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Stochastic optimal control, which has the goal of driving the behavior of noisy systems, is broadly
applicable in science, engineering and artificial intelligence. Our work introduces Stochastic Optimal
Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for stochastic
optimal control that stems from the same philosophy as the conditional score matching loss for
diffusion models. That is, the control is learned via a least squares problem by trying to fit a matching
vector field. The training loss, which is closely connected to the cross-entropy loss, is optimized with
respect to both the control function and a family of reparameterization matrices which appear in
the matching vector field. The optimization with respect to the reparameterization matrices aims at
minimizing the variance of the matching vector field. Experimentally, our algorithm achieves lower
error than all the existing IDO techniques for stochastic optimal control for three out of four control
problems, in some cases by an order of magnitude. The key idea underlying SOCM is the path-wise
reparameterization trick, a novel technique that may be of independent interest.
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1 Introduction

Stochastic optimal control aims to drive the behavior of a noisy system in order to minimize a given cost.
It has myriad applications in science and engineering: examples include the simulation of rare events in
molecular dynamics (Hartmann et al., 2014; Hartmann and Schütte, 2012; Zhang et al., 2014; Holdijk et al.,
2023), finance and economics (Pham, 2009; Fleming and Stein, 2004), stochastic filtering and data assimilation
(Mitter, 1996; Reich, 2019), nonconvex optimization (Chaudhari et al., 2018), power systems and energy
markets (Belloni et al., 2016; Powell and Meisel, 2016), and robotics (Theodorou et al., 2011; Gorodetsky
et al., 2018). Stochastic optimal has also been very impactful in neighboring fields such as mean-field games
(Carmona et al., 2018), optimal transport (Villani, 2003, 2008), backward stochastic differential equations
(BSDEs) (Carmona, 2016) and large deviations (Feng and Kurtz, 2006).

For continuous-time problems with low-dimensional state spaces, the standard approach to learn the optimal
control is to solve the Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) by gridding the
space and using classical numerical methods. For high-dimensional problems, a large number of works
parameterize the control using a neural network and train it applying a stochastic optimization algorithm on
a loss function. These methods are known as Iterative Diffusion Optimization (IDO) techniques (Nüsken and
Richter, 2021) (see subsection 2.2).

It is convenient to draw an analogy between stochastic optimal control and continuous normalizing flows
(CNFs), which are a generative modeling technique where samples are generated by solving an ordinary
differential equation (ODE) for which the vector field has been learned, initialized at a Gaussian sample.
CNFs were introduced by Chen et al. (2018) (building on top of Rezende and Mohamed (2015)), and training
them is similar to solving control problems because in both cases one needs to learn high-dimensional vector
fields using neural networks, in continuous time.

The first algorithm developed to train normalizing flows was based on maximizing the likelihood of the
generated samples (Chen et al., 2018, Sec. 4). Obtaining the gradient of the maximum likelihood loss
with respect to the vector field parameters requires backpropagating through the computation of the ODE
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trajectory, or equivalently, solving the adjoint ODE in parallel to the original ODE. Maximum likelihood CNFs
(ML-CNFs) were superseded by diffusion models (Song and Ermon, 2019; Ho et al., 2020; Song et al., 2021)
and flow-matching, a.k.a. stochastic interpolant, methods (Lipman et al., 2022; Albergo and Vanden-Eijnden,
2022; Pooladian et al., 2023; Albergo et al., 2023), which are currently the preferred algorithms to train CNFs.
Aside from architectural improvements such as the UNet (Ronneberger et al., 2015), a potential reason for
the success of diffusion and flow matching models is that their functional landscape is convex, unlike for
ML-CNFs. Namely, vector fields are learned by solving least squares regression problems where the goal is to
fit a random matching vector field. Convex functional landscapes in combination with overparameterized
models and moderate gradient variance can yield very stable training dynamics and help achieve low error.

Returning to stochastic optimal control, one of the best-performing IDO techniques amounts to choosing the
control objective (equation 2.1) as the training loss (see (7)). As in ML-CNFs, computing the gradient of this
loss requires backpropagating through the computation of the trajectories of the SDE (2.1), or equivalently,
using an adjoint method. The functional landscape of the loss is highly non-convex, and the method is prone
to unstable training (see green curve in the bottom right plot of Figure 2). In light of this, a natural idea is to
develop the analog of diffusion model losses for the stochastic optimal control problem, to obtain more stable
training and lower error, and this is what we set out to do in our work. Our contributions are as follows:

• We introduce Stochastic Optimal Control Matching (SOCM), a novel IDO algorithm in which the control
is learned by solving a least-squares regression problem where the goal is to fit a random matching
vector field which depends on a family of reparameterization matrices that are also optimized.

• We derive a bias-variance decomposition of the SOCM loss (Prop. 2). The bias term is equal to an
existing IDO loss: the cross-entropy loss, which shows that both algorithms have the same landscape
in expectation. However, SOCM has an extra flexibility in the choice of reparameterization matrices,
which affect only the variance. Hence, we propose optimizing the reparameterization matrices to reduce
the variance of the SOCM objective.

• The key idea that underlies the SOCM algorithm is the path-wise reparameterization trick (Prop. 1),
which is a novel technique for estimating gradients of an expectation of a functional of a random process
with respect to its initial value. It is of independent interest and may be more generally applicable
outside of the settings considered in this paper.

• We perform experiments on four different settings where we have access to the ground-truth control.
For three of these, SOCM obtains a lower L2 error with respect to the ground-truth control than all the
existing IDO techniques, with around 10× lower error than competing methods in some instances.

2 Framework

2.1 Setup and Preliminaries

Let (Ω,F , (Ft)t≥0,P) be a fixed filtered probability space on which is defined a Brownian motion B = (Bt)t≥0.
We consider the control-affine problem

minu∈U E
[ ∫ T

0

(
1
2∥u(X

u
t , t)∥2 + f(Xu

t , t)
)
dt+ g(Xu

T )
]
,

where dXu
t = (b(Xu

t , t) + σ(t)u(Xu
t , t)) dt+

√
λσ(t)dBt, Xu

0 ∼ p0.

and where Xu
t ∈ Rd is the state, u : Rd × [0, T ] is the feedback control and belongs to the set of admissible

controls U , f : Rd × [0, T ] → R is the state cost, g : Rd → R is the terminal cost, b : Rd × [0, T ] → Rd is
the base drift, and σ : [0, T ] → Rd×d is the invertible diffusion coefficient and λ ∈ (0,+∞) is the noise level.
In Appendix A we formally define the set U of admissible controls and describe the regularity assumptions
needed on the control functions. In the remainder of the section we introduce relevant concepts in stochastic
optimal control; we provide the most relevant proofs in Appendix B and refer the reader to Oksendal (2013,
Chap. 11) and Nüsken and Richter (2021, Sec. 2) for a similar, more extensive treatment.

Cost functional and value function The cost functional for the control u, point x and time t is defined as
J(u;x, t) := E

[ ∫ T

t

(
1
2∥us(X

u
s )∥2 + fs(X

u
s )
)
dt+ g(Xu

T )
∣∣Xu

t = x
]
. That is, the cost functional is the expected
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value of the control objective restricted to the times [t, T ] with the initial value x at time t. The value function
or optimal cost-to-go at a point x and time t is defined as the minimum value of the cost functional across all
possible controls:

V (x, t) := infu∈U J(u;x, t).

Hamilton-Jacobi-Bellman equation and optimal control If we define the infinitesimal generator L :=
λ
2

∑d
i,j=1(σσ

⊤)ij(t)∂xi
∂xj

+
∑d

i=1 bi(x, t)∂xi
, the value function solves the following Hamilton-Jacobi-Bellman

(HJB) partial differential equation:

(∂t + L)V (x, t)− 1
2∥(σ

⊤∇V )(x, t)∥2 + f(x, t) = 0,

V (x, T ) = g(x).

The verification theorem (Pavliotis, 2014, Sec. 2.3) states that if a function V solves the HJB equation above
and has certain regularity conditions, then V is the value function (2.1) of the problem (2.1)-(2.1). An
implication of the verification theorem is that for every u ∈ U ,

V (x, t) + E
[
1
2

∫ T

t
∥σ⊤∇V + u∥2(Xu

s , s) ds
∣∣Xu

t = x
]
= J(u, x, t).

In particular, this implies that the unique optimal control is given in terms of the value function as u∗(x, t) =
−σ(t)⊤∇V (x, t). Equation (2.1) can be deduced by integrating the HJB equation (2.1) over [t, T ], and
taking the conditional expectation with respect to Xu

t = x. We include the proof of (2.1) in Appendix B for
completeness.

A pair of forward and backward SDEs (FBSDEs) Consider the pair of SDEs

dXt = b(Xt, t) dt+
√
λσ(t)dBt, X0 ∼ p0,

dYt = (−f(Xt, t) +
1
2∥Zt∥2) dt+

√
λ⟨Zt,dBt⟩, YT = g(XT ).

where Y : Ω× [0, T ] → R and Z : Ω× [0, T ] → Rd are progressively measurable 1 random processes. It turns
out that Yt and Zt defined as Yt := V (Xt, t) and Zt := σ(t)⊤∇V (Xt, t) = −u∗(Xt, t) satisfy (2.1). We include
the proof in Appendix B for completeness.

An analytic expression for the value function From the forward-backward equations (2.1)-(2.1), one can
derive a closed-form expression for the value function V :

V (x, t) = −λ logE
[
exp

(
− λ−1

∫ T

t
f(Xs, s) ds− λ−1g(XT )

)∣∣Xt = x
]
,

where Xt is the solution of the uncontrolled SDE (2.1). This is a classical result, but we still include its proof
in Appendix B. Given that u∗(x, t) = −σ(t)⊤∇V (x, t), an immediate, yet important, consequence of (2.1) is
the following representation of the optimal control:

Lemma 1 (Path-integral representation of the optimal control (Kappen, 2005)).

u∗(x, t)=λσ(t)⊤∇x logE
[
exp

(
− λ−1

∫ T

t
f(Xs, s) ds− λ−1g(XT )

)∣∣Xt = x
]
.

Remark that the right-hand side of this equation involves the gradient of logarithm of a conditional expectation.
This is reminiscent of the vector fields that are learned when training diffusion models or flow matching
algorithms. For example, the target vector field for variance-exploding score-based diffusion loss (Song et al.,
2021) can be expressed as ∇x log pt(x) = ∇x logEY∼pdata

[
exp(−∥x−Y ∥2/(2σ2

t ))

(2πσ2
t )

d/2 ]. Note, however, that in (1) the
gradient is taken with respect to the initial condition of the process, which requires the development of novel
techniques.

1Being progressively measurable is a strictly stronger property than the notion of being a process adapted to the filtration Ft

of Bt (see Karatzas and Shreve (1991)).

3



Conditioned diffusions Let C = C([0, T ];Rd) be the Wiener space of continuous functions from [0, T ] to Rd

equipped with the supremum norm, and let P(C) be the space of Borel probability measures over C. For each
control u ∈ U , the controlled process in equation (2.1) induces a probability measure in P(C), as the law of
the paths Xu

t , which we refer to as Pu. We let P be the probability measure induced by the uncontrolled
process (2.1), and define the work functional

W(X, t) :=
∫ T

t
f(Xs, s) ds+ g(XT ).

It turns out (Lemma 4 in Appendix B) that the Radon-Nikodym derivative dPu∗

dP satisfies dPu∗

dP (X) =
exp

(
λ−1

(
V (X0, 0) − W(X, 0)

))
. Also, a straight-forward application of the Girsanov theorem for SDEs

(Cor. 1) shows that

dPu

dPu∗ (Xu∗
)=exp

(
−λ−1/2

∫ T

0
⟨u∗(Xu∗

t , t)−u(Xu∗

t , t),dBt⟩− λ−1

2

∫ T

0
∥u∗(Xu∗

t , t)−u(Xu∗

t , t)∥2 dt
)
,

which means that the only control u ∈ U such that Pu = Pu∗
is the optimal control itself. Such changes of

process are the basic tools to design IDO losses, and we leverage them as well.

2.2 Existing approaches and related work

Low-dimensional case: solving the HJB equation For low-dimensional control problems (d ≤ 3), it is possible
to grid the domain and use a numerical PDE solver to find a solution to the HJB equation (2.1). The
main approaches include finite difference methods (Bonnans et al., 2004; Ma and Ma, 2020; Baňas et al.,
2022), which approximate the derivatives and gradients of the value function using finite differences, finite
element methods (Jensen and Smears, 2013), which involve restricting the solution to domain-dependent
function spaces, and semi-Lagrangian schemes (Debrabant and Jakobsen, 2013; Carlini et al., 2020; Calzola
et al., 2022), which trace back characteristics and have better stability than finite difference methods. See
Greif (2017) for an overview on these techniques, and Baňas et al. (2022) for a comparison between them.
Hutzenthaler et al. (2016) introduced the multilevel Picard method, which leverages the Feynman-Kac and
the Bismut-Elworthy-Li formulas to beat the curse of dimensionality in some settings (Beck et al., 2019;
Hutzenthaler et al., 2019, 2018; Hutzenthaler and Kruse, 2020).

High dimensional methods leveraging FBSDEs The FBSDE formulation in equations (2.1)-(2.1) has given
rise to multiple methods to learn controls. One such approach is least-squares Monte Carlo (see Pham (2009,
Chapter 3) and Gobet (2016) for an introduction, and Gobet et al. (2005); Zhang et al. (2004) for an extensive
analysis), where trajectories from the forward process (2.1) are sampled, and then regression problems are
solved backwards in time to estimate the expected future cost in the spirit of dynamic programming. A second
method that exploits FBSDEs was proposed by E et al. (2017); Han et al. (2018). They parameterize the
control using a neural network uθ, and use stochastic gradient algorithms to minimize the loss L(uθ, y0) =
E[(YT (y0, uθ) − g(XT ))

2], where YT (y0, uθ) is the process in (2.1) with initial condition y0 and control uθ.
This algorithm can be seen as a shooting method, where the initial condition and the control are learned to
match the terminal condition. Multiple recent works have combined neural networks with FBSDE Monte
Carlo methods for parabolic and elliptic PDEs (Beck et al., 2018; Chan-Wai-Nam et al., 2019; Zhou et al.,
2021), control (Becker et al., 2019; Hartmann et al., 2019), multi-agent games (Han and Hu, 2020; Carmona
and Laurière, 2021, 2022); see E et al. (2021) for a more comprehensive review.

Many of the methods referenced above and some additional ones can be seen from a common perspective
using controlled diffusions. As observed in equation (2.1), the key idea is that learning the optimal control
is equivalent to finding a control u such that the induced probability measure Pu on paths is equal to the
probability measure Pu∗

for the optimal control. In the paragraphs below we cover several loss that fall into
this framework. All the losses below can be optimized using a common algorithmic framework, which we
describe in Algorithm 1. For more details, we refer the reader to Nüsken and Richter (2021), which introduced
this perspective and named such methods Iterative Diffusion Optimization (IDO) techniques. For simplicity,
we introduce the losses for the setting in which the initial distribution p0 is concentrated at a single point
xinit; we cover the general setting in Appendix B.
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Algorithm 1 Iterative Diffusion Optimization (IDO) algorithms for stochastic optimal control
Input: State cost f(x, t), terminal cost g(x), diffusion coeff. σ(t), base drift b(x, t), noise level λ, num-

ber of iterations N , batch size m, number of time steps K, initial control parameters θ0, loss L ∈
{LAdj(7),LCE(7),LVarv (7),Llog

Varv
(7),LMomv (7)}

1 for n ∈ {0, . . . , N − 1} do
2 Simulate m trajectories of the process Xv controlled by v = uθn , e.g., using Euler-Maruyama updates
3 if L ̸= LAdj then detach the m trajectories from the computational graph, so that gradients do not backpropagate;
4 Using the m trajectories, compute an m-sample Monte Carlo approximation L̂(uθn) of the loss L(uθn)

5 Compute the gradients ∇θL̂(uθn) of L̂(uθn) w.r.t. θn
6 Obtain θn+1 with via an Adam update on θn (or another stochastic algorithm)
7 end
Output: Learned control uθN

The relative entropy loss and the adjoint method The relative entropy loss is defined as the Kullback-Leibler
divergence between Pu and Pu∗

: EPu [log dPu

dPu∗ ]. Upon removing constant terms and factors, this loss is
equivalent to (see Lemma 5 in Appendix B, or Hartmann and Schütte (2012); Kappen et al. (2012)):

LAdj(u) := E
[ ∫ T

0

(
1
2∥u(X

u
t , t)∥2 + f(Xu

t , t)
)
dt+ g(Xu

T )
]
.

This is exactly the control objective in (2.1). This connection has been studied extensively (Bierkens and
Kappen, 2014; Gómez et al., 2014; Hartmann and Schütte, 2012; Kappen et al., 2012; Rawlik et al., 2013).
Hence, the relative entropy loss is a very natural one, and is widely used; see Onken et al. (2023); Zhang and
Chen (2022) for some examples on multiagent systems and sampling.

Solving optimization problems of the form (7) has a long history that dates back to Pontryagin (1962). Note
that LAdj(u) depends on u both explicitly, and implicitly through the process Xu. To compute the gradient
∇θL̂Adj(uθn) of a Monte Carlo approximation L̂Adj(uθn) of LAdj(uθn) as required by Algorithm 1, we need to
backpropagate through the simulation of the m trajectories, which is why we do not detach them from the
computational graph. One can alternatively compute the gradient ∇θL̂Adj(uθn) by explicitly solving an ODE,
a technique which is known as the adjoint method. The adjoint method was introduced by Pontryagin (1962),
popularized in deep learning by Chen et al. (2018), and further developed for SDEs in Li et al. (2020).

The cross-entropy loss The cross-entropy loss is defined as the Kullback-Leibler divergence between Pu∗
and

Pu, i.e., flipping the order of the two measures: EPu∗ [log dPu∗

dPu ]. For an arbitrary v ∈ U , this loss is equivalent
to the following one (see Prop. 3(i) in Appendix B):

LCE(u) := E
[(
−λ−1/2

∫ T

0
⟨u(Xv

t , t),dBt⟩−λ−1
∫ T

0
⟨u(Xv

t , t), v(X
v
t , t)⟩dt+ λ−1

2

∫ T

0
∥u(Xv

t , t)∥2 dt
)

× exp
(
− λ−1W(Xv, 0)−λ−1/2

∫ T

0
⟨v(Xv

t , t),dBt⟩− λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)]
.

The cross-entropy loss has a rich literature (Hartmann et al., 2017; Kappen and Ruiz, 2016; Rubinstein and
Kroese, 2013; Zhang et al., 2014) and has been recently used in applications such as molecular dynamics
(Holdijk et al., 2023).

Furthermore, we note that the cross-entropy loss can be significantly simplified and written in terms of the L2

error of the control u with respect to the optimal control u∗:

Lemma 2 (Cross-entropy loss in terms of control L2 error).

LCE(u) =
λ−1

2 E
[ ∫ T

0
∥u∗(Xu∗

t , t)− u(Xu∗

t , t)∥2 dt exp
(
− λ−1V (Xu∗

0 , 0)
)]
.

This characterization, which is proven in Prop. 3(ii) in Appendix B, is relevant for us because a similar one
can be written for the loss that we propose (see Prop. 2).

Variance and log-variance losses For an arbitrary v ∈ U , the variance and the log-variance losses are defined as
L̃Varv (u) = VarPv (dP

u∗

dPu ) and L̃log
Varv

(u) = VarPv (log dPu∗

dPu ) whenever EPv |dP
u∗

dPu | < +∞ and EPv | log dPu∗

dPu | < +∞,
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respectively. Define

Ỹ u,v
T = −λ−1

∫ T

0
⟨u(Xv

t , t), v(X
v
t , t)⟩dt− λ−1

∫ T

0
f(Xv

t , t) dt− λ−1/2
∫ T

0
⟨u(Xv

t , t),dBt⟩

+ λ−1

2

∫ T

0
∥u(Xv

t , t)∥2 dt.

Then, L̃Varv and L̃log
Varv

are equivalent, respectively, to the following losses (see Lemma 6):

LVarv (u) := Var
(
exp

(
Ỹ u,v
T − λ−1g(Xv

T )
))
,

Llog
Varv

(u) := Var
(
Ỹ u,v
T − λ−1g(Xv

T )
)
,

The variance and log-variance losses were introduced by Nüsken and Richter (2021). Unlike for the cross-
entropy loss, the choice of the control v does lead to different losses. When using LVarv or Llog

Varv
in Algorithm

1, the variance is computed across the m trajectories in each batch.

Moment loss For an arbitrary v ∈ U , the moment loss is defined as

LMomv
(u, y0) = E[(Ỹ u,v

T + y0 − λ−1g(Xv
T ))

2],

where Ỹ u,v
T is defined in (7). Note the similarity with the log-variance loss (7); the optimal value of y0 for

a fixed u is y∗0 = E[λ−1g(Xv
T ) − Ỹ u,v

T ], and plugging this into (7) yields exactly the log-variance loss. The
moment loss was introduced by Hartmann et al. (2019, Section III.B), and it is a generalization of the FBSDE
method pioneered by E et al. (2017); Han et al. (2018) and referenced earlier in this subsection. In fact, the
original method corresponds to setting v = 0.

3 Stochastic Optimal Control Matching

In this section we present our loss, Stochastic Optimal Control Matching (SOCM). The corresponding method,
which we describe in Algorithm 2, falls into the class of IDO techniques described in subsection 2.2. The
general idea is to leverage the analytic expression of u∗ in Lemma 1 to write a least squares loss for u, and the
main challenge is to reexpress the gradient of a conditional expectation with respect to the initial condition of
the process. We do that using a novel technique which introduces certain arbitrary matrix-valued functions
Mt, that we also optimize.

Theorem 1 (SOCM loss). For each t ∈ [0, T ], let Mt : [t, T ] → Rd×d be an arbitrary matrix-valued
differentiable function such that Mt(t) = Id. Let v ∈ U be an arbitrary control. Let LSOCM : L2(Rd ×
[0, T ];Rd)× L2([0, T ]2;Rd×d) → R be the loss function defined as

LSOCM(u,M) := E
[
1
T

∫ T

0

∥∥u(Xv
t , t)− w(t, v,Xv, B,Mt)

∥∥2 dt× α(v,Xv, B)
]
,

where Xv is the process controlled by v (i.e., dXv
t = (b(Xv

t , t) + σ(t)v(Xv
t , t)) dt+

√
λσ(t) dBt and Xv

0 ∼ p0),
and

w(t, v,Xv, B,Mt) = σ(t)⊤
(
−
∫ T

t
Mt(s)∇xf(X

v
s , s) ds−Mt(T )∇g(Xv

T )

+
∫ T

t
(Mt(s)∇xb(X

v
s , s)− ∂sMt(s))(σ

−1)⊤(s)v(Xv
s , s) ds

+ λ1/2
∫ T

t
(Mt(s)∇xb(X

v
s , s)− ∂sMt(s))(σ

−1)⊤(s)dBs

)
,

α(v,Xv, B) = exp
(
− λ−1

∫ T

0
f(Xv

t , t) ds− λ−1g(Xv
T )

− λ−1/2
∫ T

0
⟨v(Xv

t , t),dBt⟩ − λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)
.

LSOCM has a unique optimum (u∗,M∗), where u∗ is the optimal control.

We refer to M = (Mt)t∈[0,T ] as the family of reparametrization matrices, to the random vector field w as the
matching vector field, and to α as the importance weight. We present a proof sketch of Theorem 1; the full
proofs for all the results in this section are in Appendix C.
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Proof sketch of Theorem 1 Let X be the uncontrolled process (2.1). Consider the loss

L̃(u) = E
[
1
T

∫ T

0

∥∥u(Xt, t)− u∗(Xt, t)
∥∥2 dt exp (− λ−1

∫ T

0
f(Xt, t) dt− λ−1g(XT )

)]
= E

[
1
T

∫ T

0

(∥∥u(Xt, t)
∥∥2 − 2⟨u(Xt, t), u

∗(Xt, t)⟩+ ∥u∗(Xt, t)
∥∥2) dt

× exp
(
− λ−1

∫ T

0
f(Xt, t) dt− λ−1g(XT )

)]
.

Clearly, the only optimum of this loss is the optimal control u∗. Using the analytic expression of u∗ in
Lemma 1, the cross-term can be rewritten as (see Lemma 7 in Appendix C):

E
[
1
T

∫ T

0
⟨u(Xt, t), u

∗(Xt, t)⟩dt exp
(
− λ−1

∫ T

0
f(Xt, t) dt− λ−1g(XT )

)]
= λE

[
1
T

∫ T

0

〈
u(Xt, t), σ(t)

⊤∇xE
[
exp

(
− λ−1

∫ T

t
f(Xs, s) ds− λ−1g(XT )

)∣∣Xt = x
]〉

dt

× exp
(
− λ−1

∫ t

0
f(Xs, s) ds

)]
.

It remains to evaluate the conditional expectation ∇xE
[
exp

(
− λ−1

∫ T

t
f(Xs, s) ds − λ−1g(XT )

)∣∣Xt = x
]
,

which we do by a “reparameterization trick” that shifts the dependence on the initial value x into the stochastic
processes—here we introduce a free variable Mt—and then applying Girsanov theorem. We coin this the
path-wise reparameterization trick :

Proposition 1 (Path-wise reparameterization trick for stochastic optimal control). For each t ∈ [0, T ],
let Mt : [t, T ] → Rd×d be an arbitrary continuously differentiable function matrix-valued function such that
Mt(t) = Id. We have that

∇xE
[
exp

(
− λ−1

∫ T

t
f(Xs, s) ds− λ−1g(XT )

)∣∣Xt = x
]

= E
[(

− λ−1
∫ T

t
Mt(s)∇xf(Xs, s) ds− λ−1Mt(T )∇g(XT )

+ λ−1/2
∫ T

t
(Mt(s)∇xb(Xs, s)− ∂sMt(s))(σ

−1)⊤(s)dBs

)
× exp

(
− λ−1

∫ T

t
f(Xs, s) ds− λ−1g(XT )

)∣∣Xt = x
]
.

We prove a more general form of this result (Prop. 4) in subsection C.2 and also provide an intuitive derivation
in subsection C.3. In the proof of Prop. 4, the reparameterization matrices Mt arise as the gradients of
a perturbation to the process Xt. Similar ideas can potentially be applied to derive losses for generative
modeling. If we plug (1) into the right-hand side of (3), and then this back into (3), and we complete the
square, we obtain that for some constant K independent of u,

L̃(u) = E
[
1
T

∫ T

0

∥∥u(Xt, t) + σ(t)
( ∫ T

t
Mt(s)∇xf(Xs, s) ds+Mt(T )∇g(XT )

− λ1/2
∫ T

t
(Mt(s)∇xb(Xs, s)− ∂sMt(s))(σ

−1)⊤(s)dBs

)∥∥2 dt
× exp

(
− λ−1

∫ T

0
f(Xt, t) dt− λ−1g(XT )

)]
+K.

If we perform a change of process from X to Xv applying the Girsanov theorem (Cor. 1 in Appendix C), we
obtain the loss LSOCM(u,M).

The following proposition sheds some light onto the role of reparameterization matrices and connects the
SOCM loss to the cross-entropy loss.

Proposition 2 (Bias-variance decomposition of the SOCM loss). The SOCM loss decomposes into a bias
term that only depends on u and a variance term that only depends on M :

LSOCM(u,M)=E
[
1
T

∫ T

0

∥∥u(Xu∗

t , t)− u∗(Xu∗

t , t)
∥∥2 dt exp(−λ−1V (Xu∗

0 , 0))
]︸ ︷︷ ︸

Bias of u

+CondVar(w;M)︸ ︷︷ ︸
Variance of w

,

where

Var(w;M)

= E
[
1
T

∫ T

0

∥∥w̃(t,X,B,Mt)− E[w̃(t,X,B,Mt) exp(−λ−1W(X,0))|Xt]
E[exp(−λ−1W(X,0))|Xt]

∥∥2 dt exp(−λ−1W(X, 0))
]

= E
[
1
T

∫ T

0

∥∥w(t, v,Xv, B,Mt)− E[w(t,v,Xv,B,Mt)α(v,X
v,B)|Xv

t ]
E[α(v,Xv,B)|Xv

t ]

∥∥2 dt α(v,Xv, B)
]
,
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and

w̃(t,X,B,Mt) = σ(t)⊤
(
−
∫ T

t
Mt(s)∇xf(Xs, s) ds−Mt(T )∇g(XT )

+ λ1/2
∫ T

t
(Mt(s)∇xb(Xs, s)− ∂sMt(s))(σ

−1)⊤(s)dBs

)
.

Remark that the bias term in equation (2) is equal to the characterization of the cross-entropy loss in Lemma 2.
In other words, the landscape of LSOCM(u,M) with respect to u is the landscape of the cross-entropy loss
LCE(u). Thus, the SOCM loss can be seen as some form of variance reduction method for the cross-entropy
loss, and performs substantially better experimentally (section 4). Yet, the expressions of the SOCM loss and
the cross-entropy loss are very different; the former is a least squares loss and is expressed in terms of the
gradients of the costs.

Algorithm 2 Stochastic Optimal Control Matching (SOCM)
Input: State cost f(x, t), terminal cost g(x), diffusion coeff. σ(t), base drift b(x, t), noise level λ, number of iterations N ,

batch size m, number of time steps K, initial control parameters θ0, initial matrix parameters ω0, loss LSOCM

in (5)
1 for n ∈ {0, . . . , N − 1} do
2 Simulate m trajectories of the process Xv controlled by v = uθn , e.g., using Euler-Maruyama updates
3 Detach the m trajectories from the computational graph, so that gradients do not backpropagate
4 Using the m trajectories, compute an m-sample Monte-Carlo approximation L̂SOCM(uθn ,Mωn) of the loss

LSOCM(uθn ,Mωn) in (5)
5 Compute the gradients ∇(θ,ω)L̂SOCM(uθn ,Mωn) of L̂SOCM(uθn ,Mωn) at (θn, ωn)
6 Obtain θn+1, ωn+1 with via an Adam update on θn, ωn, resp.
7 end
Output: Learned control uθN

For good training performance, it is critical that the gradients have high signal-to-noise ratio. Looking
at the SOCM loss, a good proxy for low gradient variance is to have low variance for 1

T

∫ T

0

∥∥u(Xv
t , t) −

w(t, v,Xv, B,Mt)
∥∥2 dt× α(v,Xv, B), and this holds when both α(v,Xv, B) and w(t, v,Xv, B,Mt) have low

variance. Next, we present strategies to lower the variance of these two objects.

Minimizing the variance of the importance weight α We want to use a vector field v such that Var[α(v,Xv, B)]
is as low as possible. As shown by the following lemma, which is well-known in the literature, setting v to
be the optimal control u∗ actually achieves variance zero when we condition on the starting point of the
controlled process Xv. The proof of this result can be found in Hartmann et al. (2017), but we include it in
subsection C.5 for completeness.

Lemma 3. When we set v = u∗, the conditional variance Var[α(v,Xv, B)|Xv
0 = xinit] is zero for any

xinit ∈ Rd.

Of course, we do not have access to the optimal control u∗, but it is still a good idea to set v as the closest
vector field to u∗ that we have access to, which is typically the currently learned control. In some instances,
one may benefit from using a warm-started control parameterized as uWS(x, t)+uθ(x, t), where the warm-start
uWS is a reasonably good control obtained via a different strategy (see Appendix D).

Minimizing the variance of the matching vector field w We are interested in finding the familyM = (Mt)t∈[0,T ]

that minimizes the variance of w(t, v,Xv, B,Mt) conditioned on t and Xt. Note that this is exactly the term
CondVar(w;M) in the right-hand side of equation (2). Since CondVar(w;M) does not depend on the specific
v, the optimal M does not depend on v either. And since the first term in the right-hand side of equation
(2) does not depend on M = (Mt)t∈[0,T ], minimizing CondVar(w;M) is equivalent to minimizing L(u) with
respect to M . In practice, we parameterize M using a neural network with a two-dimensional input (t, s) and
a d2-dimensional output.

Furthermore, the following theorem shows that the optimal family M∗ = (M∗
t )t∈[0,T ] can be characterized as

the solution of a linear equation in infinite dimensions. The proof is in subsection C.6.
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Figure 1 Plots of the L2 error incurred by the learned control (top), and the norm squared of the gradient with respect
to the parameters θ of the control (bottom), for the Quadratic Ornstein Uhlenbeck (easy) setting and for each
IDO loss. Both plots show exponential moving averages computed from the trajectories used during training.

Theorem 2 (Optimal reparameterization matrices). Let v be an arbitrary control in U . Define the integral
operator Tt : L2([t, T ];Rd×d) → L2([t, T ];Rd×d) as

[Tt(Ṁt)](s) =
∫ T

t
Ṁt(s

′)E
[
χ(s′, Xv, B)χ(s,Xv, B)⊤ × α(v,Xv, B)

]
ds′,

where

χ(t,Xv, B) :=
∫ T

t
∇xf(X

v
s , s) ds+∇g(Xv

T ) + (σ−1
t )⊤(t)v(Xv

t , t)

−
∫ T

t
∇xb(X

v
s , s)(σ

−1
s )⊤(s)v(Xv

t , t) ds−
∫ T

t
∇xb(X

v
s , s)(σ

−1
s )⊤(s) dBs.

If we define Nt(s) = −E
[(
∇g(Xv

T ) +
∫ T

t
∇xf(X

v
s′ , s

′) ds′
)
χ(t,Xv, B)⊤ × α(v,Xv, B)

]
, the optimal M∗ =

(M∗
t )t∈[0,T ] is of the form M∗

t (s) = I +
∫ s

t
Ṁ∗

t (s
′) ds′, where Ṁ∗

t is the unique solution of the following
Fredholm equation of the first kind:

Tt(Ṁt) = Nt.

Solving the Fredholm equation (2) numerically is expensive, as the discretized linear system has d2K equations
and variables, K being the number of discretization time points. However, since the optimal M∗ does not
depend on v, this is a computation that must be done only once and that may be affordable in some settings.

Parameterizing the matrices Mt In practice, we parameterize the matrices (Mt)t∈[0,T ] using a common
function Mω with two arguments (t, s). A simple way to enforce that Mω(t, t) = Id is to set Mω(t, s) =
e−γ(s−t)Id + (1− e−γ(s−t))M̃ω̃(t, s), where ω = (γ, ω̃), and M̃ω̃ : R× R → Rd×d is an unconstrained neural
network.

4 Experiments

We consider four experimental settings that we adapt from Nüsken and Richter (2021): Quadratic Ornstein
Uhlenbeck (easy), Quadratic Ornstein Uhlenbeck (hard), Linear Ornstein Uhlenbeck and
Double Well. We describe them in detail in Appendix E. For all of them, we have access to the ground-truth
optimal control, which means that we are able to estimate the L2 error incurred by the learned control u.
In Figure 1 (top) we plot the control L2 error for each IDO algorithm described in subsection 2.2, and for the
SOCM algorithm (Algorithm 2), for the Quadratic OU (easy) setting. We also include two ablations of
SOCM: (i) a version of SOCM where the reparameterization matrices Mt are set fixed to the identity I, (ii)

9



Figure 2 Plots of the L2 error of the learned control for the Linear Ornstein Uhlenbeck and Double Well
settings.

Figure 3 Plots of the L2 error incurred by the learned control (top), and the norm squared of the gradient with respect
to the parameters θ of the control (bottom), for the Quadratic Ornstein Uhlenbeck (hard) setting and for each
IDO loss. All the algorithms use a warm-started control (see Appendix D).

SOCM SOCM Mt = I SOCM adjoint Adjoint
0.222 0.090 0.099 0.169

Cross entropy Log-variance Moment Variance
0.086 0.117 0.087 0.086

Table 1 Time per iteration (exponential moving average) for various algorithms in seconds per iteration, for the
Quadratic OU (easy) experiments (Figure 1).

SOCM-Adjoint, where we estimate the conditional expectation in equation (1) using the adjoint method for
SDEs instead of the path-wise reparameterization trick (see subsection C.4).

At the end of training, SOCM obtains the lowest L2 error, improving over all existing methods by a factor of
around ten. The two SOCM ablations come in second and third by a substantial difference, which underlines
the importance of the path-wise reparameterization trick. The best among existing methods is the adjoint
method (the relative entropy loss). In Figure 1 (bottom) we show the squared norm of the gradient of each
loss with respect to the parameters θ of the control: algorithms with small noise variance tend to have low
error values. Table 1 shows the average times per iteration for each algorithm.

In Figure 2, we plot the control L2 error for Linear Ornstein Uhlenbeck and Double Well. For Linear
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OU, the error is around five times smaller for SOCM than for any existing method. For Double Well, the
SOCM algorithm achieves the second smallest error, slightly behind the adjoint method, but the latter shows
instabilities. As we show in Figure 7 in Appendix E, these instabilities are inherent to the adjoint method
and they do not disappear for small learning rates. Both in Figure 1 and Figure 7, we observe that learning
the reparameterization matrices is critical to obtain gradient estimates with high signal-to-noise ratio.

The costs f and g and the base drift b for Quadratic OU (hard) are five times those of Quadratic OU
(easy). Consequently, the factor α(v,Xv, B) initially has a much larger variance for the SOCM methods, and
for cross-entropy. As training progresses, uθn gets closer to u∗, and consequently the variance of α(v,Xv, B)
decreases, which in turn makes learning easier. This explains the initial slow decrease in the control error,
followed by a fast drop that places SOCM well below existing algorithms. In Appendix D and Figure 3, we
showcase a control warm-start strategy that can help and speed up convergence.

5 Conclusion

Our work introduces Stochastic Optimal Control Matching, a novel Iterative Diffusion Optimization technique
for stochastic optimal control that stems from the same philosophy as the conditional score matching loss for
diffusion models. That is, the control is learned via a least-squares problem by trying to fit a matching vector
field. The training loss is optimized with respect to both the control function and a family of reparameterization
matrices which appear in the matching vector field. The optimization with respect to the reparameterization
matrices aims at minimizing the variance of the matching vector field. Experimentally, our algorithm achieves
lower error than all the existing IDO techniques for stochastic optimal control for four different control
settings.

One of the key ideas for deriving the SOCM algorithm is the path-wise reparameterization trick, a novel
technique to obtain low-variance estimates of the gradient of the conditional expectation of a functional of
a random process with respect to its initial value. An interesting future direction is to use the path-wise
reparameterization trick to decrease the variance of the matching vector field for diffusion models.

The main roadblock when we try to apply SOCM to more challenging problems is that the variance of the
factor α(v,Xv, B) explodes when f and/or g are large, or when the dimension d is high. The control L2 error
for the SOCM and cross-entropy losses remains high and fluctuates heavily due to the large variance of α.
The large variance of α is due to the mismatch between the probability measures induced by the learned
control and the optimal control. Similar problems are encountered in out-of-distribution generalization for
reinforcement learning, and some approaches may be carried over from that area (Munos et al., 2016).
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A Technical assumptions

Throughout our work, we make the same assumptions as Nüsken and Richter (2021), which are needed for all
the objects considered to be well-defined. Namely, we assume that:

(i) The set U of admissible controls is given by

U = {u ∈ C1(Rd × [0, T ];Rd) | ∃C > 0, ∀(x, s) ∈ Rd × [0, T ], b(x, s) ≤ C(1 + |x|)}.

(ii) The coefficients b and σ are continuously differentiable, σ has bounded first-order spatial derivatives, and
(σσ⊤)(x, s) is positive definite for all (x, s) ∈ Rd[0, T ]. Furthermore, there exist constants C, c1, c2 > 0
such that

∥b(x, s)∥ ≤ C(1 + ∥x∥), (linear growth)

c1∥ξ∥2 ≤ ξ⊤(σσ⊤)(x, s)ξ ≤ c2∥ξ∥2, (ellipticity)

for all (x, s) ∈ Rd × [0, T ] and ξ ∈ Rd.

B Proofs of section 2

Proof of (2.1) By Itô’s lemma, we have that

V (Xu
T , T )− V (Xu

t , t) =
∫ T

t

(
∂sV (Xu

s , s) + ⟨b(Xu
s , s) + σ(Xu

s , s)u(X
u
s , s),∇V (Xu

s , s)⟩

+ λ
2

∑d
i,j=1(σσ

⊤)ij(X
u
s , s)∂xi

∂xj
V (Xu

s , s)
)
ds+ Su

t ,

where Su
t =

√
λ
∫ T

t
∇V (Xu

s , s)
⊤σ(Xu

s , s) dBs. Note that by (2.1),

∂sV (Xu
s , s) + ⟨b(Xu

s , s) + σ(Xu
s , s)u(X

u
s , s),∇V (Xu

s , s)⟩

+ λ
2

∑d
i,j=1(σσ

⊤)ij(X
u
s , s)∂xi

∂xj
V (Xu

s , s)

= 1
2∥(σ

⊤∇V )(Xu
s , s)∥2 − f(Xu

s , s) + ⟨σ(Xu
s , s)u(X

u
s , s),∇V (Xu

s , s)⟩
= 1

2∥(σ
⊤∇V )(Xu

s , s) + u(Xu
s , s)∥2 − 1

2∥u(X
u
s , s)∥2 − f(Xu

s , s),
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and this implies that

g(Xu
T )− V (Xu

t , t) =
∫ T

t

(
1
2∥(σ

⊤∇V )(Xu
s , s) + u(Xu

s , s)∥2 − 1
2∥u(X

u
s , s)∥2 − f(Xu

s , s)
)
ds+ Su

t

Since E[Su
t |Xu

t = x] = 0, rearranging (B) and taking the conditional expectation with respect to Xu
t yields

the final result.

Proof of (2.1)-(2.1) By Itô’s lemma, we have that

dV (Xs, s) =
(
∂sV (Xs, s) + ⟨b(Xs, s),∇V (Xs, s)⟩

+ λ
2

∑d
i,j=1(σσ

⊤)ij(Xs, s)∂xi∂xjV (Xs, s)
)
ds+

√
λ∇V (Xu

s , s)
⊤σ(Xu

s , s) dBs,

Note that by (2.1),

∂sV (Xs, s) + ⟨b(Xs, s),∇V (Xs, s)⟩+ λ
2

∑d
i,j=1(σσ

⊤)ij(Xs, s)∂xi
∂xj

V (Xs, s)

= 1
2∥(σ

⊤∇V )(Xs, s)∥2 − f(Xs, s).

Plugging this into (B) concludes the proof.

Proof of (2.1) Since Ys = V (Xs, s) and Zs = σ⊤(s)∇V (Xs, s) = −u∗(Xs, s) satisfy (2.1), we have that

g(XT ) = YT = Yt −
∫ T

t
(f(Xs, s)− 1

2∥u
∗(Xs, s)∥2) ds−

√
λ
∫ T

t
⟨u∗(Xs, s),dBs⟩.

Hence, recalling the definition of the work functional in (2.1), we have that

W(X, t) = Yt +
1
2

∫ T

t
∥u∗(Xs, s)∥2 ds−

√
λ
∫ T

t
⟨u∗(Xs, s),dBs⟩.

By Novikov’s theorem (Thm. 3), we have that

E[exp(−λ−1W(X, t))|Xt]

= e−λ−1YtE
[
exp

(
λ−1/2

∫ T

t
⟨u∗(Xs, s),dBs⟩ − λ−1

2

∫ T

t
∥u∗(Xs, s)∥2 ds

)∣∣Xt

]
= e−λ−1Yt ,

which concludes the proof of (2.1).

Theorem 3 (Novikov’s theorem). Let θs be a locally-H2 process which is adapted to the natural filtration of
the Brownian motion (Bt)t≥0. Define

Z(t) = exp
( ∫ t

0
θs dBs − 1

2

∫ t

0
∥θs∥2 ds

)
.

If for each t ≥ 0,

E
[
exp

( ∫ t

0
∥θs∥2 ds

)]
< +∞,

then for each t ≥ 0,

E[Z(t)] = 1.

Moreover, the process Z(t) is a positive martingale, i.e. if (Ft)t≥0 is the filtration associated to the Brownian
motion (Bt)t≥0, then for t ≥ s, E[Zt|Fs] = Zs.

Theorem 4 (Girsanov theorem). Let W = (Wt)t∈[0,T ] be a standard Wiener process, and let P be its induced
probability measure over C([0, T ];Rd), known as the Wiener measure. Let Z(t) be as defined in (3) and
suppose that the assumptions of Theorem 3 hold. Let (Ω,F) be the σ-algebra associated to BT . For any
F ∈ F , define the measure

Q(F ) = EP[Z(T )1F ] .
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Q is a probability measure because of (3). Under the probability measure Q, the stochastic process {W̃ (t)}0≤t≤T

defined as

W̃ (t) =W (t)−
∫ t

0
θs ds

is a standard Wiener process. That is, for any n ≥ 0 and any 0 = t0 < t1 < · · · < tn, the increments
{W̃ (ti+1)−W̃ (ti)}n−1

i=0 are independent and Q-Gaussian distributed with mean zero and covariance (ti+1− ti)I,
which means that for any α ∈ Rd, the moment generating function of W̃ (ti+1)− W̃ (ti) with respect to Q is as
follows:

EQ[exp(⟨α, W̃ (ti+1)− W̃ (ti)⟩)]

:= EP
[
exp

(〈
α,W (ti+1)−

∫ ti+1

0
θs ds−W (ti) +

∫ ti
0
θs ds

〉)
Z(T )

]
= exp

( (ti+1−ti)∥α∥2

2

)
.

Corollary 1 (Girsanov theorem for SDEs). If the two SDEs

dXt = b1(Xt, t) dt+ σ(Xt, t) dBt, X0 = xinit

dYt = (b1(Yt, t) + b2(Yt, t)) dt+ σ(Yt, t) dBt, Y0 = xinit

admit unique strong solutions on [0, T ], then for any bounded continuous functional Φ on C([0, T ]), we have
that

E[Φ(X)] = E
[
Φ(Y ) exp

(
−
∫ T

0
σ(Yt, t)

−1b2(Yt, t) dBt − 1
2

∫ T

0
∥σ(Yt, t)−1b2(Yt, t)∥2 dt

)]
= E

[
Φ(Y ) exp

(
−
∫ T

0
σ(Yt, t)

−1b2(Yt, t) dB̃t +
1
2

∫ T

0
∥σ(Yt, t)−1b2(Yt, t)∥2 dt

)]
,

where B̃t = Bt +
∫ t

0
σ(Ys, s)

−1b2(Ys, s) ds. More generally, b1 and b2 can be random processes that are adapted
to filtration of B.

Lemma 4. For an arbitrary v ∈ U , let Pv and P be respectively the laws of the SDEs

dXv
t = (b(Xv

t , t) + σ(t)v(Xv
t , t)) dt+

√
λσ(t)dBt, Xv

0 ∼ p0,

dXt = b(Xt, t) dt+
√
λσ(t)dBt, X0 ∼ p0.

We have that

dP
dPv (X

v) = exp
(
− λ−1/2

∫ T

0
⟨v(Xv

t , t),dB
v
t ⟩+ λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)

= exp
(
− λ−1/2

∫ T

0
⟨v(Xv

t , t),dBt⟩ − λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)
,

dPv

dP (X) = exp
(
λ−1/2

∫ T

0
⟨v(Xt, t),dBt⟩ − λ−1

2

∫ T

0
∥v(Xt, t)∥2 dt

)
.

where Bv
t := Bt − λ−1/2

∫ t

0
v(Xv

s , s) ds. For the optimal control u∗, we have that

dP
dPu∗ (Xu∗

) = exp
(
λ−1

(
− V (Xu∗

0 , 0) +W(Xu∗
, 0)

))
,

dPu∗

dP (X) = exp
(
λ−1

(
V (X0, 0)−W(X, 0)

))
,

where the functional W is defined in (2.1).

Proof. The proof of (4)-(4) follows directly from Cor. 1. To prove (4), we use that by (B),

W(X, 0) = V (X0, 0) +
1
2

∫ T

0
∥u∗(Xs, s)∥2 ds−

√
λ
∫ T

0
⟨u∗(Xs, s),dBs⟩,

which implies that

dPu∗

dP (X) = exp
(
λ−1/2

∫ T

0
⟨u∗(Xt, t),dBt⟩ − λ−1

2

∫ T

0
∥u∗(Xt, t)∥2 dt

)
= exp

(
λ−1

(
V (X0, 0)−W(X, 0)

))
.
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To prove (4), we use that since dXu∗

t = b(Xu∗

t , t) dt+
√
λσ(t)dBu∗

t , equation (B) holds if we replace X and B
by Xu∗

and Bu∗
, which reads

W(Xu∗
, 0) = V (Xu∗

0 , 0) + 1
2

∫ T

t
∥u∗(Xu∗

s , s)∥2 ds−
√
λ
∫ T

t
⟨u∗(Xu∗

s , s),dBv
s ⟩.

Hence,

dP
dPu∗ (Xu∗

) = exp
(
− λ−1/2

∫ T

0
⟨u∗(Xu∗

t , t),dBu∗

t ⟩+ λ−1

2

∫ T

0
∥u∗(Xu∗

t , t)∥2 dt
)

= exp
(
λ−1

(
− V (Xu∗

0 , 0) +W(Xu∗
, 0)

))
.

Lemma 5. The following expression holds:

EPu

[
log dPu

dPu∗
]
= λ−1E

[ ∫ T

0

(
1
2∥u(X

u
t , t)∥2 + f(Xu

t , t)
)
dt+ g(Xu

T )− V (Xu
0 , 0)

]
,

Proof. To prove (5), we write

log dPu∗

dPu (Xu) = log
(
dPu∗

dP (Xu) dP
dPu (X

u)
)
= log dPu∗

dP (Xu) + log dP
dPu (X

u)

= λ−1
(
V (Xu

0 , 0)−
∫ T

0
f(Xu

t , t) dt− g(Xu
T )

)
− λ−1/2

∫ T

0
⟨u(Xu

t , t),dBt⟩ − λ−1

2

∫ T

0
∥u(Xu

t , t)∥2 dt .

Since EPu

[
log dPu

dPu∗
]
= −EPu

[
log dPu∗

dPu

]
, and EPu

[ ∫ T

0
⟨u(Xu

t , t),dBt⟩] = 0, the result follows.

Proposition 3. (i) The following two expressions hold for arbitrary controls u, v in the class U of admissible
controls:

L̃CE(u) = EPu∗
[
log dPu∗

dPu

]
= E

[(
− λ−1/2

∫ T

0
⟨u(Xv

t , t),dBt⟩ − λ−1
∫ T

0
⟨u(Xv

t , t), v(X
v
t , t)⟩dt

+ λ−1

2

∫ T

0
∥u(Xv

t , t)∥2 dt+ λ−1
(
V (Xv

0 , 0)−W(Xv, 0)
))

× exp
(
λ−1

(
V (Xv

0 , 0)−W(Xv, 0)
)

− λ−1/2
∫ T

0
⟨v(Xv

t , t),dBt⟩ − λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)]
,

L̃CE(u) =
λ−1

2 E
[ ∫ T

0
∥u∗(Xu∗

t , t)− u(Xu∗

t , t)∥2 dt
]
.

When p0 is concentrated at a single point xinit, the terms V (xinit, 0) are constant and can be removed without
modifying the landscape. In other words, L̃CE and LCE are equal up to constant terms and constant factors.

(ii) When p0 is a generic probability measure, L̃CE and LCE have different landscapes, and LCE(u) =

EPu∗
[
log dPu∗

dPu exp
(
− λ−1V (Xu∗

0 , 0)
)]

. u∗ is still the only minimizer of the loss LCE, and for some constant
K, we have that

LCE(u, 0) =
λ−1

2 E
[ ∫ T

0
∥u∗(Xu∗

t , t)− u(Xu∗

t , t)∥2 dt exp
(
− λ−1V (Xu∗

0 , 0)
)]

+K.

Proof. We begin with the proof of (i), and prove (3) first. Note that by the Girsanov theorem (Theorem 4),

EPu∗
[
log dPu∗

dPu (Xu∗
)
]
= −EPu∗

[
log dPu

dPu∗ (Xu∗
)
]
= −EPu∗

[
log dPu

dP (Xu∗
) + log dP

dPu∗ (Xu∗
)
]

= −EPv

[(
log dPu

dP (Xv) + log dP
dPu∗ (Xv)

)
dPu∗

dP (Xv) dP
dPv (X

v)
]

Note that by equations (4) and (4),

log dPu

dP (Xv) = λ−1/2
∫ T

0
⟨u(Xv

t , t),dB
v
t ⟩ − λ−1

2

∫ T

0
∥u(Xv

t , t)∥2 dt,

= λ−1/2
∫ T

0
⟨u(Xv

t , t),dBt⟩+ λ−1
∫ T

0
⟨u(Xv

t , t), v(X
v
t , t)⟩dt− λ−1

2

∫ T

0
∥u(Xv

t , t)∥2 dt,
log dP

dPu∗ (Xv) = λ−1
(
− V (Xv

0 , 0) +W(Xv, 0)
)
.
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where Bv
t := Bt + λ−1/2

∫ t

0
v(Xv

s , s) ds. Also,

dPu∗

dP (Xv) = exp
(
λ−1

(
V (Xv

0 , 0)−W(Xv, 0)
))
,

dP
dPv (X

v) = exp
(
− λ−1/2

∫ T

0
⟨v(Xv

t , t),dBt⟩ − λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)
.

If we plug (B) and (B) into the right-hand side of (B), we obtain

EPu∗
[
log dPu∗

dPu (Xu∗
)
]
= −EPu∗

[
(log dPu

dP (Xv) + log dP
dPu∗ (Xv))dP

u∗

dP (Xv) dP
dPu (X

v)
]

= −E
[(
λ−1/2

∫ T

0
⟨u(Xv

t , t),dBt⟩+ λ−1
∫ T

0
⟨u(Xv

t , t), v(X
v
t , t)⟩dt

− λ−1

2

∫ T

0
∥u(Xv

t , t)∥2 dt+ λ−1
(
− V (Xv

0 , 0) +W(Xv, 0)
))

× exp
(
λ−1

(
V (Xv

0 , 0)−W(Xv, 0)
)
− λ−1/2

∫ T

0
⟨v(Xv

t , t),dBt⟩ − λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)]
,

which concludes the proof.

To show (3), we use that by Cor. 1,

dPu

dPu∗ (Xu∗
)=exp

(
−λ−1/2

∫ T

0
⟨u∗(Xu∗

t , t)−u(Xu∗

t , t),dBt⟩− λ−1

2

∫ T

0
∥u∗(Xu∗

t , t)−u(Xu∗

t , t)∥2 dt
)
.

Hence,

EPu∗
[
log dPu∗

dPu

]
= −EPu∗

[
log dPu

dPu∗
]
= λ−1

2 E
[ ∫ T

0
∥u∗(Xu∗

t , t)− u(Xu∗

t , t)∥2 dt
]
.

Next, we prove (ii). The first instance of V (Xv
0 , 0) in (3) can be removed without modifying the landscape of

the loss. Hence, we are left with

L̄CE(u) = E
[(

− λ−1/2
∫ T

0
⟨u(Xv

t , t),dB
v
t ⟩ − λ−1

∫ T

0
⟨u(Xv

t , t), v(X
v
t , t)⟩dt

+ λ−1

2

∫ T

0
∥u(Xv

t , t)∥2 dt− λ−1W(Xv, 0)
)

× exp
(
λ−1

(
V (Xv

0 , 0)−W(Xv, 0)
)
−λ−1/2

∫ T

0
⟨v(Xv

t , t),dBt⟩− λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)]

And this can be expressed as

L̄CE(u) = E
[
g(u;Xv

0 ) exp
(
λ−1V (Xv

0 , 0)
)]
,

where

g(u;x) = E
[(

− λ−1/2
∫ T

0
⟨u(Xv

t , t),dB
v
t ⟩ − λ−1

∫ T

0
⟨u(Xv

t , t), v(X
v
t , t)⟩dt

+ λ−1

2

∫ T

0
∥u(Xv

t , t)∥2 dt− λ−1W(Xv, 0)
)

× exp
(
− λ−1W(Xv, 0)−λ−1/2

∫ T

0
⟨v(Xv

t , t),dBt⟩− λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)
|Xv

0 = x
]
.

If we consider g(u;x) as a loss function for u, note that it is equivalent to the loss L̄CE(u) equation in (B)
for the choice p0 = δx, i.e., p0 concentrated at x. Since the optimal control u∗ is independent of the starting
distribution p0, we deduce that u∗ is the unique minimizer of g(u;x), for all x ∈ Rd. In consequence, u∗ is the
unique minimizer of LCE(u) = E[g(u;Xv

0 )].

To prove (3), note that up to a constant term, the only difference between L̄CE(u) and LCE(u) is the
expectation is reweighted importance weight exp

(
− λ−1V (Xv

0 , 0)
)
.

Lemma 6. (i) We can rewrite

L̃Varv (u) = Var
(
exp

(
Ỹ u,v
T − λ−1g(Xv

T ) + λ−1V (Xv
0 , 0)

))
,

L̃log
Varv

(u) = Var
(
Ỹ u,v
T − λ−1g(Xv

T ) + λ−1V (Xv
0 , 0)

)
.

When p0 is concentrated at xinit, the terms V (xinit, 0) are constants and can be removed without modifying
the landscape. In other words, L̃Varv and L̃log

Varv
are equal to LVarv and Llog

Varv
up to a constant term and a

constant factor, respectively.
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(ii) When p0 is general, L̃Varv and LVarv have a different landscape, and the optimum of LVarv may be different
from u∗. A related loss that does preserve the optimum is:

L̄Varv (u) = E[VarPv (dP
u∗

dPu (Xv)|Xv
0 ) exp(−λ−1V (Xv

0 , 0))]

= E[Var
(
exp(Ỹ u,v

T − λ−1g(Xv
T ))|Xv

0

)
].

In practice, this is implemented by sampling the m trajectories in one batch starting at the same point Xv
0 .

(iii) Also, L̃log
Varv

and Llog
Varv

have a different landscape, and the optimum of Llog
Varv

may be different from u∗. In

particular, Llog
Varv

(u) = VarPv (log dPu∗

dPu (Xv) exp(−λ−1V (Xv
0 , 0))). A loss that does preserve the optimum u∗ is

L̄log
Varv

(u) = E[VarPv (log dPu∗

dPu (Xv)|Xv
0 ) exp(−λ−1V (Xv

0 , 0))]

= E[Var
(
Ỹ u,v
T − λ−1g(Xv

T )|Xv
0

)
].

Proof. Using (4) and (4), we have that

dPu∗

dP (Xv) = exp
(
λ−1

(
V (Xv

0 , 0)−W(Xv, 0)
))
,

dP
dPu (X

v) = exp
(
− λ−1/2

∫ T

0
⟨u(Xv

t , t),dB
v
t ⟩+ λ−1

2

∫ T

0
∥u(Xv

t , t)∥2 dt
)

= exp
(
− λ−1/2

∫ T

0
⟨u(Xv

t , t),dBt⟩ − λ−1
∫ T

0
⟨u(Xv

t , t), v(X
v
t , t)⟩dt

+ λ−1

2

∫ T

0
∥u(Xv

t , t)∥2 dt
)
.

Hence,

log dPu∗

dPu (Xv) = log dPu∗

dP (Xv) + log dP
dPu (X

v) = Ỹ u,v
T − λ−1g(Xv

T ) + λ−1V (Xv
0 , 0).

Since L̃Varv (u) = VarPv (dP
u∗

dPu ) and L̃log
Varv

(u) = VarPv (log dPu∗

dPu ), this concludes the proof of (i).

To prove (ii), note that for general p0, V (Xv
0 , 0) is no longer a constant, but it is if we condition on Xv

0 . The
proof of (iii) is analogous.

C Proofs of section 3

C.1 Proof of Theorem 1 and Prop. 2

We prove Theorem 1 and Prop. 2 at the same time. Recall that by (1), the optimal control is of the form
u∗(x, t) = −σ(t)⊤∇V (x, t). Consider the loss

L̃(u) = E
[
1
T

∫ T

0

∥∥u(Xt, t) + σ(t)⊤∇V (Xt, t)
∥∥2 dt exp (− λ−1

∫ T

0
f(Xt, t) dt− λ−1g(XT )

)]
.

Clearly, the unique optimum of L̃ is −σ(t)⊤∇V . We can rewrite L̃ as

L̃(u) = E
[
1
T

∫ T

0

(∥∥u(Xt, t)
∥∥2 + 2⟨u(Xt, t), σ(t)

⊤∇V (Xt, t)⟩+ ∥σ(t)⊤∇V (Xt, t)
∥∥2)dt

× exp
(
− λ−1

∫ T

0
f(Xt, t) dt− λ−1g(XT )

)]
.

Hence, we can express L̃ as a sum of three terms: one involving ∥u(Xt, t)∥2, another involving ⟨u(Xt, t), σ(t)
⊤V (Xt, t)⟩,

and a third one, which is constant with respect to u, involving ∥∇V (Xt, t)∥2. The following lemma provides
an alternative expression for the cross term:

Lemma 7. The following equality holds:

E
[
1
T

∫ T

0
⟨u(Xt, t), σ(t)

⊤∇V (Xt, t)⟩dt exp
(
− λ−1

∫ T

0
f(Xt, t) dt− λ−1g(XT )

)]
= −λE

[
1
T

∫ T

0

〈
u(Xt, t), σ(t)

⊤∇xE
[
exp

(
− λ−1

∫ T

t
f(Xs, s) ds− λ−1g(XT )

)∣∣Xt = x
]〉

dt

× exp
(
− λ−1

∫ t

0
f(Xs, s) ds

)]
.
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Proof. Recall the definition of W(X, t) in (B), which means that

W(X, 0) = W(X, t) +
∫ t

0
f(Xs, s) ds.

Let {Ft}t∈[0,T ] be the filtration generated by the Brownian motion B. Then, equation (1) implies that

σ(t)⊤∇V (Xt, t) = −λσ(t)⊤∇xE
[
exp

(
−λ−1W(X,t)

)∣∣Ft

]
E
[
exp

(
−λ−1W(X,t)

)∣∣Ft

]
We proceed as follows:

E
[
1
T

∫ T

0
⟨u(Xt, t), σ(t)

⊤∇V (Xt, t)⟩dt exp
(
− λ−1W(X, 0)

)]
(i)
= −λE

[
1
T

∫ T

0

〈
u(Xt, t),

σ(t)⊤∇xE
[
exp

(
−λ−1W(X,t)

)∣∣Ft

]
E
[
exp

(
−λ−1W(X,t)

)∣∣Ft

] 〉
dt

× E
[
exp

(
− λ−1W(X, t)

)∣∣Ft

]
exp

(
− λ−1

∫ t

0
f(Xt, t) dt

)]
= −λE

[
1
T

∫ T

0

〈
u(Xt, t), σ(t)

⊤∇xE
[
exp

(
− λ−1W(X, t)

)∣∣Ft

]〉
dt exp

(
− λ−1

∫ t

0
f(Xs, s) ds

)]
(ii)
= −λE

[
1
T

∫ T

0

〈
u(Xt, t), σ(t)

⊤∇xE
[
exp

(
− λ−1W(X, t)

)∣∣Xt = x
]〉

dt exp
(
− λ−1

∫ t

0
f(Xs, s) ds

)]
.

Here, (i) holds by equation (C.1), the law of total expectation and equation (C.1), and (ii) holds by the
Markov property of the solution of an SDE.

The following proposition, which we prove in subsection C.2, provides an alternative expression for ∇xE
[
exp

(
−

λ−1
∫ T

t
f(Xs, s) ds − λ−1g(XT )

)∣∣Xt = x
]
. The technique, which is novel and we denote by path-wise

reparamaterization trick, is of independent interest and may be applied in other settings, as we discuss in
section 5.

Proposition 1 (Path-wise reparameterization trick for stochastic optimal control). For each t ∈ [0, T ],
let Mt : [t, T ] → Rd×d be an arbitrary continuously differentiable function matrix-valued function such that
Mt(t) = Id. We have that

∇xE
[
exp

(
− λ−1

∫ T

t
f(Xs, s) ds− λ−1g(XT )

)∣∣Xt = x
]

= E
[(

− λ−1
∫ T

t
Mt(s)∇xf(Xs, s) ds− λ−1Mt(T )∇g(XT )

+ λ−1/2
∫ T

t
(Mt(s)∇xb(Xs, s)− ∂sMt(s))(σ

−1)⊤(s)dBs

)
× exp

(
− λ−1

∫ T

t
f(Xs, s) ds− λ−1g(XT )

)∣∣Xt = x
]
.

Plugging (1) into the right-hand side of (7), we obtain that

E
[
1
T

∫ T

0
⟨u(Xt, t), σ(t)

⊤∇V (Xt, t)⟩dt exp
(
− λ−1

∫ T

0
f(Xt, t) dt− λ−1g(XT )

)]
= E

[
1
T

∫ T

0

〈
u(Xt, t), σ(t)

⊤( ∫ T

t
Mt(s)∇xf(Xs, s) ds+Mt(T )∇g(XT )

− λ1/2
∫ T

t
(Mt(s)∇xb(Xs, s)− ∂sMt(s))(σ

−1)⊤(s)dBs

)〉
dt

× exp
(
− λ−1

∫ T

0
f(Xt, t) dt− λ−1g(XT )

)]
.

If we plug this into the right-hand side of (C.1) and complete the squared norm, we get that

L̃(u) = E
[
1
T

∫ T

0
(
∥∥u(Xt, t)− w̃(t,X,B,Mt)

∥∥2
−
∥∥w̃(t,X,B,Mt)

∥∥2 + ∥∥u∗(Xt, t)
∥∥2) dt exp (− λ−1W(X, 0)

)]
where w̃ is defined in equation (2). We also define Φ(u;X,B) as

Φ(u;X,B) = 1
T

∫ T

0
(
∥∥u(Xt, t)− w̃(t,X,B,Mt)

∥∥2) dt.
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Now, by the Girsanov theorem (Theorem 4), we have that for an arbitrary control v ∈ U ,

E[Φ(u;X,B) exp
(
− λ−1W(X, 0)

)
]

=E
[
Φ(u;Xv, Bv) exp

(
− λ−1W(Xv, 0)− λ−1/2

∫ T

0
⟨v(Xv

t , t),dB
v
t ⟩+ λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)]

=E
[
Φ(u;Xv, Bv) exp

(
− λ−1W(Xv, 0)− λ−1/2

∫ T

0
⟨v(Xv

t , t),dBt⟩ − λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)]
,

where Bv
t := Bt + λ−1/2

∫ t

0
v(Xv

s , s) ds. Reexpressing Bv in terms of B, we can rewrite Φ(u;Xv, Bv) and
w̃(t,Xv, Bv,Mt) as follows:

Φ(u;Xv, Bv) = 1
T

∫ T

0

∥∥u(Xv
t , t)− w̃(t,Xv, Bv,Mt)

∥∥2 dt,
w̃(t,Xv, Bv,Mt) = σ(t)⊤

(
−
∫ T

t
Mt(s)∇xf(X

v
s , s) ds−Mt(T )∇g(Xv

T )

+ λ1/2
∫ T

t
(Mt(s)∇xb(X

v
s , s)− ∂sMt(s))(σ

−1)⊤(Xv
s , s)dBs

+
∫ T

t
(Mt(s)∇xb(X

v
s , s)− ∂sMt(s))(σ

−1)⊤(Xv
s , s)v(X

v
s , s)ds

)
.

Putting everything together, we obtain that

L̃(u) = LSOCM(u,M)−K,

where L(u,M) is the loss defined in (5) (note that w(t, v,Xv, B,Mt) := w̃(t,Xv, Bv,Mt)), and

K = E
[
1
T

∫ T

0
(
∥∥w̃(t,X,B,Mt)

∥∥2 − ∥∥u∗(Xt, t)
∥∥2) dt exp (− λ−1W(X, 0)

)]
To complete the proof of equation (2), remark that L̃(u) can be rewritten as

L̃(u) = E
[
1
T

∫ T

0

∥∥u(Xt, t)− u∗(Xt, t)
∥∥2 dt exp (− λ−1W(X, 0)

)]
= E

[
1
T

∫ T

0

∥∥u(Xt, t)− u∗(Xt, t)
∥∥2 dt dPu∗

dP (X) exp(−λ−1V (X0, 0))
]

= E
[
1
T

∫ T

0

∥∥u(Xu∗

t , t)− u∗(Xu∗

t , t)
∥∥2 dt exp(−λ−1V (Xu∗

0 , 0))
]
.

It only remains to reexpress K. Note that by Prop. 1, we have that

u∗(Xt, t) =
E
[
w̃(t,X,B,Mt) exp

(
−λ−1W(X,0)

)
|Ft

]
E
[
exp

(
−λ−1W(X,0)

)
|Ft

]
=

E
[
w̃(t,X,B,Mt)

dPu
∗

dP (X)|Ft

]
exp(−λ−1V (X0,0))

E
[

dPu∗
dP (X)|Ft

]
exp(−λ−1V (X0,0))

=
E
[
w̃(t,X,B,Mt)

dPu
∗

dP (X)|Ft

]
E
[

dPu∗
dP (X)|Ft

]
= E

[
w̃(t,Xu∗

, Bu∗
,Mt)|Xu∗

t = Xt

]
Hence, using the Girsanov theorem (Theorem 4) several times, we have that

K = E
[
1
T

∫ T

0

∥∥w̃(t,Xu∗
, Bu∗

,Mt)∥2 − ∥E
[
w̃(t,Xu∗

, Bu∗
,Mt)|Xu∗

t

]∥∥2 dt exp(−λ−1V (Xu∗

0 , 0))
]

= E
[
1
T

∫ T

0

∥∥w̃(t,Xu∗
, Bu∗

,Mt)− E
[
w̃(t,Xu∗

, Bu∗
,Mt)|Xu∗

t

]∥∥2 dt exp(−λ−1V (Xu∗

0 , 0))
]

= E
[
1
T

∫ T

0

∥∥w̃(t,X,B,Mt)− E[w̃(t,X,B,Mt) exp(−λ−1W(X,0))|Xt]
E[exp(−λ−1W(X,0))|Xt]

∥∥2 dt exp(−λ−1W(X, 0))
]

= E
[
1
T

∫ T

0

∥∥w(t, v,Xv, B,Mt)− E[w(t,v,Xv,B,Mt)α(v,X
v,B)|Xv

t ]
E[α(v,Xv,B)|Xv

t ]

∥∥2 dt α(v,Xv, B)
]
,

which concludes the proof, noticing that K = Var(w;M).

C.2 Proof of the path-wise reparameterization trick (Prop. 1)

We prove a more general statement (Prop. 4), and show that Prop. 1 is a particular case of it.

Proposition 4 (Path-wise reparameterization trick). Let (Ω,F ,P) be a probability space, and B : Ω× [0, T ] →
Rd be a Brownian motion. Let X : Ω × [0, T ] → Rd be the uncontrolled process given by (2.1), and let
ψ : Ω× Rd × [0, T ] → Rd be an arbitrary random process such that:
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• For all z ∈ Rd, the process ψ(·, z, ·) : Ω × [0, T ] → Rd is adapted to the filtration (Fs)s∈[0,T ] of the
Brownian motion B.

• For all ω ∈ Ω, ψ(ω, ·, ·) : Rd × [0, T ] → Rd is a twice-continuously differentiable function such that
ψ(ω, z, 0) = z for all z ∈ Rd, and ψ(ω, 0, s) = 0 for all s ∈ [0, T ].

Let F : C([0, T ];Rd) → R be a Fréchet-differentiable functional. We use the notation X + ψ(z, ·) = (Xs(ω) +
ψ(ω, z, s))s∈[0,T ] to denote the shifted process, and we will omit the dependency of ψ on ω in the proof. Then,

∇xE
[
exp

(
− F (X)

)∣∣X0 = x
]

=E
[(
−∇zF (X+ψ(z, ·))|z=0+λ

−1/2
∫ T

0
(∇zψ(0, s)∇xb(Xs, s)−∇z∂sψ(0, s))(σ

−1)⊤(s)dBs

)
× exp

(
− F (X)

)∣∣X0 = x
]

Proof of Prop. 1. Given a family of functions (Mt)t∈[0,T ] satisfying the conditions in Prop. 1, we can define
a family (ψt)t∈[0,T ] of functions ψt : Rd × [t, T ] → Rd as ψt(z, s) = Mt(s)

⊤z. Note that ψt(z, t) = z for all
z ∈ Rd and ψt(0, s) = 0 for all s ∈ [t, T ], and that ∇zψt(z, s) = Mt(s). Hence, ψt can be seen as a random
process which is constant with respect to ω ∈ Ω, and which fulfills the conditions in Prop. 4 up to a trivial
time change of variable from [t, T ] to [0, T ].

We also define the family (Ft)t∈[0,T ] of functionals Ft : C([t, T ];Rd) → R as Ft(X) = λ−1
∫ T

t
f(Xs, s) ds +

λ−1g(XT ). We have that

∇zFt(X+ψt(z, ·))

= ∇z

(
λ−1

∫ T

t
f(Xs + ψt(z, s), s) ds+ λ−1g(XT + ψt(z, T ))

)
(i)
=λ−1

∫ T

t
∇zψt(z, s)∇f(Xs+ψt(z, s), s) ds+λ

−1∇zψt(z, T )∇g(XT +ψt(z, T ))

=λ−1
∫ T

t
Mt(s)∇f(Xs+ψt(z, s), s) ds+λ

−1Mt(T )∇g(XT +ψt(z, T )),

where equality (i) holds by the Leibniz rule. Using that ψt(0, s) = 0, we obtain that:

∇zFt(X + ψt(z, ·))
∣∣
z=0

= λ−1
∫ T

t
∇zψt(0, s)∇f(Xs, s) ds+ λ−1∇zψt(T, 0)∇g(XT ),

Up to a trivial time change of variable from [t, T ] to [0, T ], Prop. 1 follows from plugging these choices into
equation (4).

Remark 1. We can use matrices Mt(s) that depend on the process X up to time s, since the resulting
processes ψt(·, z, ·) are adapted to the filtration of the Brownian motion B. More specifically, if we let
Mt : Rd × [t, T ] → Rd×d be an arbitrary continuously differentiable function matrix-valued function such that
Mt(x, t) = Id for all x ∈ Rd, and we define the exponential moving average of X as the process X(υ) given by

X
(υ)
t = υ

∫ t

0
e−υ(t−s)Xs ds,

we have that

d
dsMt(X

(υ)
s , s) = ⟨∇Mt(X

(υ)
s , s),

dX(υ)
s

ds ⟩+ ∂sMt(X
(υ)
s , s)

= λ⟨∇xMt(X
(υ)
s , s), Xs −X

(υ)
s ⟩+ ∂sMt(X

(υ)
s , s),

and we can write

∇xE
[
exp

(
− λ−1

∫ T

t
f(Xs, s) ds− λ−1g(XT )

)∣∣Xt = x
]

= E
[(

− λ−1
∫ T

t
Mt(X

(υ)
s , s)∇xf(Xs, s) ds− λ−1Mt(X

(υ)
T , T )∇g(XT )

+ λ−1/2
∫ T

t
(Mt(X

(υ)
s , s)∇xb(Xs, s)− d

dsMt(X
(υ)
s , s))(σ−1)⊤(s)dBs

)
× exp

(
− λ−1

∫ T

t
f(Xs, s) ds− λ−1g(XT )

)∣∣Xt = x
]
.

Plugging this into the proof of Theorem 1, we would obtain a variant of SOCM (Alg. 2) where the matrix-valued
neural network Mω takes inputs (t, s, x) instead of (t, s). Since the optimization class is larger, from the
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bias-variance in Prop. 2 we deduce that this variant would yield a lower variance of the vector field w, and
likely an algorithm with lower error. This is at the expense of an increased number of function evaluations
(NFE) of Mω; one would need K(K+1)m

2 NFE per batch instead of only K(K+1)
2 , which may be too expensive

if the architecture of Mω is large. A way to speed up the computation per batch is to parameterize Mt using
cubic splines.

Proof of Prop. 4. Recall that

dXs = b(Xs, s) ds+
√
λσ(s) dBs, X0 ∼ p0,

is the SDE for the uncontrolled process. For arbitrary x, z ∈ Rd, we consider the following SDEs conditioned
on the initial points:

dX
(x+z)
s = b(X

(x+z)
s , s) ds+

√
λσ(s) dBs, X

(x+z)
0 = x+ z,

dX
(x)
s = b(X

(x)
s , s) ds+

√
λσ(s) dBs, X

(x)
0 = x.

Suppose that ψ : Rd × [0, T ] → Rd satisfies the properties in the statement of Prop. 4. If X̃(x) is a solution of

dX̃
(x)
s = (b(X̃

(x)
s + ψ(z, s), s)− ∂sψ(z, s)) ds+

√
λσ(s) dBs, X̃

(x)
0 = x,

then X(x+z) = X̃(x)+ψ(z, ·) is a solution of (C.2). This is because X(x+z)
0 = X̃

(x)
0 +ψ(z, 0) = X̃

(x)
0 +z = x+z,

and

dX
(x+z)
s = dX̃

(x)
s + ∂sψ(z, s) ds

= (b(X̃
(x)
s + ψ(z, s), s)− ∂sψ(z, s)) ds+

√
λσ(s) dBs + ∂sψ(z, s) ds

= b(X
(x+z)
s , s) ds+

√
λσ(s) dBs,

Note that we may rewrite (C.2) as

dX
(x)
s = (b(X

(x)
s + ψ(z, s), s)− ∂sψ(z, s)) ds

+ (b(X
(x)
s , s)− b(X

(x)
s + ψ(z, s), s) + ∂sψ(z, s)) ds+

√
λσ(s) dBs, X

(x)
t ∼ p0.

Hence, since ψ(z, s) is a random process adapted to the filtration of B, we can apply the Girsanov theorem
for SDEs (Corollary 1) on X̃(x) and X(x), and we have that for any bounded continuous functional Φ,

E[Φ(X̃(x))]

= E
[
Φ(X(x)) exp

( ∫ T

0
λ−1/2σ(s)−1(b(X

(x)
s + ψ(z, s), s)− b(X

(x)
s , s)− ∂sψ(z, s)) dBs

− 1
2

∫ T

0
∥λ−1/2σ(s)−1(b(X

(x)
s + ψ(z, s), s)− b(X

(x)
s , s)− ∂sψ(z, s))∥2 ds

)]
.

We can write

E
[
exp

(
− F (X)

)∣∣X0 = x+ z
] (i)
= E

[
exp

(
− F (X(x+z))

)] (ii)
= E

[
exp

(
− F (X̃(x) + ψ(z, ·))

)]
(iii)
= E

[
exp

(
− F (X(x) + ψ(z, ·))

)
× exp

( ∫ T

0
λ−1/2σ(s)−1(b(X

(x)
s + ψ(z, s), s)− b(X

(x)
s , s)− ∂sψ(z, s)) dBs

− 1
2

∫ T

0
∥λ−1/2σ(s)−1(b(X

(x)
s + ψ(z, s), s)− b(X

(x)
s , s)− ∂sψ(z, s))∥2 ds

)]
(iv)
= E

[
exp

(
−F (X+ψ(z, ·))+

∫ T

0
λ−1/2σ(s)−1(b(Xs+ψ(z, s), s)−b(Xs, s)−∂sψ(z, s)) dBs

− 1
2

∫ T

0
∥λ−1/2σ(s)−1(b(Xs + ψ(z, s), s)− b(Xs, s)− ∂sψ(z, s))∥2 ds

)
|X0 = x

]
Equality (i) holds by the definition of X(x+z), equality (ii) holds by the fact X(x+z)

s = X̃
(x)
s +ψ(z, s), equality

(iii) holds by equation (C.2), and equality (iv) holds by the definition of X(x)
s . We conclude the proof by
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differentiating the right-hand side of (C.2) with respect to z. Namely,

∇xE
[
exp

(
− F (X)

)∣∣X0 = x
]
= ∇zE

[
exp

(
− F (X)

)∣∣X0 = x+ z
]∣∣

z=0

(i)
= E

[(
−∇zF (X + ψ(z, ·)) + λ−1/2

∫ T

0
(∇zψ(0, s)∇xb(Xs, s)−∇z∂sψ(0, s))(σ

−1)⊤(s)dBs

)
× exp

(
− F (X)

)∣∣X0 = x
]

In equality (i) we used (C.2), and that:

• by the Leibniz rule,

∇z

∫ T

0
∥σ(s)−1(b(Xs + ψ(z, s), s)− b(Xs, s)− ∂sψ(z, s))∥2 ds

∣∣
z=0

=
∫ T

0
∇z∥σ(s)−1(b(Xs + ψ(z, s), s)− b(Xs, s)− ∂sψ(z, s))∥2

∣∣
z=0

ds = 0.

• and by the Leibniz rule for stochastic integrals (see Hutton and Nelson (1984)),

∇z

( ∫ T

0
σ(s)−1(b(Xs + ψ(z, s), s)− b(Xs, s)− ∂sψ(z, s)) dBs

)∣∣
z=0

=
∫ T

0
(∇zψ(0, s)∇xb(Xs, s)−∇z∂sψ(0, s))(σ

−1)⊤(s) dBs.

C.3 Informal derivation of the path-wise reparameterization trick

In this subsection, we provide an informal, intuitive derivation of the path-wise reparameterization trick as
stated in Prop. 4. For simplicity, we particularize the functional F to F (X) = λ−1

∫ T

0
f(Xs, s) ds+λ

−1g(XT ).
Consider the Euler-Maruyama discretization of the uncontrolled process X defined in (2.1), with K + 1 time
steps (let δ = T/K be the step size). This is a family of random variables X̂ = (X̂k)k=0:K defined as

X̂0 ∼ p0, X̂k+1 = X̂k + δb(X̂k, kδ) +
√
δλσ(kδ)εk, εk ∼ N(0, I).

Note that we can approximate

E
[
exp

(
− λ−1

∫ T

0
f(Xs, s) ds− λ−1g(XT )

)∣∣X0 = x
]

≈ E
[
exp

(
− λ−1δ

∑K−1
k=0 f(X̂k, s)− λ−1g(X̂K)

)∣∣X̂0 = x
]
,

and that this is an equality in the limit K → ∞, as the interpolation of the Euler-Maruyama discretization
X̂(x) converges to the process X(x). Now, remark that for k ∈ {0, . . . ,K − 1}, X̂k+1|X̂k ∼ N(X̂k +
δb(X̂k, kδ), δλ(σσ

⊤)(kδ)). Hence,

E
[
exp

(
− λ−1δ

∑K−1
k=0 f(X̂k, s)− λ−1g(X̂K)

)∣∣X̂0 = x
]

= C−1
∫∫

(Rd)K
exp

(
− λ−1δ

∑K−1
k=0 f(x̂k, s)− λ−1g(x̂K)

− 1
2δλ

∑K−1
k=1 ∥σ−1(kδ)(x̂k+1−x̂k−δb(x̂k, kδ))∥2

− 1
2δλ∥σ

−1(0)(x̂1−x−δb(x, 0))∥2
)
dx̂1 · · · dx̂K ,
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where C =
√

(2πδλ)K
∏K−1

k=0 det((σσ⊤)(kδ)). Now, let ψ : Rd×[0, T ] → Rd be an arbitrary twice differentiable
function such that ψ(z, 0) = z for all z ∈ Rd, and ψ(0, s) = 0 for all s ∈ [0, T ]. We can write

∇xE
[
exp

(
− λ−1δ

∑K−1
k=0 f(X̂k, s)− λ−1g(X̂K)

)
|X̂0 = x

]
= ∇zE

[
exp

(
− λ−1δ

∑K−1
k=0 f(X̂k, s)− λ−1g(X̂K)

)
|X̂0 = x+ z

]
|z=0

= C−1∇z

( ∫∫
(Rd)K

exp
(
− λ−1δ

∑K−1
k=0 f(x̂k, s)− λ−1g(x̂K)

− 1
2δλ

∑K−1
k=1 ∥σ−1(kδ)(x̂k+1−x̂k−δb(x̂k, kδ))∥2

− 1
2δλ∥σ

−1(0)(x̂1−(x+z)−δb(x+z, 0))∥2
)
dx̂1 · · · dx̂K

)
|z=0

= C−1∇z

( ∫∫
(Rd)K

exp
(
− λ−1δ

∑K−1
k=0 f(x̂k + ψ(z, kδ), s)− λ−1g(x̂K + ψ(z,Kδ))

− 1
2δλ

∑K−1
k=1 ∥σ−1(kδ)(x̂k+1 + ψ(z, (k + 1)δ)−x̂k−ψ(z, kδ)−δb(x̂k+ψ(z, kδ), kδ))∥2

− 1
2δλ∥σ

−1(0)(x̂1+ψ(z, δ)−(x+ψ(z, 0))−δb(x+ψ(z, 0), 0))∥2
)
dx̂1 · · · dx̂K

)
|z=0,

In the last equality, we used that for k ∈ {1, . . . ,K}, the variables x̂k are integrated over Rd, which means
that adding an offset ψ(z, kδ) does not change the value of the integral. We also used that ψ(z, 0) = z. Now,
for fixed values of x̂ = (x̂1, . . . , x̂K), and letting x̂0 = x, we define

Gx̂(z) = λ−1δ
∑K−1

k=0 f(x̂k + ψ(z, kδ), s) + λ−1g(x̂K + ψ(z,Kδ))

+ 1
2δλ

∑K−1
k=0 ∥σ−1(kδ)(x̂k+1+ψ(z, (k + 1)δ)−x̂k−ψ(z, kδ)−δb(x̂k+ψ(z, kδ), kδ))∥2.

Using that ψ(0, s) = 0 for all s ∈ [0, T ], we have that:

Gx̂(0) = λ−1δ
∑K−1

k=0 f(x̂k, s) + λ−1g(x̂K) + 1
2δλ

∑K−1
k=0 ∥σ−1(kδ)(x̂k+1−x̂k−δb(x̂k, kδ))∥2.

∇Gx̂(z)|z=0 = λ−1δ
∑K−1

k=0 ∇ψ(0, kδ)∇f(x̂k, s) + λ−1∇ψ(0,Kδ)∇g(x̂K)

+ 1
δλ

∑K−1
k=0 (∇zψ(0, (k + 1)δ)−∇zψ(0, kδ)−δ∇ψ(0, kδ)∇b(x̂k, kδ))

× ((σ−1)⊤σ−1)(kδ)(x̂k+1−x̂k−δb(x̂k, kδ)).

And we can express the right-hand side of (C.3) in terms of Gx̂(0) and ∇Gx̂(z)|z=0:

∇z

(
C−1

∫∫
(Rd)K

exp
(
−Gx̂(z)

)
dy1 · · · dyK

)
= −C−1

∫∫
(Rd)K

∇Gx̂(z)|z=0 exp
(
−Gx̂(0)

)
dy1 · · · dyK .

We define ϵk = 1√
δλ
σ−1(kδ)(x̂k+1−x̂k−δb(x̂k, kδ)), and then, we are able to write

x̂k+1 = x̂k + δb(x̂k, kδ) +
√
δλσ(kδ)ϵk, x̂0 = x

Gx̂(0) = λ−1δ
∑K−1

k=0 f(x̂k, s) + λ−1g(x̂K) + 1
2

∑K−1
k=0 ∥ϵk∥2,

∇Gx̂(z)|z=0 = λ−1δ
∑K−1

k=0 ∇ψ(0, kδ)∇f(x̂k, s) + λ−1∇ψ(0,Kδ)∇g(x̂K)

+
√
δλ−1

∑K−1
k=0 (∂s∇zψ(0, kδ) +O(δ)−∇ψ(0, kδ)∇b(x̂k, kδ))(σ−1)⊤(kδ)ϵk.

Then, taking the limit K → ∞ (i.e. δ → 0), we recognize (C.3) as Euler-Maruyama discretization of the
uncontrolled process X in equation (2.1) conditioned on X0 = x, and the last term in (C.3) as the Euler-
Maruyama discretization of the stochastic integral λ−1/2

∫ T

0
(∂s∇zψ(0, s)−∇ψ(0, s)∇b(X(x)

s , s))(σ−1)⊤(s) dBs.
Thus,

limK→∞ ∇xE
[
exp

(
− λ−1δ

∑K−1
k=0 f(X̂k, s)− λ−1g(X̂K)

)]
= E

[(
− λ−1

∫ T

0
∇ψ(0, s)∇xf(Xs, s) ds− λ−1∇ψ(0, T )∇g(XT )

+ λ−1/2
∫ T

0
(∇ψ(0, s)∇xb(Xs, s)− ∂s∇ψ(0, s))(σ−1)⊤(s) dBs

)
× exp

(
− λ−1

∫ T

0
f(Xs, s) ds− λ−1g(XT )

)∣∣X0 = x
]
,

which concludes the derivation.
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C.4 SOCMwith the adjoint method for SDEs

Proposition 5. Let LSOCM−Adj : L
2(Rd × [0, T ];Rd) → R be the loss function defined as

LSOCM−Adj(u) := E
[
1
T

∫ T

0

∥∥u(Xv
t , t) + σ(t)⊤a(t,Xv)

∥∥2 dt× α(v,Xv, B)
]
,

where Xv is the process controlled by v (i.e., dXt = (b(Xt, t)+σ(t)v(Xt, t)) dt+
√
λσ(Xt, t) dBt and X0 ∼ p0),

α(v,Xv, B) is the importance weight defined in Theorem 1, and a(t,Xv) is the solution of the ODE

da(t)
dt = −∇xb(X

v
t , t)a(t)−∇xf(X

v
t , t),

a(T ) = ∇g(Xv
T ),

LSOCM−Adj has a unique optimum, which is the optimal control u∗.

Proof. The proof follows the same structure as that of Theorem 1. Instead of plugging the path-wise
reparameterization trick (Prop. 1) in the right-hand side of (3), we make use of (8) to evaluate ∇xE

[
exp

(
−

λ−1
∫ T

0
f(Xt, t) dt− λ−1g(XT )

)
|X0 = x

]
.

Lemma 8 (Adjoint method for SDEs, Li et al. (2020); Kidger et al. (2021)). Let X : Ω × [0, T ] → Rd

be the uncontrolled process defined in (2.1), with initial condition X0 = x. We define the random process
a : Ω× [0, T ] → Rd such that for all ω ∈ Ω, using the short-hand a(t) := a(ω, t),

da(t)
dt = −∇xb(Xt, t)a(t)−∇xf(Xt, t),

a(T ) = ∇g(XT ),

Then, we have that

∇xE[
∫ T

0
f(Xt, t) dt+ g(XT )|X0 = x] = E[a(0)|X0 = x],

∇xE
[
exp

(
− λ−1

∫ T

0
f(Xt, t) dt− λ−1g(XT )

)
|X0 = x

]
= −λ−1E

[
a(0) exp

(
− λ−1

∫ T

0
f(Xt, t) dt− λ−1g(XT )

)
|X0 = x

]
.

Proof. We will use an approach based on Lagrangian multipliers. Define a process a : Ω× [0, T ] → Rd such
that for any ω ∈ Ω, a(ω, ·) is differentiable. For a given ω ∈ Ω, we can write∫ T

0
f(Xt(ω), t) dt+ g(XT (ω))

=
∫ T

0
f(Xt(ω), t) dt+ g(XT (ω))−

∫ T

0
⟨at(ω), (dXt(ω)− b(Xt(ω), t) dt−

√
λσ(t) dBt)⟩.

By Lemma 9, we have that∫ T

0
⟨at(ω), dXt(ω)⟩ = ⟨aT (ω), XT (ω)⟩ − ⟨a0(ω), X0(ω)⟩ −

∫ T

0
⟨Xt(ω),

dat

dt (ω)⟩ dt

Hence,

∇x

( ∫ T

0
f(Xt(ω), t) dt+ g(XT (ω))

)
= ∇x

( ∫ T

0
f(Xt(ω), t) dt+ g(XT (ω))− ⟨aT (ω), XT (ω)⟩+ ⟨a0(ω), X0(ω)⟩

+
∫ T

0

(
⟨at(ω), b(Xt(ω), t)⟩+ ⟨dat

dt (ω), Xt(ω)⟩
)
dt+

√
λ
∫ T

0
⟨at(ω), σ(t) dBt⟩

)
=

∫ T

0
∇xXt(ω)∇xf(Xt(ω), t) dt+∇xXT (ω)∇xg(XT (ω))−∇xXT (ω)aT (ω) +∇xX0(ω)a0(ω)

+
∫ T

0

(
∇xXt(ω)∇xb(Xt(ω), t)at(ω) +∇xXt(ω)

dat

dt (ω)
)
dt

=
∫ T

0
∇xXt(ω)

(
∇xf(Xt(ω), t) +∇xb(Xt(ω), t)at(ω) +

dat

dt (ω)
)
dt

+∇xXT (ω)
(
∇xg(XT (ω))− aT (ω)

)
+ a0(ω).
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In the last line we used that ∇xX0(ω) = ∇xx = I. If choose a such that

dat(ω) =
(
−∇xb(Xt(ω), t)at(ω)−∇xf(Xt(ω), t)

)
dt−∇xh(Xt(ω), t) dBt,

aT (ω) = ∇xg(XT (ω)),

then we obtain that

∇x

( ∫ T

0
f(Xt(ω), t) dt+ g(XT (ω))

)
= a0(ω),

and by the Leibniz rule,

∇xE
[ ∫ T

0
f(Xt(ω), t) dt+ g(XT (ω))

]
= E

[
∇x

( ∫ T

0
f(Xt(ω), t) dt+ g(XT (ω))

)]
= E

[
a0(ω)

]
.

and

∇xE
[
exp

(
− λ−1

∫ T

0
f(Xt(ω), t) dt− λ−1g(XT (ω))

)]
= −λ−1E

[
∇x

( ∫ T

0
f(Xt(ω), t) dt+ g(XT (ω))

)
exp

(
− λ−1

∫ T

0
f(Xt(ω), t) dt− λ−1g(XT (ω))

)]
= −λ−1E

[
a0(ω) exp

(
− λ−1

∫ T

0
f(Xt(ω), t) dt− λ−1g(XT (ω))

)]
.

Lemma 9 (Stochastic integration by parts, Oksendal (2013)). Let

dXt = at dt+ bt dW
1
t ,

dYt = ft dt+ gt dW
2
t .

where at, bt, ft, gt are continuous square integrable processes adapted to a filtration (Ft)t∈[0,T ], and W 1, W 2

are Brownian motions adapted to the same filtration. Then,

XtYt −X0Y0 =
∫ t

0
Xs dYs +

∫ t

0
Ys dXs +

∫ t

0
bsgs⟨dXs, dYs⟩.

C.5 Proof of Lemma 3

Proof. Since the equality (B) holds almost surely for the pair (X,B), it must also hold almost surely for
(Xv, Bv), which satisfy the same SDE. That is

W(Xv, 0) = V (Xv
0 , 0) +

1
2

∫ T

0
∥u∗(Xv

s , s)∥2 ds−
√
λ
∫ T

0
⟨u∗(Xv

s , s),dB
v
s ⟩,

Thus, we obtain that

α(v,Xv, B) = exp
(
− λ−1W(Xv, 0)− λ−1/2

∫ T

0
⟨v(Xv

t , t),dB
v
t ⟩+ λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)

= exp
(
− λ−1V (Xv

0 , 0)− λ−1

2

∫ T

0
∥u∗(Xv

s , s)∥2 ds+ λ−1/2
∫ T

0
⟨u∗(Xv

s , s),dB
v
s ⟩

− λ−1/2
∫ T

0
⟨v(Xv

t , t),dB
v
t ⟩+ λ−1

2

∫ T

0
∥v(Xv

t , t)∥2 dt
)
,

and this is equal to exp
(
− V (Xv

0 , 0)
)

when v = u∗. Since we condition on Xv
0 = xinit, we have obtained that

the random variable takes constant value exp
(
− V (xinit, 0)

)
almost surely, which means that its variance is

zero.

C.6 Proof of Theorem 2

The proof of (2) shows that minimizing Var(w;M) is equivalent to minimizing

E
[
1
T

∫ T

0

∥∥w(t, v,Xv, B,Mt)
∥∥2 dt α(v,Xv, B)

]
.
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To optimize with respect to M , it is convenient to reexpress it in terms of Ṁ = (Ṁt)t∈[0,T ] as Mt(s) =

I +
∫ s

t
Ṁt(s

′) ds′. By Fubini’s theorem, we have that∫ T

t
Mt(s)∇xf(X

v
s , s) ds =

∫ T

t

(
I +

∫ s

t
Ṁt(s

′) ds′
)
∇xf(X

v
s , s) ds

=
∫ T

t
∇xf(X

v
s , s) ds+

∫ T

t
Ṁt(s)

∫ T

s
∇xf(X

v
s′ , s

′) ds′ ds,

−
∫ T

t
(Mt(s)∇xb(X

v
s , s)− Ṁt(s))(σ

−1)⊤(s)v(Xv
s , s) ds

=
∫ T

t
Ṁt(s)(σ

−1)⊤(s)v(Xv
s , s) ds−

∫ T

t
Ṁt(s)

∫ T

s
∇xb(X

v
s′ , s

′)(σ−1
s′ )⊤(s′)v(Xv

s , s) ds
′ ds,

− λ1/2
∫ T

t
(Mt(s)∇xb(X

v
s , s)− Ṁt(s))(σ

−1)⊤(s) dBs

= λ1/2
( ∫ T

t
Ṁt(s)(σ

−1)⊤(s)v(Xv
s , s) ds−

∫ T

t
Ṁt(s)

∫ T

s
∇xb(X

v
s′ , s

′)(σ−1)⊤(s′) dBs′ ds
)
.

Hence, we can rewrite (C.6) as

G(Ṁ) = E
[
1
T

∫ T

0

∥∥σ(t)⊤( ∫ T

t
∇xf(X

v
s , s) ds+∇g(Xv

T )

+
∫ T

t
Ṁt(s)

( ∫ T

s
∇xf(X

v
s′ , s

′) ds′ +∇g(Xv
T ) + (σ−1)⊤(s)v(Xv

s , s)

−
∫ T

s
∇xb(X

v
s′ , s

′)(σ−1
s′ )⊤(s′)v(Xv

s , s) ds
′ −

∫ T

s
∇xb(X

v
s′ , s

′)(σ−1
s′ )⊤(s′) dBs′

)
ds

)∥∥2 dt
× α(v,Xv, B)

]
The first variation δG

δṀ
(Ṁ) of G at Ṁ is defined as the family Q = (Qt)t∈[0,T ] of matrix-valued functions such

that for any collection of matrix-valued functions P = (Pt)t∈[0,T ],

∂ϵV(Ṁ + ϵP )|ϵ=0 = limϵ→0
V(Ṁ+ϵP )−V(M)

ϵ = ⟨P,Q⟩ :=
∫ T

0

∫ T

t
⟨Pt(s), Qt(s)⟩F dsdt,

where Ṁ + ϵP := (Ṁt + ϵPt)t∈[0,T ]. Now, note that

∂ϵV(Ṁ + ϵP )|ϵ=0 = ∂ϵE
[
1
T

∫ T

0

∥∥σ(t)⊤( ∫ T

t
∇xf(X

v
s , s) ds+∇g(Xv

T )

+
∫ T

t
(Ṁt(s) + ϵPt(s))

( ∫ T

s
∇xf(X

v
s′ , s

′) ds′ +∇g(Xv
T ) + (σ−1)⊤(s)v(Xv

s , s)

−
∫ T

s
∇xb(X

v
s′ , s

′)(σ−1
s′ )⊤(s′)v(Xv

s , s) ds
′ −

∫ T

s
∇xb(X

v
s′ , s

′)(σ−1
s′ )⊤(s′) dBs′

)
ds

)∥∥2 dt
× α(v,Xv, B)

]∣∣
ϵ=0

= E
[
2
T

∫ T

0

〈
σ(t)σ(t)⊤

( ∫ T

t
∇xf(X

v
s , s) ds+∇g(Xv

T )

+
∫ T

t
Ṁt(s)

( ∫ T

s
∇xf(X

v
s′ , s

′) ds′ +∇g(Xv
T ) + (σ−1)⊤(s)v(Xv

s , s)

−
∫ T

s
∇xb(X

v
s′ , s

′)(σ−1
s′ )⊤(s′)v(Xv

s , s) ds
′ −

∫ T

s
∇xb(X

v
s′ , s

′)(σ−1
s′ )⊤(s′) dBs′

)
ds

)
,∫ T

t
Pt(s)

( ∫ T

s
∇xf(X

v
s′ , s

′) ds′ +∇g(Xv
T ) + (σ−1)⊤(s)v(Xv

s , s)

−
∫ T

s
∇xb(X

v
s′ , s

′)(σ−1
s′ )⊤(s′)v(Xv

s , s) ds
′ −

∫ T

s
∇xb(X

v
s′ , s

′)(σ−1
s′ )⊤(s′) dBs′

)
ds

〉
dt

× α(v,Xv, B)
]
.

If we define

χ(s,Xv, B) :=
∫ T

s
∇xf(X

v
s′ , s

′) ds′ +∇g(Xv
T ) + (σ−1)⊤(s)v(Xv

s , s)

−
∫ T

s
∇xb(X

v
s′ , s

′)(σ−1
s′ )⊤(s′)v(Xv

s , s) ds
′ −

∫ T

s
∇xb(X

v
s′ , s

′)(σ−1
s′ )⊤(s′) dBs′ ,

we can rewrite (C.6) as

∂ϵV(Ṁ+ϵP )|ϵ=0=E
[
1
T

∫ T

0

〈
σ(t)σ(t)⊤

(∫ T

t
∇xf(X

v
s , s)ds+∇g(Xv

T )+
∫ T

t
Mt(s)χ(s,X

v, B) ds
)
,∫ T

t
Pt(s)χ(s,X

v, B)ds
〉
ds× α(v,Xv, B)

]
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Now let us reexpress equation (C.6) as:

E
[
1
T

∫ T

0

〈
σσ⊤(t)

(
∇g(Xv

T ) +
∫ T

t

(
∇xf(X

v
s , s) + Ṁt(s)χ(s,X

v, B)
)
ds

)
,∫ T

t
Pt(s)χ(s,X

v, B) ds
〉
dt× α(v,Xv, B)

]
(i)
= E

[
1
T

∫ T

0

∫ s

0

〈
Pt(s)χ(s,X

v, B),

σσ⊤(t)
(
∇g(Xv

T ) +
∫ T

t
(∇xf(X

v
s′ , s

′)+Ṁt(s
′)χ(s′, Xv, B)) ds′

)〉
dtds× α(v,Xv, B)

]
(ii)
= E

[
1
T

∫ T

0

∫ s

0

〈
σσ⊤(t)

(
∇g(Xv

T ) +
∫ T

t
(∇xf(X

v
s′ , s

′) + Ṁt(s
′)χ(s′, Xv, B)) ds′

)
χ(Xv, s, B)⊤,

Pt(s)
〉
F
dtds× α(v,Xv, B)

]
=

∫ T

0

∫ s

0

〈
1
T σσ

⊤(t)E
[(
∇g(Xv

T )+
∫ T

t
(∇xf(X

v
s′ , s

′)+Ṁt(s
′)χ(Xv, s′, B)) ds′

)
χ(Xv, s, B)⊤α(v,Xv, B)

]
,

Pt(s)
〉
F
dtds.

Here, equality (i) holds by Lemma 10 with the choices α(t, s) = Pt(s)χ(X
v, s, B), γ(t) = σσ⊤(t)

(
∇g(Xv

T ) +∫ T

t

(
∇xf(X

v
s , s) + Ṁt(s)χ(X

v, s, B)
)
ds. Equality (ii) follows from the fact that for any matrix A and vectors

b, c, ⟨Ab, c⟩ = c⊤Ab = Tr(c⊤Ab) = Tr(Abc⊤) = ⟨B, cb⊤⟩F , where ⟨·, ·⟩F denotes the Frobenius inner product.
The first-order necessary condition for optimality states that at the optimal Ṁ∗, the first variation δG

δṀ
(Ṁ∗)

is zero. In other words, ∂ϵV(Ṁ + ϵP )|ϵ=0 is zero for any P . Hence, the right-hand side of (C.6) must be zero
for any P , which implies that almost everywhere with respect to t ∈ [0, T ], s ∈ [s, T ],

E
[(
∇g(Xv

T )+
∫ T

t
(∇xf(X

v
s′ , s

′)+Ṁt(s
′)χ(Xv, s′, B)) ds′

)
χ(Xv, s, B)⊤α(v,Xv, B)

]
= 0.

To derive this, we also used that σ(t) is invertible by assumption.

Define the integral operator Tt : L2([t, T ];Rd×d) → L2([t, T ];Rd×d) as

[Tt(Ṁt)](s) =
∫ T

t
Ṁt(s

′)E
[
χ(Xv, s′, B)χ(Xv, s, B)⊤ × α(v,Xv, B)

]
ds′

If we define Nt(s) = −E
[(
∇g(Xv

T ) +
∫ T

t
∇xf(X

v
s′ , s

′) ds′
)
χ(Xv, s, B)⊤ × α(v,Xv, B)

]
, the problem that we

need to solve to find the optimal Ṁt is

Tt(Ṁt) = Nt.

This is a Fredholm equation of the first kind.

Lemma 10. If α, β : [0, T ]× [0, T ] → Rd, γ : [0, T ] → Rd, δ : [0, T ] → Rd×d are arbitrary integrable functions,
we have that ∫ T

0

〈 ∫ T

t
α(t, s) ds, γ(t)

〉
dt =

∫ T

0

∫ s

0

〈
α(t, s), γ(t)

〉
dtds,

Proof. We have that:∫ T

0

∫ T

t

〈
α(t, s), γ(t)

〉
dsdt

(i)
=

∫ T

0

∫ T−t

0

〈
α(t, T − s), γ(t)

〉
dsdt

(ii)
=

∫ T

0

∫ t

0

〈
α(T − t, T − s), γ(T − t)

〉
dsdt

(iii)
=

∫ T

0

∫ T

s

〈
α(T − t, T − s), γ(T − t)

〉
dtds

(iv)
=

∫ T

0

∫ T

T−s

〈
α(T − t, s), γ(T − t)

〉
dtds

(v)
=

∫ T

0

∫ s

0

〈
α(t, s), γ(t)

〉
dtds

Here, in equalities (i), (ii), (iv) and (v) we make changes of variables of the form t 7→ T − t, s 7→ T − s,
s′ 7→ T − s′. In equality (iii) we use Fubini’s theorem.

D Control warm-starting

We introduce the Gaussian warm-start, a control warm-start strategy that we adapt from Liu et al. (2023),
and that we use in our experiments in Figure 3. Their work tackles generalized Schrödinger bridge problems,
which are different from the control setting in that the final distribution is known and there is no terminal
cost. The following proposition, that provides an analytic expression of the control needed for the density of
the process to be Gaussian at all times, is the foundation of our method.

31



Proposition 6. Given Z ∼ N(0, I) define the random process Y as

Yt = µ(t) + Γ̃(t)Z, where µ(t) ∈ Rd, Γ̃(t) =
√
tΓ(t) ∈ Rd×d.

Define the control u : Rd × [0, T ] → Rd as

u(x, t) = σ(t)−1
(
∂tµ(t) +

((
∂tΓ(t)

)
Γ(t)−1 + I−(σσ⊤)(t)(ΣΣ⊤)−1(t)

2t

)
(x− µ(t))− b(x, t)

)
.

Then, if Γ0 = σ(0), the controlled process Xu defined in equation (2.1) has the same marginals as Y . That is,
for all t ∈ [0, T ], Law(Yt) = Law(Xu

t ).

Proof. Following Liu et al. (2023), we have that

∂tXt = ∂tµt + ∂tΓ̃(t)Z = ∂tµ(t) + (∂tΓ̃(t))Γ̃(t)
−1(Xt − µ(t)),

∇ log pt(x) = −Σ̃(t)−1(x− µ(t)), Σ̃(t) = Γ̃(t)Γ̃(t)⊤.

Now, pt satisfies the continuity equation equation

∂tpt = −∇ · ((∂tµ(t) + (∂tΓ̃(t))Γ̃(t)
−1(x− µ(t)))pt)

Let D(t) = 1
2σ(t)σ(t)

⊤. We want to reexpress (D) as a Fokker-Planck equation of the form

∂tpt =−∇ · (v(x, t)pt)+
∑d

i=1

∑d
j=1 ∂i∂j(Dij(t)pt)=−∇ · (v(x, t)pt)+

∑d
i=1 ∂i

∑d
j=1(Dij(t)∂jpt)

= −∇ · (v(x, t)pt) +∇ · (D(t)∇pt) = −∇ · (v(x, t)pt) +∇ · (D(t)∇ log pt(x)pt)

= −∇ · ((v(x, t)−D(t)∇ log pt(x))pt).

Hence, we need that

v(x, t)−D(t)∇ log pt = ∂tµ(t) + (∂tΓ̃(t))Γ̃(t)
−1(x− µ(t)),

=⇒ vt(x) = ∂tµ(t) + ((∂tΓ̃(t))Γ̃(t)
−1(x− µ(t)) + (σσ⊤)(t)

2 ∇ log pt(x)

= ∂tµ(t) + (∂tΓ̃(t))Γ̃(t)
−1(x− µ(t))− (σσ⊤)(t)

2 Σ(t)−1(x− µ(t)).

If we let Γ̃(t) = Γ(t)
√
t, then Σ̃(t) = tΓ(t)Γ(t)⊤ = tΣ(t) and ∂tΓ̃(t) = ∂tΓ(t)

√
t+ Γ(t)

2
√
t
. That is,

v(x, t) = ∂tµ(t) +
(
∂tΓ(t)

√
t+ Γ(t)

2
√
t

)Γ(t)−1

√
t

(x− µ(t))− (σσ⊤)(t)
2

Σ(t)−1

t (x− µ(t))

= ∂tµ(t) +
(
∂tΓ(t)

)
Γ(t)−1(x− µ(t)) + 1

2t (x− µ(t))− (σσ⊤)(t)Σ(t)−1

2t (x− µ(t))

For v to be finite at t = 0, we need that (σσ⊤)(0)Σ(0)−1 = I, which holds, for example, if Γ(0) = σ(0). Also,
to match the form of (2.1), we need that

v(x, t) = b(x, t) + σ(t)u(x, t),

=⇒ u(x, t) = σ(t)−1
(
∂tµt +

((
∂tΓ(t)

)
Γ(t)−1 + I−(σσ⊤)(t)Σ(t)−1

2t

)
(x− µt)− b(x, t)

)
.

The warm-start control is computed as the solution of a Restricted Gaussian Stochastic Optimal Control
problem, where we constrain the space of controls to those that induce Gaussian paths as described in Prop. 6.
In practice, we learn a linear spline µ = (µ(b))Bb=0, where µ(b) ∈ Rd, and a linear spline Γ = (Γ(b))Bb=0, where
Γ(b) ∈ Rd×d. These linear splines take the role of µ(t) and Σ(t) in (6). Given splines µ and Γ, we obtain the
warm-start control using (6); for a given t ∈ [0, T ), if we let b− = ⌊Bt/T ⌋, b+ = b− + 1, ∆ = T/B, we have
that

µ̂(t) = (t−b−∆)µ(b+)+(b+∆−t)µ(b−)

∆ , ∂̂tµ(t) =
µ(b+)−µ(b−)

∆ ,

Γ̂(t) = (t−b−∆)Γ(b+)+(b+∆−t)Γ(b−)

∆ , ∂̂tΓ(t) =
Γ(b+)−Γ(b−)

∆ ,

û(x, t) = σ(t)−1
(
∂̂tµ(t) +

(
∂̂tΓ(t)Γ̂(t)

−1 + I−(σσ⊤)(t)(Σ̂Σ̂⊤)−1(t)
2t

)
(x− µ̂(t))− b(x, t)

)
.
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Algorithm 3 provides a method to learn the splines µ, Γ. It is a stochastic optimization algorithms in which
the spline parameters are updated by sampling Yt in (6) at different times, computing the control cost relying
on (D), and taking its gradient.

Algorithm 3 Restricted Gaussian Stochastic Optimal Control
Input: State cost f(x, t), terminal cost g(x), diffusion coeff. σ(t), base drift b(x, t), noise level λ, number of iterations

N , batch size m, number of time steps K, number of spline knots B, initial mean spline knots µ0 = (µ
(b)
0 )Bb=0,

initial noise spline knots Γ0 = (Γ
(b)
0 )Bb=0.

1 for n = 0 : (N − 1)} do
2 Sample m i.i.d. variables (Zi)

n
i=1 ∼ N(0, I) and m times (ti)

n
i=1 ∼ Unif([0, T ]).

3 for j = 0 : K do
4 Set tj = jT/K, and compute µ̂n(tj), ∂̂tµn(tj), Γ̂n(tj), ∂̂tΓn(tj) according to (D), (D) using µn, Γn

5 for i = 1 : m do compute Yij = µ̂(tj) +
√
tjΓ̂(tj)Zi and ûn(Yij , tj) using (D);

6 end
7 Compute L̂RGSOC(µn,Γn) =

1
m

∑m
i=1

(
T
K

∑K−1
j=0

(
1
2
∥û(Yij , tj)∥2 + f(Yij , tj)

)
+ g(YiK)

)
8 Compute the gradient of L̂RGSOC(µn,Γn) with respect to the spline parameters (µn,Γn).
9 Obtain µn+1, Γn+1 with via an Adam update on µn, Γn resp. (or another stochastic algorithm)

10 end
Output: Learned splines µN , ΓN , control ûN

Once we have access to the restricted control ûN , we can warm-start the control in Algorithms 1 and 2 by
introducing ûN as an offset. That is, we parameterize the control as uθ = ûN + ũθ.

E Experimental details and additional plots

E.1 Experimental details

The control L2 error curves show the following quantity:

Et,Pu∗ [∥u∗(Xu∗

t , t)− u(Xu∗

t , t)∥2e−λ−1V (Xu∗
0 ,0)]/Et,Pu∗ [e−λ−1V (Xu∗

0 ,0)]

That is, we sample trajectories using the optimal control, and compute the error using a Monte Carlo estimate.
In all our experiments, the distribution Xu∗

0 is a delta, which means that we do not need to compute V (Xu∗

0 , 0).
We keep an exponential moving average (EMA) estimate of the control L2 error, which we show in the plots.
To compute it, we sample ten batches of optimally controlled trajectories every 10 training iterations, and we
update the quantity with the average of the ten batches, using EMA coefficient 0.02.

For all losses and all settings, we train the control using Adam with learning rate 1× 10−4. For SOCM, we
train the reparametrization matrices using Adam with learning rate 1× 10−2. We use batch size m = 128
unless otherwise specified. When used, we run the warm-start algorithm (Algorithm 3) with B = 20 knots,
K = 200 time steps, and batch size m = 512, and we use Adam with learning rate 3× 10−4 for N = 60000
iterations.

Quadratic Ornstein-Uhlenbeck The choices for the functions of the control problem are:

b(x, t) = Ax, f(x, t) = x⊤Px, g(x) = x⊤Qx, σ(t) = σ0.

where Q is a positive definite matrix. Control problems of this form are better known as linear quadratic
regulator (LQR) and they admit a closed form solution (Van Handel, 2007, Thm. 6.5.1). The optimal control
is given by:

u∗t (x) = −2σ⊤
0 Ftx,

where Ft is the solution of the Ricatti equation

dFt

dt
+A⊤Ft + FtA− 2Ftσ0σ

⊤
0 Ft + P = 0
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with the final condition FT = Q. Within the Quadratic OU class, we consider two settings:

• Easy: We set d = 20, A = 0.2I, P = 0.2I, Q = 0.1I, σ0 = I, λ = 1, T = 1, xinit = 0.5N(0, I). We do
not use warm-start for any algorithm. We take K = 50 time discretization steps, and we use random
seed 0.

• Hard: We set d = 20, A = I, P = I, Q = 0.5I, σ0 = I, λ = 1, T = 1, xinit = 0.5N(0, I). We use the
Gaussian warm-start (Appendix D). We take batch size m = 64 and K = 150 time discretization steps,
and we use random seed 0.

Linear Ornstein-Uhlenbeck The functions of the control problem are chosen as follows:

b(x, t) = Ax, f(x, t) = 0, g(x) = ⟨γ, x⟩, σ(t) = σ0.

The optimal control for this class of problems is given by (Nüsken and Richter, 2021, Sec. A.4):

u∗t (x) = −σ⊤
0 e

A⊤(T−t)γ.

We use exactly the same functions as Nüsken and Richter (2021): we sample (ξij)1≤i,j≤d once at the beginning
of the simulation, and set:

d = 10, A = −I + (ξij)1≤i,j≤d, γ = 1, σ0 = I + (ξij)1≤i,j≤d,

T = 1, λ = 1, xinit = 0.5N(0, I).

We take K = 100 time discretization steps, and we use random seed 0.

Double Well We also use exactly the same functions as Nüsken and Richter (2021), which are the
following:

b(x, t) = −∇Ψ(x), Ψ(x) =

d∑
i=1

κi(x
2
i − 1)2, g(x) =

d∑
i=1

νi(x
2
i − 1)2, σ0 = I,

where d = 10, and κi = 5, νi = 3 for i ∈ {1, 2, 3} and κi = 1, νi = 1 for i ∈ {4, . . . , 10}. We set T = 1, λ = 1
and xinit = 0. We take K = 200 time discretization steps, and we use random seed 0.

E.2 Model architectures

As a general guideline, the control function can be thought of as the analog of the score function in diffusion
models; hence, a natural choice for the architecture can be U-Nets or diffusion transformers if the control
task is on images, audio or video. Other domains may require different architectures. In the experiments
we report, we used the architecture implemented in the class FullyConnectedUNet within the file SOC_-
matching/models.py. It is a simplified version of the U-Net architecture where both the down-sampling
and up-sampling layers are fully connected with ReLU activations, and the horizontal layers are linear
transformations. We use three down-sampling and up-sampling steps, with widths 256, 128 and 64 (hence, the
first down-sampling step is actually an up-sampling, because the data dimensions in our experiments range
from 10 to 20).

The reparameterization matrices have an unusual trait, which is that their input dimension is small (two)
while their output dimension is large (d2). Hence, the kind of functions that they need to learn are low
dimensional and hence easy. In our case, we used the architecture implemented in the class SigmoidMLP
within the file SOC_matching/models.py, which is essentially a three layer multilayer perceptron with ReLU
activations and output dimension d2, whose output is averaged with the identity matrix using sigmoid weights,
in order to enforce that Mt(t) be the identity matrix.

E.3 Additional plots

Figure 4 shows the control objective (2.1) for the four settings. The error bars for the control objective plots
show the confidence intervals for ± one standard deviation. As expected, SOCM also obtains the lowest values
for the control objective, up to the estimation error.

34



Figure 5 shows the normalized standard deviation of the importance weight for the learned control u:√
Var[α(u,Xu, B)]/E[α(u,Xu, B)]. By Lemma 3, when Xu

0 = xinit for an arbitrary xinit (which is the case
for all our experiments), this quantity is zero for the optimal control u∗. Hence, the normalized standard
deviation of α is an alternative metric to measure the optimality of the learned control.

Figure 6 shows an exponential moving average of the norm squared of the gradient for Linear OU and
Double Well. For Linear OU, the minimum gradient norm is achieved by the adjoint method, while
for Double Well it is achieved by the cross entropy loss. The training instabilities of the adjoint method
become apparent as well. Interestingly, in both settings the algorithms with smallest gradients are not SOCM,
which is the algorithm with smallest error as shown in Figure 2. Understanding this phenomenon is outside of
the scope of this paper.

Figure 7 shows that the instabilities of the adjoint method are inherent to the loss, because they also appear
at small learning rates: 3× 10−5 is smaller than the learning rates typically used for Adam, which hover from
1× 10−4 to 1× 10−3.

Figure 8 shows plots of the control L2 error, the norm squared of the gradient, and the control objective for
the Quadratic OU (hard) setting, using a warm-start strategy detailed in Appendix D. Figure 3 shows
that SOCM is once again the algorithm that achieves the lowest error and the smallest gradients. Remark
that the warm-start control is a reasonable approximation of the optimal control, as the initial control L2

error is much lower than in the other figures.

Figure 9 shows the value of the training loss for SOCM and its two ablations: SOCM with constant Mt = I,
and SOCM-Adjoint. For all such algorithms, the training loss is the sum of the L2 error of the learned control
u, and the expected conditional variance of the matching vector field w. Thus, the difference between the
training loss plots and the L2 error plots is the expected conditional variance of w. We observe that the
expected conditional variance in the Quadratic OU setting is orders of magnitude smaller for SOCM than
for its two ablations. For Linear OU, SOCM and SOCM-adjoint have similar expected conditional variance,
and a possible explanation is that the Linear OU setting is very simple. In the Double Well setting, the
SOCM-adjoint training loss curve has spikes that are probably caused by instabilities of the adjoint method.
These spikes can be attributed mostly to the expected conditional variance term, since the corresponding L2

error curve in Figure 2 does not present them.
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Figure 4 Plots of the control objective for the four settings.
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Figure 5 Plots of the normalized standard deviation of the importance weights:
√

Var[α(u,Xu, B)]/E[α(u,Xu, B)].

Figure 6 Plots of the norm squared of the gradient for the Linear Ornstein Uhlenbeck and Double Well settings.
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Figure 7 Plots of the control L2 error and the norm squared of the gradient for the adjoint method on Double Well,
for two different values of the Adam learning rate. The instabilities of the adjoint method persist for small learning
rates, signaling an inherent issue with the loss.

Figure 8 Plots of the control L2 error, the norm squared of the gradient, and the control objective for the Quadratic
Ornstein-Uhlenbeck (hard) setting, without using warm-start.
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Figure 9 Plots of the training loss for SOCM and its two ablations: SOCM with constant Mt = I, and SOCM-Adjoint.
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