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We consider the local thermodynamics of the de Sitter state. The local temperature, which is
the same for all points of the de Sitter space, is T = H/π, where H is the Hubble parameter. It is
twice larger than the Gibbons-Hawking temperature of the cosmological horizon, TGH = H/2π. The
local temperature is not related to the cosmological horizon. It determines the rate of the activation
processes, which are possible in the de Sitter environment. The typical example is the process of
the ionization of the atom in the de Sitter environment, which rate is determined by temperature
T = H/π. The local temperature determines the local entropy of the de Sitter vacuum state, and
this allows to calculate the total entropy inside the cosmological horizon. The result reproduces
the Gibbons-Hawking area law, which is related to the cosmological horizon, Shor = 4πKA, where
K = 1/16πG. We extend the consideration of the local thermodynamics of the de Sitter state
using the f(R) gravity. In this thermodynamics, the Ricci scalar curvature R and the effective
gravitational coupling, K, are thermodynamically conjugate variables. The holographic connection
between the bulk entropy of the Hubble volume, and the surface entropy of the cosmological horizon
remains the same, Shor = 4πKA, but where the gravitational coupling is K = df/dR. The local
temperature of the de Sitter vacuum suggests that it serves as the heat bath for the matter, and
thus the de Sitter state is locally unstable towards the creation of matter and its further heating.
The decay of the de Sitter vacuum due to such processes determines the quantum breaking time of
the space-times with positive cosmological constant. We also consider the thermodynamics of de
Sitter in the frame of the multi-metric gravity ensemble, where the heat exchange between different
”sub-Universes” in the ensemble leads to the common de Sitter expansion with common temperature
T = H/π. Application of the local thermodynamics to the entropy of the Schwarzschild black hole
is also considered.
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I. INTRODUCTION

We consider the local thermodynamics of the de Sitter state of the expansion of the Universe. The term “local”
means that we consider the de Sitter vacuum as the thermal state, which is characterized by the local temperature.
This consideration is based on observation, that matter immersed in the de Sitter vacuum feels this vacuum as the heat
bath with the local temperature T = H/π, where H is the Hubble parameter. This temperature is twice larger than
the Gibbons-Hawking one, and it has no relation to the cosmological horizon. The existence of the local temperature,
suggests the existence of the other local thermodynamic quantities, which participate in the local thermodynamics of
the de Sitter state. In addition to the the local entropy density s and local vacuum energy density ǫ, there are also
the local thermodynamic variables related to the gravitational degrees of freedom.
Although the local temperature is twice larger than the Gibbons-Hawking temperature assigned to the horizon,

TGH = H/2π, there is the certain connection between the local thermodynamics and the thermodynamics of the event
horizon. It appears that the total entropy of the volume VH bounded by the cosmological horizon coincides with the
Gibbons-Hawking entropy, Sbulk = sVH = A/4G = Shor. This demonstrates that the local thermodynamics in the
(3 + 1) de Sitter is consistent with the global thermodynamics assigned to the cosmological horizon, although the
origin of such bulk-surface correspondence is not very clear.
We tested the local thermodynamics and the bulk-surface correspondence in the extension of general relativity –

the f(R) gravity. The f(R) gravity in terms of the Ricci scalar R is one of the simplest geometrical models, which
describes the dark energy and de Sitter expansion of the Universe.1–7 It was used to construct an inflationary model
of the early Universe – the Starobinsky inflation, which is controlled by the R2 contribution to the effective action.
This class of models, f(R) ∝ R − R2/M2, was also reproduced in the so-called q-theory,8,9 where q is the 4-form
field introduced by Hawking10 for the phenomenological description of the physics of the deep (ultraviolet) vacuum
(here the sign convention for R is opposite to that in Ref.2). The Starobinsky model is in good agreement with the
observations. However, despite the observational success, the theory of Starobinsky inflation is still phenomenological.
Due to a rather small mass scale M compared with the Planck scale it is difficult to embed the model into a UV
complete theory.11–13

The f(R) theory demonstrates that the effective gravitational coupling K (it is the inverse Newton constant,
K = 1/16πG) and the scalar curvature R are connected by equation K = df/dR. This suggests that K and R
are the thermodynamically conjugate variables.14,15 This pair of the gravitational variables is similar to the pair of
the electrodynamic variables, electric field E and electric induction D, which participate in the thermodynamics of
dielectrics. Using the local thermodynamics with T = H/π, we obtained the general result for the total entropy of
the Hubble volume, Sbulk = sVH = 4πKA = Shor, where K = df/dR is the effective gravitational coupling.
In Sec. II we consider the elements of the local thermodynamics of the de Sitter state. It is based on the observation

that the de Sitter vacuum serves as the thermal bath for the external matter – the matter immersed into the de Sitter
environment. This is different from the traditional consideration of the vacua of the quantum fields in the de Sitter
spacetime, which uses the Euclidean action method. Example of the influence of the de Sitter vacuum to the external
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matter is provided by an atom in the de Sitter environment (Sec. II A). As distinct from the atom in the flat space,
the atom in the de Sitter vacuum has a certain probability of ionization. The rate of ionization is similar to the rate
of ionization in the presence of the thermal bath with temperature T = H/π.16–20 The same temperature determines
the other activation processes, which are energetically forbidden in the Minkowski spacetime, but are allowed in the
de Sitter background, see also Refs.21,22 (Sec. II B). In Sec. II C it is shown that the local temperature also determines
the Hawking temperature of radiation from the cosmological horizon without using the Euclidean action.
All that suggests that it is natural to consider the temperature T = H/π as the local temperature of the de Sitter

vacuum. The local temperature leads to the local entropy of the de Sitter thermal bath (Sec. II H), which integrated
over the Hubble volume reproduces the Gibbons-Hawking entropy of the cosmological horizon (Sec.II I). The effect of
thermal fluctuations is discussed in Sec. II J.
Sec. III is devoted to the multi-metric gravity, which can be considered as ensemble of the sub-Universes, each

described by its own metric gµν(n) (or tetrads e
a
µ(n)), by its own gravitational coupling Kn and cosmological constant

Λn. The heat exchange between the sub-Universes leads to their thermalization – the formation of the Universe in
which the sub-Universes have the common Hubble parameter and thus the common temperature.
In Sec. IV the local entropy of the de Sitter state allows to consider the thermodynamics of the Schwarzschild black

hole, assuming that the black hole can be formed by relaxation of the gravastar (Sec. IVC) with the de Sitter core.
Here the interior of the gravastar is represented by the contracting de Sitter state (Sec. IVB), which has negative
Hubble parameter, and thus the negative temperature T = H/π < 0 and negative entropy. Since the cosmological and
black hole horizons cancels each other, the gravastar has zero entropy. In the process of relaxation of the gravastar to
the black hole the de Sitter core with its negative entropy shrinks, which results in the Hawking-Bekenstein entropy
of the black hole horizon (Sec. IVD). The entropy of the white hole is considered in Sec. IVE, and the heat exchange
between black holes in the multi-metric gravity is in Sec. IVF.
Sec. V is devoted to thermodynamics of de Sitter in the f(R) gravity. It contains the pair of the thermodynamically

conjugate variables, K and R (Sec. VA). These variables together with the local temperature and local entropy
provides the Gibbs-Duhem relation (Sec. VB). The general result for the total entropy of the Hubble volume,
Sbulk = sVH = 4πKA = Shor is obtained in Sec. VC. This is considered on example of quadratic gravity in Sec. VD.
The Sec. VI is devoted to the de Sitter decay due to the thermalization of matter by the de Sitter heat bath, and

finally the conclusion is in Sec. VII.

II. THERMODYNAMICS OF THE DE SITTER STATE

A. Atom in de Sitter environment as thermometer

We consider the de Sitter thermodynamics using the Painlevé-Gullstrand (PG) form,23,24 where the metric in the
de Sitter expansion is

ds2 = −dt2 + (dr − v(r)dt)2 + r2dΩ2 . (1)

Here the shift velocity is v(r) = Hr. This metric is stationary, i.e. does not depend on time, and it does not have
the unphysical singularity at the cosmological horizon. That is why it is appropriate for consideration of the local
thermodynamics both inside and outside the horizon. It also allows to describe two different states – the expanding
de Sitter Universe with H > 0 and contracting de Sitter Universe with H < 0.
Now let us consider an atom at the origin, r = 0. The atom is the external object in the de Sitter spacetime, which

is playing the role of the detector (or the role of the static observer) in this spacetime. The electron bounded to an
atom may absorb the energy from the gravitational field of the de Sitter background and escape from the electric
potential barrier. If the ionization potential is much smaller than the electron mass but is much larger than the
Hubble parameter, H ≪ ǫ0 ≪ m, one can use the nonrelativistic quantum mechanics to estimate the tunneling rate
through the barrier. The corresponding radial trajectory pr(r) is obtained from the classical equation

p2r
2m

+ prv(r) = −ǫ0 , (2)

where pr(r)v(r) is the Doppler shift:

pr(r) = −mv(r) +
√

m2v2(r) − 2mǫ0 . (3)

The integral of pr(r) over the classically forbidden region, 0 < r < r0 =
√

2ǫ0/mH2, gives the ionization rate

w ∼ exp (−2 ImS) = exp
(

−πǫ0
H

)

. (4)
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This is equivalent to the thermal thermal radiation with temperature T = H/π.
In the interpretation of Ref.20, the bound state decays by quantum tunnelling from the point r = 0 to the point

r = r0, at which the energy −ǫ0 matches the de Sitter gravitational potential U(r) = −mH2r2/2. The radial
trajectory pr(r) is obtained from the classical equation

p2

2m
− 1

2
mH2r2 = −ǫ0 . (5)

This gives Eq.(4) for the WKB tunneling rate.

B. Decay of composite particles in de Sitter spacetime

The same local temperature T = H/π describes the process of the splitting of the composite particle with mass m
into two components with m1 + m2 > m, which is also not allowed in the Minkowski vacuum17,25–27. In the limit
m ≫ H , the rate of such decay of the composite particle is

w ∼ exp

(

−π(m1 +m2 −m)

H

)

. (6)

The similar processes take place in the so-called Cosmological Collider,21,22 where the new particle created by
the Hawking radiation plays the role of the external object which produces the heavy particles. Here there are two
different physical processes, which are described by different temperatures. The Hawking radiation from the de Sitter
vacuum is determined by the Hawking temperature TGH of the cosmological horizon, while the further process – the
splitting of the created particles – is determined by the local temperature T = 2TGH.

C. Connection between the local and Hawking temperatures

The local temperature T = H/π also determines the process of the Hawking radiation from the cosmological horizon
and the Gibbons-Hawking temperature TGH = T/2 = H/2π. The reason is that in the Hawking process, two particles
are coherently created (the analog of cotunneling): one particle is created inside the horizon, while its partner is
simultaneously created outside the horizon.28 The rate of the coherent radiation of two particles, each with energy E,
is w ∝ exp(− 2E

T ). However, the observer who uses the Unruh-DeWitt detector can detect only the particle created

inside the horizon. For this observer the creation rate w ∝ exp(− 2E
T ) is perceived as

w ∝ exp

(

− E

T/2

)

= exp

(

− E

TGH

)

, (7)

with the Gibbons-Hawking temperature TGH = T/2 = H/2π.
On the contrary, in the local process of the decay of the atom, which is not related to the cosmological horizon,

only single particle (electron) is radiated from the atom. This process is fully determined by the local temperature,
w ∝ exp(− ǫ0

T ).

D. Two detectors: exited atom vs ionized atom

Note the main difference between the temperature measured by the observer using the Unruh-DeWitt detector
(see e.g. Ref.29 and references therein) and the temperature measured by the observer using ionization of an atom.
The ionization process is possible, because the radiated electron moves far away from the atom to position r = r0,
where its negative gravitational energy compensates the ionization potential. In the Unruh-DeWitt detector, which
corresponds to the two-level atom interacting with a quantum field, the electron in the atom is excited but remains
in the same position in the same atom. That is why such excitation of electron may only come either by the Hawking
radiation, or by radiation of photons, see Sec. II E.
However, in the de Sitter case there is no difference in temperatures measured by two detectors. If in the Unruh-

DeWitt detector experiments the Hawking temperature is properly interpreted according to Eq.(7), the measured
temperature of the Hawking radiation is also T = 2TGH. So, in spite of different physical principles, both detectors
in the de Sitter environment show the same physical temperature, T = 2TGH. This also demonstrates the uniqueness
of the de Sitter state.
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E. Radiation of photons by atom in de Sitter environment

Instead of the radiation of electron from the atom, one can consider the radiation of photon by the same atom. In
both cases the escape of photon or electron from the atom provides the negative gravitational energy, which allows
to consider the processes which are prohibited in the Minkowski state. Let us consider the atom in the excited state
with energy E0 + ǫ0, where E0 is the ground state energy. In the de Sitter environment, the radiation of photon is
possible even if its energy cp exceeds the energy difference between the excited and the ground state level, i.e. when
cp > ǫ0.
For the relativistic photon the equation (2) takes the form (here we use c = 1):

√

p2r + p2
⊥
+ prv(r) = −ǫ0 . (8)

This gives the trajectory of photon

pr(r) =
1

1−H2r2

[

ǫ0Hr ±
√

ǫ20 + p2
⊥
(H2r2 − 1)

]

. (9)

For cp⊥ > ǫ0, the integration over the classically forbidden region, r < r0, where H
2r20 = 1−ǫ20/p

2
⊥
, gives the following

radiation rate of photon by excited atom:

w ∼ exp (−2 ImS) = exp

(

−π(cp⊥ − ǫ0)

H

)

, cp⊥ > ǫ0 . (10)

This process is again determined by temperature T = H/π.
Eq.(10) demonstrates, that radiation takes place even if the atom is not excited, i.e. when ǫ0 = 0. In this case

Eq.(10) describes the process of radiation of photon in the de Sitter environment:

w ∼ exp
(

−cp

T

)

, (11)

The atom here is needed as an external object, which violates the de Sitter symmetry and thus provides the nonzero
matrix element for the process of radiation of photon.

F. Accelerating detector: is there connection between the local process and Unruh radiation?

In the same way as in Sections IID and II E, one may consider different independent processes related to the
accelerating detector. One of them is the Unruh radiation measured by the Unruh-DeWitt detector, which could be
linked to the apparent event horizon in the Rindler spacetime and to the corresponding Unruh temperature TU = a/2π,
where a is acceleration.30–32 The other processes, such as the local process of ionization of the accelerating atom,33

have no relation to the event horizon.
Let us consider the process of ionization of atom. Similar to Eq.(5), the trajectory px(x) of the radiated electron is

obtained from the classical equation

p2

2m
−max = −ǫ0 . (12)

Here we used the equivalence between the acceleration of the reference frame and the constant gravitational field,
g = a.
In the WKB approximation and for a ≪ ǫ0 ≪ m this gives the radiation rate:33

w ∼ exp

(

−4
√
2

3

ǫ0
a

( ǫ0
m

)1/2
)

. (13)

In principle, one can introduce the effective temperature, which is similar to the effective temperature Teff ∼ El of
hopping electrons in a strong electric field E, where l is the localization length.34,35 In our case, the analog of the
localization length is l = 1/

√
mǫ0. But otherwise the local process of ionization of the accelerated atom is certainly

non-thermal. Since ǫ0 ≪ m, the rate of ionization in Eq.(13) essentially exceeds the ionization rate in any thermal
process, which involves acceleration, wthermal ∼ exp(−γǫ0/a). This is very different from the ionization of the atom
in the de Sitter environment, which looks thermal.
In principle, with the same approach one can also calculate the Unruh radiation of photons using different arrange-

ments of detectors. The state of the art in theoretical understanding of Unruh radiation can be found in Refs.36,37

and references therein. Our examples demonstrate that the rate of Unruh radiation depends details of the considered
processes and it is not necessarily thermal.
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G. de Sitter symmetry and de Sitter heat bath

As distinct from the Unruh effect, different arrangements of detectors in the de Sitter environment show the same
temperature. This demonstrates the uniqueness of the de Sitter spacetime in producing the thermal bath with local
temperature. The reason for that is that the de Sitter spacetime is homogeneous under the combination of translation
and the proper conformal transformations.38,39 In the PG metric it is the invariance of the de Sitter state under the
modified translations, r → r− eHta, which for H → 0 corresponds to the conventional invariance under translations
r → r− a in Minkowski spacetime. Due to this combined translational symmetry, all the comoving observers at any
point of the de Sitter space observe the same temperature, T = H/π. That is why one may conclude, that the de
Sitter state is the heat bath produced by gravity.
The uniqueness of the de Sitter thermal state lies in the fact that the temperature does not violate the de Sitter

symmetry, and thus does not require the preferred reference frame. This is distinct from thermal state of matter,
which always has a preferred reference frame where matter is at rest. As a result, thermal matter violates the de
Sitter symmetry, which leads to the heat exchange between the two thermal subsystems, gravity and matter.

H. From local temperature to local entropy

The gravity subsystem – de Sitter quantum vacuum – has its own temperature and entropy, see also Ref.40. On
the other hand the de Sitter spacetime serves as the thermal bath for matter. Then the quasi-equilibrium states of
the expanding Universe can be described by two different temperatures: the temperature of the gravitational vacuum
(temperature of dark energy) and the temperature of the matter degrees of freedom.41 In this section we discuss the
pure de Sitter vacuum without the excited matter ignoring for the moment the thermal activated creation of matter
from the vacuum. The excitation and thermalization of matter by the de Sitter thermal bath will be discussed in Sec.
VI.
If the vacuum thermodynamics is determined by the local the activation temperature T = H/π, then in the Einstein

gravity with cosmological constant the vacuum energy density is quadratic in temperature:

ǫvac =
3

8πG
H2 =

3π

8G
T 2 . (14)

This leads to the free energy density of the de Sitter vacuum, F = ǫvac − Tdǫvac/dT , which is also quadratic in T ,
and thus the entropy density svac in the de Sitter vacuum is linear in T :

svac = −∂F

∂T
=

3π

4G
T = 12π2KT . (15)

The temperature T and the entropy density svac are the local quantities which can be measured by the local static
observer.

I. Hubble volume entropy vs entropy of the cosmological horizon

Using the entropy density in Eq.(15), one may find the total entropy of the Hubble volume VH – the volume
surrounded by the cosmological horizon with radius R = 1/H :

Sbulk = svacVH =
4πR3

3
svac =

π

GH2
= 4πKA = Shor , (16)

where A is the horizon area. This Hubble-volume entropy coincides with the Gibbons-Hawking entropy of the
cosmological horizon. However, here it is the thermodynamic entropy coming from the local entropy of the de Sitter
quantum vacuum, rather than the entropy of the horizon degrees of freedom.
Anyway, the relation between the bulk and surface entropies in the local vacuum thermodynamics suggests some

holographic origin. However, such bulk-surface correspondence is valid only in the (3 + 1)-dimension. In the general
d+1 dimension of spacetime, the same approach gives the factor (d− 1)/2 in the relation between the entropy of the
Hubble volume and the Gibbons-Hawking entropy of the cosmological horizon, Sbulk = d−1

2 Shor.

This may add to the peculiarities of the d = 3 space dimension,42 where in particular the mass dimension of the
gravitational coupling, [K] = d − 1, coincides with the mass dimension of curvature, [R] = 2. The same concerns
such pair of thermodynamically conjugate variables as electric field with the mass dimension [E] = 2 and the electric
induction with mass dimension [D] = d− 1. Their dimensions also coincide only for d = 3. Discussion of the natural
dimensions of physical quantities in d = 3 can be found in Ref.43.
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J. Hubble volume vs the volume of Universe, and thermal fluctuations of de Sitter state

It is not excluded that our Universe is finite. Its volume V might be comparatively small, not much larger than the
currently observed Hubble volume VH .44

If the Universe is finite and if the de Sitter state represents the excited thermal state of the quantum vacuum,
the thermal fluctuations of the deep quantum vacuum may become important. According to Landau-Lifshitz,45 the
thermal fluctuations are determined by the compressibility of the system and by its volume. In case of the Universe
with the volume V , the fluctuations of the vacuum energy density are given by:46

〈

(∆ǫvac)
2
〉

=
〈

(∆Pvac)
2
〉

=
T

V χvac
. (17)

Here χvac is the vacuum compressibility47 – the compressibility of the fully equilibrium Minkowski vacuum with
ǫvac = −Pvac = 0.
Note the main difference between the thermal fluctuations and quantum fluctuations. The contribution of the

quantum fluctuations of the relativistic quantum fields to the vacuum energy density is typically on the order of
M4

Pl, where MPl is the Planck mass. But in the fully equilibrium vacuum state this contribution is cancelled by the
ultraviolet trans-Planckian degrees of freedom due to the thermodynamic Gibbs-Duhem relation.46,47 This cancellation
is universal, being valid both for the relativistic vacuum states and for the non-relativistic grounds states of the
condensed matter systems. The contribution of thermal fluctuations to the vacuum energy is in the range of the
infrared physics, which is determined by temperature T .
The vacuum compressibility is not constrained by the thermodynamic laws and is determined by the ultraviolet

physics47 with its Planck energy scale, χ−1
vac ∼ M4

Pl. In this relation it is similar to the gravitational coupling, which
is also determined by the Planck scale, K ∼ M2

Pl. On the other hand, the temperature corrections to χ−1
vac and K as

well as the Casimir corrections are within the range of the infrared physics, see Ref.48 for the universal temperature
correction to the gravitational coupling K. The contribution to the compressibility from the infrared range was
discussed in Refs.49–51. The negative contributions to compressibility obtained in these papers do not violate the
stability of the quantum vacuum, since these contributions represent the corrections, which are small compared to
the main value of the vacuum compressibility, χ−1

vac ∼ M4
Pl.

In the excited vacuum – the de Sitter state with the temperature T = H/π and the energy density < ǫvac >∼ M2
PlH

2

– the relative magnitude of thermal fluctuations is determined by the ratio of the Hubble volume to the volume of
the Universe:

〈

(∆ǫvac)
2
〉

〈ǫvac〉2
∼ VH

V
. (18)

The volume of the present Universe exceeds the Hubble volume, V > VH , and thus the thermal fluctuations of the
vacuum energy density are still relatively small.

III. THERMODYNAMICS FROM THE HEAT TRANSFER IN THE MULTI-METRIC GRAVITY

ENSEMBLE

A. Multi-metric gravity

Since the heat exchange between the bodies or between the systems is the main source of the emergent
thermodynamics,52 we can consider the de Sitter thermodynamics from the point of view of the heat transfer between
different cosmological objects.
Such heat exchange can be discussed in the frame of the so-called multi-metric gravity, see Ref.53 and references

therein. The corresponding model action of the whole system can be written as the sum of actions of the sub-systems
in the same coordinate spacetime:

S = −
∫

d4x

N
∑

n=1

Ln , Ln =
√

−g(n)
(

KnR{gµν(n)}+ Λn

)

. (19)

Then the Universe can be seen as the system of N sub-Universes, each with its own gravitational coupling Kn,
cosmological constant Λn and metric gµν(n).
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Following Frogatt and Nielsen54 one can introduce N independent tetrad fields e
a(n)
µ for N fermionic species. In

this multi-tetrad gravity one has:

Ln = eabcdKn R
ab(n) ∧ ec(n) ∧ ed(n) +

+eabcdΛn e
a(n) ∧ eb(n) ∧ ec(n) ∧ ed(n) , (20)

with the corresponding action for the fermionic species:

SM = eabcd

∫

∑

n

Θa(n) ∧ eb(n) ∧ ec(n) ∧ ed(n) , (21)

Θa(n) =
i

2

[

Ψ̄(n)γaDµΨ
(n) −DµΨ̄

(n)γaΨ(n)
]

dxµ . (22)

This can be extended to the multi-fünfbein gravity, where instead of the tetrad fields the Dirac fermions are described
by the rectangular vielbein (fünfbein).55

On the other hand, gravity with multiple tetrad fields may come from the Akama-Diakonov-Wetterich theory,56–64

where the tetrads are formed as composite objects – the bilinear combinations of the fundamental fermionic fields:

ea(n)µ =
〈

Θa(n)
〉

. (23)

In this approach, the metric is the quartet of fermions. In principle, the so called vestigial gravity can be realized, in

which the bilinear combination of fermions in Eq.(23) is zero, e
a(n)
µ = 0, while the metric – the quartet of fermions –

is nonzero:65

gµν(n) = ηab

〈

Θa(n)
µ Θb(n)

ν

〉

. (24)

B. Heat exchange in multi-metric gravity

The heat exchange between the sub-Universes leads to their equilibration with formation of the common expansion
rate and thus the common temperature. We consider first the system of two Universes, assuming that in each of them
the entropy of horizon obeys the area law, and show that the maximum entropy corresponds to the state in which
both states have the same expansion rate.
In the de Sitter state, which is determined by the cosmological constant, the equation of state for the vacuum

energy is ǫvac = −Pvac. The total vacuum energy is proportional to the volume V of the system, if we assume that
the volume V is much larger than the Hubble volume, V ≫ VH , so that the boundary terms are not important. Then
we have:

EV = ǫvacV = 6KH2V . (25)

Let us assume that the bulk-surface correspondence is valid, i.e. the entropy of the Hubble volume VH is equal
to the Gibbons-Hawking entropy of cosmological horizon, SVH

= Shor = 4πKA. Then the total entropySV in the
volume V ≫ VH can be obtained from the entropy of the Hubble volume VH :

SV = Shor
V

VH
= 12πKHV . (26)

Let us now consider two de Sitter sub-states with different values of the gravitational coupling, K1 and K2, and
different values of the Hubble parameter, H1 and H2:

S = −
∫

d4x
√

−g(1)
(

K1R{gµν(1)}+ Λ1

)

−

−
∫

d4x
√

−g(2)
(

K2R{gµν(2)}+ Λ2

)

. (27)

This corresponds to the higher dimensional analog of the bilayer graphene,66 where two 2+1 dimensional Universes
are in the neighbouring layers of the 3+1 spacetime. In this interpretation we have two 3+1 dimensional Universes
in the neighbouring layers in the 4+1 space.
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The total energy and total entropy of two layers are (if the interaction between the layers is neglected):

EV = E1 + E2 = 6(K1H
2
1 +K2H

2
2 )V , (28)

SV = S1 + S2 = 12π(K1H1 +K2H2)V . (29)

Let us now allow for the energy exchange (the heat exchange) between these two Universes (analogs of the two
layers of graphene). This exchange can be realized by the matter field, which interacts with both metrics. It leads
to the variations of the Hubble parameters H1 and H2 at fixed EV . If we ignore the thermalization of matter by
de Sitter environment, the heat exchange will finally produce the equilibrium state with the maximum entropy S, in
which the Hubble parameters become equal:

H2
1 = H2

2 =
EV

6(K1 +K2)V
≡ H2 . (30)

The equilibration of the Hubble parameters demonstrates that the Hubble parameter (with some numerical factor)
plays the role of the temperature of the de Sitter Universe.
The temperature of the de Sitter Universe can be obtained by variation over the Hubble parameter:

1

T1
=

dS1

dE1
=

dS1/dH1

dE1/dH1
=

π

H1
,

1

T2
=

dS2

dE2
=

dS2/dH2

dE2/dH2
=

π

H2
, (31)

with T1 = T2 = H/π in equilibrium.
In case of the arbitrary number N of the sub-Universes, the heat exchange between them leads to the state of

the Universe in which all the sub-Universes coherently expand with the same rate H , i.e., with the same de Sitter
metric in all the subsystems. The whole Universe has the gravitational coupling K equal to the sum of the individual
couplings in the sub-Universes and the vacuum energy density equal to the sum of energy densities of subsystems:

EV = 6KH2V , K =
∑

n

Kn , Λ =
∑

n

Λn , (32)

with Tn = T = H/π.

C. Thermodynamics from the multi-metric ensemble

Let us remind that in the above approach we used the bulk-horizon correspondence SVH
= Shor = 4πKA, which

finally leads to the equilibrium Universe with temperature T = H/π. Let us now consider the thermodynamics of the
whole de Sitter system without assumption about the entropy of the cosmological horizon. For that we consider the
statistical ensemble of N de Sitter sub-Universes with random Hubble parameters Hn. This is the extension of the
multi-metric gravity to the statistical ensemble with the randomly distributed parameters Kn and Λn.
For large N , the random distribution of the parameters results in the exponential behaviour of the distribution

functions, wn ∝ exp(−En/T ), with the same parameter T for all subsystems. As in the statistical ensemble of atoms,
where the temperature of the system is determined by the physical processes, the temperature of the ensemble of the
sub-Universes factor is also determined by the physical processes. In our case it is the of the behaviour of matter
(atom) in the de Sitter environment, which gives T = H/π. This connection between T and H is rather natural.
Both, the parameter T , which plays the role of temperature, and the Hubble parameter H are the quantities which
in equilibrium become common for all the subsystems in the ensemble, and they have the same dimension of inverse
time, [T ] = [H ] = [1/t].
The physical temperature in turn gives rise to the total entropy and to the local entropy, SV =

∑

n Sn = 12πKHV =
slocV . So, in this scenario the de Sitter entropy comes from a set of many randomly distributed subsystems with the
expansion rates Hn. Due to the heat exchange at fixed total energy EV these states are organized in the equilibrium
thermal state, which corresponds to the coherent de Sitter expansion of the whole system. The coherence due to
thermalization may explain the horizon problem, i.e. why the causally-disconnected regions of the CMB are in
thermal equilibrium.
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D. Regularization vs thermalization

The multi-metric ensemble may include the ensemble of N species of Weyl or Dirac fermions. At large N , all tetrads

in the random ensemble approach the same value, e
a(n)
µ → eaµ, and thus in the equilibrium state all fermionic species

experience the same geometry. In Refs.54,67 the formation of the common Lorentz invariance for different fermionic
species is also considered. But this is achieved by the renormalization group effect in the infrared limit, instead of
thermalization. This suggests the possible connection between renormalization and thermalization.
One may expect that the heat exchange between subsystems leads not only to the coherence of the de Sitter states,

but to the general coherence of the metric fields, when the metric fields gµν(n) of the subsystems become equal, thus
forming the common metric gµν . If this is true, this could be some kind of the thermodynamic gravity, but without
the holographic principle.

E. Coherence vs thermalization

At first glance this formation of the time dependent coherent state looks similar to the formation of the coherent spin
precession (magnon BEC) from the incoherent precessions about the local magnetic fields with random frequencies
ωn.

68 The latter corresponds to random Hn. The coherence develops due to the spin currents between the regions of
local precessions – the analog of the heat exchange. The common frequency ω of the coherent precession corresponds
to the common Hubble parameter H . They have the same dimension, [H ] = [ω] = [1/t], while the dimensionless
magnon number (or the spin projection Sz) corresponds to the entropy which is also dimensionless. However, the
source of the coherence is the exchange of spin instead of exchange of the energies, and also the formation of coherent
state is due to minimization of the total energy E at fixed projection Sz of the total spin on magnetic field. This leads
to the common frequency, which plays the role of the chemical potential µ, which emerges due to the exchange of
particles between the regions. That is why this process is quite opposite to the formation of temperature and entropy,
where energy is fixed, while entropy reaches maximum value. This process corresponds to the minimization of energy
at fixed total entropy. Anyway, in all the cases the parameters, which are the same in all subsystems in equilibrium
– common frequency ω, common chemical potential µ, common temperature T and common Hubble parameter H –
have the same dimension, [T ] = [H ] = [µ] = [ω] = [1/t].

IV. CONTRACTING DE SITTER AND BLACK HOLE ENTROPY

A. de Sitter vs black hole

The thermodynamics of de Sitter is very different from the black hole thermodynamics. Black hole is the compact
object, and the temperature of the Hawking radiation TH is well determined (which is also supported by the analogs).
On the other hand, the origin of the black hole entropy is still not clear, although it can be determined from the
equation dM = THdS, assuming that the laws of thermodynamics are applicable to this compact object.
On the contrary, the de Sitter state is not the compact object. It is the homogeneous vacuum state without

boundaries, which has the homogeneous energy density as the local quantity. The local energy density allows us
to introduce also the local temperature T . This temperature can be measured for example by an atom, which is
stationary with respect of the shift velocity. It determines the rate of the ionization of the atom, exp(−E/T ).

B. Entropy of expanding, contracting and static de Sitter

The static de Sitter vacuum with singularity at the cosmological horizon is the intermediate state between the two
opposite states – the expanding and contracting states. The entropy of the static state is zero, and correspondingly the
temperature must be infinite, see also Ref.69. In the contracting de Sitter vacuum with H < 0 the local temperature
is negative, T = H/π < 0, and the local entropy is also negative, scontracting = 3H/4G = −3/(4Grh) < 0. The total
entropy in the Hubble volume of contracting de Sitter is

Scontracting = scontractingVh = − A

4G
, (33)

where A is the area of the cosmological horizon.
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C. Gravastar – black hole with de Sitter core

The black hole can be formed from the gravastar. This is the object, which contains the de Sitter state inside
the black hole horizon.70–72 We consider the gravastar in which the black hole horizon coincides with the de Sitter
horizon, rbh = rh (the metric in the state with the critical value of the mass parameter m = 2MG|H | = 1 at which
two horizons merge is illustrated in Fig. 1 of Ref.73). Such gravastar is stationary, it has no Hawking radiation and
its entropy is zero. In the Painlevé-Gullstrand form the metric is given by Eq.(1) with the following shift velocity:

v(r) = −
√

rh
r

, r > rh , (34)

v(r) = − r

rh
, r < rh . (35)

Here rh = 1/|H | = rbh, where rbh = 2MG and M = 1/(2G|H |) is the mass of the black hole, which is formed by the
de Sitter core.
The shift velocity v(r) must be continuous across the horizon, i.e. there is no jump in the shift velocity, while the

gradient of the shift velocity dv/dr experiences jump at the horizon. The shift velocity v(r) is negative both outside
and inside the horizon. Since the shift velocity is negative in the de Sitter core, this means that the de Sitter spacetime
in this gravastar is contracting, v(r) = Hr = −r/rh < 0, i.e. the Hubble parameter is negative, H = −1/rh < 0.

D. Entropy of black hole from negative entropy of contracting de Sitter

According to Eq.(33) the region of the contracting de Sitter state has negative entropy, Scontracting = −A/4G. That
is why the gravastar is unstable towards the shrinking of the de Sitter region, since this leads to the increase of the
entropy of the whole system due to decrease of the negative entropy of the contracting de Sitter state. Due to the
energy conservation the singularity is formed ar r = 0. In the final state – the black hole – the de Sitter region with
negative entropy fully disappears by shrinking to the singularity with mass M . The resulting black hole with mass
M acquires the positive entropy, A/4G:

SBH = Sgstar − Scontracting = 0− scontractingVh =
A

4G
. (36)

In terms of the entropies of horizons, this means that in the initial gravastar state the entropy of the contracting
de Sitter horizon fully compensates the entropy of the black hole horizon:

Sgstar = Scontracting + SBH = − A

4G
+

A

4G
= 0 . (37)

E. White hole and anti-gravastar

In the same way the anti-gravastar can be obtained as the white hole with the de Sitter core. This object has the
following shift velocities:

v(r) =

√

rh
r

, r > rh , (38)

v(r) =
r

rh
, r < rh . (39)

It is obtained from the pure white hole, which has the negative horizon entropy SWH = −A/4G,74,75 by growing the
de Sitter state in its core with positive entropy. In the anti-gravastar state the entropies of two horizons cancel each
other:

Santigstar = Sexpanding + SWH =
A

4G
− A

4G
= 0 . (40)
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F. Heat exchange between black holes in the multi-metric ensemble

Let us first consider the two-metric gravity with K1 = K2. In this case, the heat exchange between the black holes
with masses M1 and M2 at fixed M = M1 +M2 leads to formation of the black holes with masses M1 = M2 = M/2
in each of the two sub-Universes. For sub-Universes with K1 6= K2 one obtains M1 = MK1/(K1 + K2) and M2 =
MK2/(K1 +K2).
For the general ensemble of the multi-metric gravities, the heat exchange between the substates gives rise to the

black hole with mass M and gravitational coupling K:

M =
∑

n

Mn , K =
∑

n

Kn , Mn = M
Kn

K
. (41)

The Hawking temperature of the black hole is the common temperature in all the substates:

1

Tn
=

dSn

dMn
=

dS

dM
=

1

TH
. (42)

V. THERMODYNAMICS OF DE SITTER STATE AND f(R) GRAVITY

A. Thermodynamic variables in f(R) gravity

The T 2 dependence of the de Sitter vacuum energy on temperature suggests the modification of the thermodynamic
Gibbs-Duhem relation for the quantum vacuum and to the reformulation of the vacuum pressure. The conventional
vacuum pressure Pvac obeys the equation of state w = −1 and enters the energy momentum tensor of the vacuum
medium in the form:

T µν = Λgµν = diag(ǫvac, Pvac, Pvac, Pvac) , Pvac = −ǫvac . (43)

In the de Sitter state the vacuum pressure is negative, Pvac = −ǫvac < 0.
This pressure Pvac does not satisfy the standard thermodynamic Gibbs-Duhem relation, Tsvac = ǫvac+Pvac, because

the right hand side of this equation is zero. The reason for that is that in this equation we did not take into account
the gravitational degrees of freedom of quantum vacuum. Earlier it was shown, that gravity contributes with the
pair of the thermodynamically conjugate variables: the gravitational coupling K = 1

16πG and the scalar Riemann

curvature R, see Refs.9,74,75. The contribution of the term KR to thermodynamics is similar to the work density.76–79

The quantities K and R can be considered as the local thermodynamic variables, which are similar to temperature,
pressure, chemical potential, number density, spin density, etc., in condensed matter physics. Indeed, since the de
Sitter spacetime is maximally symmetric, its local structure is characterized by the scalar curvature alone, while all
the other components of the Riemann curvature tensor are expressed via R:

Rµναβ =
1

12
(gµαgνβ − gµβgνα)R . (44)

That is why the scalar Riemann curvature as the covariant quantity naturally serves as one of the thermodynamical
characteristics of the macroscopic matter.80,81 Another argument is related to the so-called Larkin-Pikin effect.82

This is the jump in the number of degrees of freedom, when the fully homogeneous state is considered. One has the
extra parameters, which are space independent, but participate in thermodynamics.47,83,84 The same concerns the
constant electric and magnetic fields in vacuo, which add three more degrees of freedom. These constant fields are
mutually independent, in contrast to the spacetime-dependent fields connected by the Maxwell equations.47 The scalar
curvature R in the de Sitter vacuum, which is constant in space-time, also serves as such thermodynamic parameter.
Then the gravitational coupling K = df/dR serves as the analog of the chemical potential, which is constant in the
full equilibrium.

B. Gibbs-Duhem relation in f(R) gravity

The new thermodynamic variables, K and R, which come from the gravity, and Eq. (15) for the entropy density
allow us to introduce the corresponding Gibbs-Duhem relation for de Sitter vacuum, which has the conventional form:

Tsvac = ǫvac + Pvac −KR . (45)
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This equation is obeyed, since ǫvac + Pvac = 0; R = −12H2; and Tsvac = 12π2KT 2 = 12KH2, which supports the
earlier proposal that K and R can be considered as the thermodynamically conjugate variables.74,75

The Eq.(45) can be also written using the effective vacuum pressure, which absorbs the gravitational degrees of
freedom:

P = Pvac −KR . (46)

Then the conventional Gibbs-Duhem relation is satisfied:

Tsvac = ǫvac + P . (47)

The equation (47) is just another form of writing the Gibbs-Duhem relation (45). But it allows to make different
interpretation of the de Sitter vacuum state. The introduced effective de Sitter pressure P is positive, P = ǫvac > 0,
and satisfies equation of state w = 1, which is similar to matter with the same equation of state. As a result, due
to the gravitational degrees of freedom, the de Sitter state has many common properties with the non-relativistic
Fermi liquid, where the thermal energy is proportional to T 2, and also with the relativistic stiff matter with w = 1
introduced by Zel’dovich.85

C. Entropy of cosmological horizon in terms of effective gravitational coupling

Let us show that equation Shor = 4πKA remains valid also in the f(R) gravity, but with the gravitational coupling
determined as the thermodynamic conjugate to the curvature. In the f(R) gravity the action is:

S = −
∫

d4x
√−gf(R) . (48)

The generalization of the modified Gibbs-Duhem relation for the de Sitter states (i.e. for the states with constant
four-dimensional curvature) in the f(R) gravity is:

Tsvac = ǫvac + Pvac −KR = −KR , (49)

ǫvac = f(R)−KR , K =
df

dR . (50)

Here K is the natural definition of the variable, which is thermodynamically conjugate to the curvature R, while ǫvac
serves as the corresponding thermodynamic potential. In the equilibrium de Sitter state the curvature is determined
by equation:

2f(R) = R df

dR . (51)

The value of the local entropy of the de Sitter state svac follows from Eq.(49), assuming that the local temperature
of the equilibrium dS states is T = H/π. Then the total entropy of the Hubble volume VH is given by the same
Eq.(16):

Sbulk = svacVH = 4πKA = Shor . (52)

But now K is the effective gravitational coupling in Eq.(50). This generalization of the Gibbons-Hawking entropy
was discussed in Refs.9,86–88. But here it was obtained using the local thermodynamics of the de Sitter vacuum. This
demonstrates that the local thermodynamics of the de Sitter vacuum is valid also for the f(R) gravity. The effective
gravitational coupling K serves as one of the thermodynamic variable of the local thermodynamics. This quantity
plays the role of the chemical potential, which is thermodynamically conjugate to the curvature R, and it is constant
in the thermodynamic equilibrium state of de Sitter spacetime.

D. Example of quadratic gravity

For illustration, we consider an example of the modification of the gravitational coupling K in the de Sitter
environment. In the conventional Einstein gravity, where f(R) = K0R + Λ, the de Sitter state has the equilibrium
value of the curvature, R0 = −2Λ/K0 = −12H2. Let us add the quadratic term to the Einstein action:9,86

f(R) = K0R− pR2 + Λ . (53)
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Then one obtains the following equations for the equilibrium value of the curvature R0, the entropy of the Hubble
volume Shor and the equilibrium value of the effective coupling K:

R0 = −2
Λ

K0
= −12H2 , (54)

Shor = svacVH = 4πKA , (55)

K =
df

dR
∣

∣

R=R0

= K0 + p
Λ

K0
. (56)

The equilibrium curvature in the de Sitter space R0 is obtained from Eq.(51). It is the same as in Einstein gravity,
because the quadratic terms in Eq.(51) are cancelled. The local entropy svac, which follows from Eq.(49), is determined
by the modified gravitational coupling K. As a result, the entropy of the Hubble volume in Eq.(55), which we identify
with the entropy of the horizon Shor, is also determined by the modified coupling K. The latter is given by Eq.(56).
The local entropy svac changes sign for K < 0, while the cosmological expansion is still described by the de Sitter

metric. However, the negative K requires the negative parameter p < 0, which marks the instability of such de Sitter
vacuum.86

VI. FROM DE SITTER THERMODYNAMICS TO DE SITTER DECAY

A. de Sitter state as thermal bath for matter

The extension of the thermodynamics to the f(R) gravity supports the idea that the de Sitter vacuum is the thermal
state with the local temperature T = H/π. It is interesting that the gravitational temperature, which is twice the
Hawking temperature, has been also obtained in the de Sitter limit in Ref.89, see the footnote 2 on page 4.
The nonzero local temperature of the gravitational vacuum suggests that the de Sitter vacuum is locally unstable

towards the creation of thermal matter from the vacuum by thermal activation. This is distinct from the mechanism
of creation of the pairs of particles by Hawking radiation from the cosmological horizon, which may or may not lead to
the decay of the vacuum energy. There are still controversies concerning the stability of the de Sitter vacuum caused
by Hawking radiation, see e.g.84,90,91 and references therein.

B. de Sitter decay due to thermalization of matter by de Sitter heat bath

To describe the decay of the vacuum due to activation and thermalization of matter, the extension of the Starobinsky
analysis of the vacuum decay92–95 is needed. Especially the revolutionary stochastic inflation approach pioneered by
Starobinsky96,97 is extremely useful, although it requires some modifications.98–101 This also includes the so-called
separate universe approach, which is somewhat similar to the multi-metric gravity discussed in Sec. III. Here we
consider the simple phenomenological scenario based on the energy exchange between the thermal de Sitter and the
thermal matter.
The thermal exchange between the de Sitter heat bath and the excited matter generates the thermal relativistic

gas. The temperature of relativistic gas tends to approach the temperature T = H/π of the de Sitter background.
Then the energy density of this matter ǫM tends to approach the value ǫM ∼ T 4. In terms of the Hubble parameter,
ǫM → bH4, were the dimensionless parameter b depends on the number of massless relativistic fields. For example,
b = 7NF /120π

2 for NF species of massless Weyl fermions.
The energy exchange between the vacuum heat bath and matter can be described by the following dynamical

modification of the Friedmann equations,102 where the dissipative Hubble friction equation ∂tǫM = −4HǫM is extended
to

∂tǫM = −4H(ǫM − bH4) . (57)

This equation describes the tendency of matter to approach the local temperature of the vacuum, T = H/π. The
extra gain of the matter energy, 4bH5, must be compensated by the corresponding loss of the vacuum energy:

∂tǫvac = −4bH5 , (58)

Here we use for simplicity the conventional general relativity with ǫvac = Λ = − 1
2K0R. This phenomenological

description of the energy exchange between the de Sitter vacuum and matter does not depend on the details of the
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microscopic (UV) theory, and requires only the slow-roll condition, i.e. the slow variation of the Hubble parameter,

|Ḣ | ≪ H2, or which is the same |Ṫ | ≪ T 2.
Since the vacuum energy density is ǫvac ∝ KH2, one obtains from Eq.(58) the following time dependence of the

Hubble parameter and of energy densities:

H ∼ MPl

(

tPl

t+ t0

)1/3

, (59)

ǫvac ∼ M4
Pl

(

tPl

t+ t0

)2/3

, (60)

ǫM = bH4 ∼ M4
Pl

(

tPl

t+ t0

)4/3

. (61)

Here MPl is the Planck mass, M2
Pl = K, and tPl = 1/MPl is Planck time. We assume that t0 ≫ tPl, and thus Ḣ ≪ H2.

Thus the thermal character of the de Sitter state determines the process of its decay. The obtained power law
decay of H in Eq.(59) was also found in Refs.103–108, although using different approaches. In the Padmanabhan
model103,104 the de Sitter horizon is considered as the photosphere with the Gibbons-Hawking temperature and with
the radiative luminosity dE/dt ∝ T 4AH , where AH = 4π/H2 is the area of horizon. Since the energy of the Hubble
volume is E ∼ M2

Pl/H , and T 4AH ∼ H2, this leads to Eq.(60) for the vacuum energy density. As was mentioned by
Padmanabhan,104 in his model the late time cosmological constant is independent of the initial value, see Eq.(60) at
t ≫ t0.
In Refs.105–107 the Starobinsky stochastic inflation approach has been used. The parameter b therein is proportional

to the number N of conformal fields and the parameter t0 is related to the initial value of the Hubble parameter at
the beginning of inflation at t = 0:

H(t = 0) ∼ MPl

(

tPl

t0

)1/3

≪ MPl . (62)

This H(t = 0) corresponds to the scaleron mass M in Starobinsky inflation. The time t0 ∼ E2
Pl/H

3
t=0 is called the

quantum breaking time of space-times with positive cosmological constant.109,110

So, the scenario of thermalization of matter by the de Sitter heat bath gives Eqs. (57) and (58). They produce the
inflation in terms of two phenomenological parameters, b and t0, which determine the decay of the vacuum energy
density:

ǫvac(t) = 6M4
Pl

(

tPl

b(t+ t0)

)2/3

. (63)

C. de Sitter decay and Zel’dovich stiff matter

As was mentioned by Padmanabhan,104 his model leads to a late time cosmological constant in Eq.(63), which is
independent of the initial value, but its value is still far too large. Can we fix this? In Sec. VB we obtained that the
thermodynamics of de Sitter thermal bath corresponds to the Zel’dovich stiff matter with w = 1. Let us try the stiff
matter scenario using the phenomenological approach.
For the matter with w = 1, the dissipative Hubble friction equation is ∂tǫstiff = −6Hǫstiff . In our case, the stiff

matter analog is thermal, with linear in T entropy density, and its temperature tends to approach the heat bath
temperature T = H/π. Then instead of Eqs.(57) and (58) one obtains

∂tǫstiff = −6H(ǫstiff − b̃H2) , (64)

and

∂tǫvac = −6b̃H3 . (65)

This gives the following power law decay of the vacuum energy density:

ǫvac ∼ M4
Pl

(

tPl

t+ t0

)2

, (66)
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with the reasonable value of the vacuum energy density in the present time:

ǫvac(t = tpresent) ∼
M2

Pl

t2present
. (67)

The same behaviour of the vacuum energy was obtained in Ref.9 (see also Ref.46). This was also obtained in Ref.111,
where the Polyakov scenario90 of the infrared instability of the de Sitter space was discussed.
Note that in this approach, the analog of the stiff matter comes from the gravitational degrees of freedom. In this

sense it has relations to Refs.112–114 and references therein, where the role of the gravitational degrees of freedom
is discussed. Since in this approach the stiff matter is on the order of vacuum energy density, ǫstiff ∼ ǫvac, these
gravitational degrees of freedom can be responsible for dark matter.115

So, the phenomenological approach to the vacuum energy decay may produce different power-law decays: in Eq.(66)
and in Eq.(63). But it is not excluded that these two asymptotic laws correspond to different epochs.

VII. CONCLUSION

The local thermodynamics of the de Sitter state in the Einstein gravity gives rise to the Gibbons-Hawking area
law for the total entropy inside the cosmological horizon. Ee extended the consideration of the local thermodynamics
to the f(R) gravity and obtained the same area law, but with the modified gravitational coupling K = df/dR.
The agreement with the traditional global thermodynamics of de Sitter supports the suggestion that the de Sitter
vacuum is the thermal state with the local temperature T = H/π, and that the local thermodynamics is based on the
thermodynamically conjugate gravitational variablesK andR. The variableK plays the role of the chemical potential,
which is constant in the thermal equilibrium. The gravitational variables modify the thermodynamic Gibbs-Duhem
relation, due to which the de Sitter thermal state becomes similar to the Zel’dovich stiff matter.
The local temperature T = H/π has the definite physical meaning. It is temperature, which is experienced by the

external object in the de Sitter environment. In particular, this temperature determines the local activation processes,
such as the process of ionization of an atom in the de Sitter environment. The nonzero local temperature of the de
Sitter state suggests the thermal instability of this state due to the thermalization of matter by the de Sitter heat
bath. The process of thermalization of matter with the corresponding decay of the vacuum energy density determines
the so-called quantum breaking time of the space-times with positive cosmological constant. The thermalization of
matter by the de Sitter heat bath leads to the power law decay of the vacuum energy density, which is described by
two phenomenological parameters. This behaviour is rather universal, and in particular it reproduces the result of the
Padmanabhan model.104 On the other hand, the analogy with the Zel’dovich stiff matter suggests another universal
behaviour, which leads to the reasonable value of the vacuum energy density in the present time.
The obtained connection between the bulk entropy of the Hubble volume, and the surface entropy of the cosmological

horizon suggests a kind of the bulk-surface correspondence, which may have the holographic origin.116–118 It would be
interesting to check this correspondence using the more general extensions of the Einstein gravity and also different
types of the generalized entropy.79,119–122

We also discussed the thermodynamics of de Sitter in the frame of the statistical ensemble of the multi-metric
gravities. The heat exchange between different ”sub-Universes” in the ensemble leads to the common de Sitter
expansion with the common temperature T = H/π. Application of the local thermodynamics to the entropy of the
Schwarzschild black hole was also considered. We obtained the Bekenstein-Hawking entropy of black hole from the
negative entropy of the contracting de Sitter core of the gravastar object.
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