
such that U = e−iHefft at any given time t (see Eq. (5)).
Here the effective non-Hermitian Hamiltonian is given
by

Heff = HPT +
d

t
1, (4)

where d = i ln 1√
max |λ|

, λ is the eigenvalue of

e−iHPT teiH
†
PT t [48, 49], and 1 is a 2 × 2 identity ma-

trix. The probability amplitudes with respect to Heff

and HPT are related to each other by ⟨j| e−iHefft |j⟩ =
⟨j| e−iHPT t |j⟩ /

√
max |λ|, where j = H,V .

As illustrated in Fig. 1, the nonunitary operator U
is implemented on the basis of the following decompo-
sition:

U = R(ϕ2, θ2, ϕ
′
2)L(θH , θV )R(ϕ1, θ1, ϕ

′
1), (5)

where the rotation R(ϕj , θj , ϕ
′
j) (j = 1, 2) can be real-

ized by a set of sandwiched wave plates with a configu-
ration quarter-wave plate (QWP) at ϕj , a HWP at θj
and a QWP at ϕ′j , and the polarization-dependent loss
operator L is realized by a combination of two beam
displacers (BDs) and two HWPs with setting angles θH
and θV . For each given evolution time t, the nonuni-
tary evolution U can be realized by tuning the setting
angles of wave plates [50] and mapped to e−iHPT t with
a correction factor

√
max |λ|.

We characterize scaling laws of physical quantities
for a finite-temperature quantum system via the mag-
netization

m = ⟨σz⟩ =
⟨H| e−βHPT |H⟩ − ⟨V | e−βHPT |V ⟩
⟨H| e−βHPT |H⟩+ ⟨V | e−βHPT |V ⟩ , (6)

the magnetic susceptibility

χ =
dm

da
=

m−m′

tanϕ− tanϕ′
(7)

with a = tanϕ representing a normalized magnetic
field and m (m′) representing the magnetization for
HPT (ϕ) (HPT (ϕ

′)), and the two-time correlation func-
tion

G(t2, t1) = ⟨σz(t2)σz(t1)⟩ − ⟨σz(t2)⟩⟨σz(t1)⟩ (8)

=
1

Z

(
ΣHHΣ′

HH − ΣHV Σ
′
V H − ΣV HΣ′

HV +ΣV V Σ
′
V V

)
−m2,

where Σij = ⟨i| e−i∆tHPT |j⟩, Σ′
ij = ⟨i| e(i∆t−β)HPT |j⟩

(i, j = H,V ) and Z = ⟨H| e−βHPT |H⟩ +
⟨V | e−βHPT |V ⟩ is the partition function. Especially,
the finite-temperature scaling of G(t2, t1) is unique to
quantum critical phenomena.

To measure the physical quantities experimentally,
we use interference-based measurement. As illustrated
in Fig. 1, after single photons pass through a beam
splitter (BS), the transmitted photons as signal pho-
tons go through a nonunitary evolution, while the re-
flected photons as reference photons remain unchanged
and then interfere with the transmitted ones after the
evolution at a PBS. Via QWPs, HWPs and PBSs, pro-
jective measurements with the bases of {|+⟩ , |−⟩ , |R⟩}
(|±⟩ = (|H⟩ ± |V ⟩)/

√
2, |R⟩ = (|H⟩ − i |V ⟩)/

√
2) are

then performed on the polarizations of the photons
transmitted and reflected by the PBS. The outputs are
recorded in coincidence with trigger photons. Typi-
cal measurements yield a maximum of 240, 000 photon
counts per second. For example, to measurem, we need
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FIG. 2. Yang-Lee scaling laws of physical quantities for
a finite-temperature quantum system in the PT -unbroken
phase in the limit ϕ → π/4 − 0 after β−1 → 0. (a) The
imaginary parts of m as a function of ∆ϕ. (b) The imag-
inary parts of χ as a function of δϕ = (∆ϕ + ∆ϕ′)/2,
where ∆ϕ = (10, 30, 50, 100, · · · , 350) × 10−6 and ∆ϕ′ =
(30, 50, 100, 150, · · · , 400)× 10−6. Dependencies of real (c)
and imaginary (d) parts of G(t2, t1) on ∆ϕ. Experimen-
tal data are shown as open squares and theoretical predic-
tions are represented by solid curves. We choose R = 0.05,
β = 105 and ∆t = 3000. Dashed curves in (a) and (b)
correspond to the results fitted by different power laws.
Error bars indicate the statistical uncertainty, which are
obtained from Monte Carlo simulations under the assump-
tion of Poissonian photon-counting statistics. Some error
bars are smaller than the size of the symbols.

to obtain both ⟨H| e−βHPT |H⟩ and ⟨V | e−βHPT |V ⟩.
First, photons are prepared in the initial state |H⟩ (or
|V ⟩). After signal photons undergo a nonunitary evo-
lution via U = e−iHefft = e−βHPT /

√
max |λ| (here we

take t = −iβ), they interfere with the reference photons
in |H⟩ (or |V ⟩) at the PBS. The inverse temperature β
is taken as a parameter of the nonunitary evolution and
tuned by the setting angles of wave plates. The over-
lap ⟨H(V )| e−βHPT |H(V )⟩ can be calculated by the
coincidence counts [39]. Similarly, we can obtain the
overlaps ΣijΣ

′
ji in G(t2, t1) by applying the nonunitary

operations U1 = e−i∆tHeff = e−i∆tHPT /
√
max |λ| and

U2 = e(i∆t−β)Heff = e(i∆t−β)HPT /
√
max |λ| and the

projector P = |j⟩ ⟨j| on the signal photons.

Yang-Lee critical phenomena.—First, we discuss the
scaling laws of the system in the PT -unbroken phase
(|ϕ| < π/4) by examining the dependence of the phys-
ical quantities on the parameter ∆ϕ := π/4 − ϕ. We
consider two cases, in which we take either the limit
ϕ → π/4− 0 after 1/β → 0 or the limit 1/β → 0 after
ϕ → π/4 − 0. Here β−1 = 0 corresponds to the ther-
modynamic limit of the classical one-dimensional Ising
model, and the exceptional points ϕ = ±π/4 separate
the PT -unbroken and PT -broken phases.

For the former case, the scaling laws are equivalent
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FIG. 3. Temperature dependences of anomalous scaling
laws and ∆t dependence of Re(⟨σz(t2)σz(t1)⟩Z) in the limit
of β−1 → 0 after ϕ → π/4 − 0. The imaginary parts of m
(a) and χ (b) as functions of β−1. (c) Real part of G(t2, t1)
as a function of β−1. (d) Real part of ⟨σz(t2)σz(t1)⟩Z as a
function of ∆t. We choose R = 0.05, ϕ = π/4− 10−6 (ϕ′ =
π/4 − 10−2), ∆t = 0.1 in (a), (b) and (c), and R = 0.05,
ϕ = π/4− 10−6, β = 104 in (d).

to those in the classical counterpart [9, 38], i.e.,

m→ −i sinϕ√
cos 2ϕ

∝ ∆ϕ−
1
2 , χ→ −i cos3 ϕ

cos
3
2 2ϕ

∝ ∆ϕ−
3
2 ,

G(t2, t1) →
cos2 ϕ

cos 2ϕ
exp

[
−2πi

∆t

π/(R
√
cos 2ϕ)

]
. (9)

We experimentally test these scaling laws for R = 0.05,
β = 105, and various ∆ϕ. Since the real parts of m and
χ are zeros, the scaling laws of them with respect to ∆ϕ
are characterized by their imaginary parts in Figs. 2(a)
and (b), respectively. By fitting the power exponents
to m ∼ ∆ϕr, χ ∼ δϕr

′
, we obtain r ∼ −0.458± 0.033,

r′ ∼ −1.477± 0.350, which agree with their theoretical
predictions −0.5 and −1.5, respectively. The discrep-
ancy with the theoretical predictions is mainly because
the fitting result is sensitive to the difference between
the leftmost experimental data point in Fig. 2(a) and
its theoretical prediction, where the slope of the curve
becomes large. In Figs. 2(c) and (d), we also show
the measured values of G(t2, t1) with respect to ∆ϕ for
∆t = 3000, which agree with the theoretical predic-
tions [39].

For the latter case, we study the scaling laws

m→ − i√
2
βR, χ→ − i

3
√
2
(β3R3 +

3

2
βR),

G(t2, t1) → R2

[
1

2
β2 − iβ∆t− (∆t)2

]
+ 1, (10)

which have not been discussed in the classical sys-
tems [9, 38]. The critical exponents for the power-law
dependence on the temperature β−1 are −1, −3 and
−2, respectively. In addition, the two-time correla-
tion function scales as G(t2, t1) ∝ (∆t)2 in the limit of
∆t→ ∞. If ∆t is replaced by an imaginary-time inter-
val −i∆β, G(t2, t1) is equivalent to the spatial correla-
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FIG. 4. (a) Phase diagram of the Yang-Lee quantum
critical system. Experimental values of Z on the β−1 − ϕ
plane. The critical point is located at ϕ = π/4 and β−1 = 0.
The Yang-Lee zeros appear in the PT -broken (ϕ > π/4)
phase (the grey region) given by Eq. (13). In the PT -
unbroken phase, a crossover between Yang-Lee scaling laws
and unconventional scaling laws occurs around the region
indicated by the blue dashed curve. The experimental data
are obtained with n = 0, n = 1, n = 10 from top to bottom,
and the color indicates the value of Z. (b) Z as a function
of ϕ with n = 10, n = 1 and n = 0, respectively. We
choose R = 0.01π for (a-b). For (c-d) we choose R = 0.05
and β = 103. (c) Z versus −∆ϕ. The region colored in
light blue shows the PT -broken regime, and the inset is an
enlarged view of the regime. (d) Density of zeros 1/(ϕn+1−
ϕn) for n = 0, 1, 2, · · · , 9. The horizontal axis is taken as
(ϕn + ϕn+1)/2, which is measured from the critical point
ϕ = π/4.

tion functionGcl(x) of the classical system with the dis-
tance x = ∆β. The power-law scaling Gcl(x) ∝ x−2∆

with a negative scaling dimension ∆ = −1 is consistent
with the critical scaling in the corresponding classical
system [9]. To test this unconventional scaling laws, we
choose R = 0.05, ϕ = π/4 − 10−6 (ϕ′ = π/4 − 10−2),
and ∆t = 0.1. By fitting the power exponents with
the formula m ∼ (β−1)r, χ ∼ a(β−1)r

′
+ b(β−1)r, we

obtain r ∼ −0.890 ± 0.011 and r′ ∼ −3.171 ± 0.062,
which agree with their theoretical predictions −1 and
−3, respectively. As illustrated in Fig. 3(c), by fitting
the data with G(t2, t1) ∼ (β−1)r

′′
, we obtain the exper-

imental result r′′ ∼ −2.160±0.021, which is consistent
with the theoretical critical exponent −2.
We also show the ∆t dependence of ⟨σz(t2)σz(t1)⟩Z

with β = 104 in Fig. 3(d), which is equivalent to the de-
pendence of G(t2, t1) because Z andm are independent
of ∆t [see Eq. (29)]. The power exponent is fitted by
the formula ⟨σz(t2)σz(t1)⟩Z ∼ (∆t)s, and the obtained
fitting result is s ∼ 2.187 ± 0.089, which is consistent
with the theoretical prediction G(t2, t1) ∼ (∆t)2.
Phase diagram and partition function.—In the PT -

broken phase (|ϕ| > π/4), m, χ and G(t2, t1) diverge
periodically in the limit ϕ→ π/4+0 after β−1 → 0 [38].
The corresponding experimental data can be found in

the Supplemental Material [39]. The condition for the
divergence is

βR
√

| cos 2ϕ| = (n+
1

2
)π, (11)

where n is an integer, which corresponds to the condi-
tion for zeros of the partition function

Z = 2 cos(βR
√
| cos 2ϕ|), (12)

i.e., the Yang-Lee zeros. These zeros appear only in
the region defined by

β−1 ≤ 2

π
R
√

| cos 2ϕ|, (13)

in the PT -broken phase.
We measure the partition function Z on the β−1−ϕ

plane with R = 0.01π, n = 0, n = 1 and n = 10 in
Eq. (16) for 14 different ϕ. As illustrated in Fig. 4(a),
the Yang-Lee zeros appear only in the region given by
Eq. (13) in the PT -broken phase, which agrees with
the theoretical prediction. As shown in Fig. 4(b), Z
takes large positive values in the PT -unbroken phase
and drops in the PT -broken phase. As illustrated in
Fig. 4(c), we can see Z oscillating with −∆ϕ in the
PT -broken phase. Since the nodes of the oscillations
correspond to Yang-Lee zeros, the period of the oscilla-
tion reflects the distance between Yang-Lee zeros. We
can utilize Eq. (16) to understand the relationship be-
tween the period of the oscillation and the parameters
β and R. For R = 0.05 and β = 103, we expect the
oscillation period of ϕ to be π/100, which is consistent
with the observed value of 0.03. Thus, we observe the
Yang-Lee zeros experimentally and also demonstrate
that the Yang-Lee edge singularity indeed manifests
itself as the distribution of zeros of Z.

Density of zeros.—For the (0+1)-dimensional quan-
tum Yang-Lee model in Eq. (1), the zero points {ϕn}n
of Z are determined from the condition in Eq. (16).
The distribution of zeros of Z becomes dense if the
limit βR→ ∞ is taken. We then calculate the density
of zeros g(ϕ) :=

∑
n δ(ϕ − ϕn) and find a power-law

behaviour

g(ϕ) ∝ (−∆ϕ)−
1
2 (14)

near the critical point ϕ = π/4. This result is consis-
tent with the classical Yang-Lee edge singularity [3, 9].
In Fig. 4(d), we show the experimental results of the
density of zeros 1/(ϕn+1 − ϕn) for n = 0, 1, 2. · · · , 9,
with the parameters R = 0.05 and β = 103. The hor-
izontal axis is taken as (ϕn + ϕn+1)/2, which is mea-
sured from the critical point ϕ = π/4. Our experimen-
tal results agree well with the analytic expression of
g(ϕ) = βR

π
sin 2ϕ√
| cos 2ϕ|

[39]. Via the density distribution

of zeros experimentally observed for 10 different n’s, we
have achieved the direct observation of the Yang-Lee
edge singularity.

Conclusion.— The Yang-Lee edge singularity is a
quintessential nonunitary critical phenomenon charac-
terized by anomalous scaling. In this Letter, we have
experimentally demonstrated the Yang-Lee singularity
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in a non-Hermitian quantum system with PT sym-
metry. Specifically, we have observed both anomalous
scaling laws that are consistent with the classical Yang-
Lee singularity and unconventional scaling laws that
have not been discussed in classical systems. In par-
ticular, we directly observe the partition function in
our experiment, which gives a decisive advantage in
the study of Yang-Lee zeros and related topics. Our
work presents the first experimental demonstration of
the Yang-Lee quantum criticality in open quantum sys-
tems. We expect that the nonunitary critical phenom-
ena in open quantum systems for higher-dimensional
systems can also be probed using a similar approach.

Appendix A: Density of zeros in the
(0 + 1)-dimensional quantum Yang-Lee model

We consider the (0+1)-dimensional quantum Yang-
Lee model [38]

HPT = R cosϕσx + iR sinϕσz, (15)

where R > 0, ϕ ∈ (−π/2, π/2), and σx and σz are the
Pauli matrices. The partition function of this system
in the PT -broken regime (|ϕ| > π/4) is given by Z =
Tr[e−βHPT ] = 2 cos(βR

√
| cos 2ϕ|). The zero points

{ϕn}n of the partition function are determined from
the condition

βR
√
| cos 2ϕn| = (n+

1

2
)π, (16)

where n = 0, 1, 2, · · · .
The distribution of zeros of the partition function

becomes dense if we take the limit βR → ∞. The
Yang-Lee edge singularity manifests itself as a power-
law behavior of the density of zeros near the edge of
the distribution [3, 7]. Here we calculate the density of
zeros

g(ϕ) :=
∑
n

δ(ϕ− ϕn) (17)

near the critical point ϕ = π/4. To this end, we assume
βR ≫ 1 and introduce a continuous variable x that
satisfies

x :=
π

βR
n. (18)

From Eq. (16), the zero points ϕ(x) satisfy

cos 2ϕ(x) = −(x+
π

2βR
)2 (19)

and thus we have

dx

dϕ
=

sin 2ϕ

x+ π/(2βR)
=

sin 2ϕ√
| cos 2ϕ|

. (20)

Then, the density of zeros can be calculated as

g(ϕ
′
) :=

∑
n

δ(ϕ
′ − ϕn) ≃

βR

π

∫
dxδ(ϕ

′ − ϕ(x)) (21)

=
βR

π

∫
dϕ
dx

dϕ
δ(ϕ

′ − ϕ) =
βR

π

sin 2ϕ
′√

| cos 2ϕ′ |
.

Thus, the density of zeros shows a power-law behavior
near the critical point as

g(ϕ) ∝ (−∆ϕ)σ, (22)

where ∆ϕ := π/4−ϕ and σ = −1/2. The critical expo-
nent σ = −1/2 agrees with the result for the classical
one-dimensional Ising model [3, 9].

Appendix B: Measurement of the density of zeros
in the Yang-Lee quantum criticality

To observe the power-law behaviour in the density
of zeros, we choose the parameters R = 0.05 and
β = 103 and show the experimental results of the den-
sity of zeros 1/(ϕn+1 − ϕn) from n = 0 to 9 versus
(ϕn + ϕn+1)/2 − π/4. First, we choose several ϕ and
measure the partition function Z experimentally. By
fitting with Z ∼ cos(βR

√
| cos 2ϕ|), we obtain the ex-

perimental result βR ∼ 49.682±0.029, which is consis-
tent with the theoretical prediction of 50. Second, for
n = 0, · · · , 9, we calculate ϕn from Eq. (11) of the main
text and measure the corresponding partition function
Zn. With the measured Zn and βR, we obtain the
experimental results of ϕn from

ϕn =
1

2
arccos

[
−
(

1

βR
arccos

(
Zn

2

))2
]
. (23)

The experimental results of the density of zeros
1/(ϕn+1 − ϕn) from n = 0 to 9 are shown in Fig. 4(d)
of the main text. The horizontal axis is taken as
(ϕn + ϕn+1)/2, which is measured from the critical
point ϕ = π/4. Our experimental results agree well
with the analytic expression Eq. (21). The Yang-Lee
edge singularity manifests itself as the distribution of
zeros for 10 different n’s.

Appendix C: Experimental implementation

Here we provide the method for measuring the phys-
ical quantities including the magnetization, the mag-
netic susceptibility, the two-time correlation function
and the partition function. As demonstrated in the
main text, these physical quantities can be obtained
by measuring the probabilistic amplitudes of the final
states.

For example, if we want to obtain the term
⟨0| e−βHPT |0⟩ of the magnetization in Eq. (6) of the
main text, we measure the probability amplitude p1
which is related to the overlap between the initial state
|0⟩ and the final state after the nonunitary evolution
e−βHPT as ⟨0| e−βHPT |0⟩ = p1×

√
max |λ| , where λ is

the eigenvalue of e−βHPT e−βH†
PT . Once we obtain the

probability amplitude p1, we can calculate the mea-
sured overlap and the measured physical quantities.

Figure 5 shows the flow chart of state evolution and
the schematic diagram of state evolving elements. In
our experiment, a polarizing beam splitter (PBS) and
a half-wave plate (HWP) H0 realize the preparation
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𝑈1
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𝐷1

𝐷2

(a)

(b)

FIG. 5. Schematic diagrams of the experiment. (a) The
flow chart of state evolution. Single photons with the ini-
tial state |0⟩ or |1⟩ goes through two paths of state evolu-
tion and reference. On the evolution path, single photons
evolves into |ψ0⟩ or |ψ1⟩ after undergoing non-unitary evo-
lutions U1, P , and U2, and then evolves into |ψ′

0⟩ or |ψ′
1⟩

by passing through a half-wave plate (HWP) at 45◦. The
photons remain unchanged on the reference path. Finally,
we make measurements on the photons after they interfere.
(b) Experimental setup which is the same as Fig. 1 in the
main text.

of the initial state |0⟩ or |1⟩. After the heralded sin-
gle photons pass through the 50 : 50 beam splitter
(BS), the transmitted photons go through the nonuni-
tary evolution and the reflected photons remain un-
changed. The state of the transmitted photons then

evolves according to |ψ0⟩ = e−βHPT |0⟩ =

(
a0
b0

)
or

|ψ1⟩ = e−βHPT |1⟩ =

(
a1
b1

)
. In the nonunitary evo-

lution process, the elimination of the global phase is
made by a HWP H1 sandwiched between two quarter-
wave plates (QWPs at 45◦). To realize nonunitary evo-
lution U1, we perform the singular value decomposition
on the nonunitary matrix U1 = R2L1R1 [51]. The ro-
tations R1 and R2 can be realized by a sandwich-type
set of wave plates including a HWP and two QWPs.

The loss operator L1 =

(
0 sin 2θ1v
1 0

)
is implemented

by two HWPs at 45◦ and θ1v, respectively, and two
beam displacers (BDs). Similarly, we can realize an-
other nonunitary evolution U2 with the same method.
For the projector P , |0⟩ ⟨0| can be realized by a PBS,
while |1⟩ ⟨1| can be realized by a PBS and two HWPs
at 45◦. A HWP at 45◦ is applied to the polarizations of
the transmitted photons. Then the state evolves into

|ψ′
0⟩ =

(
b0
a0

)
or |ψ′

1⟩ =

(
b1
a1

)
. The reflected photons

act as reference photons and interfere with transmitted
photons at the third PBS.

We perform projective measurements [52, 53] in the
basis {|+⟩ , |−⟩ , |R⟩} on the polarizations of the pho-
tons in either of the transmitted (t) or reflected mode
(r) of the third PBS. We denote the coincidence counts
of D0 and D1 (D0 and D2) as N

r (N t) when the initial
state is |0⟩ (|1⟩), and the measured coincidence counts
are denoted as

{
Nr

+, N
r
−, N

r
R

}
(
{
N t

+, N
t
−, N

t
R

}
), which

satisfy the following relations

Nr
+ = N a20 + 1 + a∗0 + a0

2
, Nr

− = N a20 + 1− a∗0 − a0
2

,

Nr
R = N a20 + 1 + i(a0 − a∗0)

2
, N t

+ = N b21 + 1 + b∗1 + b1
2

,

N t
− = N b21 + 1− b∗1 − b1

2
, N t

R = N b21 + 1 + i(b∗1 − b1)

2
,

(24)

where N is the number of reference photons. We can
obtain the probability amplitudes a0 and b0 through
the following relations:

Re(a0) =
Nr

+ −Nr
−

2N , Im(a0) =
1

N × Nr
+ +Nr

− − 2Nr
R

2
,

Re(b1) =
N t

+ −N t
−

2N , Im(b1) =
1

N × 2N t
R − (N t

+ +N t
−)

2
.

(25)

Then, we can calculate the measured overlap and the
measured physical quantities from the real and imagi-
nary parts of the amplitudes of the evolved states.

Appendix D: Additional experimental results

In this section, we present the additional part of the
complex expectation values of observables presented in
the main text.

The first task of our experiment in the main text is
to find the imaginary parts of expectation values of the
magnetization and the magnetic susceptibility for dif-
ferent values of ϕ [see Figs. 2(a) and (b) in the main
text]. As shown in Figs. 6(a) and (b), the real parts
of their expectation values are zero. In addition, we
show the real and imaginary parts of the two-time cor-
relation function for ∆ϕ = π/4 − ϕ with ∆t = 4000,
∆t = 5000, ∆t = 0.1 and ∆t = 10 in Figs. 6(c), (d),
(e), (f), (g), (h), and (i), (j), respectively. It can be
seen that the measured two-time correlation functions
are consistent with their theoretical predictions for dif-
ferent time differences ∆t.
The second task of our experiment in the main text

is to find the imaginary parts of expectation values of
the magnetization and the magnetic susceptibility for
different values of β−1 [see Figs. 3(a) and (b) in the
main text]. As shown in Figs. 7(a) and (b), the real
parts of their expectation values are zero. In addition,
for the expectation value of the two-time correlation
function, we plot the imaginary parts against β−1 and
∆t in Figs. 7(c) and (d), respectively. It can been seen
that the measured two-time correlation functions are
consistent with their theoretical predictions.

Here we comment on the choice of the parameters.
In this work, we investigate two types of scaling laws,
i.e., the Yang-Lee scaling laws [Eq. (9) in the main
text] and the anomalous scaling laws [Eq. (10) in the
main text]. Since the two scaling behaviors are sepa-
rated by a crossover line β−1 = (2R/π)

√
cos 2ϕ (see the

phase diagram in Fig. 4(a) in the main text and Fig. 1
in Ref. [38]), the former should be observed if β−1 ≪
(2R/π)

√
cos 2ϕ and ϕ < π/4, while the latter should
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value of the magnetic susceptibility as a function of δϕ = (∆ϕ+∆ϕ′)/2, where ∆ϕ = 10×10−6, 30×10−6, 50×10−6, 100×
10−6, · · · , 350× 10−6 and ∆ϕ′ = 30× 10−6, 50× 10−6, 100× 10−6, 150× 10−6, · · · , 400× 10−6. Real (c) and imaginary (d)
parts of expectation values of the two-time correlation function for different ∆ϕ with ∆t = 4000. Real (e) and imaginary
(f) parts of expectation values of the two-time correlation function plotted against ∆ϕ with ∆t = 5000. Real (g) and
imaginary (h) parts of expectation values of the two-time correlation function plotted against ∆ϕ with ∆t = 0.1. Real
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predictions.

(a)
Experiment
Theory

10-3

(b)

(d)(c)
10-32 4 6

−10

0

10

R
e(
m
)

14 16 18

−10

0

10

R
e(
�)

2 4 6

−200

−100

0

100

200

Im
(G
)

0 40 80 120

−4

−2

0

10-3

∆t

β−1β−1

β−1

 Im
(⟨
σ
z
(t

2
)σ
z
(t

1
)⟩
Z 

)  

103

FIG. 7. (a) Real parts of the expectation value of the mag-
netization plotted against β−1. (b) Real parts of the expec-
tation value of the magnetic susceptibility plotted against
β−1. (c) Imaginary parts of expectation values of the two-
time correlation function plotted against β−1. (d) Imag-
inary parts of expectation values of ⟨σz(t2)σz(t1)⟩Z plot-
ted against ∆t. We choose R = 0.05, ϕ = π/4 − 10−6

(ϕ′ = π/4 − 10−2), ∆t = 0.1 in (a), (b) and (c), and
R = 0.05, ϕ = π/4 − 10−6, β = 104 in (d). Black open
squares indicate experimental data and red solid curves
show theoretical predictions.

be observed if (2R/π)
√

| cos 2ϕ| < β−1 ≪ 2R/π. The
parameters in Figs. 2 and 3 are chosen so that these
conditions are satisfied. In particular, in Fig. 3, we are
concerned with the anomalous scaling behavior which
becomes prominent at low temperatures. Therefore, if
we make the value of π/4 − ϕ fixed to be a smaller
one to examine the regime of smaller values of β−1,
we expect to obtain the critical exponents closer to the

0 . 0 0 5 0 . 0 1 0 0 . 0 1 5 0 . 0 2 0 0 . 0 2 5
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0
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Im
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FIG. 8. Imaginary parts of the magnetization against
−∆ϕ = ϕ−π/4 in the PT -broken phase. They are plotted
over two periods and separated by the red dashed line. We
choose R = 0.05 and β = 103. Error bars indicate the sta-
tistical uncertainty, which are obtained from Monte Carlo
simulations under the assumption of Poissonian photon-
counting statistics. Some error bars are smaller than the
size of the symbols.

theoretical predictions. Furthermore, the β−1 depen-
dence of the two-time correlation function in Fig. 3(c)
is expected to exhibit values of critical exponents closer
to the theoretical predictions in the regime β ≫ ∆t.

In the PT -broken phase, we experimentally confirm
that the expectation value of the magnetization is pure
imaginary for several different values of ∆ϕ. The third
task shows imaginary parts of the expectation value of
the magnetization in the PT -broken phase in Fig. 8.
We examine the dependence of the magnetization on ϕ
by taking the limit ϕ → π/4 + 0 after β−1 → 0. We
examine the magnetization as an example for R = 0.05,
β = 103, and 20 different values of ϕ. Since the real
parts of the magnetization is zero, we only show its
imaginary parts in two variation periods in Fig. 8. The
magnetization exhibits a discontinuity with respect to
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FIG. 9. Real part of the expectation value of the mag-
netization plotted against −∆ϕ. We choose R = 0.05,
β = 103. Open squares indicate experimental data, the
solid line shows the theoretical prediction. Error bars indi-
cate the statistical uncertainty, which are obtained from
Monte Carlo simulations under the assumption of Pois-
sonian photon-counting statistics. Some error bars are
smaller than the size of the symbols. Shadows indicate
systematic errors which are obtained from the numerical
simulation by considering the inaccuracy of wave plates and
decoherence in the experiment.

−∆ϕ. The experimental results demonstrate that there
is no scaling laws for the magnetization in the PT -
broken phase.
We show in Fig. 9 the real part of the expectation

value of the magnetization for several different values
of −∆ϕ. The measured data are consistent with the
theoretical predictions except for a few points that de-
viate from zero presumably due to systematic errors.

Appendix E: Error analysis

Two factors are responsible for the deviation between
the experimental results and their theoretical predic-
tions. On one hand, the imperfection of the exper-
iment affects the results of the experiment. On the
other hand, the value of the correction factor

√
max |λ|

amplifies the imperfection of the experiment.
There are three major sources of imperfections in our

experiment: photon fluctuations, inaccuracy of wave
plates and decoherence (dephasing) caused by the im-
perfect interferometers. First, the imperfection caused
by photon-number fluctuations decreases with increas-
ing photon counts. In our experiment, the coincidence
count per second is about 240, 000, and the coincidence
window is 150s. It can be seen from the data plots that
the error bars caused by photon number fluctuations in
our experiments are small. Second, for each wave plate,
we assume an uncertainty in the setting angle θ + δθ.
Here δθ is randomly chosen from the interval [−1◦, 1◦]
(normal accuracy range of wave plates). Third, the
dephasing due to the imperfection of interferometric
network with PBSs (BDs) affects the experimental re-
sults through a noisy channel ε(ρ) = ηρ+(1− η)σzρσz
(ε(ρ) = η1ρ + (1 − η1)σzρσz) acting on the polariza-
tion state in different output modes. Here ρ (ε(ρ))
is the density matrix of the input (output) state of

TABLE I. The squared correction factor max |λ|. The
squared correction factor max |λZ | needs to be multiplied
when measuring the partition function Z. The squared cor-
rection factor max |λG| needs to be multiplied when mea-
suring ⟨σz(t2)σz(t1)⟩Z to obtain the two-time correlation
function G(t2, t1).

(a)The squared correction factors max |λZ | and max |λG| in
Fig. 2 of the main text and Fig. 6. The subscripts 1, 2, 3, 4, 5
denote the different choices ∆t = 0.1, ∆t = 10, ∆t = 3000,

∆t = 4000 and ∆t = 5000, respectively.
∆ϕ/10−6 1 10 30 50 100 150 200 250 300

max |λZ | 3.466× 1011 6.610× 1023 3.640× 1037 1.344× 1047 6.555× 1064 2.780× 1078 9.036× 1089 1.292× 10100 2.000× 10109

(max |λG|)1 3.490× 1011 6.657× 1023 3.666× 1037 1.354× 1047 6.601× 1064 2.799× 1078 9.101× 1089 1.302× 10100 2.014× 10109

(max |λG|)2 6.931× 1011 1.322× 1024 7.281× 1037 2.688× 1047 1.311× 1065 5.559× 1078 1.807× 1090 2.584× 10100 3.999× 10109

(max |λG|)3 1.536× 1016 2.554× 1028 1.022× 1042 2.675× 1051 4.761× 1068 4.960× 1081 9.174× 1091 2.325× 10102 1.722× 10112

(max |λG|)4 2.699× 1016 4.020× 1028 1.213× 1042 2.223× 1051 6.233× 1067 1.867× 1081 2.588× 1093 4.877× 10103 6.438× 10112

(max |λG|)5 4.155× 1016 5.345× 1028 1.058× 1042 9.631× 1050 9.668× 1067 1.595× 1082 4.155× 1093 2.112× 10103 1.720× 10111

(b)The squared correction factors max |λZ | and
max |λG| in Fig. 3 of the main text.

β−1 × 10−3 1 2 3 4 5 6 7

max |λZ | 5010.350 1252.520 557.658 314.530 202.009 140.888 104.035

max |λG| 5045.900 1261.410 561.615 316.762 203.442 141.888 104.773

∆t 1 20 40 60 80 100 120

max |λZ | 5.000× 105 5.000× 105 5.000× 105 5.000× 105 5.000× 105 5.000× 105 5.000× 105

max |λG| 5.366× 105 1.866× 106 4.950× 106 9.975× 106 1.699× 107 2.599× 107 3.700× 107

(c)The squared correction factor max |λZ | in Figs. 4(a) and (b)
of the main text.

ϕ/(π/28) (n = 0) 0.5 1.5 2.5 3.5 4.5 5.5 6.5

max |λZ | 23.208 23.772 25.061 27.535 32.470 44.639 107.183

ϕ/(π/28) (n = 1) 0.5 1.5 2.5 3.5 4.5 5.5 6.5

max |λZ | 12430.800 12759.900 13513.000 1457.600 17840.500 24953.000 61525.500

ϕ/(π/28) (n = 10) 0.5 1.5 2.5 3.5 4.5 5.5 6.5

max |λZ | 4.502× 1028 4.620× 1028 4.894× 1028 5.416× 1028 6.460× 1028 9.034× 1028 2.228× 1029

ϕ/(π/28) 7.5 8.5 9.5 10.5 11.5 12.5 13.5

max |λZ | 17.807 5.886 3.471 2.414 1.809 1.409 1.119

(d)The squared correction factor max |λZ | in Figs. 4(c) and
(d) of the main text.

−∆ϕ −0.052 −0.044 −0.036 −0.029 −0.020 −0.012 −0.004 0.004

max |λZ | 5.228× 1014 4.638× 1013 3.430× 1012 2.814× 1011 7.196× 109 1.347× 108 6.785× 105 227.077

−∆ϕ 0.006 0.008 0.011 0.012 0.014 0.018 0.022 0.024

max |λZ | 135.424 1.026 69.321 81.274 54.709 1.066 34.384 41.311

−∆ϕ 0.027 0.032 0.037 0.040 0.043 0.049 0.056 0.060

max |λZ | 28.328 1.002 20.693 24.985 17.674 1.018 13.850 16.673

n 0 1 2 3 4 5 6 7 8 9

max |λZ | 2026.420 225.154 81.045 41.331 24.978 16.687 11.907 8.894 6.866 5.429

the noisy channel. In our experiments, the dephasing
rate η (η1) for the interferometric network with PBSs
(BDs) is η = 0.9615 (η1 = 0.9995). As illustrated in
Fig. 9, shadows indicate systematic errors which are
obtained from the numerical simulation by considering
the inaccuracy of wave plates and decoherence in the
experiment. We found that the deviation between the
experimental data and their theoretical predictions can
be explained by the systematic errors.

As we can only implement passive non-unitary oper-
ations U with only loss, we need to map them to the
desired ones e−iHPT t via a correction factor

√
max |λ|.

Thus, for the experimental results of some physical
quantities, we also need to correct them by multiplying
the correction factor

√
max|λ|.

As shown in Fig. 9, the difference between the exper-
imental data of the magnetization and their theoretical
predictions is caused by the imperfection of the exper-
iment. The difference between the experimental data
of the two-time correlation function and the partition
function and their theoretical predictions is not only
related to the imperfection of the experiment, but also
related to the squared correction factor max |λ|. With
the same experimental imperfection, a larger max |λ|
magnifies the difference between the experimental data
and their theoretical prediction. We show the squared



9

correction factor max |λ| for each data in Table I.

Appendix F: Correction factors

The correction factor λ is crucial for the precise
mapping between Heff and HPT . There are two cor-
rection parameters λZ and λG. The first one λZ is

the eigenvalue of e−βHPT e−βH†
PT . The second one

satisfies λG = λG1λG2 , where λG1 is the eigenvalue

of e−i∆tHPT ei∆tH†
PT , and λG2

is the eigenvalue of

e(i∆t−β)HPT e(−i∆t−β)H†
PT . The partition function Z

and the measured Zeff are related to each other by
Z =

√
max |λZ |Zeff. Similarly, the correction fac-

tor
√

max |λG| needs to be multiplied when measur-
ing ⟨σz(t2)σz(t1)⟩Z to obtain the two-time correlation
function G(t2, t1). Whereas, neither of the magnetiza-
tion and the magnetic susceptibility needs to be cor-
rected by the correction factors.
The effect of the correction factors on the measured

values of the magnetization, the magnetic susceptibil-
ity, the partition function and the two-time correlation
function are shown as

m = ⟨σz⟩ =
⟨0| e−βHPT |0⟩ − ⟨1| e−βHPT |1⟩
⟨0| e−βHPT |0⟩+ ⟨1| e−βHPT |1⟩

=

√
max |λZ | ⟨0| e−βHeff |0⟩ −

√
max |λZ | ⟨1| e−βHeff |1⟩√

max |λZ | ⟨0| e−βHeff |0⟩+
√
max |λZ | ⟨1| e−βHeff |1⟩

=
⟨0| e−βHeff |0⟩ − ⟨1| e−βHeff |1⟩
⟨0| e−βHeff |0⟩+ ⟨1| e−βHeff |1⟩

= meff, (26)

χ =
dm

da
=

m−m′

tanϕ− tanϕ′
=

meff −m′
eff

tanϕ− tanϕ′
= χeff,

(27)

Z = ⟨0| e−βHPT |0⟩+ ⟨1| e−βHPT |1⟩
=

√
max |λZ | ⟨0| e−βHeff |0⟩+

√
max |λZ | ⟨1| e−βHeff |1⟩

=
√

max |λZ |(⟨0| e−βHeff |0⟩+ ⟨1| e−βHeff |1⟩)
=

√
max |λZ |Zeff, (28)

and

G(t2, t1) =⟨σz(t2)σz(t1)⟩ − ⟨σz(t2)⟩⟨σz(t1)⟩

=
1

Z
(⟨σz(t2)σz(t1)⟩Z)−m2

=

√
max |λG|(⟨σz(t2)σz(t1)⟩Z)eff√

max |λZ |Zeff

−m2
eff,

(29)

where

(⟨σz(t2)σz(t1)⟩Z)eff = ⟨0| e−i∆tHeff |0⟩ ⟨0| e(i∆t−β)Heff |0⟩
− ⟨0| e−i∆tHeff |1⟩ ⟨1| e(i∆t−β)Heff |0⟩
− ⟨1| e−i∆tHeff |0⟩ ⟨0| e(i∆t−β)Heff |1⟩
+ ⟨1| e−i∆tHeff |1⟩ ⟨1| e(i∆t−β)Heff |1⟩ .

(30)

Thus, the correction factor λ only affects the partition
function and two-time correlation function, but has no
effect on the magnetization and the magnetic suscep-
tibility. We note that the huge correction factor in
Tables I(a) and (b) is mostly cancelled in forming the
ratio between

√
max |λG| and

√
max |λZ | in Eq. (29).

Appendix G: Comparison with previous works

We compare the experimental results of the Yang-
Lee zeros and edge singularity phenomena in this work
with other previous experimental works as illustrated
in Table II. We emphasize that our work is the first to
measure all the critical exponents of the magnetization,
magnetic susceptibility, two-time correlation function,
and the density of zeros about the Yang-Lee edge singu-
larity. Measurements of the entire set of critical expo-
nents provide the key to the determination of the uni-
versality class of the underlying physics. Specifically,
Ref. [29] estimates the dependence on the imaginary
magnetic field via mathematical analytic continuation
from measurements results for the real magnetic field.
This reference measured the critical exponent of the
density distribution of Yang-Lee zeros but did not mea-
sure other critical exponents. References [28, 31, 32, 35]
only measured the locations of Yang-Lee zeros but did
not measure critical exponents.

In contrast, our work directly controls the pure imag-
inary magnetic field via photon loss, and has the dis-
tinct advantages in the sense that we can directly mea-
sure the partition function, Yang-Lee zeros, and the
physical quantities under the imaginary magnetic field.
In particular, two-time correlation functions can only
be measured by our method. This is a consequence
of the fact that our method has the decisive ability
to perform real-time simulations under the imaginary
magnetic field by using open systems.

We also stress that the temperature dependence of
the Yang-Lee critical phenomenon can only be mea-
sured by our method. In this sense, our work experi-
mentally realizes the Yang-Lee quantum criticality be-
yond the classical regime.

TABLE II. Comparison of Yang-Lee zeros and edge singu-
larity phenomena observed in this work with other previous
experimental works.

Ref. Yang-Lee zeros
Critical exponents

magnetization susceptibility correlation functions the density distribution of zeros

[29] yes no no no yes

[31] yes no no no no

[32] yes no no no no

[28] yes no no no no

[35] yes no no no no

our work yes yes yes yes yes
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