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Phase-separated biomolecular condensates containing proteins and RNAs can assemble into
higher-order structures by forming thermodynamically stable interfaces between immiscible phases.
Using a minimal model of a protein/RNA interaction network, we demonstrate how a “shared” pro-
tein species that partitions into both phases of a multiphase condensate can function as a tunable
surfactant that modulates the interfacial properties. We use Monte Carlo simulations and free-
energy calculations to identify conditions under which a low concentration of this shared species is
sufficient to trigger a wetting transition. We also describe a numerical approach based on classical
density functional theory to predict concentration profiles and surface tensions directly from the
model protein/RNA interaction network. Finally, we show that the wetting phase diagrams that
emerge from our calculations can be understood in terms of a simple model of selective adsorption
to a fluctuating interface. Our work shows how a low-concentration protein species might function
as a biological switch for regulating multiphase condensate morphologies.

I. INTRODUCTION

Intracellular biomolecular mixtures can spatially or-
ganize into complex, self-assembled compartments via
phase separation [1–3]. Such structures are referred to
as biomolecular condensates, since they form by spon-
taneously condensing biomolecular components, such as
proteins and RNAs, into liquid-like compartments that
are not enclosed by a membrane [4]. In many instances,
condensates have been observed to assemble further into
higher-order multiphasic structures, in which multiple
immiscible condensates form stable shared interfaces [5–
7]. Common multiphase morphologies include “core–
shell” architectures, in which one condensate is com-
pletely surrounded by a second condensate, and “docked”
architectures, in which condensed droplets attach to the
surface of another condensate [8]. The morphologies of
many multiphase condensates appear to be related to
their biological functions, such as the sequential process-
ing of rRNA transcripts during ribogenesis within core–
shell nucleoli [9], and the sharing of various biomolec-
ular components between docked stress granule and P-
body condensates that are involved in regulating mRNA
metabolism and translation [7, 10, 11]. It is therefore
important to understand how the morphologies of multi-
phase condensates are controlled at a molecular level.

The formation of biomolecular condensates is widely
considered to be a consequence of near-equilibrium, ther-
modynamically driven phase separation [12–14]. Within
this thermodynamic framework, a multicomponent sys-
tem evolves to minimize its overall free energy by phase-
separating and adjusting the contact areas between dif-
ferent phases. The equilibrium morphology of a multi-
phase system is thus governed by the relationships among
surface tensions between pairs of phases and the vol-
ume fractions of the phases [15, 16]. Recent theoreti-
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cal studies have demonstrated that surface tensions in
multicomponent mixtures, and consequently multiphase
morphologies, can be controlled by changing either the
effective pairwise interactions between the biomolecular
components [16] or the stoichiometry of multicomponent
condensates that are stabilized by heterotypic interac-
tions [17]. However, changing condensate morphologies
via these mechanisms entails substantial changes to the
state of the system, since the molecular properties and/or
concentrations of the components that comprise the bulk
of the phase-separated condensates must be altered.

By contrast, surface tensions can be tuned by mak-
ing comparably small perturbations to molecular com-
ponents that adsorb to condensate interfaces [18–20].
In principle, tuning the concentrations and affinities of
surfactant-like components can control multiphase con-
densate morphologies with minimal changes to the state
of an intracellular mixture, analogous to methods used
to engineer multiphase emulsions [21]. A key example is
provided by a recent study [22] of stress granules (SGs)
and P-bodies (PBs), which assemble into a docked mul-
tiphase architecture under stressed conditions in human
cells [11]. Importantly, this study suggested that small
changes to the concentrations of specific proteins—in par-
ticular, those with affinities for proteins in each of the co-
existing SG and PB phases—can trigger a transition be-
tween docked and dispersed condensates [22]. Although
the localization of these particular proteins to the SG/PB
interface has not been confirmed experimentally, this ex-
ample suggests that molecular components with affinities
for the constituents of multiple distinct condensates can
alter the morphologies of multiphase condensates.

In this article, we investigate this proposed mecha-
nism for switching between morphologies of multiphase
condensates. We focus on the transition between non-
wetting and partial wetting morphologies, which we refer
to as the wetting transition for brevity [23]. Specifically,
we use a minimal model of a multicomponent mixture to
derive design rules for controlling wetting transitions via
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Figure 1. Minimal model of multiphase condensates. (A) Schematic of the protein/RNA interaction network that governs
stress granule (SG)/P-body (PB) multiphase condensates [22]. Top: Nodes indicate protein/RNA species, while edges indicate
either homotypic interactions (i.e., self associations) or heterotypic interactions (i.e., associations between different species).
We coarse-grain the network into N1, B, and N2 species. The approximate partitioning of various species into the SG/PB
condensates is suggested by the color bar below. Bottom: SG/PB condensates form either docked or dispersed morphologies,
depending on the interactions specified by the network and the concentrations of the protein/RNA species. (B) A typical
configuration of the coarse-grained direct-coexistence simulations showing the α and β condensed phases, composed primarily
of the N1 (blue) and N2 (red) species, respectively, and a coexisting dilute phase. The low-concentration B species (gold) is
dispersed throughout the simulation box. The interaction matrix, ϵ, for the nearest-neighbor intermolecular interactions is
shown in the inset. (C) Heterotypic interactions between B and node species either follow an isotropic model (left), in which
all nearest-neighbor contacts contribute an interaction energy ϵNB (indicated by arrows), or a bivalent model (right), in which
only oppositely positioned patches (spherical caps) on the B molecule interact with specific node species according to ϵNB.

low-concentration “programmable surfactant” proteins,
which interact selectively with the constituents of two
immiscible condensates. We first introduce a simulation
approach for computing the wetting transition between
docked and dispersed morphologies. We then develop a
complementary theoretical approach based on classical
density functional theory, which reproduces our simula-
tion results semi-quantitatively. Both approaches pre-
dict that relatively low concentrations of surfactant-like
proteins can trigger a wetting transition between docked
and dispersed morphologies under specific conditions. Fi-
nally, we describe a qualitative theory that predicts the
key features of this wetting transition and establishes
rational design rules for understanding the behavior of
programmable surfactants in multicomponent biomolec-
ular mixtures. Taken together, our results show how
programmable surfactants can act as low-concentration
molecular switches for regulating biological processes by
controlling the morphologies of multiphase condensates.

II. MINIMAL MODEL OF A PROGRAMMABLE
SURFACTANT

Our model is motivated by the multicomponent
SG/PB system studied in Ref. [22]. At a molecular level,
the formation of the immiscible SG and PB condensates
is dictated by the interactions among the constituent pro-
tein and mRNA components. In this system, the relevant
intermolecular interactions can be described by a pro-
tein/RNA interaction network (Fig. 1A), in which nodes
represent proteins, protein complexes, or RNA, and edges
indicate attractive interactions between species.

To reduce the complexity, we coarse-grain the endoge-
nous SG/PB protein/RNA interaction network to three

explicit molecular components based on the organization
of the network. We refer to these coarse-grained species
as “Node 1” (N1), “Bridge” (B), and “Node 2” (N2)
throughout this work. N1 and N2 are the majority com-
ponents of the immiscible α and β condensed phases,
respectively, that form as a result of attractive homo-
typic interactions (Fig. 1B). The α and β phases coexist
with a dilute phase (D), which represents the cytosol in
our implicit-solvent model. For simplicity, we consider a
three-dimensional lattice-gas model in which the N1, N2,
and B species occupy individual lattice sites on a cubic
lattice with lattice constant σ. The homotypic and het-
erotypic interactions among these species are summarized
in a pairwise interaction matrix ϵ [24] (Fig. 1B). Details
of the simulation approach are provided in Appendix A.
Bridge molecules (B) represent a “shared” species that

interacts with the majority components of the α and
β phases via attractive heterotypic interactions. In
this work, we consider two distinct models for the B
species. We first analyze an “isotropic” model in which B
molecules interact with all nearest-neighbor N1 and N2
molecules; this model is most appropriate for describ-
ing highly multivalent protein and RNA species when
the net interactions between pairs of molecules are weak
compared to the thermal energy and can thus be approx-
imated via isotropic pair interactions [24]. We then study
an anisotropic “bivalent” model, in which B molecules in-
teract with node molecules via specific patches (Fig. 1C;
see Sec. VD). In this case, each of the two patches lo-
cated on opposite sides of a B molecule only engages in
heterotypic interactions with a specific node species. We
show that these two models yield qualitatively similar re-
sults for the wetting transition, suggesting that our mini-
mal model serves as a reasonable approximation for many
systems with anisotropic and multivalent interactions.
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III. COMPUTING WETTING TRANSITIONS
VIA MOLECULAR SIMULATION

In this section, we introduce a Monte Carlo technique
for computing the wetting transition between docked and
dispersed morphologies of a multiphase condensate. Us-
ing direct-coexistence Monte Carlo simulations in the
slab geometry [25] (Fig. 1B), we determine the poten-
tial of mean force (PMF) between a pair of condensed
phases in the canonical ensemble. We then show how the
properties of these PMFs can be related to the equilib-
rium morphology of a macroscopic multiphase system in
the thermodynamic limit.

A. Potential of mean force (PMF) calculations

To efficiently sample both wetting and non-wetting
configurations, we perform umbrella sampling [26] by
applying a harmonic biasing potential to the center-of-
mass (COM) distance between the α and β condensates
(Fig. 2A). We first define the α and β-phase regions,
Sα/β , as the cross-sections along the z axis of the sim-
ulation box with N1 or N2 volume fractions, ϕN1/N2(z),
greater than ϕ∗: Sα/β ≡ {z | ϕN1/N2(z) > ϕ∗}. We find
that using a threshold of ϕ∗ = 0.56 reduces the effects
of density fluctuations near the interfaces and thus im-
proves the efficiency of our calculations; however, this
choice has no significant effect on the results, as long as
ϕ∗ is situated between the molecular volume fractions of
the bulk condensed and dilute phases. We then compute
the COM distance, r, based on the center of mass of
the N1 or N2 molecules within the α or β phases, respec-
tively. The COM distance is therefore r ≡ ⟨z⟩(β)−⟨z⟩(α),
where ⟨z⟩(α/β) ≡

∫
z∈Sα/β

z dz/
∫
z∈Sα/β

dz, and we use the

minimum-image convention to define distances given the
periodic boundary conditions.

Our aim is to compute the PMF

F (r) ≡ −kBT ln
p(r)

p(rref)
, (1)

where p(r) is the probability of finding the α and β con-
densed phases separated by a COM distance equal to r.
We choose a reference point for the PMF calculations
where the interactions between the droplets are expected
to be negligible (see Appendix A). Following the canon-
ical umbrella sampling approach [26], we apply a har-
monic biasing potential, (ki/2)(r−r0,i)

2, to constrain the
COM distance near a target distance r0,i. Independent
simulations, indexed by i = 1, . . . ,M , are used to sample
near target COM distances at intervals of one σ. The
spring constants {ki} are chosen to ensure that the prob-
ability distributions, pi(r), sampled from simulations at
adjacent target distances overlap [27]. In production sim-
ulations, we calculate the COM distance every 10 MC
sweeps and record 200,000 samples for every target dis-
tance {r0,i}. Finally, we utilize the multistate Bennett

Figure 2. Characterizing interfaces using Monte Carlo
simulations and umbrella sampling. (A) Definitions of
the characteristic interfacial width parameter, ξ, the width of
a single condensed phase, l0, and the distances between the
phase centers of mass (COMs), r, and the Gibbs dividing sur-
faces (vertical dashed lines), ∆r. (B) The potential of mean
force (PMF) as a function of the dimensionless distance pa-
rameter ∆r/ξ. Example PMFs are shown for typical wetting
(orange) and non-wetting (blue) scenarios. Statistical errors
are smaller than the line width.

acceptance ratio (MBAR) method [28] to combine sam-
ples from the M independent biased simulations and to
obtain the unbiased PMF given by Eq. (1). Example
PMF calculations are shown in Fig. 2B.

B. Morphology predictions using the PMF

The PMF defined via Eq. (1) reflects the propensity for
the α and β condensed phases to assemble into a docked
configuration, since the minimum value of the PMF cor-
responds to the equilibrium distance between the Gibbs
dividing surfaces. To assist in interpreting the PMF cal-
culations, we characterize the distance between the α and
β-phase interfaces by defining a dimensionless distance
parameter ∆r/ξ ≡ (r − l0)/ξ (Fig. 2A). ∆r/ξ is equal
to zero when the Gibbs dividing surfaces of the two con-
densed phases are in direct contact, whereas ∆r/ξ ≫ 1
indicates that the distance between the condensed-phase
interfaces is large compared to the typical interfacial
width.

Two representative PMFs for wetting and non-wetting
scenarios are shown in Fig. 2B. In the non-wetting case,
the PMF is non-negative, indicating a net repulsion be-
tween the α and β phases. We find that the PMF begins
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to increase as ∆r/ξ decreases below ∼ 4, suggesting that
the fluctuating interfaces interact well before the Gibbs
dividing surfaces come into contact. By contrast, the
PMF has a clear minimum in the wetting case. The neg-
ative values of the PMF at COM distances in the range
0 ≲ ∆r/ξ ≲ 4 indicate a net attraction between the α
and β condensed phases that also occurs over a length
scale comparable to that of the interfacial fluctuations.

The PMFs from finite-size simulations enable us to pre-
dict the multiphase morphology of the systems in the
thermodynamic limit (see Appendix B). The PMF mini-
mum for a wetting interface (Fig. 2B) is proportional to
the cross-sectional area, A, where the constant of propor-
tionality is the difference between the surface tensions at
the α–β interface, γαβ , and the dilute–condensed inter-
faces, γαD,

F (req) = −A(−γαβ + 2γαD). (2)

Eq. (2) is supported by the finding that the PMF pro-
files scale linearly with A in our simulations in both
wetting and non-wetting cases (see Fig. A1). Thus,
the multiphase morphology is determined solely by the
PMF, or equivalently by the surface-tension difference
−γαβ + 2γαD, in the thermodynamic limit.

IV. PREDICTING MULTIPHASE
MORPHOLOGY WITH CLASSICAL DENSITY

FUNCTIONAL THEORY

In this section, we develop a complementary approach
for predicting multiphase condensate morphologies us-
ing the framework of classical density functional theory
(CDFT). We first show how to compute equilibrium con-
centration profiles for the isotropic bridge model. We
then discuss how these calculations can be used to pre-
dict the wetting transition between docked and dispersed
morphologies of a multiphase condensate.

A. Classical density function theory (CDFT)

Assuming a regular solution model [29], the Helmholtz
free-energy density, f0, of the multicomponent lattice gas
can be written as

f0σ
3

kBT
=

∑
i

ϕi lnϕi +
1

2

∑
i,j

ϕiχijϕj , (3)

where the sums run over all N molecular components as
well as the implicit solvent. The molecular volume frac-

tions are constrained by
∑N

i=0 ϕi = 1, where ϕ0 repre-
sents the volume fraction of the solvent. The interaction
matrix χij is related to the nearest-neighbor interaction
energy, ϵij , by χij ≡ (z/2kBT )(2ϵij−ϵii−ϵjj), where the
lattice coordination number is z = 6. For the interaction
matrix shown in Fig. 1B, Eq. (3) predicts three coex-
isting phases, α, β, and D, when the B-species volume

fraction, ϕB, is small, in agreement with our Monte Carlo
simulation results. Details of the phase-coexistence cal-
culation and its numerical implementation are provided
in Appendix C. This mean-field regular solution model
provides an adequate description of the bulk phases un-
der these conditions, which are chosen to be sufficiently
far from the critical points of the α and β phases.
In the grand canonical ensemble, we express the grand-

potential functional in terms of the square-gradient ap-
proximation [30],

Ω[ϕ⃗(z)] = A

∫ ω0[ϕ⃗(z)] +
1

2

∑
i,j

ϕ′
i(z)mijϕ

′
j(z)

dz, (4)

assuming planar interfaces as in our simulations. This ap-
proximation assumes that inhomogeneities, such as inter-
faces between coexisting phases, vary slowly in space (i.e.,
over long wavelengths) due to the absence of higher-order
derivatives [30]. Ω is a functional of the molecular volume

fractions, ϕ⃗(z) ≡ (ϕN1(z), ϕB(z), ϕN2(z))
⊤, in a system at

fixed chemical potentials, µ⃗ ≡ (µN1, µB, µN2)
⊤. For inter-

facial property calculations, the chemical potentials are
determined from the aforementioned coexistence condi-
tions, such that the bulk phases far from an interface are
in coexistence. The first term in the integrand of Eq. (4)
is the local grand-potential density, ω0 ≡ f0 −

∑
i µiϕi.

The second term, involving derivatives of volume frac-
tions with respect to z, ϕ′

i(z), represents the excess grand
potential due to an inhomogeneity.
We approximate the coefficients of the square-gradient

term, m = {mij}, by again assuming that the inhomo-
geneity is small in amplitude and varies slowly in space.
In this case, the mij coefficients are determined from sec-
ond derivatives of the free-energy density [30, 31]. For
the free-energy density given in Eq. (3), these conditions
imply that

mij = −σ−1ϵij (5)

is a constant, concentration-independent matrix [30, 31].
However, in our multicomponent model, this matrix may
not be positive-semidefinite, as required by the long-
wavelength assumption underlying the square-gradient
approximation. If the coefficient matrix instead has neg-
ative eigenvalues, then large-amplitude inhomogeneities
act to decrease the grand potential, leading to unphys-
ical negative surface tensions and numerical instabili-
ties. Qualitatively, this scenario tends to occur when
heterotypic interactions out-compete one or more homo-
typic interactions. We propose that the square-gradient
approximation can nonetheless be applied to multicom-
ponent solutions in such scenarios by regularizing the
m-matrix. We therefore perform an eigenvalue decom-
position of Eq. (5), replace the negative eigenvalues (if
there are any) with zeroes, and reconstruct the regular-
ized low-rank [32] m-matrix for use in Eq. (4). After
regularization, the fluctuation modes represented by the
eigenvectors with zero eigenvalues do not contribute to
the square gradient term in Eq. (4).
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The equilibrium interfaces between coexisting phases
are determined by minimizing the grand-potential func-
tional,

δΩ[ϕ⃗(z)]

δϕi
= 0, (6)

which yields the equilibrium molecular volume-fraction

profiles, ϕ⃗eq(z). Despite the shortcomings of the long-
wavelength assumption, we find that our approach for
regularizing them-matrix leads to semi-quantitative pre-
dictions for the molecular volume-fraction profiles across
a wide variety of conditions, as we show in Sec. VA.

B. Morphology predictions based on CDFT

To predict the equilibrium morphology of multiphase
condensates, we calculate the excess free-energy pro-
file, ∆ω(z), in the vicinity of an interface between bulk
phases,

∆ω(z) = ω0[ϕ⃗eq(z)]− ω
(D)
0 +

1

2

∑
i,j

ϕ′
eq,i(z)mijϕ

′
eq,j(z),

(7)

where ω
(D)
0 is the grand potential of the bulk dilute phase.

The associated surface tension,

γ =

∫
∆ω(z)dz, (8)

is then obtained by integrating the excess free-energy pro-
file across the interface. Finally, we compute the surface-
tension difference −γαβ + 2γαD by applying Eq. (8) to
both the α–β and the α–D interfaces.

We emphasize that the Euler–Lagrange equation spec-
ified by Eq. (6) must be solved numerically for our mul-
ticomponent model, since the concentration of the B
species can vary non-monotonically across an interface.

In practice, this can be achieved by minimizing Ω[ϕ⃗(z)]
via gradient descent. Details regarding our implementa-
tion of this numerical scheme, as well as criteria for as-
sessing convergence, are presented in Appendix D. As we
show in Sec. VB, this numerical approach predicts wet-
ting transitions in qualitative agreement with our Monte
Carlo simulation results. By contrast, assuming that
the molecular volume-fraction profiles follow linear paths
through concentration space [15, 16, 22] predicts non-
wetting behavior for a wide range of conditions, which
is at odds with our simulation results. We discuss this
approximation, as well as the relationship between our
method and an alternative “minimum free-energy path”
(MFEP) approximation, in Appendix E.

V. CONTROLLING WETTING TRANSITIONS
USING A PROGRAMMABLE SURFACTANT

We now investigate how the “programmable surfac-
tant” (B) species, which is shared between the α and β

condensates in Fig. 1, controls the multiphase conden-
sate morphology. To this end, we first study the behav-
ior of the isotropic model at different B-species volume
fractions, ϕB; heterotypic N–B binding affinities, ϵNB;
and homotypic B–B interaction strengths, ϵBB. We fo-
cus specifically on the low-ϕB, weak-ϵNB regime, in which
the compositions of the bulk α and β phases are negligi-
bly affected by the presence of the B species, as we expect
that this regime is most relevant to the regulation of mul-
tiphase condensate morphologies in a biological context.
We then demonstrate that the bivalent model results in
qualitatively similar behavior.

A. Surfactant enrichment at wetting interfaces

We first examine the correspondence between the inter-
facial concentration profiles predicted by simulations (see
Sec. III) and CDFT (see Sec. IV) under wetting and non-
wetting conditions using the isotropic model (Fig. 3A).
In the wetting case, we estimate the equilibrium concen-
tration profile at the α–β interface from simulations con-
ducted with the biasing potential centered at the equi-
librium COM distance, req (see, e.g., Fig. 2B and Ap-
pendix A). In the non-wetting case, we examine the α–D
interface in the absence of the β phase. We define the
Gibbs dividing surfaces by symmetry in the case of the
α–β interface, and on the basis of ϕN1(z) in the case
of the α–D interface [30]. We generically find a slight
but statistically significant enrichment of the B species
at both α–β and α–D interfaces when ϵNB < 0. This
effect is greater at α–β interfaces under wetting condi-
tions, as might be expected for a surfactant-like species
that is attracted to both condensed phases. Nonethe-
less, we note that even under wetting conditions, only a
small fraction of all B molecules are located at the α–β
interface.

Despite the approximations inherent to our CDFT ap-
proach, we find semi-quantitative agreement between the
predicted and simulated concentration profiles (Fig. 3A).
The interfaces predicted by CDFT tend to exaggerate the
B-species enrichment at the interface relative to the sim-
ulation results. Furthermore, from CDFT calculations,
we directly obtain predictions for the excess free energy
across each interface, ∆ω(z) (Fig. 3B). In the case of the
α–D interface, the excess free energy profile is asymmet-
ric about the Gibbs dividing surface, with the maximum
shifted toward the dilute phase.

The behavior of the B species near each interface is
more clearly seen in the three-dimensional (N1, N2, B)
concentration space (Fig. 3C–E). The enrichment of the
B species relative to its concentration in either the con-
densed or dilute phase results in a marked deviation from
the linear-path approximation (dashed lines in Fig. 3C–
E). Consequently, the excess free energy predicted by
the full CDFT approach for the α–β interface shown
in Fig. 3A–B is substantially lower than that predicted
by this linear-path constraint. Because the deviation
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Figure 3. Enrichment of the programmable surfactant at condensate interfaces. Here, calculations are performed
using the isotropic bridge model. (A) CDFT predictions (solid lines) closely agree with simulation measurements (points)
of the equilibrium concentration profiles at α–β (left) and α–D (right) interfaces. Vertical dashed lines indicate the Gibbs
dividing surfaces. Results are shown for a typical wetting case (ϵNB = −1 kBT , ϵBB = 0, ϕB = 0.1). (B) Excess free-energy
profiles corresponding to the CDFT profiles shown in A. (C–E) Concentration profiles across the interfaces trace out paths
in the three-dimensional (N1, N2, B) concentration space. Comparisons are shown between the simulation results (points),
the full CDFT theory (solid lines), the linear-path approximation (dashed lines), and the minimum-free-energy-path (MFEP)
approximation (dash-dotted lines) for the cases shown in A. Simulation statistical errors are comparable to the symbol size.

from the linear-path approximation is greater for the
α–β interface than the α–D interface, the linear-path
approximation tends to mischaracterize wetting condi-
tions as non-wetting. By contrast, MFEP calculations
(dot-dashed lines in Fig. 3C–E) exaggerate the enrich-
ment of B molecules at all interfaces, and we find that
the MFEP between the α and β phases in concentration
space can actually pass through the dilute phase. The
full CDFT approach, which most closely matches the
simulation results, is intermediate between these limit-
ing cases, exhibiting a reduction of the N1 and N2 con-
centrations at the interface without passing through the
dilute phase (Fig. 3D). We stress that these predictions
are dependent on our regularization approach for the m-
matrix (see Sec. IV), without which CDFT would yield
diverging interfacial fluctuations for the parameters used
in Fig. 3. Overall, these comparisons demonstrate the
semi-quantitative accuracy of our CDFT approach and
highlight shortcomings of the linear-path approximation
(see Appendix E) in multicomponent settings.

B. Computing the wetting transition

To determine how the equilibrium multiphase mor-
phology changes with the concentration and heterotypic

interactions of the B species, we compute the surface-
tension difference −γαβ + 2γαD using both simulation
results and CDFT calculations (Fig. 4A–B). A positive
surface-tension difference, −γαβ + 2γαD > 0, indicates
a stable wetting interface between the α and β phases.
From our simulation results, we compute this quantity
based on the PMF minimum (Sec. III), and we iden-
tify the wetting transition where the PMF minimum be-
comes statistically indistinguishable from zero (blue ar-
rows in Fig. 4A–B). In our CDFT calculations, the α–β
interface spontaneously relaxes to two dense–dilute in-
terfaces when a non-wetting configuration is predicted,
in which case we obtain a near-zero value for the surface-
tension difference due to finite numerical precision (see
Appendix D). We therefore identify the CDFT wetting
transition by comparing the surface-tension difference to
the numerical precision (orange arrows in Fig. 4A–B).

Our simulations and CDFT calculations predict quali-
tatively similar behavior for the surface-tension difference
and the location of the wetting transition. In particu-
lar, both simulation and theory predict that the surface-
tension difference tends to increase, leading to a sta-
ble wetting configuration, with decreasing ϵNB and in-
creasing ϕB. However, the wetting transition occurs at
weaker N–B interactions and lower B concentrations in
the CDFT theory. This quantitative discrepancy likely
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Figure 4. Identifying surfactant-dependent wetting
transitions. (A) The difference between the non-wetting and
wetting surface tensions, −γαβ + 2γαD, as a function of ϵNB

at constant ϕB = 0.1 using the isotropic bridge model with
ϵBB = 0. Results are shown for simulations (blue circles) and
CDFT calculations (orange triangles). Arrows indicate the
locations of the wetting transition, where the surface-tension
difference equals zero to within twice the statistical uncer-
tainty, inferred from both methods. (B) The surface-tension
difference as a function of ϕB at constant ϵNB = −0.75 kBT .
Statistical uncertainties are comparable to the symbol size.

arises from the mean-field and long-wavelength assump-
tions invoked in the CDFT theory. Nonetheless, it is in-
teresting that the equilibrium concentration profiles pre-
dicted by CDFT appear to be in much closer agreement
with the simulation results (Fig. 3A) than the surface-
tension differences (Fig. 4). This comparison suggests
that the key shortcoming of the CDFT theory lies in
the neglect of interfacial fluctuations, which we expect
to have stronger effects on surface free energies than av-
erage concentration profiles.

C. Design rules for regulating multiphase
condensate morphology via programmable

surfactants

The equilibrium multiphase morphology of the
isotropic bridge model can be summarized in a wetting
phase diagram (Fig. 5A). Here we plot separate curves
predicting the wetting transition based on simulations

and the CDFT surface-tension difference in the absence
of homotypic bridge interactions (ϵBB = 0). The shaded
region of parameter space below each curve in the ϵNB–
ϕB plane corresponds to an equilibrium wetting config-
uration, where a docked multiphase morphology is ther-
modynamically stable. We also report the phase diagram
for a model in which B molecules interact via weak homo-
typic interactions, such that ϵBB = −0.5 kBT (Fig. 5B).
Although the CDFT approach underestimates the N–B
interaction strength required to trigger the wetting tran-
sition, it captures the qualitative shape of the phase dia-
gram both with and without homotypic interactions.

The wetting phase diagrams presented in Fig. 5A–B
exhibit a number of striking features. First, there is
a minimum heterotypic interaction strength, |ϵ∗NB|, re-
quired for a stable wetting configuration. Stable docked
morphologies therefore cannot occur for ϵNB > ϵ∗NB, re-
gardless of the B-species concentration. In this model,
we find that ϵ∗NB ≈ −0.6 kBT , which is considerably
weaker than the critical interaction strength of the cu-
bic lattice gas model [33]. Second, the wetting transition
passes through ϵ∗NB at a finite B-species volume fraction.
This observation implies that the wetting transition is re-
entrant for values of ϵNB close to ϵ∗NB, where increasing
ϕB at a constant heterotypic interaction strength leads
the system to transition from the non-wetting regime to
the wetting regime, and then back to the non-wetting
regime at high B-species concentrations. Third, the
phase boundary extends to low B-species volume frac-
tions, on the order of only a few percent. Importantly,
at dilute B-species concentrations, the heterotypic inter-
action strength required to trigger the wetting transition
weakens rapidly with increasing ϕB. By contrast, the
phase boundary is comparably insensitive to ϕB near ϵ∗NB.

Finally, we observe that homotypic B–B interactions
have only a minor quantitative effect on the wetting
phase diagram. This finding indicates that weak ho-
motypic interactions among surfactant-like species play
a secondary role in modulating multiphase condensate
morphologies. However, there are slight differences be-
tween the phase diagrams. On one hand, introducing ho-
motypic B–B interactions reduces the minimum required
interaction strength, |ϵ∗NB|, by a small amount. On the
other hand, at dilute B-species concentrations, the wet-
ting phase boundary is shifted to slightly stronger het-
erotypic N–B interactions.

Taken together, these observations establish general
design rules for programmable surfactants. Most impor-
tantly, our results indicate that relatively low concentra-
tions of a surfactant-like species (ϕB ≳ 0.03) and rela-
tively weak heterotypic interactions (ϵNB ≲ −0.6 kBT )
are sufficient to trigger a wetting transition in a mul-
ticomponent, multiphase mixture. We note that these
phase diagrams are insensitive to changes in the concen-
trations of the N1 and N2 species, as these changes do
not substantially affect the compositions of the bulk α
and β phases when the B species is dilute. However, the
equilibrium multiphase morphology may transition from



8

Figure 5. Wetting phase diagrams for programmable
surfactacts. Phase diagrams are shown as a function of the
B-species volume fraction, ϕB, and the heterotypic N–B in-
teraction energy, ϵNB, for isotropic bridge models (A) with-
out homotypic interactions and (B) with weak homotypic
interactions (ϵBB = −0.5 kBT ), and (C) for the bivalent
bridge model. Shaded regions indicate wetting conditions.
Phase boundaries are predicted from simulation results (black
points) and CDFT surface-tension calculations (green points).

partial wetting (i.e., a docked configuration) to complete
wetting (i.e., a core–shell structure) when the α and β-
phase volume fractions differ substantially [15, 16].

D. Generalization to the bivalent bridge model

We next investigate the behavior of the bivalent bridge
model. In this model, each anisotropic B molecule has
two binding sites on opposite sides (Fig. 1C). One site
selectively binds to N1 while the other binds to N2, each
with interaction strength ϵNB. Thus, to establish a node–
bridge interaction, a B molecule must be adjacent to a
node molecule with the correct binding site pointing to-
wards it, resulting in a larger entropic penalty for het-
erotypic interactions than in the isotropic model.
Despite these differences in the N–B binding rules, we

find that the wetting phase boundary for the bivalent
model is qualitatively similar to its isotropic-model coun-
terparts (Fig. 5C). In fact, we find that the enrichment of
B molecules at α–β wetting interfaces is more pronounced
with the bivalent model, since the B molecules are less
miscible in the bulk condensed phases. Minor differences
arise since stronger N–B interactions are required to sta-
bilize a wetting interface in the bivalent model due to the
greater entropic penalty for heterotypic interactions. As
a result, the wetting transition is shifted lower in Fig. 5C.
We also find no evidence for a re-entrant wetting transi-
tion at bridge concentrations up to ϕB = 0.3. Yet overall,
the strong dependence of the wetting transition on the
B-species volume fraction at low ϕB is preserved in the bi-
valent model. This observation suggests that the switch-
like mechanism for triggering a morphology change at
low ϕB is a general feature of programmable surfactants,
and is relatively insensitive to the details of the molecular
model.

E. Understanding programmable surfactant design
rules using an adsorption model

To gain a deeper understanding of these empirical de-
sign rules, we introduce a simple adsorption model that
recapitulates the key features of the wetting phase dia-
grams in Fig. 5. We examine the interplay between the
parameters ϵNB, ϵBB, and ϕB by considering a Langmuir-
like model [34] in which the B species acts as the adsor-
bate. We therefore assume that each fluctuating inter-
face between a pair of phases can be described by a two-

dimensional lattice gas with B-species occupancy ϕ
(i)
B .

We first consider the isotropic and bivalent models
without homotypic B-species interactions (ϵBB = 0). The
surface excess grand potential, Ωex, due to the presence
of the interface [30] takes the form

Ωex(ϕ
(i)
B )σ2

AkBT
= h(ϕ

(i)
B )−

∆S(ϕ
(i)
B )

AkB
− µB

kBT
ϕ
(i)
B , (9)

where A is the interfacial area. The first enthalpic
term is linearly related to the occupied volume fraction

in the mean-field approximation, h(ϕ
(i)
B ) = −aϕ

(i)
B + b.

For a surfactant-like adsorbate, a is positive. Mean-
while, b represents the enthalpic penalty due to the
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creation of an interface from a bulk condensed phase

and is independent of ϕ
(i)
B . The entropic contribution,

∆S(ϕ
(i)
B )/AkB = −ϕ

(i)
B lnϕ

(i)
B − (1− ϕ

(i)
B ) ln(1− ϕ

(i)
B ) + s,

accounts for the in-plane configurational entropy of the
adsorbed B molecules as well as the entropic penalty,
s, due to capillary fluctuations. Finally, µB is the B-
species chemical potential. Since the dense phase is in
coexistence with the approximately ideal dilute phase,

we have µB/kBT ≃ lnϕ
(D)
B , where ϕ

(D)
B is the B-species

volume fraction in the dilute phase. By minimizing the
surface excess grand potential, Eq. (9), with respect to

ϕ
(i)
B , we arrive at a Langmuir adsorption isotherm for the

B species,

ϕ
(i)
B,eq =

K

1 +K
, (10)

where K ≡ ϕ
(D)
B ea. This prediction agrees well with the

enrichment of B molecules at α–β interfaces in our sim-
ulations (Fig. 6A). In the case of the bivalent model, we
obtain quantitative agreement by tuning the coefficient
a. For the isotropic model, we find it necessary to intro-
duce an overall scaling factor when fitting to the Lang-
muir isotherm, Eq. (10), since the diffuse interfaces are
wider than 2σ, making the monolayer assumption in the
adsorption model less appropriate.

We now compute the surface tension in this model from
the equilibrium surface excess grand potential,

γ ≡
Ωex(ϕ

(i)
B,eq)

A
=

kBT

σ2
[b− s− ln(1 +K)], (11)

and apply this formula to both the α–β and the α–D

interfaces. The ϕ
(i)
B -independent enthalpic contribution

must be the same regardless of the distance between the α
and β-phase interfaces, so that bαβ = 2bαD. By contrast,
the entropic contribution due to capillary fluctuations
depends on whether one or two distinct interfaces are
present between the α and β phases. We therefore define
the dimensionless entropic difference ∆s ≡ −sαβ + 2sαD,
which is necessarily positive and increases with the inter-
facial roughness. In a wetting case,

−γαβ+2γαD = −kBT

σ2

[
∆s+ ln

(1 +KαD)
2

1 +Kαβ

]
> 0. (12)

Eq. (12) predicts a wetting phase boundary that is

quadratic with respect to ϕ
(i)
B (see Appendix F), which

indicates that wetting can only occur when [35]

aαD − aαβ < ln
1−

√
1− e−∆s

2
. (13)

Because the coefficients aαD and aαβ reflect the enthalpic
contribution due to the adsorption of B molecules, we as-
sume that the left-hand side of Eq. (13) is roughly propor-
tional to ϵNB. Moreover, by making the approximation
aαβ ≃ 2aαD, which implies that a B molecule engages in

Figure 6. An adsorption model predicts qualitative fea-
tures of the wetting transition. (A) The enrichment of B
molecules at the α–β interface can be described by a Langmuir
isotherm. Simulation measurements of the B-species enrich-
ment for the isotropic model (blue points; ϵNB = −0.75kBT ,
ϵBB = 0) are fit to a Langmuir isotherm, Eq. (10), with fit-
ting parameter aαβ = 2.1 and an empirical scaling factor of
0.45. Measurements of the B-species enrichment in the biva-
lent model (black points; ϵNB = −1.6kBT ) are fit to a Lang-
muir isotherm with fitting parameter aαβ = 0.69. (B)Wetting
phase boundaries as a function of the B-species volume frac-
tion in the dilute phase. (Data are obtained from the same
simulations as presented in Fig. 5, although the quantities

being plotted, ϕB versus ϕ
(D)
B , are different.) The adsorption

model predicts the nonmonotonicity of the isotropic-model
phase boundary, the asymptotic behavior of all models at low

ϕ
(D)
B , and the increase of the maximum N–B interaction on

the phase boundary, ϵ∗NB, due to homotypic B–B interactions.

twice as many N–B interactions at an α–β interface, we

obtain a relation between ϕ
(D)
B and ∆s at the minimum

binding strength, |ϵ∗NB|, on the wetting phase boundary,

ϕ
(D)
B

∣∣∣∗ =
−(1− e−∆s) +

√
1− e−∆s

2
. (14)

Importantly, the existence of a minimum binding
strength |ϵ∗NB|, resulting from Eq. (12), predicts a non-
monotonic wetting phase boundary, with a re-entrant
wetting transition at constant ϵNB < ϵ∗NB, as observed in
our isotropic-model simulations. In the bivalent model,
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the entropic penalty to orient the B-molecule binding
sites perpendicular to the α–β interface implies a sub-

stantially higher ϕ
(D)
B for re-entrance, consistent with our

simulations (see Appendix F).

Finally, in the low-concentration and high-affinity
regime, eaαβ−aαD ≫ e∆s, we obtain an asymptotic for-
mula for the low-concentration phase boundary,

lnϕ
(D)
B + aαβ = ln(e∆s − 1). (15)

The logarithmic dependence on ϕ
(D)
B in Eq. (15) explains

the sensitivity of the wetting transition to the B-species
concentration under these conditions (Fig. 6B), where

we see that ∂aαβ/∂ lnϕ
(D)
B ∝ ∂ϵNB(kBT )

−1/∂ lnϕ
(D)
B is

roughly constant in both the isotropic and bivalent bridge
models. The behavior in the low-concentration, high-
affinity regime can therefore be interpreted as a compe-
tition between capillary fluctuations and the free-energy
change when adsorbing a B molecule to the α-β interface.

We now consider the isotropic model with homotypic
interactions (ϵBB < 0). In this scenario, the mean-field
approximation for the enthalpic contribution in Eq. (9)

acquires an extra term −a′(ϕ
(i)
B )2, where a′ > 0, that ac-

counts for B–B interactions at the interface. The chemi-
cal potential µB similarly picks up a term that is propor-

tional to ϕ
(D)
B , since the B molecules can also attract one

another in the dilute phase. The effects of these modifi-
cations can then be predicted by perturbing the ϵBB = 0
results (see Appendix F). In the low-concentration limit,

both ϕ
(i)
B and ϕ

(D)
B are small, so that the asymptotic be-

havior given by Eq. (15) remains unchanged; this predic-
tion is confirmed by plotting the wetting phase boundary

as a function of ϕ
(D)
B in Fig. 6B. However, near ϕ

(D)
B |∗,

the perturbation due to a′ is non-negligible. Specifi-
cally, turning on homotypic B–B interactions results in a
change to the surface tension difference,

∆(−γαβ + 2γαD)|∗ =
2K2

αD|∗

(1 +K∗
αD)

2
a′ > 0, (16)

at the maximum N–B interaction, ϵ∗NB, on the phase
boundary. The sign of Eq. (16) indicates that homotypic
B–B interactions weaken the required N–B interaction
strength, resulting in an increased ϵ∗NB. This prediction
also agrees with our simulation results (Fig. 6B).

In summary, this analytical model explains all the
essential features of our wetting phase diagrams, in-
cluding the re-entrant wetting transition and the low-
concentration asymptotic behavior. Notably, these pre-
dictions are obtained without assuming specific values
of the coefficients in the mean-field adsorption model.
We therefore expect that the design rules that we have
derived for programmable surfactants hold beyond the
lattice models that we have simulated in this work.

VI. DISCUSSION

In this work, we consider a simplified, coarse-grained
model of a “programmable surfactant” in a multicompo-
nent biomolecular mixture. Our central results are a set
of design rules for controlling multiphase condensate mor-
phologies, which are summarized in the wetting phase
diagrams presented in Fig. 5. Most importantly, these
phase diagrams demonstrate that surprisingly low con-
centrations of a weakly interacting programmable surfac-
tant can induce a transition from non-wetting (i.e., “dis-
persed”) to wetting (i.e., “docked” or “core–shell”) con-
figurations. More precisely, we find that the heterotypic
interactions between the surfactant-like species and the
majority component(s) of the condensed phases must ex-
ceed a relatively weak binding strength. However, given
heterotypic interactions that are slightly stronger than
this threshold value, a surfactant volume fraction of only
a few percent is needed to trigger the wetting transition.
These observations imply that relatively small changes
to the state of the system—either small adjustments to
the concentrations or heterotypic binding strengths of the
surfactant-like species—can alter the equilibrium mor-
phology of a multiphase condensate.

We find that the qualitative features of the wetting
phase diagrams agree between our molecular simulation
results and the predictions of two theoretical approaches.
From our molecular simulations, we predict the wet-
ting behavior in the thermodynamic limit using measure-
ments of the potential of mean force between condensates
in a finite-size system. In the CDFT approach, we min-
imize an approximate grand-potential functional to ob-
tain predicted equilibrium concentration profiles in the
vicinity of the condensate interfaces, which agree semi-
quantitatively with our simulation results. Finally, we
show that a simplified adsorption model captures the
key features of our detailed calculations, suggesting that
the design rules that we have extracted from the wetting
phase diagrams are likely to apply much more generally
to related models of programmable surfactants with dif-
ferent molecular details. For example, we have shown
that our simulation methods and adsorption model can
be applied to biomolecules with directional as opposed to
isotropic interactions.

Returning to the stress granule (SG)/P-body (PB) sys-
tem that motivated our model, we propose that the in-
sights gained from our calculations can be applied di-
rectly to protein/RNA interaction networks that underlie
the phase behavior of multiphase biomolecular conden-
sates. The key step lies in coarse-graining the interac-
tion network to identify potential surfactant-like species,
which should interact with protein/RNA components in
multiple, distinct condensed phases. Such species are
likely to be situated as “bridges” between strongly inter-
acting portions of the network [22]. For example, in the
SG/PB system [22], the protein DDX6 (Fig. 1A) is an
obvious candidate, as it is weakly recruited to both con-
densates. Our model predicts that this species should be
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weakly enriched at SG/PB interfaces in the endogenous
system, which exhibits a stable docked morphology. This
testable prediction is also reminiscent of recent findings
that certain proteins are localized to the nucleoli rim [36].
In future work, we will examine theoretical methods for
identifying surfactant-like species on the basis of the in-
teraction network structure and experimentally deter-
mined binding affinities and expression levels. In light of
our current results, the requirements of moderate binding
strengths and low molecular concentrations suggest that
this proposed mechanism of a molecular “switch” for con-
trolling intracellular condensate morphologies is likely to
be biologically relevant. Further experiments are needed
to test the detailed predictions of our model.

Finally, we note that this mechanism is not lim-
ited to naturally occurring biomolecular systems. Low-
concentration, surfactant-like molecular switches may
also be useful for tuning multiphase morphologies in ma-
terials engineering, where approaches that do not re-
quire substantial changes to the bulk properties of the
coexisting phases are similarly desirable. For example,
the phase behavior of multiphase DNA “nanostar” liq-
uids [37] can be interpreted in terms of an interaction
network, in which “cross-linker” nanostars can be engi-
neered to play the role of the molecular switch. Our
model and theoretical framework can also be applied to
engineer complex multiphase emulsions [21], which have
broad applications including encapsulation and triggered
delivery of molecular cargoes. These systems and simi-
lar examples of programmable soft matter [38] would be
ideal opportunities to test our predictions experimentally
and to apply the design rules developed in this work.
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Appendix A: Details of Monte Carlo simulations

In our lattice model, each molecule interacts with its
six nearest neighbors according to the interaction matrix,
ϵ. Bivalent bridge molecules, which can engage in at most
two nearest-neighbor interactions, are the sole exception
to this rule. Vacant lattice sites represent the inert sol-
vent. Since we are interested in investigating how the B
species controls the condensate interfaces as opposed to
the properties of the bulk phases, we choose to keep the
homotypic N1 and N2 interactions constant in this work.
To guarantee stable α and β phases, we fix these interac-
tion strengths to be 1.5kBT per bond, which is stronger
than the critical binding strength ∼ 0.89 kBT of the cu-
bic lattice gas model [33]. The heterotypic interactions
between the N1 and N2 species are set to zero to ensure
immiscibility of the α and β phases. The interaction
energies describing heterotypic N1–B and N2–B interac-

tions, ϵNB, and homotypic B–B interactions, ϵBB, are left
as free parameters. Under these conditions, the N1 and
N2 concentrations primarily affect the volume fractions
of the coexisting α, β, and dilute phases and have negligi-
ble effects on the compositions of the condensed phases.
We therefore fix the volume fractions of the N1 and N2
species to be ϕN1 = ϕN2 = 0.25, such that the condensed
phases occupy approximately half the total volume.

We implement direct-coexistence simulations using a
100 × 8 × 8 lattice with periodic boundary conditions.
Simulations are carried out using the Metropolis Monte
Carlo (MC) algorithm [39], where we attempt to ex-
change the positions of molecules of different types, in-
cluding vacancies, at each MC move. In each MC sweep,
we attempt 6,400 moves, which is the total number of
lattice sites in the simulation box. In simulations with
bivalent bridge molecules, each B molecule has 6 orienta-
tional states. We therefore attempt particle-swap and B-
molecule rotation moves, applied to a randomly selected
B molecule, with equal probability. Each MC sweep in
this case consists of twice as many moves.

The simulation-box geometry results in approximately
planar interfaces between coexisting phases. We there-

fore compute molecular volume-fraction profiles, ϕ⃗(z),
as a function of the z coordinate along the long di-
mension of the simulation box. The interface between
a condensed phase and the dilute phase is well de-
scribed by a hyperbolic tangent function [30], ϕN1(z) =

(1/2)(ϕ
(α)
N1 + ϕ

(D)
N1 )+ (1/2)(ϕ

(α)
N1 − ϕ

(D)
N1 )tanh[(z − z0)/ξ)],

where ϕ
(α)
N1 and ϕ

(D)
N1 are the volume fractions occupied by

the molecular species N1 in the bulk α and dilute phases,
respectively (see Fig. 2A). This expression is used to de-
fine the interfacial width, which is equal to 2ξ. We also
define the width of the α condensed phase, l0, based on
the distance between the left and right Gibbs dividing

surfaces, where ϕN1(z) = (ϕ
(α)
N1 + ϕ

(D)
N1 )/2.

We record volume fraction profiles and the COM dis-
tances between condensates at the same time in simu-
lations. We first equilibrate the system for 5000 MC
sweeps, which we determine to be much longer than the
equilibration time based on the COM distance fluctua-
tions. We then perform a production run as described in
the main text. The reference point for the PMF calcu-
lation is chosen to be rref = 35σ for the isotropic bridge
model and rref = 33σ, for the bivalent bridge model.
The target values for the COM distances during um-
brella sampling are in the range 25σ ≤ r0,i ≤ 35σ for
the isotropic bridge model and 23σ ≤ r0,i ≤ 33σ for the
bivalent bridge model. To estimate the equilibrium vol-
ume fraction profiles shown in Fig. 3A, we average the
profiles from a simulation performed under the umbrella
potential with r0,i = req. Importantly, this approach
does not affect the equilibration of degrees of freedom
orthogonal to the coordinate r.
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Figure A1. Finite-size scaling of the PMFs. PMFs ob-
tained for the isotropic bridge model collapse onto a single
curve when scaled by the cross-sectional area, A = σ2l2, in
both (A) wetting (ϵNB = −1kBT , ϵBB = 0, ϕB = 0.1) and
(B) non-wetting (ϕB = 0) examples. The cross-sectional di-
mensions of the lattice, l × l, are indicated for each curve in
units of σ. Statistical errors are smaller than the line width.

Appendix B: Finite-size scaling of the PMFs

In this section, we show that the condensate morphol-
ogy of the system with an arbitrary finite size, or in the
thermodynamic limit, can be predicted on the basis of
PMF calculations obtained from finite-size simulations.
Within a finite simulation box, the probability of distri-
bution of the α–β COM distance is related to the PMF
via p(r) ∝ e−F (r)/kBT = e−Af(r)/kBT , where A is the
cross-sectional area of the simulation box and f(r) is the
PMF per unit area. Consistent with this expectation, we
indeed find that the PMF profiles scale with A in our sim-
ulations in both wetting and non-wetting cases (Fig. A1).
These results indicate that the PMFs capture extensive
properties of the condensed-phase interfaces in our model
and are not significantly influenced by the dimensions of
the simulation box. Next, we define a contact distance
rc = l0 +λ beyond which we consider the condensates to
be in a non-wetting configuration, such that F (rc) ≃ 0.
Here l0 depends on the width of the condensed phase
while λ is a constant. The probability of finding the α
and β condensed phases in a wetting configuration in a
simulation box of length L can then be written as

pw =
Zw

Zw + Znw
, (B1)

where Zw ≡
∫ rc
0

e−Af(r)/kBT dr and Znw = L/2 − rc are
the partition functions associated with the wetting and
non-wetting macrostates, respectively.

We now consider changing the geometry of the simula-
tion box while keeping the concentrations of all molecu-
lar species unchanged. As a result, the volume associated
with each condensed phase, l0A, scales with the system
size, while the volume fractions and compositions of the
condensed phases remain constant. Since Zw depends
on the cross-sectional area A and Znw depends on the
box length L, the wetting probability depends on both A
and L in a finite-size simulation box. The L-dependence

indicates that configurational entropy plays a role in de-
termining pw in a finite-size system, implying that the
probability of forming a wetting interface tends to zero if
the simulation box is elongated with the cross-sectional
area A held constant. However, in the thermodynamic
limit, both A and L are taken to infinity with the ra-
tio A1/2/L held constant. The wetting probability then
tends to either one or zero, depending on whether the
minimum of the PMF is less than zero. If the PMF min-
imum is negative, then Zw scales exponentially with A
while Znw scales with A1/2; in this case, pw = 1 according
to Eq. (B1). By contrast, if the minimum value of F (r)
is non-negative, then Zw decreases with A, and pw = 0.
These arguments are easily extended to describe

the morphology of spherical multiphase condensates.
The finite-size wetting probability, Eq. (B1), is
now determined from the partition functions Zw =
4π

∫ rc
0

e−A(r)f(r)/kBT r2dr and Znw = V−(4π/3)r3c , where
the interfacial area, A(r), depends on the COM distance,
r. The non-wetting partition function, Znw, represents
the free volume available to a non-wetted condensate,
and V is the total volume of the system. In the ther-
modynamic limit, an analogous scaling argument im-
plies that the wetting behavior again depends solely on
the surface-tension difference, which is related to the
PMF minimum via Eq. (2). When −γαβ + 2γαD >
0, the docked condensates take the shape of spherical
caps [40], forming a circular interface with contact angle
θ = arccos(−γαβ/2γαD); otherwise, spherical α and β
condensates do not form a stable shared interface in the
thermodynamic limit.

Appendix C: CDFT phase-coexistence calculations

We solve for phase coexistence in the regular solution
model (see Sec. IV) following the numerical strategy de-
scribed in Ref. [24]. Specifically, we solve for the molec-

ular volume fractions, {ϕ⃗(k)}, and the mole fractions of
the coexisting phases, {x(k)}, given the total molecular

volume fractions, ϕ⃗tot. Mass conservation requires that

ϕ⃗tot =

m∑
k=1

x(k)ϕ⃗(k), (C1)

if there are m phases in coexistence.
We now consider the conditions for phase equilibrium.

The grand-potential density is related to the free-energy

density via ω0 = f0 −
∑N

i=1(∂f0/∂ϕi)ϕi, where the chem-
ical potentials of the non-solvent molecular species are
µi = σ3∂f0/∂ϕi. Coexisting phases are located at min-
ima of ω0, ensuring that all components have equal chem-
ical potentials in all phases. Phase equilibrium also re-
quires equal pressures across all coexisting phases, imply-

ing that the ω0(ϕ⃗) has the same value at all local minima.
Together, these conditions require

ω0(ϕ⃗
(k)) = minω0(ϕ⃗; µ⃗). (C2)
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Figure A2. Empirical criterion for locating the wetting transition in CDFT. (A–B) The location of the wetting
transition can be empirically estimated from CDFT by examining where the double peaks of the excess free-energy profile
merge (inset). In B, this method predicts a re-entrant wetting transition at constant ϵNB = −0.75 kBT . The calculations in
A–B use the isotropic bridge model with ϵBB = 0. (C) The wetting phase diagrams predicted by this empirical criterion.

We solve Eq. (C2) numerically by minimizing the norm
of the residual errors of Eq. (C1) and Eq. (C2) itera-
tively. At each iteration, we first locate the local minima

of the grand potential, ϕ⃗(k) = argminϕ⃗ ω0(ϕ⃗; µ⃗) for all

phases k = 1, . . . ,m, using the Nelder-Mead method [41].
We then update µ⃗ and {x(k)} using the modified Powell
method [42].

Success of this optimization procedure requires that

the initial estimates of {ϕ⃗(k)} are not too far from the val-

ues at coexistence. We obtain an initial guess for {ϕ⃗(k)}
from the convex hull method [15, 24], in which we lo-
cate the convex hull of points on a discretized (N + 1)-
dimensional free energy surface. We initialize our opti-

mization procedure with N + 1 vectors {ϕ⃗(k)} that cor-
respond to the vertices of the convex hull facet that en-

compasses ϕ⃗tot. From the linear equation that defines
this facet, we also obtain initial guesses for µ⃗ and {x(k)}.
When the number of coexisting phases m is less than

N + 1, some of the N + 1 vectors {ϕ⃗(k)} are identical
to within numerical tolerance after optimization; in this
case, we restart the optimization procedure with a unique
set of vectors and the corresponding µ⃗ and {x(k)}. In this
way, we determine the number of coexisting phases, m,

as well as the molecular volume-fraction vectors, {ϕ⃗(k)},
and chemical potentials, µ⃗, at phase coexistence.

Appendix D: Numerical solution of the CDFT
Euler–Lagrange equation

To minimize the grand-potential functional in Eq. (4),
we employ a numerical approach based on gradient de-
scent. We first discretize the z coordinate, oriented per-
pendicular to the planar interface between phases, as
{zk} for k = 1, 2, . . . , n. As a result, the integration in
Eq. (4) becomes a summation, and the grand-potential
functional becomes a function of n N -dimensional vec-
tors ϕ⃗k ≡ ϕ⃗(zk). Using the central difference formula for

differentiation, Eq. (4) becomes

Ω

Ah
=

n−1∑
k=2

[
ω0(ϕ⃗k)+

(ϕ⃗k+1−ϕ⃗k−1)
⊤ ·m · (ϕ⃗k+1−ϕ⃗k−1)

2(2h)2

]
,

(D1)
where h ≡ zk+1− zk is the discretization interval. We fix

the vectors ϕ⃗k at the two points closest to each boundary,
k = 1, 2, n − 1, and n, to be equal to the bulk phase
densities. In all calculations, we set h = 0.02σ and n =
1004. These choices separate the bulk-phase boundary
conditions by a distance of 20σ, which is much greater
than the typical interfacial width (see Fig. 2A).
We then apply gradient descent to minimize the dis-

cretized grand potential, Eq. (D1), by calculating the

partial derivatives ∂Ω/∂ϕ⃗k. At each optimization step l,
the densities are updated according to

ϕ⃗
(l+1)
k = ϕ⃗

(l)
k − λ

(
∂Ω

∂ϕ⃗k

)
ϕ⃗ (l)

, (D2)

where λ controls the step size. We choose 10−3 as the
initial value of λ and reduce it by half if an attempted
step increases the grand potential. We initialize this op-
timization algorithm using an interface with a width of
4σ and a piecewise-linear spatial variation of the molecu-
lar volume fractions. The algorithm terminates when the
norm of the gradient falls below a threshold value, 10−3,

at which point we take ϕ⃗k to be the equilibrium profile.
To verify the convergence of this algorithm, we per-

turb the concentration profiles by moving the α and β
interfaces apart by 0.04σ and then restarting the opti-
mization algorithm. In a wetting scenario, the profile
converges back to the result of the original optimization.
However, in a non-wetting scenario, the profile remains
close to the perturbed profile, consistent with an unsta-
ble interface. In practice, we compare the norms of the
distances between the re-optimized, perturbed, and orig-
inally optimized profiles to verify the optimization result.
In predicted wetting cases where the CDFT surface

tension is positive yet close to zero, we observe that
the equilibrium excess free-energy profile becomes dou-
bly peaked (inset of Fig. A2A). This feature can serve
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as an empirical, yet practically useful, criterion for es-
timating the conditions for the wetting transition, since
it is numerically much easier to detect this feature than
to converge the calculations to the precision required to
compute the surface tension difference (Fig. A2A–B). We
empirically find that the transition from singly to doubly
peaked excess free-energy profiles results in reasonable
agreement with the wetting phase diagram computed
from our simulation results (Fig. A2C).

Appendix E: CDFT linear path and minimum
free-energy path approximations

In some cases, the CDFT results that we obtain by
solving Eq. (6) numerically differ qualitatively from the
predictions of a “linear path approximation” that has
appeared in previous studies of multicomponent flu-
ids [15, 16, 22]. To demonstrate the important differences
between these approaches, we follow the Cahn–Hilliard
approach [31] and integrate the Euler–Lagrange equa-
tion, Eq. (6), to obtain

ω0[ϕ⃗eq(z)]− ω
(D)
0 =

1

2

∑
i,j

ϕ′
eq,i(z)mijϕ

′
eq,j(z), (E1)

which relates the bulk and square-gradient contributions
to the excess free energy, Eq. (7), of the equilibrium inter-
face. However, to make further progress using Eq. (E1),
we need to know the path through concentration space
that corresponds to the equilibrium interface between the
coexisting phases α and β. In general, this path can be

described parametrically by ϕ⃗(η), with 0 ≤ η(z) ≤ 1,
limz→−∞ η(z) = 0, and limz→∞ η(z) = 1.
Unlike the case of a binary mixture, the equilibrium

path through concentration space is typically not known
a priori in a multicomponent system. Assuming a linear

path, ϕ⃗(η) = (1− η)ϕ⃗(α) + ηϕ⃗(β), leads to the expression
utilized in Refs. [15, 16, 22],

γαβ =

√
2(ϕ

(β)
i −ϕ

(α)
i )mij(ϕ

(β)
j −ϕ

(α)
j )

∫ 1

0

[∆ω0(η)]
1/2dη,

(E2)

where ∆ω0(η) ≡ ω0(ϕ⃗(η)) − ω
(D)
0 . However, this linear-

path assumption implies that the concentration of the
B molecule cannot be greater at the interface than it is
in the coexisting bulk phases, which is generally inconsis-
tent with our simulation results. For this reason, Eq. (E2)
fails to predict wetting configurations for all conditions
that we consider in this work.

A plausible alternative approximation is to find the
path through concentration space that minimizes the
bulk contribution to the excess free energy. This approxi-
mation leads to a minimum-free-energy path (MFEP) as-

sumption for ϕ⃗(η). More precisely, the MFEP minimizes

the integral
∫ 1

0
∆ω0(ϕ⃗(η)) dη and thus passes through a

saddle point on the grand-potential landscape between

the bulk-phase concentrations ϕ⃗(α) and ϕ⃗(β). In practice,

we calculate the MFEP using a direct implementation of
the zero-temperature string method [43]. (For a discus-
sion of the algorithmic details of this method, we refer
the reader to Ref. [43].) Following the terminology in
Ref. [43], we use a total of N = 100 points on a string
between two local minima on the bulk excess free energy
surface. In the “evolution step” of the algorithm, the
points evolve according to the gradient descent method,
as in Eq. (D2), where ∆t controls the step size. Here we
use the forward Euler method with ∆t = 5×10−4. Then
in the “reparameterization step”, we reparameterize the
string such that the N points are equally spaced with
respect to arc length along the string. We check for con-
vergence by measuring the norm of the displacement of
all points from their positions in the previous iteration,
and we use a convergence tolerance of TOL = 10−4.
By contrast with the linear-path assumption, the

MFEP tends to predict enrichment of the B compo-
nent at the interface whenever ϵNB < 0. Nonethe-
less, the MFEP approximation can misclassify the in-
terface as non-wetting in many cases, particularly when
the path is predicted to pass through the dilute phase
(see Fig. 3D–E). The numerically determined equilibrium

path, ϕ⃗eq(η), is intermediate between the linear path
and the MFEP. We therefore interpret the equilibrium
path as resulting from a competition between the bulk
and square-gradient contributions to the grand-potential
functional in our multicomponent model. For this rea-
son, the optimal path is sensitive to the m-matrix, mak-
ing our regularization approach (see Sec. IV) an essential
and nontrivial aspect of our CDFT calculations.

Appendix F: Fluctuating-interface adsorption model

In this section, we detail the essential steps to bridge
the gaps between Eq. (12) and the subsequent results pre-
sented in Sec. VE of the main text. Explicitly expressing
the wetting condition in Eq. (12) leads to

(ϕ
(D)
B )2e2aαD+ϕ

(D)
B (2eaαD−eaαβ−∆s)+1−e−∆s < 0. (F1)

Eq. (F1) only has solutions for ϕ
(D)
B when the discrim-

inant of this quadratic function is positive, such that
(2eaαD − eaαβ−∆s)2 − 4e2aαD(1 − e−∆s) > 0. Setting
the quadratic function to 0 and considering eaαβ−aαD ≫
e∆s, we obtain the asymptotic formula for the low-
concentration phase boundary, Eq. (15).
Both aαD and aαβ are expected to be proportional to

the N–B binding energy, ϵNB. In addition, physical values

of ϕ
(D)
B must be between 0 and 1. With these conditions,

Eq. (F1) allows us to predict the weakest N–B binding
strength for a wetting interface. Setting the discriminant
to 0, the volume fraction at this binding strength is

ϕ
(D)
B

∣∣∗ = e−aαD

√
1− e−∆s. (F2)

At the weakest binding strength, we have a∗αD − a∗αβ =

ln(1 −
√
1− e−∆s)/2, from which we obtain Eq. (13).
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Then, by making the approximation aαβ ≃ 2aαD, we are
able to express these quantities in terms of ∆s at the
weakest N–B binding strength, |ϵ∗NB|, on the wetting
phase boundary,

a∗αD = ln 2 + ln[e∆s +
√
e∆s(e∆s − 1)], (F3)

K∗
αD =

√
1− e−∆s, (F4)

ϕ
(i,αβ)
B

∣∣∗ = 2ϕ
(i,αD)
B

∣∣∗. (F5)

According to Eq. (F3), the minimum binding strength
|ϵ∗NB| increases with ∆s, since aαD ∝ |ϵNB|. As ∆s in-
creases, the B-species volume fraction in the dilute phase,

ϕ
(D)
B

∣∣∗, first increases until reaching a maximum value
of 0.125 at K∗

αD = 0.5, as evidenced by substitution

of Eq. (F4) into Eq. (14). ϕ
(D)
B

∣∣∗ then decreases with
∆s at larger ∆s. The wetting phase boundary is al-
ways non-monotonic for a positive ∆s. These observa-
tions suggest that an accurate treatment of the capil-
lary fluctuations, quantified here by ∆s, is essential for
obtaining an accurate prediction of |ϵ∗NB|; this interpre-
tation is consistent with the quantitative differences be-
tween our CDFT and simulation results in Fig. 5A-B.

We can also estimate ϕ
(D)
B |∗ by computing ∆s directly

from our simulated PMF at zero B-species concentration,
where kBT∆s/σ2 = −(−γαβ + 2γαD) ≃ F (∆r = 0)/A.
From Fig. A1B, we find ∆s ≈ 0.15, which, according to

Eq. (14), suggests that ϕ
(D)
B |∗ ≃ 0.12. This prediction is

reasonable given our simulation results (see Fig. 6B).
We can similarly apply this framework to describe

the bivalent bridge model. To account for the en-
tropic penalty of aligning B molecules at the interface,
we add a density-dependent term to ∆S in Eq. (9),

∆S(ϕ
(i)
B )/AkB = −ϕ

(i)
B lnϕ

(i)
B − (1 − ϕ

(i)
B ) ln(1 − ϕ

(i)
B ) +

s + (− ln 6)ϕ
(i)
B , assuming that the B molecules at the

interface are all aligned in the correct orientation with
their binding sites pointed into the condensed phases.
This modification is equivalent to decreasing a by ln 6.

As a result, ϕ
(D)
B

∣∣∗ increases by a factor of 6 according to
Eq. (F2), explaining why we do not observe the re-entrant

phase behavior in our simulations at bridge volume frac-
tions up to ϕB = 0.3.
To extend this adsorption model to incorporate homo-

typic B–B interactions, we modify the mean-field expres-
sions for the enthalpic contribution to the surface excess
grand potential and the chemical potential in Eq. (9),

h(ϕ
(i)
B ) = −a′(ϕ

(i)
B )2 − aϕ

(i)
B + b, (F6)

µB/kBT = lnϕ
(D)
B − cϕ

(D)
B , (F7)

where a′ and c are positive constants that are expected
to be proportional to |ϵBB|. We can then show that these
additional terms in Eq. (F6) and Eq. (F7) lead to an
increase in (−γαβ+2γαD)|∗ by considering perturbations
to the ϵBB = 0 case. Comparison with Eq. (9) shows that
these additional terms effectively alter the parameter a
in the original model by

∆a = a′ϕ
(i)
B − cϕ

(D)
B . (F8)

According to Eq. (11), introducing the perturbation ∆a
changes the surface tension by an amount

∆γ = −ϕ
(i)
B ∆a = −ϕ

(i)
B (a′ϕ

(i)
B − cϕ

(D)
B ), (F9)

and thus the surface tension difference by an amount

∆(−γαβ + 2γαD) =[(ϕ
(i,αβ)
B )2 − 2(ϕ

(i,αD)
B )2]a′

− (ϕ
(i,αβ)
B − 2ϕ

(i,αD)
B )ϕ

(D)
B c.

(F10)

Again assuming that aαβ ≃ 2aαD, we apply these results
to the minimum binding strength, |ϵ∗NB|, on the ϵBB = 0
wetting phase boundary. Simplifying Eq. (F10) using
Eq. (10) and Eq. (F5), we find that the term involving
the parameter c cancels out, and we arrive at Eq. (16).
The fact that ∆(−γαβ +2γαD)|∗ is positive, regardless of
specific choices for the parameters a′ and c, indicates that
the minimum binding strength |ϵ∗NB| is reduced compared
to the ϵBB = 0 scenario. Thus, this model predicts that
ϵ∗NB increases for ϵBB < 0, consistent with our simulation
results.
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A. A. Hyman, Germline p granules are liquid droplets
that localize by controlled dissolution/condensation, Sci-
ence 324, 1729 (2009).

[13] C. P. Brangwynne, T. J. Mitchison, and A. A. Hyman,
Active liquid-like behavior of nucleoli determines their
size and shape in xenopus laevis oocytes, Proc. Natl.
Acad. Sci. USA 108, 4334 (2011).

[14] J. Berry, C. P. Brangwynne, and M. Haataja, Physi-
cal principles of intracellular organization via active and
passive phase transitions, Rep. Prog. Phys. 81, 046601
(2018).

[15] S. Mao, D. Kuldinow, M. P. Haataja, and A. Košmrlj,
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