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This study explores the impact of a strong perpendicular laser field on the electronic structure and
optical conductivity of bilayer graphene. Employing the Floquet-Bloch theorem and a four-band
Hamiltonian model, we calculate the optical conductivity, unveiling modified optical properties due
to the altered band structure. We investigate the effects of both circularly and linearly polarized
dressing fields on the electronic structure and optical conductivity in the system. Under linear polar-
ization, we observe a notable anisotropy in the band dispersion and optical conductivity, resulting in
linear dichroism. In the case of circular polarization, we anticipate the emergence of induced Berry
curvature and circular dichroism, especially close to the dynamical gaps. When circularly polarized
light is applied alongside a bias potential, the band structure differs for right-handed and left-handed
polarization. In this case, the longitudinal optical conductivity remains the same for both, while the
transversal optical conductivity exhibits distinct results. Furthermore, the induced Berry curvature
and valley asymmetry introduce the potential for generating a valley-polarized current, enabling
valley-selective pumping and leading to circular dichroism.

I. INTRODUCTION

The interaction between time-periodic light and ma-
terials is a fundamental and pivotal area of research in
modern optics and photonics, holding broad implications
for a diverse range of technological applications. Over
the past decade, significant focus has been dedicated to
engineering electronic bands through the interaction of
Bloch states with time-periodic fields [1]. This interac-
tion allows for precise control over the features of the
band structure by modulating the polarization, inten-
sity, and frequency of the monochromatic dressing field.
The Floquet-Bloch (FB) theory extends Bloch’s theorem,
originally concerned with spatial periodicity, to incorpo-
rate time periodicity. This means that when spatial pe-
riodicities in lattices interact with time-periodic fields,
the Hilbert space expands to encompass FB states [2, 3].
This extension is central to comprehending the behavior
of electrons in crystalline solids subjected to time-varying
fields. Furthermore, it establishes a versatile framework
for manipulating the spectrum through photo-induced
resonances.

Recent advancements in technology have brought forth
intense high-frequency (mid-infrared range) laser light as
a dressing field, allowing the study of photo-dressed elec-
trons influenced by polarized electromagnetic fields. The
modification of band structures due to electron-photon
interactions has been explored in various quantum sys-
tems, including topological insulators [4], ultra-cold atom
gases [5], graphene structures [6], HgTe/CdTe quantum
wells [7, 8], and topological insulator thin films [9, 10],
to name a few. Furthermore, the application of mid-
infrared laser fields on materials has enabled the real-
ization of novel phenomena, such as Floquet topological
insulators [8, 11]. Intriguingly, this illumination not only

leads to the appearance of topologically protected edge
states along irradiated graphene sheets but also around
large defects and adatoms within the dynamical gap [12].

Experimentally, FB states have been studied in ir-
radiated topological insulator Bi2Se3, where the gap-
less surface states follow a Dirac cone spectrum [4, 13].
Time-and-angle resolved photo-emission spectroscopy
(Tr-ARPES) proves to be a potent technique for resolving
such photo-induced band gaps, making the measurement
of FB states feasible. These states manifest as replicas
of the original Dirac cone in the surface states of irradi-
ated topological insulators [4], and their dynamical gap
(the photo-induced gap) depends on the polarization and
intensity of the laser field [4].

Predictions are abound for various phenomena in ir-
radiated graphene, including the photovoltaic Hall effect
[14], a metal-insulator transition [15], transport through
n-p junctions under electromagnetic fields [16, 17], and a
photo-induced quantum Hall effect even in the absence of
a magnetic field [18]. Furthermore, simulation of Floquet
topological insulators in classical systems was realized for
example in photonic systems [19], acoustic systems [20],
and proposed in electrical circuits [21].

Extensive efforts have been devoted to manipulat-
ing and creating a band gap in the band structure
of monolayer graphene, which inherently exhibits a
gapless semimetallic behavior. Notably, it has been
demonstrated that linearly polarized light induces an
anisotropic gapless band dispersion in graphene, while
circularly polarized fields open an isotropic gap [22]. Ad-
ditionally, a dynamical gap emerges in graphene at Ω/2,
where Ω represents the frequency of the laser field when
irradiated by circularly polarized mid-infrared laser fields
[14, 16, 23]. Proposals have also been made regard-
ing the merging and shifting of Dirac points in driven
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graphene [24, 25]. Twisted bilayer graphene, character-
ized by its large unit cell, manifests extraordinary elec-
tronic flat bands at magic twist angles, giving rise to
correlated electronic states. The combination of excep-
tionally flat bands with a non-zero Chern number, along
with gaps and correlated states, positions these materials
as an intriguing platform for investigating the interplay
between topology and interaction. The introduction of
circularly polarized light to such materials allows for the
manipulation of the topological properties of these flat
bands [26, 27], a control that is influenced by both the
twist angle and the perpendicular applied bias.

Optical conductivity, on the other hand, is a material
property that describes how well the material conducts
electric current in response to an applied electromagnetic
field, particularly in the optical frequency range. The
optical conductivity of materials interacting with time-
periodic light fields provides a fundamental understand-
ing of how these materials respond to electromagnetic
radiation. This knowledge is essential for a wide range
of applications in modern technology and materials sci-
ence. Therefore, optical conductivity plays a crucial role
in experiments and, as such warrants necessitate careful
calculation [14, 16]. In irradiated graphene, a multi-step-
like structure in optical conductivity has been reported,
originating from optical transitions involving FB states
[24, 28]. These FB states are contingent on the polariza-
tion, intensity, and frequency of the laser field.

Bilayer graphene (BLG) stands out as a highly ver-
satile and promising material due to its combination of
a tunable band gap, valley physics, and topological ef-
fects. This makes it an excellent platform for explor-
ing novel phenomena in the presence of laser fields. By
applying time-periodic external fields (Floquet engineer-
ing), BLG’s electronic properties can be finely tuned,
potentially leading to the emergence of new electronic
states, topological phases, and exotic phenomena. With
its unique characteristics, including a tunable band gap
induced by a perpendicular applied bias, valley Hall ef-
fect, and quadratic band touching points, BLG offers a
rich arena for investigating the influence of laser irradia-
tion. For instance, the application of an off-resonant lin-
early polarized light (LPL) on BLG can induce a Lifshitz
transition near the Fermi level [29]. Additionally, studies
have revealed that irradiation with left and right-handed
circularly polarized electromagnetic fields can break val-
ley symmetry in gated BLG [30, 31]. However, several
intriguing questions persist. What is the impact of irra-
diation with different polarizations on the time-averaged
optical conductivity of BLG? How does the occupation
of Floquet states impact optical conductivity? Addition-
ally, could we elaborate on the significance of the val-
ley trace in optical conductivity as a measurable physi-
cal quantity? Does dichroism arise for different dressing
field frequencies? These queries to name a few continue
to be captivating subjects for this study. We illustrate
that the application of bias disrupts the valley symme-
try in the dressing spectrum induced by either left- or

right-handed circularly polarized light. When BLG is si-
multaneously subjected to circularly polarized light and
a perpendicular bias voltage, there is no equivalence ob-
served in the spectrum surrounding the K and K’ valleys.
Right-handed and left-handed circularly polarized light
exhibit distinct quasi-energy spectra, while the longitu-
dinal optical conductivity remains consistent for both po-
larizations. However, disparities arise in the transverse
optical conductivity. In contrast, linear polarized light
induces linear circularly polarized light.
The paper is organized as follows. The formalism pro-

vides the Floquet-Kubo formula and the optical conduc-
tivity of driven BLG in Sec. II. We initially delve into
the influence of off-resonant high-frequency light with dif-
ferent polarizations on the band structure and phase di-
agram of BLG, considering the additional influence of
bias potential in Sec. III. Following this, we examine the
effect of on-resonant light on the system’s band struc-
ture and optical conductivity. Given the significance of
the occupation of Floquet states in this regime, we com-
pare the quench occupation of Floquet states with the
mean-energy occupation. Additionally, we demonstrate
how valley asymmetry in the presence of bias potential
leads to intriguing effects in both frequency regimes of
the dressing field. Finally, we wrap our main results in
Sec. IV.

II. THEORY AND MODEL

We will commence our investigation with the study of
BLG in the presence of a bias potential. Subsequently, we
will present the Floquet-Kubo formula for time-averaged
optical conductivity obtained from the Floquet theory.
Within this framework, we will analyze the key parame-
ters like quasi-energy, the phase diagram stemming from
band gap closing in which the valley-polarized Hall insu-
lator with the zero Chern number and a quantum anoma-
lous Hall insulator with a Chern number of ±4 emerge,
and then we calculate the optical conductivity in both
off- and on-resonant regimes.
Bernal-stacked BLG comprises two honeycomb layers:

an upper (u) layer and a lower (d) layer of carbon atoms.
These layers are rotated by π/6 concerning each other,
causing Au and Bd atoms to align directly atop one an-
other. In the tight-binding model, we designate γ0 as
the hopping energy among intra-layer nearest neighbor
sites, and γ1 as the hopping energy among inter-layer
nearest neighbor sites (Au −Bd). Therefore, the Hamil-
tonian [32], particularly near the ξ = ±1 valley, can be
expressed as follows:

Ĥ = ξ


V/2 0 0 vFπ

†

0 −V/2 vFπ 0
0 vFπ

† −V/2 ξγ1
vFπ 0 ξγ1 V/2

 (1)

We choose ψ = (Ad, Bu, Au, Bd)
T for ξ = +1 and ψ =

(Bu, Ad, Bd, Au)
T for ξ = −1 as the basis sets in the
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Hamiltonian, and define π = (kx + iky). Here, kx and
ky represent the wave vectors of electrons in the x and
y directions, respectively. The velocity attributed to the
coupling is denoted as vF =

√
3aγ0/2, where a = 0.246

nm stands for the lattice constant. In addition, in Eq. (1),
V represents the bias potential applied perpendicular to
the plane of BLG. The parameters are assigned the values
of γ0 = 3.16 eV and γ1 = 0.390 eV [33]. The energy
dispersion of the Hamiltonian in Eq. (1) can be obtained
as:

E2
η =

γ21
2

+
V 2

4
+ v2F k

2 + η
√
C,

C =
γ41
4

+ v2F k
2[γ21 + V 2]

(2)

where k =
√
k2x + k2y and θ = arctan(ky/kx). Here, η =

±1 denotes different energy bands.
The foundational tools for Floquet engineering have

been outlined in Refs. [1, 34]. Let us briefly discuss some
key aspects of the Floquet theorem. By illuminating the
BLG plane with an intense laser field, the time-dependent
field can be incorporated into the Hamiltonian as follows
(assuming ℏ = 1): k → k + eA(t), where the vector
potential takes the form of Ac(t) = A0(sinΩt, cosΩt) for
circular polarization, and Al(t) = A0(0, cosΩt) for linear
polarization. Here, Ω represents the frequency of the
laser field. For right-handed (left-handed) polarization,
Ω should be taken as positive (negative). It is important
to note that since the vector potential is independent of
position, the wave vector k remains a conserved quantum
number [24].

The essential tools derived from the Floquet theorem
are presented in Appendix A. These include the def-
inition of Floquet quasi modes |ϕν(t)⟩, quasi energies
εν , Fourier components of quasi modes |ϕnν ⟩, and the
Floquet-Schrödinger equation in the extended Hilbert
space. The physical weights and mean energy of Flo-
quet bands are precisely defined in Eqs. (A5) and (A6),
respectively. Additionally, the time-averaged density of
states is introduced and defined in Eq. (A7).

The study of optical properties in solids is a well-
explored area, encompassing both experimental and the-
oretical investigations [35]. The interaction with light
can alter the quantum characteristics of matter, includ-
ing its conductivity, which in turn facilitates the devel-
opment of optically driven devices. Beyond applications
in devices, the material’s optical response offers a potent
means to investigate the quantum states of electrons and
their excitations within spatially periodic potentials [36].
Therefore, it is essential to calculate the optical proper-
ties of the studied system. The real component of the
time-averaged optical conductivity within the linear re-
sponse theory can be derived through non-equilibrium
Green’s function as the following [28, 37, 38]

Reσ̄ll(ω) =
πgs
ω

∑
k,m

∑
ν<µ

|jl(m)
νµ |2(fν − fµ)×[

δ(ω + ϵν − ϵµ −mΩ)− δ(ω − (ϵν − ϵµ −mΩ))
] (3)

Here, the current matrix elements are defined as j
(m)
νµ =

1

T

∫ T

0
⟨ϕν(t)|j(t)|ϕµ(t)⟩eimΩtdt and δ stands for the Dirac

delta function. If the current operator j = e∂H(t)/∂kl
is independent of time, j

(m)
νµ =

∑
n⟨ϕ

(n)
ν |j|ϕ(n+m)

µ ⟩. Also,
fν is the occupation of energy band ν which depends
on switch-on protocols and relaxation mechanisms and
would not be derived easily according to the Fermi-Dirac
distribution function like non-driven systems. It should
be remembered that the above summations (Eq.(3))
would run over k around both valleys K and K ′. As we
will show later, there is no equivalence in the spectrum
around the K and K ′ valleys when circularly polarized
light and a perpendicular bias voltage are simultaneously
applied on BLG.

Next, we introduce the expression for the imaginary
component of the time-averaged optical Hall conductivity
in periodically driven systems. This can be obtained as:
[28, 37–39]

Imσ̄ll′(ω) = gs
∑
k,m

∑
ν<µ

2Im[jl(m)
νµ jl

′(−m)
µν ](fν − fµ)×

[ 2ωη0
(ω2 − (ϵν − ϵµ −mΩ)2)2 + 4ω2η20

] (4)

where η0 is an infinitesimal constant. At zero-
temperature and tiny η0, the imaginary component of
the time-averaged optical Hall conductivity is given by

Imσ̄ll′(ω) =
πgs
ω

∑
k,m

∑
ν<µ

Im[jl(m)
νµ jl

′(−m)
µν ](fν − fµ)×[

δ(ω + ϵν − ϵµ −mΩ) + δ(ω − (ϵν − ϵµ −mΩ))
] (5)

The imaginary component of the optical Hall conduc-
tivity quantifies the absorption of circularly polarized
probe light. Right and left-handed circularly polarized
light exhibit distinct absorption patterns, corresponding
to Reσxx ∓ Imσxy, respectively. Nonzero values of the
imaginary part of the transverse optical conductivity sug-
gest the presence of circular dichroism. Furthermore, the
existence of Berry curvature in the band structure can be
deduced from circular dichroism and, consequently, from
Imσxy(ω) (see the Appendix).

Regarding Eq. (5), it is noteworthy that at a fixed fre-
quency of the probe light ω, the contribution to Imσxy
arises exclusively from optical transitions between Flo-
quet states whose energy difference equals ω in the quasi-
energy spectrum. This implies that integrating over a
small momentum space range allows the calculation of
optical conductivity at low probe frequencies, justifying
the use of a low-energy k · p Hamiltonian.

We should emphasize that the components of the
frequency-dependent permittivity tensor of the studied
system can also be computed using the relation ϵll′(ω) =
δll′ + i 1

ϵ0ω
σll′(ω), provided that the optical conductivity

has been calculated. Here, ϵ0 is known as vacuum per-
mittivity.
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III. NUMERICAL RESULTS AND
DISCUSSIONS

In the subsequent subsections, we first examine the
case of off-resonant driving, where the frequency of the
driving light exceeds the bandwidth. Following that, we
delve into the impact of on-resonant illumination with a
low frequency.

In our numerical calculations, we employ a Gaussian

function, δ(x) = 1
η
√
2π
e−x2/2η2

, as an approximation for

the delta function appearing in the DOS and optical con-
ductivity and we hence set η = 1. Furthermore, all con-
ductivity curves are normalized by σ0 = e2/2.
As demonstrated in Eq. (A5), the contribution of each

Floquet-Bloch state in the band structure is determined
by the weight coefficient (Wn

k for the nth band) associ-
ated with the Floquet-Bloch wave function (ϕnν ). Taking
this into consideration, the integration range for calcu-
lating the conductivity is chosen as -0.55 nm−1 < k <
0.55nm−1, with nk ≈ 1000 representing the number of
k-steps. The allowed optical transitions and weight coef-
ficient effectively limit the contribution of large k-values
to physical quantities such as DOS and conductivity, par-
ticularly in the low-energy range. Throughout this sec-
tion, we consider a Floquet Hamiltonian dimension of
nF = (2nt + 1)ncell, where nt = 15 and ncell = 4.

A. Off-resonant Regime

In the case of off-resonant driving, the physical weights
of the bands in the first Floquet zone (−Ω/2 < εν < Ω/2)
are much higher than the other sidebands, particularly
if the amplitude of the drive is sufficiently low. Refer-
ence [18] demonstrates that for the off-resonant drive,

|ϕn⟩ ≈ H(n)

nΩ |ϕ0⟩ for n ̸= 0 where H(n) is defined in
Eq. (A3) of Appendix. We assume the dimensionless pa-

rameter H(n)

nΩ ≪ 1 for n ̸= 1 to be in the weak driving
regime, where the central sideband has the most signifi-
cant effect.

Subsequently, one can concentrate on the zeroth side-
band and consider the impact of other sidebands pertur-
batively. It is possible to employ an effective Hamiltonian
that describes the system’s evolution at integer multiples
of the time period. Expansions in inverse powers of fre-
quency for the effective Hamiltonian exist, which can be
truncated for sufficiently low amplitudes of drive [40–42].

Heff = H(0)+
∑
n

(nΩ)−1[H(−n), H(+n)]+O(1/(Ω)2) (6)

1. Off-resonant: Circular polarization

The phase diagram in the Hartree-Fock approximation,
along with the presence of other effects like valley ex-
change interaction, was presented in [43]. Now, let us

ΔΩ

V

C=-4

C=4

C=0

C=0

KK’

FIG. 1. (Color online) The phase diagram in the presence
of off-resonant drive in the studied system. The grey and
white regions show the quantum anomalous Hall insulator and
quantum valley polarized Hall insulator, respectively. The or-

ange and blue lines show the gap closing at K and K
′
valley

respectively. Notice that the asymmetry between K and K
′

opens up the possibility of generating a valley-polarized cur-
rent by tuning the chemical potential and applying a voltage
to the system.

briefly touch upon the irradiation effects on the system
described by Hamiltonian Eq. (1). After applying Peierls’
substitution to Eq. (1) and computing the Fourier com-
ponents, one can determine the effective Hamiltonian for
circular polarization, which is

Heff = H(0) +∆Ωv
2
F1⊗ σz (7)

where H(0) is equal to Eq. (1) and 1, σz are identity and
Pauli matrices, respectively, and ∆Ω = A2/Ω with A =
eA0.
The band gap given by Eq. (7) is equal to

gap

2
= ∆Ωv

2
F +

V

2
ξ (8)

We confirm that the gap closing can only occur at the
Γ point, which can be deduced from Eq. (8). The re-
sulting phase diagram is illustrated in Fig. 1. Notice
that the Chern number depicted in the phase diagram
of Fig. 1 is computed using the numerical method in-
troduced by Fukui, et al. [44]. This method is applied
to the effective Hamiltonian described in Eq. (7). The
white regions represent the valley-polarized Hall insula-
tor, where the Chern number is zero, but edge modes
from different valleys propagate helically. The grey re-
gions correspond to a quantum anomalous Hall insulator
with a Chern number of ±4. The gap in the spectrum
at the K valley differs from that at the K ′ valley, which
is expected from Eq. (8). In Fig. 1, the gap closing at
the K and K ′ valleys is indicated by orange and blue
colors, respectively. This asymmetry between the two
valleys opens up the possibility of generating a valley-
polarized current by tuning the chemical potential and
also applying a bias voltage to the system. Additionally,
a probe light can be directed towards the sample and se-
lectively absorbed by one valley, a phenomenon known as
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)

(a)                              (b)
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50        100       150       200

1.4
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-0.1      0      0.1 

 0.2

 0.1
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-0.1
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E (meV)0        10       20      30

 ω (meV)

FIG. 2. (Color online) (a) Quasi-energies of irradiated BLG
by LPL showing two gapless points. (b) The real part of the
time-averaged longitudinal optical conductivity for the sys-
tem. Notice that Reσxx ̸= Reσyy due to band gap asymmetry

around K and K
′
and hence it turns out that there is a linear

dichroism in the presence of linearly polarized dressing field.
We set frequency being Ω = 1 eV and intensity A′ = 0.1/v2F
along the y direction.

valley-selective pumping. On the other hand, we antic-
ipate a circular dichroism (i.e., different absorbance for
right and left-handed polarized probe light) due to the
Berry curvature induced by light [43, 45]. In the presence
of Berry curvature, when the probe frequency is set to the
value of the gap at each valley, nearly complete circular
dichroism is expected, meaning one of the right-handed
or left-handed polarized light is not absorbed [43, 45].
However, in the absence of ∆Ω and the presence of V ,
there is no complete circular dichroism because both val-
leys have the same magnitude of gap and opposite Berry
curvatures. It is worth noting that a similar phase dia-
gram emerges when we introduce magnetization instead
of light [46]. In this case, however, there is no asymmetry
between valleys.

2. Off-resonant: Linear polarization

For linearly polarized light (LPL), the second term in
Eq. (6) vanishes, and it becomes necessary to calculate
the second-order contribution. Since for linear polariza-
tion, H(1) = H(−1) and H(n) = 0 for n ̸= 0,±1, we can
apply the van Vleck expansion [42] and thus we have

Heff
lin = H(0) +

[H(1), [H(0), H(1)]]

Ω2
(9)

Assuming the polarization is along the y axis, we can
write the effective Hamiltonian as

Heff
lin = H(0) +

A2

Ω2

(
−ξkxv3Fσx ⊗ σx − 1

2
v2F γ11⊗ σx

)
(10)

Let us investigate how the band structure of Eq. (10)
changes as a function of its parameters. First, in the

absence of V , the system is always gapless. We assume
A′ = A2/Ω2 < v−2

F because Eq. (10) is not applicable
for large amplitudes of drive. So, for the aforementioned
condition, the gap closing can occur just at (0, k∗y) where

k∗y
2 = −A′(−2 +A′v2F )γ

2
1/4.

We show the energy dispersion and longitudinal opti-
cal conductivity of BLG irradiated by LPL along the y
axis in Fig. 2. The frequency of dressing field light is
Ω = 1 eV and the intensity A′ = 0.1v−2

F . This figure is
obtained by using the effective Hamiltonian in Eq. (10)
and static Kubo Formula which has good agreement with
the results by using Floquet Hamiltonian and dynamical
Kubo Formula Eq. (3). Two gapless points are visible in
Fig. 2 (a) and Fig. 2 (b) implying that there is a linear
dichroism (i.e. a difference between conductivity along
two perpendicular directions) in the presence of linearly
polarized dressing field.

It should be mentioned that by adding the bias poten-
tial V and for A′ < v−2

F the system is always gapped.
We examine the impact of the trigonal warping (a cor-

rection which leads to four gapless points on the Fermi
level [33]) in the system and we conclude that the above
argument is qualitatively applicable. For instance, in the
absence of V , by applying an LPL in every direction, the
system remains gapless but just two gapless points along
the direction of polarization only exist for high enough
amplitudes. Actually, in the absence of the dressing field,
there are four gapless points in the system, but turning
on the dressing field makes them merge and by increasing
the intensity of the dressing field, finally, two of them re-
main. This point was also noted in Ref. [31] where the di-
rection of polarization is assumed to be along the y−axis.
It was shown that after the application of light, two of
the four energy pockets near the Fermi level merge and
become gapped, but the Chern number remains constant
[31]. For other directions of polarization of the laser, two
gapless points remain for high enough amplitudes.

B. On-resonant regime

In this subsection, we present the numerical results
for the Floquet band structure and optical conductivity
under on-resonant driving conditions.

1. On-resonant: Circular polarization

In Fig. 3(a), we present the Floquet band structure
of irradiated BLG subjected to circularly polarized light
(CPL) with a frequency of Ω = 50meV and intensity
A = 0.08 (1/nm). The color scale represents the physi-
cal weights as defined in Eq. (A5). While there are four
Floquet bands in each Floquet zone, it is evident that two
of them carry significant weights within the quasienergy
range depicted in the figure. This implies that a two-
band low-energy Hamiltonian can be used instead of the
full four-band Hamiltonian when focusing on low-energy
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FIG. 3. (a) Quasi-energies of irradiated BLG with CPL with
frequency of Ω = 50 meV and intensity A = 0.08 1/nm. (b)
Time-averaged DOS for two intensities A = 0.02, 0.08 1/nm.
Color scale in part (a) shows the physical weights Wn

ν defined
in Eq. (A5).

properties. However, in this paper, we utilize the com-
plete four-band Hamiltonian. The band structure reveals
dynamical gaps at quasienergies nΩ/2, and as expected,
for larger values of k, the gap size decreases.

In Fig. 3(b), we present the time-averaged density of
states (DOS) of the system, calculated using Eq. (A7).
The light frequency is the same as in panel (a), and two
intensities, namely A = 0.02 and A = 0.08 (1/nm), are
plotted. This figure also showcases the development of
gaps in the DOS, which corresponds to the gaps seen in
the band structure. Furthermore, it can be inferred that
higher intensities lead to more van Hove singularities in
the DOS. This is because as the field intensity increases,
more bands acquire significant weights.

To calculate the time-averaged optical conductivity,
we first need to determine the occupation of Floquet
states fν as defined in Eq. (3). In this paper, we employ
the quench occupation model, often referred to as the
”sudden approximation” [28, 47]. This model assumes
that the system was initially in the ground state of the
non-driven model, and the drive is suddenly turned on.
The occupation of states is obtained by projecting the

non-driven ground state onto the Floquet wave function,

yielding fν =
∑

µ,n nF (Eµ)|⟨gµ|ϕ(n)ν ⟩|2. This differs from
the mean-energy assumption [28, 38], where each Floquet
state is occupied according to its mean energy (at zero
temperature, fmean

ν = Θ(EF − ϵ̄ν).

It turns out that the presence of time-periodic light can
lead to the creation of additional energy levels, known as
sidebands, in the material’s electronic structure. These
sidebands result from the interaction between electrons
and photons and play a crucial role in the material’s re-
sponse to the applied field. To explore the relationship
between the two occupation models, we present in Fig. 4
the quasienergy bands in the first Floquet-Brillouin zone
(i.e. (-Ω/2,Ω/2)) (a), mean energy (b) and quench oc-
cupation of states (c). It is evident from these figures
that at each resonance between Floquet bands, the mean
energy and occupation of states interchange. Notably,
one band can resonate with two other bands. Another
noteworthy feature is that when the mean energy is pos-
itive (negative), the quench occupation is lower (higher)
than 0.5. Since the difference between the occupation of
states (the factor fν − fµ in Eq. (3) for low values of k
is smaller than the mean-energy occupation case (which
is always 0 or ±1), it is expected that the magnitude
of optical conductivity for lower frequencies with quench
occupation is, in most cases, lower than the mean-energy
occupation (see Fig. 8 of Ref. [28]). However, excep-
tions may exist in some frequency regions. Nevertheless,
the fundamental characteristics of the two models remain
consistent.

In Fig. 5(a), we illustrate the real component of the
time-averaged longitudinal optical conductivity of BLG
under irradiation with CPL of frequency Ω = 50 meV
at various intensities. We focus on the regime where
ω > Ω because the optical conductivity at low energies is
highly influenced by the scattering mechanisms [28]. Ad-
ditionally, transitions occurring in dynamical gaps across
numerous resonances of the system give rise to distinct
peaks or dips at lower probe frequencies, exhibiting a
strong sensitivity to occupation and relaxation mecha-
nisms. The gaps observed in Fig. 5(a) emerge promi-
nently at integer multiples of the driving frequencies, and
this effect becomes more pronounced with higher inten-
sities, aligning with expectations derived from the band
structure and density of states. With increasing irradia-
tion intensity, the optical conductivity at lower frequen-
cies decreases due to deviations from complete occupa-
tion (0 or 1) of states at low k values. Moreover, some
non-uniformity is noticeable in the optical conductivity
at higher intensities, stemming from the fact that ele-
vated irradiation intensities result in an increased DOS
with more van Hove singularities.

In Fig. 5(b), we depict the imaginary part of the time-
averaged optical Hall conductivity for various intensities
of the driving field. This component is absent in the ab-
sence of a driving field. With increasing intensities of the
circularly polarized driving field, the significance of this
component grows, originating from the induced Berry
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FIG. 4. (Color online) (a) quasienergy bands in the first
Floquet-Brillouin zone (b) Mean-energy and (c) quench oc-
cupation of Floquet states as a function of the momentum
for irradiated BLG with CPL. Each colored curve indicates
one Floquet band (ν = 1, 2, 3, 4) of the four bands in the first
Floquet zone. We set frequency to Ω = 50 meV and intensity
to A = 0.08 nm−1.

curvature caused by the drive and indicating the pres-
ence of circular dichroism. A proof for the relationship
between Imσxy(ω) and the Berry curvature is provided in
Appendix B. As we will discuss, the Berry curvature at-
tains its maximum values for two out of the four Floquet
bands, specifically in regions where the states undergo an
anti-crossing. As illustrated in Fig. 5(b), the highest val-
ues of Imσxy appear near the dynamical gaps, where the
Berry curvature reaches its peak. The inversion of the
sign in Imσxy at low probe frequencies is linked to the
shift in the physical weights of the electron-like and hole-
like bands, reflecting the occupation of Floquet states at
low momentum values (refer to Fig. 3(a))

We also investigate the influence of a bias potential on
quasi-energies and optical conductivity. In the absence
of a dynamical field (A = 0), the application of a perpen-
dicular bias V introduces a tunable band gap at ε = 0.
In contrast, in driven systems (A ̸= 0), the bias poten-
tial induces an asymmetry in the dispersions of distinct
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0.0
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      0.10

50       100      150      200      250       300

50       100      150      200      250       300

   0.25

 0.125

      0

-0.125

  -0.25

-0.375

gap

R
eσ

xx
/ σ

0
Im

σx
y/
σ0

 ω (meV)

(a)  

(b)

FIG. 5. (Color online) a) Real part of time-averaged longitu-
dinal optical conductivity, b) Imaginary part of optical Hall
conductivity as a function of the probe frequency for a BLG
irradiated by CPL with the driven frequency of Ω = 50 meV
and for different intensities in units of nm−1. Notice that the
transitions within dynamical gaps, occurring across various
resonances of the system, manifest as distinct peaks or dips at
lower probe frequencies. These features exhibit a marked sen-
sitivity to occupation and relaxation mechanisms. Notably,
the observed gaps prominently emerge at integer multiples of
the driving frequencies. Moreover, this effect becomes more
pronounced with higher intensities, aligning well with expec-
tations derived from the underlying band structure and den-
sity of states. The legend is the same for two figures and the
black dashed line in (a) represents A = 0.

valleys. Specifically, the impact of right-handed circu-
larly polarized light (CPL) on the K valley mirrors that
of left-handed CPL on the K ′ valley. Given that con-
tributions from both valleys must be integrated in the
computation of optical conductivity, right-handed and
left-handed dressing lights result in identical longitudinal
optical conductivity. Fig. 6(a) presents the quasi-energy
bands and time-averaged optical conductivity for various
valleys. Here, a bias potential of V = 135 meV is ap-
plied, in conjunction with right-handed polarized light of
intensity A = 0.08 and frequency Ω = 50 meV directed
towards the system. The evident asymmetry between
the two valleys is conspicuous. Notably, two prominent
optical transitions are denoted by arrows in the upper
panel, accompanied by their respective peaks in the op-
tical conductivity. Furthermore, the figure indicates that
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FIG. 6. (Color online) (a) Quasi-energy spectrum and (b)
real part of the time-averaged optical conductivity of irradi-
ated BLG with right-handed CPL of strength A = 0.08 nm−1

and frequency Ω = 50 meV for applied bias V = 135 meV.
Color scale in part (a) shows the physical weights Wn

ν defined

in Eq. (A5). The results are presented for each valley K,K
′

separately indicating that the effective gap of the most prob-
able Floquet bands at the K′ valley surpasses that of the K
valley. The total optical conductivity is the sum of two val-
leys.

the effective gap of the most probable Floquet bands at
the K ′ valley surpasses that of the K valley. This leads
us to infer that, at specific probe frequencies, the inci-
dent light may be primarily absorbed by one of the two
valleys. Additionally, with the activation of the dress-
ing field, multiple gaps emerge at frequencies ω = nΩ in
the optical conductivity. Noteworthy is the absorption
at frequencies lower than V , which is an outcome of the
dressing field and the introduction of new transitions be-
tween sidebands. It is imperative to highlight that the
total optical conductivity is derived by aggregating the
contributions from both valleys.

2. On-resonant: Linear polarization

We now turn our attention to the influence of LPL
on the system. Fig. 7 presents the quasi-energy bands
of BLG subjected to irradiation with LPL character-
ized by a frequency of Ω = 50 meV and an intensity of
A = 0.08 nm−1. The plot displays results for three dis-
tinct azimuthal angles in momentum space, specifically
θk = arctan(ky/kx) = 0, π/4, π/2, revealing a discernible
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FIG. 7. (Color online) Quasi-energy spectrum as a function
of k along the direction θk = arctan(ky/kx) for the irradiated
BLG by LPL with frequency Ω = 50 meV and intensity A =
0.08 nm−1. The color scale shows the physical weights Wn

ν

defined in Eq. (A5). We observe the presence of a semimetallic
structure in the most probable Floquet bands particularly
along the x direction.
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FIG. 8. (Color online) Real part of the time-averaged longi-
tudinal optical conductivity of BLG irradiated by LPL with
the frequency of Ω = 50 meV and different intensities in units
of nm−1.

anisotropy in quasienergies.

The findings in Fig. 7 suggest the presence of a
semimetallic structure in the most probable Floquet
bands. Particularly noteworthy is the observation of a
gapless point along the x axis for the most probable
bands, a feature not observed in other directions.

The real component of the time-averaged longitudinal
optical conductivity for irradiated BLG with LPL is de-
picted in Fig. 8. It is important to note that in the pres-
ence of LPL, the band dispersion becomes anisotropic,
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leading to distinct optical conductivities along differ-
ent directions, i.e., Reσxx ̸= Reσyy. As observed, for
higher irradiation intensities and at low probe frequen-
cies, Reσxx surpasses. This gives rise to a linear dichro-
ism, akin to the off-resonant case.

IV. CONCLUSION

Utilizing the Floquet-Bloch theorem at zero tem-
perature, we have studied the band spectrum, den-
sity of states, and optical conductivity of driven Bi-
layer Graphene (BLG) under a perpendicular applied
bias. The driving field encompasses both circularly and
linearly polarized lasers, acting as a dressing field for
photon-assisted carriers. Our investigation has shed light
on the combined impact of laser illumination with vary-
ing polarizations and applied bias potential on the band
structure, state occupation, and optical conductivity.

The introduction of an applied bias disrupts the val-
ley symmetry in the dressing spectrum induced by ei-
ther right-handed circularly polarized light or its left-
handed polarization. Consequently, the band structure
changes with increasing applied bias for both of these
polarizations. No equivalence is observed in the spec-
trum around the K and K′ valleys when circularly polar-
ized light and a perpendicular bias voltage are simultane-
ously applied to BLG. Although the quasi-energy spec-
trum varies for left-handed circularly polarized and right-
handed polarization, the longitudinal optical conductiv-
ity remains consistent for both polarizations. However,
distinctions arise in the transversal optical conductivity.
Furthermore, some sidebands emerge in the case of cir-
cularly polarized light.

The distinct gap sizes for each valley introduce the
potential for generating valley-polarized current and en-
abling valley-selective pumping. Additionally, circularly
polarized light acting as a dressing field can induce Berry
curvature, especially close to the dynamical gaps, leading
to circular dichroism. Indeed, nonzero values of the imag-
inary part of the transverse optical conductivity which is
proportional to the Berry curvature, suggest the presence
of circular dichroism. Furthermore, our findings illus-
trate that linearly polarized light can induce anisotropy
in the system, resulting in a linear dichroism in both off-
resonant and on-resonant regimes.
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Appendix A: Essentials of Floquet theorem

The time-dependent Schrödinger equation (working in
lattice k-space and omitting the k index) is given by:

i∂t|ψν(t)⟩ = Ĥ(t)|ψν(t)⟩,

where ν denotes the band index. For a time-periodic
Hamiltonian of the form:

Ĥ(t+ T ) = Ĥ(t), T = 2π/Ω,

it can be solved using the Floquet approaches [48].
Let us write the solution of the Schrödinger equa-

tion based on the Floquet states, |ψν(t)⟩ = e−iενt|ϕν(t)⟩
where |ϕν(t+T )⟩ = |ϕν(t)⟩ is time-periodic Floquet quasi
mode, and the Schrödinger solution obeys a Bloch-type
theorem

|ψν(t+ T )⟩ = e−iενT |ψν(t)⟩.

The Floquet quasi mode |ϕν(t)⟩ is an eigenstate of oper-

ators (Ĥ(t)− i∂t)[
Ĥ(t)− i∂t

]
|ϕν(t)⟩ = εν |ϕν(t)⟩. (A1)

where εν are quasi energies. Since ϕν(t) is time-periodic,
it can be expanded by using the Fourier series,

|ϕν(t)⟩ =
∑
n

e−inΩt|ϕ(n)ν ⟩ (A2)

where ν = 1, 2, 3, 4 represents the band index, and

|ϕ(n)ν ⟩ denote the time-independent expansion coeffi-
cients, which form a complete basis set in the Hilbert
space of ℜ

⊗
T . The orthonormality condition [48, 49] is

given by ⟨⟨ϕν |ϕβ⟩⟩ =
1

T

∫ T

0
⟨ϕν(t)|ϕβ(t)⟩dt = δνβ .

By performing a Fourier expansion on |ϕν(t)⟩ as de-
scribed in Eq. (A2), and similarly expanding the Hamil-
tonian as

Ĥ(t) =
∑
n

e−inΩtĤ(n), (A3)

we can express Eq. (A1) in the following matrix form
[34]:

(εν +mΩ)|ϕ(m)
ν ⟩ =

∑
m′

H(m−m′)|ϕ(m
′)

ν ⟩ (A4)

Given that the quasienergies εν are defined modulo nΩ,
we introduce the reduced quasi energy ϵν to lie within
the first Floquet-Bloch zone (−Ω/2,Ω/2). The size
of the Floquet Hamiltonian matrix is nF × nF , where
nF = (2nt+1)ncell. Here, 2nt+1 represents the number
of replicas, and ncell = 4 stands for the number of unir-
radiated BLG energy bands. The corresponding weights
of subbands in this context can be derived from [28].

Wn
ν = ⟨ϕ(n)ν |ϕ(n)ν ⟩ (A5)
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Another important physical parameter we define is the
mean energy which is single-valued for all εnν and is de-
fined as [24, 50, 51]

ϵ̄ν =
1

T

∫ T

0

dt
〈
ψν(t)|Ĥ(t)|ψν(t)

〉
= ϵν +

∑
n

nΩWn
ν

(A6)

where n refers to Floquet subbands. Also, the time-
averaged density of states in the Floquet picture is de-
rived as [14, 24, 28]

DOS(E) =
∑
kνn

gsW
n
ν δ(E − (ϵν + nΩ)) (A7)

where gs = 2 shows the spin degeneracy.

Appendix B: Imaginary part of optical Hall
conductivity and Berry curvature

As explained in the main text, the imaginary part of
the optical Hall conductivity has a close relationship with
Berry curvature. In this Appendix, we explicitly prove it

by rewriting Eq. (5) in the following form [39]

Imσ̄ll′(ω) = πωgs
∑
k,m

∑
ν<µ

Fm
νµ(fν − fµ)×[

δ(ω + ϵν − ϵµ −mΩ) + δ(ω − (ϵν − ϵµ −mΩ))
] (B1)

where

Fm
νµ =

Im[j
l(m)
νµ j

l′(−m)
µν ]

(ϵν − ϵµ −mΩ)2
. (B2)

We call Fm
νµ the m-photon component of the Berry cur-

vature as the mixing states of the band ν with the band
µ. The total Berry curvature of a band can be written
as:

Ων =
∑
m

∑
µ̸=ν

Fm
νµ. (B3)

Subsequently, it is implied by Eq. (B1) that the compo-
nents of the Berry curvature, weighted by the difference
between the occupation of Floquet states, determine the
imaginary part of the optical Hall conductivity.
We present the Berry curvature as a color-scaled bar

overlaid on the quasi-energy bands of BLG irradiated by
CPL in Fig.9 (this can be compared with Fig.4(a) where
each Floquet band is depicted in distinct colors). It is
observed that only two out of four Floquet bands exhibit
a non-negligible amount of Berry curvature, with this
curvature reaching its maximum values at light-induced
anti-crossing states that emerge following a mixing be-
tween two Floquet bands. In the absence of light, there
is no Berry curvature in the bands, and consequently, no
circular dichroism.
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