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Unless constrained by symmetry, measurement of an observable on an ensemble of identical quan-
tum systems returns a distribution of values which are encoded in the full counting statistics. While
the mean value of this distribution is important for determining certain properties of a system,
the full distribution can also exhibit universal behavior. In this paper we study the full counting
statistics of particle number in one dimensional interacting Bose and Fermi gases which have been
quenched far from equilibrium. In particular we consider the time evolution of the Lieb-Liniger and
Gaudin-Yang models quenched from a Bose-Einstein condensate initial state and calculate the full
counting statistics of the particle number within a subsystem. We show that the scaled cumulants
of the charge in the initial state and at long times are simply related and in particular the latter
are independent of the model parameters. Using the quasi-particle picture we obtain the full time
evolution of the cumulants and find that although their endpoints are fixed, the finite time dynamics
depends strongly on the model parameters. We go on to construct the scaled cumulant generating
functions and from this determine the limiting charge probability distributions at long time which
are shown to exhibit distinct, non-trivial and non-Gaussian fluctuations and large deviations.

I. INTRODUCTION

Symmetry and universality are two of the most power-
ful concepts in theoretical physics. The former can dra-
matically reduce the complexity of systems, places strin-
gent constraints on allowed physical processes and gives
rise to conservation laws via Noether’s theorem. The
latter instead explains why vastly different systems can
display near identical features and how simple physical
principles can underpin many seemingly complex phe-
nomena. These concepts have been extensively studied
in the context of closed quantum systems which are close
to equilibrium leading to the discovery of many ubiqui-
tous properties and the development of numerous pow-
erful and widely applicable techniques of analysis. In re-
cent years however questions of universality and its emer-
gence in far from equilibrium systems have come to the
fore and in this context one-dimensional integrable mod-
els have been widely studied [1–8]. These models possess
special symmetry properties endowing them with an in-
finite number of mutually commuting conserved charges
thereby placing strong constraints on their dynamics [9].
At the same time these properties facilitate exact analytic
solutions of the models through Bethe ansatz techniques
allowing in-depth analysis of their thermodynamic prop-
erties [10].

Despite this analytic control however, uncovering the
non-equilibrium properties of integrable models remains
challenging and is still a highly active area of research.
Nevertheless many universal features have been estab-
lished, in particular concerning the dynamics within a
subsystem where it has been shown that the system re-
laxes locally to a stationary state described by a general-
ized Gibbs ensemble (GGE) [1–7]. Building upon this a
number of exact techniques have been developed includ-
ing the quench action method [11, 12] which allows one
to determine this GGE explicitly and generalized hydro-
dynamics (GHD) which describes the long time and large

scale dynamics of an inhomogeneous state. [13–15].

A significant driver of interest in the non-equilibrium
dynamics of integrable models has been the advent of
numerous experimental platforms which allow for the
simulation of isolated many-body quantum systems with
a high degree of accuracy and control [16–18]. Chief
amongst these are ultra cold atomic gas setups which
have the ability to faithfully simulate integrable systems.
The Lieb-Liniger model [19] of interacting bosons, the
Gaudin-Yang model [20, 21] of interacting fermions and
the sine-Gordon field theory [22] are all well known inte-
grable models which can be simulated within cold atom
experiments [17, 18, 23–34]. The relaxation of such mod-
els to GGEs [35] as well as the vailidty of GHD [36–38]
has been observed and tested extensively in such exper-
iments ensuring that despite their apparent fine tuned
nature integrable models are the appropriate description
of these systems.

In this work we shall study the interplay between non-
equilibrium dynamics of integrable models and the fluc-
tuations of their charge within a subsystem in the context
of cold atom gas experiments. We do this by calculating
the full counting statistics (FCS) of the particle number
in the Lieb-Liniger (LL) and Gaudin-Yang (GY) models.
The systems shall be taken out of equilibrium by quench-
ing them from an initial Bose-Einstein condensate (BEC)
state which is not only experimentally relevant and con-
ceptually simple but also allows us to characterize the
dynamics exactly. We shall show that there exists a sim-
ple relationship between the cumulants of charge in the
initial state and the GGE to which these systems relax at
long times. This relationship is in fact universal, relying
only on the presence of integrability and not on details
of the model. However, while the cumulants in the final
state are fixed by the initial state their decomposition in
terms of quasi-particle excitations differs from model to
model meaning that the finite time dynamics will differ.
Specifically, we find that the connected m-point function
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FIG. 1. The quasi-particle picture of charge fluctuations
within a region A. The quench causes pairs of correlated
quasi-particles with equal and opposite momenta, k,−k to be
emitted from the initial state. The pairs propagate through-
out the system, carrying with them the charge. A quasi-
particle pair’s contribution to charge fluctuation differs de-
pending on whether both members of the pair (solid lines) or
a single member (dotted lines) are inside A. At short times
the fluctuations inside A are given by pairs while times which
are long compare to the subsystem size only a single member
of a pair can contribute.

of the charge, N in a subsystem, A at the initial and final
times are related by a factor of 1/2m−1, that is

lim
|A|→∞

lim
t→∞

⟨Nm
A (t) ⟩c

⟨Nm
A (0) ⟩c

=
1

2m−1
. (1)

We provide a general derivation of this result below along
with an explanation in terms of the qusaiparticle pic-
ture [39, 40](see Fig. 1) and explicit checks in our mod-
els of choice. Moreover, since the leading order (linear in
subsystem size) behavior of the cumulants of charge fluc-
tuations in the GGEs are the same in all cases they de-
fine the same limiting coarse-grained or continuous prob-
ability distributions (PDs) which can be explicitly de-
termined. Nevertheless, the microscopic PDs (retaining
information about sub-leading corrections) can be differ-
ent. This fact arises from the transmutation of particle
statistics in the different parameter regimes of each model
and manifests in a simple and intuitive way. For exam-
ple, in the strongly attractive Fermi gas the fermions are
bound into tight pairs forming hard core bosons with
double the charge, a fact which is reflected in vanishing
probabilities for observing an odd number of particles in
a subsystem.

The rest of the paper is arranged as follows: In Sec. II
we review our object of study, the full counting statistics
and some basic properties of cumulant generating func-
tions and their associated probability distributions. We
also briefly recall some properties of integrable models
and prove a general relationship between the FCS calcu-
lated in a GGE and in the diagonal ensemble. In Sec. III
we introduce the models we shall study as well as the par-
ticular initial states of interest. In Sec. IV we determine
the cumulants of charge in Lieb-Liniger model for both
repulsive and attractive regimes. In Sec. V we carry out

an analogous calculation in the repulsive and attractive
regimes of the Gaudin-Yang model. In the penultimate
section we study the analytic properties of the scaled cu-
mulant generating functions for both our models. We use
this knowledge to determine the limiting charge proba-
bility distributions in both the initial and final states. In
the last section we summarize our work and discuss open
questions and potential future directions.

II. NON-EQUILIBRIUM FULL COUNTING
STATISTICS IN INTEGRABLE MODELS

A. Full counting statistics and charge probability
distributions

We wish to characterize the fluctuations of the parti-
cle number in the LL and GY models which have been
quenched from BEC states. While these charges are con-
served quantities for the full system, when we restrict to
a subsystem they exhibit nontrivial fluctuations and dy-
namics [41–61]. To study this we calculate the full count-
ing statistics of the charge within a region A of length ℓ.
We take ℓ to be large but much smaller than the full sys-
tem, 1 ≪ ℓ ≪ L where L is the full system size and in
the end take the thermodynamic limit ℓ, L → ∞. For a
charge operator N̂ whose restriction to the subsystem is
denoted N̂A the FCS are defined as

Zβ(A, t) = tr
[
ρA(t)e

βN̂A

]
(2)

where ρA(t) = trĀ[ρ(t)] is the reduced density matrix of
A at time t and ρ(t) = |Ψ0(t)⟩⟨Ψ0(t)| is the density ma-
trix of the full system which has been quenched from
the intial state |Ψ0⟩ → |Ψ0(t)⟩ = e−iHt |Ψ0⟩. While
the FCS of charge and related quantities like the work
distribution have been studied previously in certain in-
teracting integrable models [52, 62–67], recent develop-
ments have allowed to study these quantities in far from
equilibrium systems as well as their associated current
statistics [54, 68–76].
From the FCS we can determine many properties of

the dynamics of the particle number fluctuations within
the subsystem and its interplay with the relaxation of
the system to its long time steady state. Specifically, we
can calculate the connected correlation functions of the
charge via the cumulants of the FCS,

⟨Nm
A (t)⟩c = ∂mβ logZβ(A, t)|β=0 (3)

form ∈ N and where ⟨·⟩c means the connected part of the

correlation function e.g.
〈
N2

A(t)
〉c

=
〈
N2

A(t)
〉
−⟨NA(t)⟩2.

Moreover, by continuing β → iβ we can obtain the charge
probability distribution P (n, t),

P (n, t) =

∫ π

−π

dβ

2π
e−iβnZiβ(A, t) (4)

which gives the probability that a measurement of N̂A

at time t returns the value n. The latter is a natural
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quantity to study from the experimental point of view
and particularly so in the case of cold atom experiments.
While the expectation value of an observable such as an
order parameter is a central quantity to understand the
nature of a system, the full distribution of measurement
outcomes is also enlightening and can unveil universal
behavior. In cold atom experiments large numbers of
measurements are required to be performed and so the
full probability distribution is naturally obtained [77–80].

By our analytical methods which we shall introduce
shortly, the computation of the cumulants or the cumu-
lant generating function logZβ(A, t) is only feasible if the
length of the subsystem ℓ is also infinitely large. In par-
ticular, the moment generating function for an extensive
quantity in a large subsystem can be generally written as

lim
ℓ→∞

Zβ(A, t) = eℓC
s(β,t)+o(ℓ) (5)

where Cs(β, t) is the scaled cumulant generating function
(SCGF) defined as

lim
ℓ→∞

ℓ−1 logZβ(A, t) = Cs(β, t) (6)

and whose derivatives w.r.t. β are the scaled cumulants

∂mλ C
s(β, t)|λ=0 = κsm(t) (7)

denoted by κsm. Therefore it is the scaled cumulants and
their generating function, i.e., quantities with extensive
scaling w.r.t. the subsystem size, which can be computed.
From the SCGF, we can obtain the large ℓ limiting prob-
ability distribution (PD) for the charge fluctuations via
the rate function I(z) through

P (ℓz, ℓt) ≍ e−ℓI(z,t) (8)

where ≍ is understood as

a(ℓ, x) ≍ b(ℓ, x), if lim
ℓ→∞

log a

log b
= 1 , (9)

and we assumed the same scaling for the time variable
t. Importantly the rate function I(z) can be obtained
as the Legendre-Fenchel transform of the SCGF accord-
ing to the Gärtner-Ellis theorem. The rate function also
governs the large deviations of the limiting coarse-grained
probability distribution, which is a continuous distribu-
tion even if the microscopic PD is discrete. Whereas in
a strict sense our methods allow for the computation of
I(z) via the SCGFs, we shall also use Eq. (4) and ap-
proximate Ziβ(A, t = 0,∞) at the initial and the steady-
states by exp (ℓCs(iβ, t = 0,∞)). Doing so retains the
discrete nature of charge fluctuations and allows for the
onset of some interesting microscopic effects, which van-
ish in the ℓ → ∞ limit but are expected to be observed
in large but finite subsystems.

B. Review of integrable models and the
Thermodynamic Bethe Ansatz

In the subsequent sections we shall explicitly calculate
the scaled cumulants κsm(t) as well as SCGF Cs(β, t =

0,∞) in the LL and GY models however before this we
shall derive some generic properties which will allow us to
relate the scaled cumulants in the initial state, denoted by
κsm(0), and in the GGE, denoted by κsm(∞). To do this
we keep things general and recall briefly some basic prop-
erties of integable models: Integrable models posses an
extensive number of conserved quantities charges whose
associated operators Q̂(k), k = 1, 2, . . . commute with
the Hamiltonian. These imbue the model with a stable
set of quasi-particle excitations which are indexed by a
discrete species index n = 1, . . . , Ns and parameterized

by a continuous rapidity λ
(n)
j , j = 1, . . . ,Mn. An eigen-

state of the model is specified by the rapidities of the
quasi-particles which are present, and we denote it by

|λ⟩ = |λ(1)1 , . . . , λ
(1)
M1

; . . . ;λ
(Ns)
1 , . . . , λ

(Ns)
MNs

⟩ . (10)

These states are also simultaneous eigenstates of all the
conserved charges of the model, namely,

Q̂(k) |λ⟩ =
Ns∑
n=1

Mm∑
j=1

q(k)n (λ
(m)
j ) |λ⟩ . (11)

The first three conserved charges are chosen to coin-
cide with the particle number N̂ = Q̂(0), momentum
P̂ = Q̂(1) and Hamiltonian Ĥ = Q̂(2). For simplic-
ity we shall denote the charge, momentum and energy
of a quasi-particle of species n and rapidity λ by qn =

q
(0)
n (λ), pn(λ) = q

(1)
n (λ) and ϵn(λ) = q

(2)
n (λ). In the ther-

modynamic limit and at finite density the model can be
treated using the methods of the thermodynamics Bethe
Ansatz (TBA) [10]. Within this approach, the quasi-
particle content of a stationary state of the model can
be encoded in the distributions ρn(λ), ρ

h
n(λ), ρ

t
n(λ) and

ϑn(λ) which are respectively the distribution of occupied
quasiparticles of species n, the distribution unoccupied
quasiparticles, the total density of states ρtn(λ) = ρn(λ)+
ρhn(λ) and the occupation function ϑn(λ) = ρn(λ)/ρ

t
n(λ).

All of these functions are related to each other by the
Bethe-Takahashi equations which take the form

ρtn(λ) =
p′n(λ)

2π
−
∑
l

Tnl ∗ ρl(λ) (12)

where (·)′ denotes differentiation w.r.t. λ and ∗ is the
convolution f ∗ g(y) =

∫
dyf(x − y)g(y). Here Tnl(λ, µ)

is the scattering kernel which characterizes the scattering
between quasi-particles of type n and l with rapidities λ
and µ. In the cases of interest this is symmetric in the
species index Tnl(x) = Tln(x).
When the state contains many excitations the bare

quasi-particle properties become dressed due to the in-
teractions. These dressed quantities are denoted by (·)dr
and satisfy the integral equations

fdrn (λ) = fn(λ)−
∑
l

Tnl ∗ [ϑl(λ)fdrl (λ)]. (13)
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Explicitly, the dressed charge is obtained from the solu-
tion of

qdrn (λ) = qn −
∑
l

Tnl ∗ [ϑl(λ)qdrl (λ)]. (14)

The quasi-particle velocity on the other hand is given by

the ratio of dressed quantities, vn(λ) = ϵ′
dr
(λ)/p′

dr
(λ).

This can be recast into the equation

ρtn(λ)vn(λ) =
ϵ′n(λ)

2π
−
∑
l

Tnl ∗ [ρl(λ)vl(λ)] (15)

where we have used ρt(λ) = p′
dr
(λ). These sets of in-

tegral equations typically need to be solved numerically
but in certain cases can be solved analytically as is the
case for the LL model discussed below [81–83].

C. Full counting statistics using TBA

Having reviewed these basic properties and set up our
notation we can now move on to determine the relation-
ship between the FCS at t = 0 and in the GGE. We begin
with the latter and define

lim
t→∞

tr
[
eβN̂AρA(t)

]
= tr

[
eβN̂AρGGE

]
≡ exp (ℓCs

GGE(β))

(16)

where we have neglected the o(ℓ) contributions and have
introduced the generalized Gibbs ensemble

ρGGE =
1

tr
[
e−

∑
k β(k)Q̂(k)

]e−∑
k β(k)Q̂(k)

. (17)

Herein it is necessary to include both local and semi-
local conserved charges in the GGE in order to obtain
the correct description of the long time state [84–88].
The Lagrange multipliers above, β(k), are determined by
matching the expectation values of Q̂(k) in ρGGE to those
in the initial state. To compute Cs

GGE(β) with β ∈ R we
utilize the result of Ref. [68] (see also [59, 89]) claiming
that

Cs
GGE(β) = fGGE(β

(k) − β)− fGGE(β
(k)) (18)

where fGGE denotes the free energy density of a GGE

characterized by the chemical potentials β(k) and β shifts
one of the chemical potentials that corresponds to the
conserved quantity under investigation. We can rewrite
the above equations in the typical manner of the ther-
modynamic Bethe ansatz by exchanging the trace for a
path integral over the distributions ρn(λ), ρ

h
n(λ) [10],

eℓC
s
GGE(β) =

∫
D[ρ(λ)]e−ℓ

∑
n

∫
dλ(gn(λ)−βqn)ρn(λ)−SY Y∫

D[ρ(λ)]e−ℓ
∑

n

∫
dλgn(λ)ρn(λ)−SY Y

(19)

where gn(λ) =
∑

k β
(k)q

(k)
n (λ) and SY Y is the Yang-Yang

entropy which is proportional to ℓ as well and which
counts how many microstates |λ⟩ correspond to the same
macrostate given by the distributions ρn(λ). Evaluating
this functional integral via a saddle point approximation
we obtain

Cs
GGE(β) =

Ns∑
n=1

∫
dλρtn

[
log

(
1 + η−1

n,β

1 + η−1
n,0

)
+ ϑnlog

ηn,βe
βqn

ηn,0

]
(20)

with ηn,β being given by

log ηn,β = −βqn + gn(λ) +
∑
l

Tnl ∗ log[1 + η−1
l,β (λ)] ,

(21)

while ηn,0 is evaluated in the same way at β = 0 and can
be related to the occupation function of the GGE via
ϑn(λ) = 1/(1 + ηn,0(λ)). In order to evaluate Cs

GGE(β)
explicitly one must know the functional form of gn(λ)
which can be done by making use of the quench action
method. Using this one can show that it is obtained
from the extensive part the squared overlap between an
eigenstate |λ⟩ and |Ψ0⟩ in the thermodynamic limit [90].
Namely,

lim
th

1

L
ln |⟨λ|Ψ0⟩|2 = −1

2

Ns∑
n=1

∫
dλ gn(λ)ρn(λ) . (22)

For the states that we consider the left hand side is known
explicitly and the function gn(λ) is simply extracted from
this.
We now turn to the calculation of the FCS in the initial

state. In this instance, as discussed further in Appendix
A, the initial value can be obtained by considering the di-
agonal ensemble. After expressing this as a path integral
we find

eℓC
s
0(β) =

∫
D[ρ(λ)]e−

ℓ
2

∑
n

∫
dλ(gn(λ)−2βqn)ρn(λ)− 1

2SY Y∫
D[ρ(λ)]e−

ℓ
2

∑
n

∫
dλgn(λ)ρn(λ)− 1

2SY Y

(23)

where the factor of 1
2 in front of SY Y arises from the fact

that the overlap with our initial state is non-zero only for
parity invariant eigenstates which have half the entropy
contribution. Here we have denoted Cs(β, 0) by Cs

0(β),
which we express more explicitly as

Cs
0(β) =

1

2

Ns∑
n=1

∫
dλρ̄tn

[
log

(
1 + η̄−1

n,β

1 + η̄−1
n,0

)
+ ϑ̄nlog

η̄n,βe
2βqn

η̄n,0

]
(24)

with η̄n,β being given by

log η̄n,β = −2βqn + gn(λ) +
∑
l

Tnl ∗ log[1 + η̄−1
l,β (λ)] .

(25)
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Either comparing Eqs. (19) and (23) or the TBA sys-
tems (20) and (24), we then find that

Cs
0(β) =

1

2
Cs

GGE(2β) , (26)

where Cs
GGE is given by (20). Therefore comparing

with (16) we also find that the cumulants are related
as

κsm(∞) =
1

2m−1
κsm(0). (27)

The above relations are one of the main results of this pa-
per. We note that while (27) is a technical result whose
proof relies upon the details of the TBA and quench ac-
tion formalism, it also admits a very intuitive interpre-
tation based upon the quasi-particle picture of entangle-
ment dynamics [39, 40], characterized in Fig. 1, which
proceeds as follows. The initial state of the system can
be expressed as a collection of correlated pairs of quasi-
particles, of opposite momenta, which are excited by the
quench. A pair of quasi-particles can then be viewed
semi-classically as emerging from a single point in space.
Its constituents propagate ballistically in opposite direc-
tions throughout the system thereby spreading correla-
tions over a wider region. The fluctuations of charge
within the subsystem at t = 0 are therefore governed by
the distribution of pairs of quasiparticles which necessar-
ily carry charge 2 and are indexed by the absolute value
of the momenta. At long time, the quasiparticles have
spread throughout the system and it is not possible for
both members of an initially correlated pair to be inside
the subsystem, thus the fluctuations of charge in the sub-
system are governed by single quasi-particles of charge 1
and indexed by the momentum rather than its absolute
value. Nevertheless, since the quasiparticle occupation
function is a constant of the dynamics the distributions
of pairs and unpaired quasi-particles are the same. Thus
we arrive at the expression (26) where we can recognize
the 2β as originating from the charge of a pair of quasi-
particles while the factor of 1

2 comes from the fact that
one sums over only the absolute value of the momenta.

A notable consequence of the relations is that since the
right hand sides of (26) and (27) are a property solely of
the initial state then the left hand side is independent
of the model specifics. In the examples below we shall
argue and then show explicitly that for BEC initial states
κsm(0) = d ∀m where d is the average density i.e., the
charge is Poisson distributed and accordingly

κsm(∞) =
d

2m−1
, (28)

which is exactly the same expression as the one obtained
from the steady-state GGE using (18) as we shall demon-
strate shortly.

Evidently (27) does not tell us how the charge dis-
tribution evolves between its initial value and the GGE
value which necessarily depends on the model. However

we can also characterize this in integrable models using
recently obtained results on the charged moments and
full counting statistics using the method of space-time
duality [59, 60]. In particular, as discussed above the
scaled cumulants obey a quasi-particle picture [39, 40]
meaning that charge fluctuations are spread throughout
the system via the ballistic propagation of pairs of quasi-
particles which are shared between A and Ā resulting
in

⟨Nm
A (t)⟩c =

∑
n

∫
dλmin[2t|vn(λ)|, ℓ]Km

n,∞(λ)

+ (ℓ−min[2t|vn(λ)|, ℓ])Km
n,0(λ) (29)

where we have introduced Km
n,x(λ) with x = 0,∞ being

the rapidity and species resolved scaled cumulant in the
initial state or GGE, i.e.

κsm(x) =
∑
n

∫
dλKm

n,x(λ). (30)

Additionally, min[2t|vn(λ)|, ℓ] is the characteristic func-
tion which counts the number of quasi-particle pairs
shared between A and Ā, while ℓ−min[2t|vn(λ)|, ℓ] can be
interpreted as the number quasiparticle from pairs which
are contained solely within the subsystem. Thus, within
the subsystem the charge fluctuations are governed ei-
ther by pairs of quasi-particles both of whom are inside
A and whose contribution is given by Km

n,0(λ) or single
quasi-particles which originated from outside A or whose
partner has exited A and which contribute Km

n,∞(λ).
The first cumulant returns the expectation value of

the charge and is conserved which can be seen using (28)
and (29) atm = 1. The second cumulant gives the charge
susceptibility which has a compact expression

K2
n,∞(λ) = [qdrn (λ)]2ρn(λ)(1− ϑn(λ)). (31)

Higher cumulants become more complicated and involve
dressing of lower cumulants. For example, the third cu-
mulant is given by

K3
n,∞(λ)

K2
n,∞(λ)

= qdrn (λ)(1− 2ϑn(λ))−
3[
∑

l Tnl ∗ K2
l,∞]dr(λ)

qdrn (λ)

where we see that it depends also on the dressed sec-
ond cumulant. We omit higher expressions for cumulants
which can nevertheless be systematically computed.
Before moving on, we make two brief remarks on the

preceding discussion. First, the result (27) relies upon the
validity of the diagonal ensemble for calculating the ini-
tial state value which is discussed further in Appendix A.
To check the validity of (27) we shall compute the scaled
cumulants in the initial states by independent means and
show that the results of the diagonal ensemble, involving
interaction-dependent functions, yield the same result.
This is not always the case however and the diagonal en-
semble cannot be applied to initial states such that the
subsystem is an eigenstate of the charge and hence has
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no fluctuations. This is the case for the magnetization of
the GY model quenched from the BEC state. However
for the models and initial states which we consider the
diagonal ensemble correctly reproduces the initial FCS
of the particle number. Second, although some analytic
results exist for the distributions functions which deter-
mine (20) and (23), their explicit evaluation is feasible
only in certain special limits of our models. In spite of
this, at generic interactions, it is straightforward to nu-
merically compute the (first few) scaled cumulants and
check the validity of (27). The numerical computation of
the SCGF is also possible but instead of comparing the
numerically obtained SCGFs against (26) on a strictly
finite interval, we shall rather construct the SCGFs at
arbitrary interactions as a Taylor series defined by the
cumulants, which is justified by the exponentially decay-
ing behavior of the scaled cumulants.

III. MODELS AND SETUP

A. Lieb-Liniger model

The standard model for describing one-dimensional in-
teracting bosons in the context of cold atom experiments
is the Lieb-Liniger model. The Hamiltonian is given by

HLL=

∫ L

0

dx b†(x)

[
− ∂2x
2m

]
b(x) + cb†(x)b(x)b†(x)b(x).

(32)
Here b†(x), b(x) are canonical bosonic operators satis-
fying [b(x), b†(y)] = δ(x − y) they describe bosons of
mass m which interact via a density-density interaction
of strength c on a system of length L. We shall consider
both the repulsive c > 0 and attractive c < 0 cases. From
here on we take m = 1/2 for simplicity and assume peri-
odic boundary conditions. The model has a single U(1)

charge, the particle number N̂ =
∫
dx b†(x)b(x).

In the repulsive case there is only one species of quasi-
particle with bare charge, momentum and energy given
by

q = 1, p(λ) = λ, ϵ(λ) = λ2. (33)

As outlined above, the properties of a stationary state of
H are encoded in the distributions ρ(λ), ρh(λ), ρt(λ) and
ϑ(λ) which are connected via the Bethe equations

ρt(λ) =
1

2π
+

∫ ∞

−∞
dµa2(λ− µ)ρ(µ) (34)

where the scattering kernel is given by an(x) =
1
2π

n|c|
(nc/2)2+x2 .

In the attractive case the spectrum of the model is
entirely different and there are an infinite number of
quasi-particle species corresponding to bound states of
n bosons. These quasi-particles have the following bare
charge, momentum and energy

qn = n, pn(λ) = nλ, ϵn(λ) = nλ2 +
|c|
12
n(n2 − 1). (35)

We denote the distributions of the n-boson bound states
by ρn(λ), ρ

h
n(λ), ρ

t
n(λ) and ϑn(λ). The Bethe equations

in this case then take the form

ρtn(λ) =
n

2π
−

∞∑
m=1

Tnm ∗ ρm(λ) (36)

where for n > m the two particle scattering kernel is

Tmn(λ) = an−m(λ) + an+m(λ) + 2

m−1∑
j=1

an−m+2j(λ),

Tnn(λ) = 2

n∑
j=1

a2j(λ), Tmn(λ) = Tnm(λ). (37)

We shall study the dynamics of the system quenched
from the BEC state of N particles given by

|Ψ0,N ⟩ =
b†0

N

√
N !

|0⟩ , (38)

b†0 =
1√
L

∫ L

0

dx b†(x) (39)

which is the ground state of the model at c = 0 and is also
an eigenstate of N̂ . When considering just the subsystem
however ρA(0) contains states in all particle number sec-
tors less than N and the charge probability distribution
can be determined by means of a simple argument. Since
the wave function is constant the probability of measur-
ing a charge in A for the system with N = 1 is given by
ℓ/L. For higher particle number since the state has no
spatial correlations the detection of a boson is an inde-
pendent event with a constant rate ℓN/L and therefore
has a binomial distribution. In the thermodynamic limit
we take N,L → ∞ with d = N/L the density held fixed
and thus we end up with a Poisson distribution with rate
ℓd and ⟨Nm

A ⟩c0 = ℓd or κsm(0) = d, ∀m.
From this observation it is possible to construct the

reduced density matrix ρA(0). Introducing the boson on

the restricted space b̄†0 = 1√
ℓ

∫
x∈A

dx b†(x) we have that

ρA(0) = e−ℓd
∞∑

n=0

(ℓd)2n

n!2
b̄†0

n |0A⟩⟨0A| b̄0n (40)

where |0A⟩ is the vacuum inside A. This has the required
Poisson distribution of charge and also has the same cor-
relation within the subsystem as |Ψ0⟩⟨Ψ0|.
The entanglement entropy between A and Ā can also

be determined from this expression and originates solely
from the charge fluctuations in the subsystem. The von
Neumann entanglement entropy is given by Shannon en-
tropy of the charge probability distribution and so scales
as SA ≃ 1

2 + 1
2 log 2πℓd.

B. Gaudin-Yang model

For the case of interacting spinful fermions in one di-
mension we shall study the Gaudin-Yang model which is
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also widely used to describe cold atom gas experiments.
The Hamiltonian is

HGY =

∫ L

0

dxψ†
σ(x)

[
− ∂2x
2m

]
ψσ(x)+cψ

†
↑(x)ψ↑(x)ψ

†
↓(x)ψ↓(x)

(41)
where ψ†

σ(x), ψσ(x) are two species of fermionic operators
with σ =↑, ↓ which obey {ψ†(x)σ, ψσ′(y)} = δσσ′δ(x−y).
These describe spin 1/2 fermions of mass m interact-
ing via a local inter-species density-density interaction of
strength c. As before we shall take m = 1/2 and assume
periodic boundary conditions but we shall consider both
repulsive c > 0 and attractive c < 0 interactions. In this
case there are two U(1) conservation laws corresponding

to particle number N̂ =
∫
dxψ†

↑(x)ψ↑(x) + ψ†
↓(x)ψ↓(x)

and magnetization M̂ =
∫
dxψ†

↑(x)ψ↑(x) − ψ†
↓(x)ψ↓(x),

however we shall only concentrate on the former.
The quasi-particle content of the model depends

on whether one is in the repulsive regime or attrac-
tive. In the repulsive regime there are an infinite
number of species and we denote their distributions
by ρ(λ), ρh(λ), ρt(λ), ϑ(λ) and σn(λ), σ

h
n(λ), σ

t
n(λ), ϑn(λ)

where n ∈ N. The former types of quasi-particles are
associated to spin up fermions, they have unit charge
and magnetization and momentum and energy p(λ) =
λ, ϵn(λ) = λ2. The latter quasi-particle types, also called
strings are associated to the spin degrees of freedom, they
carry zero charge, magnetization −2n and have zero en-
ergy and momentum. The integral equations for these
distributions are

ρt(λ) =
1

2π
+

∞∑
n=1

an ∗ σn(λ) , (42)

σt
n(λ) = an ∗ ρ(λ)−

∞∑
m=1

Tnm ∗ σm(λ) , (43)

where for Tnm(λ) was introduced above In terms of these
distributions the U(1) charges of a state are given by
N =

∫
dλρ(λ) and M = N − 2

∑∞
n=1 n

∫
dλσn(λ).

In the attractive regime there is an additional type
of quasi-particle which is a bound state of two fermions
forming a spin singlet. We denote its distributions by
ρ̃(λ)ρ̃h(λ), ρ̃t(λ), ϑ̃(λ). They carry charge 2 and magne-
tization 0 while their momentum and energy are p̃(λ) =
2λ, ϵ̃(λ) = 2λ2. The corresponding integral equations
are

ρt(k) =
1

2π
− a1 ∗ ρ̃(λ)−

∞∑
n=1

an ∗ σn(λ) (44)

ρ̃t(λ) =
1

π
− a2 ∗ ρ̃(λ)− a1 ∗ ρ(λ) (45)

σt
n(λ) = an ∗ ρ(λ)−

∞∑
m=1

Tnm ∗ σm(λ). (46)

For the fermionic model we shall again study the dy-
namics emerging from a BEC state wherein the bosons

are formed from pairs of fermions in a singlet at the same
point in space,

|Φ0,N ⟩ =
c†0

N

√
N !

|0⟩ , (47)

c†0 =
1√
NL

∫ L

0

dxψ†
↑(x)ψ

†
↓(x) (48)

where NL is a normalization factor. In contrast
to the previous case this is not an eigenstate of
the model at any c but is an eigenstate of parti-
cle number ⟨Φ0,N |N̂ |Φ0,N ⟩ = 2N and magnetization

⟨Φ0,N |M̂ |Φ0,N ⟩ = 0. Once again upon tracing out Ā,
particle number is no longer conserved however the mag-
netization is still 0. In this instance the wavefunction
is not flat due to the Pauli exclusion of the fermions
however for large enough subsystem size and at finite
density we can apply the same arguments as before and
determine that the charge distribution is also Poisson.
In particular, it is easy to check analytically the first few
cumulants, which, in the thermodynamic limit, in fact
yield κm(0) = 2d if d denotes the density of singlet pairs.
Furthermore the initial reduced density matrix has the
form

ρA(0) = e−ℓd
∞∑

n=0

(ℓd)
2n

n!2
c̄†0

n |0A⟩⟨0A| c̄0n, (49)

c̄†0 =
1√
Nℓ

∫
x∈A

dxψ†
↑(x)ψ

†
↓(x) . (50)

In other words, we have again obtained constant cumu-
lants, which can be attributed to a Poisson distribution.
It is, nevertheless, important to recall the fact that for
any subsystem, the total magnetization is zero, which
means that the distribution is only Poissonian for the ef-
fective ‘quasi-bosons’. Therefore the fermionic distribu-
tion is microscopically different, namely it has vanishing
probabilities for odd fermion numbers. In the thermo-
dynamic limit, this distribution can have the same cu-
mulants and scales to the same limiting continuous PD,
determined by the rate function of the Poisson distribu-
tion with density 2d. We shall revisit this feature in Sec.
VI. The von Neumann entanglement entropy can be ob-
tained here also and similarly coincides with the Shannon
entropy of the Poisson distribution.

IV. FCS IN THE LIEB-LINIGER MODEL

We now turn to the explicit calculation of the SCGF in
the Lieb-Liniger model treating the repulsive and attrac-
tive regimes separately. The quench dynamics emerging
from the state (38) has been studied previously in both
the repulsive [81] and attractive cases [82, 83] with many
properties already determined analytically and with thor-
ough discussion on the steady-state GGE in the repulsive
case [91]. Following, we shall make use of these exact re-
sults to obtain the FCS.
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FIG. 2. (a) The scaled cumulants, κs
m(t), m = 1, . . . 4 cor-

responding to curves with decreasing values at the ζ = 0.2
intersection as a function of rescaled time ζ = t/ℓ for d = 1
and c = 1. The dashed lines are the asymptotic GGE val-
ues. (b) The rapidity resolved scaled cumulants, Km

0 (λ) as a
function of λ for m = 1, . . . , 4 corresponding to curves with
increasing values at the λ = −2 intersection for c = 1, d = 1.

A. Repulsive interactions

The one remaining ingredient that is required to de-
termine the FCS is the overlap function (22). For the
particular initial state (38) this has been obtained in [92].
In the repulsive case where there is only a single quasi-
particle species this is given by

g(λ) = log

[
λ2(λ2 + (c/2)2)

d2c2

]
. (51)

As a result the function Cs
GGE(β) is given by

Cs
GGE(β) =

∫
dλρt

[
log

(
1 + η−1

β

1 + η−1
0

)
+ ϑ log

ηβe
β

η0

]
(52)

where ηβ is given by the solution to

log ηβ = log

[
λ2(λ2 + (c/2)2

d2c2eβ

]
− a2 ∗ log[1 + η−1

β (λ)]

(53)

and as stated above ϑ = 1/(1+η0). This type of integral
equation admits an analytic solution [81] which is given
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FIG. 3. (a) The scaled second cumulant, κs
2(t) as a func-

tion of rescaled time ζ = t/ℓ for d = 1 and c = 1
2
, 1, 10

corresponding to curves with decreasing values at the ζ = 0.2
intersection. (b) The rapidity resolved cumulant, K2

0(λ) as
a function of λ for c = 1

2
, 1, 10 corresponding to curves with

decreasing values at the λ = −1 intersection.

by

ηβ(λ) =
e−β/2λ sinh(2πλ/c)

2πdI1−2iλ/c

(
4
√

deβ/2

c

)
I1+2iλ/c

(
4
√

deβ/2

c

) ,

(54)

where Im(x) is the modified Bessel function of the 1st
kind. From this we can determine exactly both the FCS
in the initial state and in the GGE. It can then be checked
that in the initial state we recover ⟨Nm

A ⟩c0 = ℓd + o(ℓ).
This statement holds true for arbitrary interactions c > 0
as can be confirmed numerically, but the result can be
particularly easily seen in the Tonks-Girardeau limit of
c → ∞ in which case ηβ = e−βλ2/4d2. Accordingly we
have that for the initial state in this limit

Cs
0(β)|c→∞ =

∫
dλ

4π
log

[
λ2 + 4d2e2β

λ2 + 4d2

]
= d(eβ − 1)

(55)

for β ∈ R, i.e., the SCGF of the Poisson distribution
which has cumulants all equal. That is, we have recovered
the know SCGF of the Poisson distribution at this limit.
Switching now to the long time limit we have that the
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FIG. 4. (a) The fourth scaled cumulant, κs
4(t) as a function of

rescaled time ζ = t/ℓ for d = 1 and c = 1
2
, 1, 10 corresponding

to curves with decreasing values at the ζ = 0.4 intersection.
(b) The rapidity resolved cumulant, K4

0(λ) as a function of λ
for c = 1

2
, 1, 10 corresponding to curves with increasing values

at the λ = −1 intersection.

steady state SCGF at c→ ∞,

Cs
GGE(β)|c→∞ =

∫
dλ

2π
log

[
λ2 + 4d2eβ

λ2 + 4d2

]
= 2d(eβ/2 − 1) ,

(56)

but it is again easy to check numerically that the cumu-
lants are in fact predicted by (28) at arbitrary c > 0.
This implies that Eq. (20) actually gives the same func-
tion 2d(eβ/2 − 1) for any c > 0 and for β ∈ R, which can
also be confirmed by numerical comparisons. Note that
this way we confirmed the predictions of (27) and (26)
in the repulsive regime of the LL model.

From these analytic results we can also write down
the full time dynamics of the cumulants in the Tonks-
Girardeau limit and find

⟨Nm
A (t)⟩c ≈ ℓd+

∫
dλmin[4t|λ|, ℓ] (Km

∞(λ)−Km
0 (λ))

Km
∞(λ) =

Km
0 (λ)

2m−1
= ∂mβ log

[
λ2 + 4d2eβ

λ2 + 4d2

] ∣∣∣∣∣
β=0

(57)

where we used the fact that in this limit v(λ) = 2λ.
At finite c since the function Km

∞(λ) and the quasi-
particle velocity depend on the interaction strength the
same relations do not hold. Instead, to analyze the finite

c and t behavior we plot the first four cumulants using
as a function of the scaled time ζ = t/ℓ in Fig.2 for c = 1
and d = 10. From this we see that while the first two
cumulants are monotonic the higher cumulants are not.
To understand the non-monotonicity we also plot the ra-
pidity resolved cumulants Km

0 (λ) for d = 1, c = 1. From

this we see that Km≤2
0 (λ) are positive functions while

Km>2
0 (λ) are negative for some rapidities. By inspect-

ing (29) and using (28) one sees that the positiveness im-
plies that the cumulant is monotonic in time while one
which is not can allow for non-monotonic behavior. In
addition one can note that higher cumulants take longer
to relax to their GGE values (dashed lines). This also
can be understood by examining the behavior of the ra-
pidity resolved cumulants. For m > 1 Km

0 (λ) all vanish
at the origin but have at least one set of extrema close to
it. These extrema are closer to the origin at higher m in-
dicating that the slower quasi-particles contribute more
to the higher cumulants resulting in a slower approach
to their asymptote. Lastly we note that for m > 1 the
number of pairs of extrema present in Km

0 (λ), m − 1, is
related to the number of extrema in κsm(t) as a function
of time, namely m− 2.

To investigate the effect of changing the interaction we
plot in Fig. 3 the second scaled cumulant κs2(t) as a func-
tion of time for c = 1/2, 1, 10. From this we can also
see from these plots that for lower interaction strength it
takes longer to reach the asymptotic value. This could
be anticipated from the fact that at c = 0 the initial state
becomes the ground state of the model. To understand
this microscopically however we also plot the correspond-
ing K2

0(λ) as a function of λ and see that they are peaked
closer to the origin for smaller c. Thus the second cumu-
lant is dominated by slower modes for lower interaction
strength c resulting in a slower approach to its asymp-
tote. In Fig 4 we plot also the fourth cumulant and see
again that it approaches its asymptote slower for lower
interaction strength which is a consequence of the fourth
cumulant being dominated by slower modes. An anal-
ogous effect occurs if one holds c constant and instead
changes d. This is related to the anomalous relaxation
phenomenon called the quantum Mpemba effect [93–95]

B. Attractive interactions

We turn now to the case of attractive interactions.
Here there are an infinite number of quasiparticle species
and the overlap function for these can be obtained
from (51) via

gn(λ) =

n∑
j=1

g

(
λ+ i

|c|
2
(n+ 1− 2j)

)
. (58)
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The resulting cumulant generating function is

Cs
GGE(β) =

∑
n

∫
dλρtn

[
log

(
1 + η−1

n,β

1 + η−1
n,0

)
+ ϑnlog

ηn,βe
nβ

ηn,0

]
(59)

where ηn,β are determined by

log ηn,β = gn(λ)−
∑
m

Tnm ∗ log[1 + η−1
n,β(λ)]. (60)

These latter equations can be rewritten using some stan-
dard TBA identities to a more convenient form [82, 83]

log ηn,β = s∗log[1 + ηn+1,β ][1 + ηn−1,β ]

+ log

[
tanh2

(
πλ

2|c|

)]
(61)

where s(λ) = sech
(

πλ
2|c|

)
. As with the repulsive case

these admit an analytic solution. It can be shown that

η1,β(λ) =
λ2/4

|c|2d2eβ(λ2 + |c|2)

(
4λ4+ λ2(5|c|2+16deβ/2|c|)

+12|c|2d2eβ + 4|c|3deβ/2 + |c|4
)
(62)

with the remaining functions obtained through

ηn,β(λ) =
ηn−1,β(λ+ i|c|/2)ηn−1,β(λ− i|c|/2)

1 + ηn−2,β(λ)
− 1

(63)

for n > 1 and where η0(λ) = 0.
These expressions become cumbersome to treat for n >

1 but simplify considerably, as does the SCGF in the
infinite interaction limit |c| → ∞. Taking this limit in the
analytic solution one can we find that η1,β = e−βλ2/4d2

while all other ηn>1,β diverge, indicating that they do
not contribute to (59). The resulting expression for the
SCGF is the same as in the Tonks-Girardeau limit (55)

Cs
0(β)|c→−∞ = Cs

0(β)|c→∞ (64)

and so the cumulants also agree. This remains true
also at arbitrary time meaning that κsm(t)|c→∞ =
κsm(t)|c→−∞. The lack of bound-state contribution in the
infinite interaction limit can be understood on energetic
grounds, and the fixed energy of the initial state cannot
support the formation of higher bound states. Interest-
ingly however, in the same limit the local density-density
correlation function only receives a contribution from the
two-particle bound states [82, 83].

As the interaction strength is decreased bound states
of increasing length contribute to the SCGF. In Fig. 5 we
plot the second cumulant κs2(t) as a function of time for
different interaction strengths. We see that in contrast
to the repulsive case the attractive system takes much
longer to relax to its asymptotic value. This is a result
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FIG. 5. (a) The scaled second cumulant, κs
2(t) of the attrac-

tive Lieb-Liniger model as a function of rescaled time ζ = t/ℓ
for d = 1 and |c| = 1, 2, 10 corresponding to curves with de-
creasing values at the ζ = 1 intersection. (b) The rapidity
resolved cumulant, K2

n,0(λ) for the first 3 quasi-particles (cor-
responding to curves with increasing values at the λ = −0.2
intersection) as a function of λ for c = 2.

of the contribution of the bound states to the cumulants
being dominated by the slowest quasi-particles. This is
seen also in Fig 5 where we plot K2

n,0(λ) for n = 1, 2, 3
at |c| = 2 and see that as n increases the mode resolved
cumulant becomes more peaked about λ = 0. Similar
behavior is also seen for the higher cumulants.

V. FCS IN THE GAUDIN-YANG MODEL

We now consider the FCS in the Gaudin-Yang model,
again splitting our analysis into two parts dealing with
the repulsive and attractive regimes separately. In both
cases the key component of our analysis, the overlap func-
tions have been obtained previously by considering ap-
propriate limits of the integrable quenches in the Hub-
bard model [96, 97].

A. Attractive interactions

We start by considering the attractive regime and tak-
ing into account the quasi-particle content of the model
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reviewed in Sec. III B we find

Cs
GGE(β) =

∫
dλ ρt

[
log

(
1 + ζ−1

β

1 + ζ−1
0

)
+ ϑ log

ζβe
β

ζ0

]

+

∞∑
n=1

∫
dλσt

n

[
log

(
1 + η−1

n,β

1 + η−1
n,0

)
+ ϑn log

ηn,β
ηn,0

]

+

∫
dλ ρ̃t

[
log

(
1 + ζ̃−1

β

1 + ζ̃−1
0

)
+ ϑ log

ζ̃βe
2β

ζ̃0

]
,

(65)

where the functions ηn,β , ζβ , ζ̃β satisfy the integral equa-
tions

log ηn,β = log

[
tanh2

(
πλ

2c

)]
− δn,1s∗log[1 + ζ−1

β ]

+s∗log[1 + ηn+1,β ][1 + ηn−1,β ] (66)

log ζβ = log

[
coth2

(
πλ

2c

)]
+ s∗log

[
1 + ζ̃β
1 + η1,β

]
(67)

log ζ̃β = log

[
λ4(λ2 + c2)

(2d)4e2β(λ2 + (c/2)2)

]
+ a1∗log[1 + ζ−1

β ]

+a2∗log[1 + ζ̃−1
β ]. (68)

Unlike in the LL model these equations do not admit
an analytic solution that we are aware of and so must
be treated numerically. There are however two limiting
cases of interest. The first is the non-interacting limit
c → 0− in which case the dependence on the ηn,β func-

tions drop out and we find [10] ζ−1
β = (1 + ζ̃−1

β )2 − 1 =

eβ(2d)2/λ2. As a result

Cs
0(β)|c→0− =

∫
dλ

2π
log

[
λ2 + 4d2e2β

λ2 + 4d2

]
= 2d(eβ − 1) ,

(69)

for β ∈ R, which is the SCGF of the Possion distribution
with rate 2d and is therefore twice the result we found
in the Tonks-Girardeau limit of the LL model (55). Ac-
cordingly we immediately find that the cumulants are
κsm(0) = 2d where we recall that the total fermionic den-
sity is 2d. Additionally, the model has a second ana-
lytically tractable limit of interest, |c| → −∞. In this
case not only do ηn,β not contribute but now neither
does ζβ and the FCS are determined solely by the two-
fermion bound states. This results from the fact that
in the strongly attractive limit the fermion pairs in the

initial state which make up c†0 form bound states which
cannot be broken apart. Thus the long time steady state
consists only of these quasi-particles and no others. For
this we find ζ̃β = e−2βλ4/4d4 and the corresponding ini-
tial state FCS are

Cs
0(β)|c→−∞ =

∫
dλ

2π
log

[
λ4 + 4d4e4β

λ4 + 4d4

]
= 2d(eβ − 1) ,

(70)

for β ∈ R, i.e., the same result as in the free fermion
limit, namely the SCGF of the Poisson distribution.

In these two limits the SCGF can similarly be com-
puted at the steady-states, namely we have

Cs
GGE(β)|c→0− =

∫
dλ

π
log

[
λ2 + 4d2eβ

λ2 + 4d2

]
= 4d(eβ/2 − 1) ,

(71)

and

Cs
GGE(β)|c→−∞ =

∫
dλ

π
log

[
λ4 + 4d4e2β

λ4 + 4d4

]
=4d(eβ/2− 1) ,

(72)

for β ∈ R, which equal the SCGF of the LL model at
infinite repulsion upon the substitution d→ 2d.

To investigate the cumulants at finite interaction we
numerically integrate Eqs. (66)-(68) which requires that
we truncate the number of strings which are included
i.e. ηn,β(λ), σn(λ) = 0,∀n > Nstring and also that we
impose a cutoff on the allowed rapidities, |λ| ≤ Λ. Do-
ing so we can confirm that the cumulants of the steady
state in fact do not depend on the interaction strength.
Similarly to the case of the LL model, this implies that
(65) yields 4d(eβ/2 − 1) with d denoting the density of
fermions, which can be confirmed numerically.

Finally, the full time evolution of the cumulants in the
non-interacting limit can then be found using the previ-
ously result of (57) and similarly for c → −∞ whereas
at finite c we again resort to numerical integration of the
TBA system. In Fig. 6 we plot the second cumulant as a
function of time for different interaction strength. Here
we note note that in contrast to the LL model the initial
state is never an eigenstate of the model and so regard-
less of interaction strength the cumulant relaxes at fi-
nite scaled time. Nevertheless, the approach to the GGE
value still depends upon the interaction strength with the
different dynamics being attributed to the changing role
of the quasi-particles. Specifically for large negative in-
teraction the two particle bound states are dominant and
as shown in Fig. 6 their contribution is peaked nearer the
slower quasi-particles leading to an almost linear initial
decrease. As the interaction strength is lowered the un-
bound particles also start to contribute and their mode
resolved cumulant is more spread in rapidity space lead-
ing to a faster initial decay. The string contribution is
negligible in all cases.

B. Repulsive interactions

As a final example we look at the repulsive GY model.
In this regime the spectrum of the model does not include
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the two particle bound states and we have that

Cs
GGE(β) =

∫
dλ ρt

[
log

(
1 + ζ−1

β

1 + ζ−1
0

)
+ ϑ log

ζβe
β

ζ0

]

+

∞∑
n=1

∫
dλσt

n

[
log

(
1 + η−1

n,β

1 + η−1
n,0

)
+ ϑn log

ηn,β
ηn,0

]
(73)

where the functions ηn,β and ζβ satisfy a set of integral
equations of the form (25). After using some standard
TBA identities we find [10]

log ηn,β = log

[
tanh2

(
πλ

2c

)]
− δn,1s∗log[1 + ζ−1

β ]

+s∗log[1 + ηn+1,β ][1 + ηn−1,β ] (74)

log ζβ = log

[
λ2 + (c/2)2

λ2eβ

]
− µc + s∗log[λ2(λ2 + (c/2)2)]

+s∗log[1 + η1,β ] + s∗a1∗log[1 + ζ−1
β ]. (75)

where µc is a Lagrange multiplier, introduced to fix
the average density to be 2d and which behaves as
limc→0 µc/c

2 = 2d2. As in the attractive case we can-
not find an analytic solution to these equations however
we can again consider the non-interacting limit c → 0+.
In this limit the dependence on the ηn,β functions drop

out and 1 + ζ−1
β = [1 + 4d2

λ2 e
β ]2 [10]. From this we then

find that

Cs
0(β)|c→0+ =

∫
dλ

2π
log

[
λ2 + 4d2e2β

λ2 + 4d2

]
(76)

which agrees with the expression obtained from the (69).
Thus the non-interacting limits of the FCS approached
from both the repulsive and attractive sides agree.

Unlike the attractive case the opposite limit of c→ ∞
presents some problems. Indeed, exactly in this limit
the initial state does not appear in the Hilbert space of
the Hamiltonian since it precludes the possibility of two
fermions being at the same position. By considering a
lattice regularization of the model and taking the limit
of infinite repulsion prior to the continuum limit it can
be shown that the distribution functions become con-
stants [96]. Consequently, in the repulsive GY model,
as one increases the interaction strength the distribution
ρ(λ) becomes more and more spread in rapidity space. In
the absence of an analytic solution to (74) and (75) must
be treated numerically by first imposing some cutoff on
both the string number and the rapidity space as was
done in the attractive regime. However, the aforemen-
tioned spreading in rapidity space of the distributions re-
sults in a strong dependence on these truncation schemes
leading to unreliable data except at small c where the re-
sults are qualitatively the same as the non-interacting
limit. Despite this however, we expect that the relation-
ship between the cumulants remains valid.
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FIG. 6. (a) The scaled second cumulant, κs
2(t) as a func-

tion of the scaled time ζ = t/ℓ for different values of the
interactions strengths in the attractive regime. The increas-
ing interaction strengths correspond to curves with increasing
values at the ζ = 0.2 intersection. (b) The rapidity resolved
second cumulant for the two particle bound states (solid lines,
increasing interaction values corresponding to higher peaks),

K̃2
0(λ) as a function of λ for different interaction strengths.

Also shown is the rapidity resolved second cumulant for the
unbound states (dashed lines), K2

0(λ). In the c = 0− case only
unbound states are present (sole dashed curve distinguishable
from the λ axis) while in the opposite limit |c| → ∞ only
bound states are present. For any finite interaction the un-
bound states are strongly suppressed and not discernible on
the same scale.

VI. CHARGE PROBABILITY DISTRIBUTIONS

In the previous sections we demonstrated that the
scaled cumulants of charge fluctuations in the steady-
state are universal for BEC quenches in both the LL and
GY models. That is, they do not depend on the inter-
action strength of these quantum gases and they are de-
termined by scaled cumulants in the initial states, which
are essentially identical in both models. We now address
the characterization of the full charge probability distri-
bution in the steady state of the LL model and in the
initial and steady-states of the GY model. The standard
way of achieving this task is using the Gärtner-Ellis the-
orem, i.e., computing the Legendre-Fenchel transform of
the SCGF and using Eq. (8). During the previous anal-
ysis, nevertheless, we also argued that the SCGF in the
steady-states of the LL and GY models can be written
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by the analytic function

Cs
GGE(β) = Cs

an(β) =

∞∑
m=1

κsmβ
m

m!
= 2d(eβ/2 − 1) , (77)

independently of the interaction strengths, and where the
density d denotes the density of bosons or the ’quasi-
bosons’ in the initial states of the LL and GY models,
respectively. In fact, Cs

an equals Eq. (56), that is, the
Cs

GGE(β)|c→∞ expression explicitly computed from the
QA equations in the LL model. Similarly, Cs

an(β) equals
(71) as well as (72) [that is, the Cs

GGE(β)|c→0− and the
Cs

GGE(β)|c→−∞ limits in the GY model] apart from a
factor of 2, which further underpins the validity of Cs

an(β)
and Eqs. (77) at arbitrary interactions. Finally we note
that the numerical solutions for the SCGF on a finite
interval, originating from the QA equations also confirm
(77).

Given the explicit analytic expression for the SCGF of
the steady-states, and focusing first on the LL model, the
rate function I(z) can be easily obtained, namely

I(z) = 2d− 2z + 2z log(z/d) , (78)

i.e., twice the rate function of the Poisson distribution
and thus P (ℓz,∞) has non-trivial and non-Gaussian fluc-
tuations and large deviations. The rate function above
unambiguously characterizes the limiting coarse-grained
PD P (ℓz,∞) in the asymptotic sense (cf. (9)).
Nevertheless, as we have anticipated, it is also instruc-

tive to approximate the steady-state PD by using

P (n,∞) ≈
∫ π

−π

dβ

2π
e−iβneℓC

s(iβ) (79)

that is by neglecting the o(ℓ) terms in the 2nd cumulant
generating function. To use (79) the knowledge of the
2nd SCGF is required, but given the analytic nature of
(77), we can invoke that

Cs
an(iβ) = 2d(eiβ/2 − 1) . (80)

In Fig. 7 we display the rescaled limiting probability
distribution P (z,∞) ≍ const × e−ℓI(z/ℓ) obtained from
the rate function and the discrete probabilities resulting
from (79) to demonstrate their agreement. It is impor-
tant to stress, that although the PDs look Gaussian, this
is not the case, since the cumulants and the asymptotics
of the PDs are markedly different. One main feature
that can be observed is that the variance of the PD in
the steady-state is 1/

√
2 times that of the initial state,

or in other words, the distribution gets squeezed during
the time evolution.

A remark can be made in connection with approximat-
ing the steady-state PD of a large but finite system via
(79). Notably, the Fourier integral can be analytically
computed resulting in lengthy expressions of trigonomet-
ric functions and exponential integrals. However, due to
these expressions it is easy to show that Cs

an(iβ) does
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FIG. 7. The probability distributions (large red dots and
black line) of charge fluctuations in the steady state of the
LL model after a BEC quench in a large but finite subsys-
tem. The red dots were obtained using Eq. (79) whereas the
black continuous line corresponds to the rescaled limiting PD
obtained from the rate function (78). The small blue dots
show the Poisson PD of the initial state. The subsystem size
ℓ equals 60 and the particle density is unity d = 1.

not define a PD in the strict sense, as for small ℓ neg-
ative probabilities can occur. Nevertheless increasing ℓ,
as expected, the probabilities become positive numbers
sum up to one and the discrete probabilities also repro-
duce the predicted results for the cumulants, which we
have checked explicitly focusing on the first four.

We now turn to the discussion of the PDs in the GY
model and first consider the PD in the initial state. Sim-
ilarly to the LL model, the scaled cumulants in the ini-
tial states are constant, that is, κsm(0) = 2d, where d
in this case is the density of fermion pairs. In the in-
finite subsystem size limit, the limiting continuous PD
is therefore described by the rate function of the Poisso-
nian, i.e., I0(z) = 2d − z + z log(z/(2d)). Nevertheless,
the microscopic, discrete PD is anticipated to be different
from a Poissonian, due the vanishing probabilities of odd
particle numbers. As already stressed, in a strict math-
ematical sense our TBA/QA based methods allow only
for the characterisation of the continuous, coarse-grained
limiting probability distributions via the rate function.
However, we can provide an approximate discrete prob-
ability distribution through (79) that takes into account
vanishing probabilities and scales to the coarse-grained
PDF as well, in the following way. Namely, when directly
computing the 2nd SCGF at the free fermion limit using
explicitly the integral in (69) at imaginary β, the function
denoted by Cs

0,GY turns out to have the following prop-

erties. It is a non-analytic function, equals 2d(eiβ − 1)
in the [−π/2, π/2] interval, and outside this interval it is
defined by the relations Cs

0,GY (iπ − iβ) = Cs
0,GY (iβ)

∗

and Cs
0,GY (−iπ + iβ) = Cs

0,GY (−iβ)∗, which are the
consequence of a particular choice for the branches of
the logarithm. Despite the uncontrolled treatment of
these branches these symmetry properties ensure that
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FIG. 8. The real and imaginary (inset) parts of the 2nd
scaled cumulant generating functions Cs(iβ) in the steady-
state of the Gaudin-Yang model with a fixed density d = 2.4
and various interaction strengths. The functions are obtained
from the solution of the QA equations and performing nu-
merical integration (c = −1.8, red dashed line) or using exact
expression for the integral (20) (c = 0 and c → −∞ indicated
by black ticks and blue continuous line, respectively). The
function for c = 0 coincides with Cs

an(iβ), i.e., the analytic
function defined by a Taylor series via the cumulants.

the Fourier integrals (79) vanish for every odd number.
In addition, the integrals can again be explicitly evalu-
ated in terms of analytic expressions and hence it can be
checked that for large enough subsystems, the probabili-
ties are positive, sum up to one and the scaled cumulants
match the expected value 2d. That is, real physical be-
havior is correctly predicted by Cs

0,GY and (79). We again
stress that such a microscopic effect, i.e., the vanishing
of probabilities for odd numbers, shall not affect the lim-
iting and continuous PD P (ℓz, 0), however in large but
finite subsystems, this feature is anticipated to be present
and the corresponding discrete PD is assumed to be well
approximated by Cs

0,GY (iβ) via (79).

Finally, we discuss the charge probabilities in steady-
state of the GY model after the BEC quench. The coarse-
grained PD P (ℓz,∞) ≍ e−ℓI(z) can be simply obtained
by specifying that I(z) equals (78) upon the d→ 2d sub-
stitution. In the following, we again attempt to focus on
some microscopic features of the discrete charge distribu-
tion in a finite subsystem. Specifically we are interested
in whether vanishing probabilities for odd particle num-
bers can occur in the steady-state PD as it occurred for
the PD of the initial state where it was expected based
on physical considerations, but was indicated by the nu-
merically computed 2nd SCGFs as well.

In particular, the feature of vanishing odd probabil-
ities does take place in the c → −∞ limit, as in this
case, only the fermion, spin-singlet bound states have
non-vanishing densities in the steady-state. That is, the
unit charge is two, hence probabilities for odd numbers
must vanish [98]. Indeed, when taking a look at the 2nd
SCGFs originating from the QA equations and plotted

in Fig. 8, it can be seen that in the c → 0−, i.e.,
the free fermion limit, the analytically computed func-
tion Cs(iβ) obtained from the integral in Eq. (71) per-
forming the β → iβ substitution equals Cs

an. Neverthe-
less, for non-zero interaction strengths including the case
of infinite attraction, we obtain collapsing non analytic
functions. This function can be computed using the in-
tegral in (72) after substituting β with iβ. The func-
tion Cs

∞,GY one obtains this way equals 4d(eiβ/2 − 1) on

the [−π/2, π/2] interval, and outside this interval it is
given by the properties Cs

∞,GY (iπ − iβ) = Cs
∞,GY (iβ)

∗

and Cs
∞,GY (−iπ + iβ) = Cs

∞,GY (−iβ)∗. Although the
non-analytic behavior may again be attributed to the im-
proper treatment of the branches of the logarithm, inter-
estingly, together with the symmetry properties of the
function they capture the aforementioned microscopic
physical effect, and provide an approximate discrete PD
via (79). That is, similarly to the fermionic BEC state,
the non-analytic 2nd SCGF with the particular sym-
metry properties imply vanishing probabilities for odd
fermion numbers, when the charge fluctuations in large
but finite subsystem are considered via (79), which is
the physically anticipated behavior at c = −∞. More-
over, just like in the case if the free fermion BEC initial
state, the Fourier integral (79) involving Cs

∞,GY can be
computed analytically and when the subsystem size ℓ is
large, the PD consists of positive probabilities summing
up to one, and increasing ℓ the scaled cumulants con-
verge to the prescribed value κsm(∞) = 2d/2m−1 as we
have explicitly checked for the first four cumulants.

The situation is less understood at finite interaction
strengths in the attractive regime. Although the numeri-
cally obtained 2nd SCGFs collapse to Cs

∞,GY (iβ), in this
case it is not clear whether or not the symmetry prop-
erties of the 2nd SCGF can be associated with a micro-
scopic effect. Namely, it is not obvious why the probabil-
ities for observing an odd number of particles in a subsys-
tem should be zero, since at finite c, the root densities for
the species associated with charge 1 are non-vanishing.
Their contribution to the cumulants is, however, strongly
suppressed for any non-zero interaction (see Fig. 6) and
so it is possible that in the thermodynamic limit the odd
probabilities are vanishing. Unfortunately this question
cannot be definitively answered within the framework of
the QA techniques we are using, therefore we leave it
open for further investigations. In the repulsive regime
of the model, however, we do not anticipate ambiguities
and the presence of such microscopic effects due the lack
of fermion bound states.

To conclude this section, we again wish to stress that
by our methods we are able to give precise predictions for
the continuous limiting PD P (ℓz) via the rate function
I(z) for all the non-trivial cases, that is for the steady-
state of the LL and the GY model. Going beyond the
continuous description of the limiting PD, or, eventu-
ally the ℓ → ∞ limit, is nevertheless out of the range of
the methods we have. Therefore, we find it worthwhile
to note that despite this, in many instances we could
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still approximate discrete and microscopic PDs describ-
ing the charge fluctuations in large but finite subsystems
via (79). In particular, by enhancing the periodicity of
4d(eiβ/2 − 1) as explained above, physical microscopic
structures can be recovered in PDs of the fermionic BEC
initial states as well as of the steady-state of the GY
model at infinite attraction which manifest in vanishing
probabilities for odd charges. This periodicity property
of the 2nd SCGF can emerge naturally when the func-
tion is numerically computed from the QA equations and
is a result of evaluating the logarithm at complex values
and hence it may be purely accidental. In fact when the
derivative of the 2nd SCGF w.r.t. β is computed at in-
finite attraction in the GY model, an analytic function
with period 4π is obtained and hence the 2nd SCGF is
assumed to inherit the same properties. Therefore, such
indications of the numerically computed 2nd SCGFs are
always to be reconciled with additional physical consid-
erations, which nevertheless are lacking at the moment
for the case of the steady-state fluctuations of the GY
model at finite attractive interactions.

VII. CONCLUSIONS

In this paper we analyzed out-of-equilibrium charge
fluctuations in two paradigmatic models of one dimen-
sional quantum gases. In particular, we investigated the
Lieb-Liniger model which describes interacting bosonic
particles, and the Gaudin-Yang model in which the in-
teracting particles are fermions and explored their entire
parameter space by considering generic repulsive and at-
tractive interactions. We focused on two particular ini-
tial states, the Bose-Einstein condensate state and its
fermionic analog for the Lieb-Liniger and Gaudin-Yang
models, respectively. These choices allowed for a rather
complete characterization of non-trivial charge fluctua-
tions over the course of the entire time evolution. This
achievement is due the applicability of powerful methods
relying on the integrability of the physical systems and
the peculiar structure of the initial states.

In particular, using novel analytical techniques [59, 60,
68] and inspired by the quench action method [11], we de-
termined all the scaled cumulants of charge fluctuations
in the steady state as well their time evolution. These
quantities characterize the fluctuations in a very large
subsystem by keeping the leading order (linear in sub-
system size) behavior. Whereas the time evolution of
the scaled cumulants generically depends on the inter-
action strength of the models, surprisingly, their value
in the steady-state was found to be independent of it.
Moreover, it was also revealed that the scaled cumulants
in the steady-state are uniquely characterised by the cor-
responding scaled cumulants in the initial state in a re-
markably simple fashion. In particular, the scaled cumu-
lants κsm(0) in both the conventional and the fermionic
BEC states are κsm(0) = d and κsm(0) = 2d, respectively,
where d is the density of bosons and fermion pairs in

the two states. In the steady-states the scaled cumu-
lants κsm(∞) are instead given by the universal relation
κsm(∞) = κsm(0)/2m−1. This relation was established
based on the explicit determination of the scaled cumu-
lants in the initial and steady-states. A formal derivation
of this relationship was also provided based on compar-
ing the full counting statistics in the diagonal ensemble
and in the generalized Gibbs ensemble and by showing
that the former can capture the fluctuations in the initial
state.

Thanks to the exponential decay of the scaled cumu-
lants in the steady-states we could naturally invoke the
scaled cumulant generating function whose determina-
tion based on only the knowledge of the cumulants, in
general, might not be straightforward. Nevertheless, the
analytic function obtained this way also agrees the gen-
erating functions obtained directly from the quench ac-
tion method at specific interaction strength, when ana-
lytic computations are feasible or at generic interaction
strengths, when the agreement can be checked numer-
ically. Computing the Legendre-Fenchel transform of
this function we obtained an explicit expression for the
rate function which characterizes the limiting continu-
ous probability distribution in an infinitely large subsys-
tem. In accordance with the scaled cumulants in the
steady-state, this function predicts non-trivial and non-
Gaussian fluctuations and large deviations for the charge.
Additionally, we also considered the probability distribu-
tions in large but finite subsystems, where their discrete
nature is still visible. An interesting feature occurs in
the fermionic BEC initial state as well as in the steady-
state of the Gaudin-Yang model at infinite attraction. In
these cases the probabilities of observing an odd number
of charge in a subsystem identically vanish. Neverthe-
less, resolving such discrete and microscopic features in
strictly finite subsystems is beyond the scope of our cur-
rent methods and hence was accomplished by relying on
additional physical input.

Our work admits several pathways for further investi-
gations. A surprising finding is the universal relationship
between the scaled cumulants of the initial and steady-
states, which is a consequence of the integrability of both
the models and the initial states [99]. It would be impor-
tant to identify the precise conditions for the onset of
this phenomenon and to give a more rigorous explana-
tion than what is presented in this work. A noteworthy
remark is that, for initial states with vanishing scaled
cumulants, such predictions clearly cannot hold. How-
ever, universality was manifest in our examples in an-
other way as well, namely by the lack of dependence on
the interaction strength of the models. It is an interest-
ing question whether such interaction-independence can
be observed in other, possibly non-integrable models or
in other quench protocols, or it again requires the inte-
grability of both the post-quench Hamiltonian and the
initial state. By applying the semi-classical arguments
of the quasi-particle picture it may be possible to go be-
yond initial states which have a pure pair structure at
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least for free models as has been carried out already for
entanglement dynamics [100, 101].

Finally we would like to highlight that similarly to the
fluctuations of the charge, other conserved quantities can
be investigated as well. This may require some care in the
particular case of the Lieb-Liniger model, as some charges
can have divergent expectation values and suitable linear
combinations have to be considered [91]. Nevertheless,
the methods applied in this work can be applied for other
charges, at least for the ones with extensive initial cumu-
lants like the energy in a subsystem. Last but not least it
would be worthwhile to accomplish the challenging task
of developing analytic or semi-analytic methods that can
capture the sub-leading behavior of fluctuations. This
would be important to characterize certain microscopic
effects, such as the fluctuations of conserved quantities in
a subsystem for which the cumulants admit sub-extensive
scaling e.g. those associated with the KPZ universality
class [102].
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Appendix A: A formal derivation of the SCGF of
the initial state from the diagonal ensemble

A main finding of this paper is the simple relation-
ship between the scaled cumulants of the initial and the
steady-states. This reads as κsm(∞) = κsm(0)/2m−1 or
when promoted onto the level of the scaled cumulant gen-
erating functions, Cs

0(β) = 2Cs
GGE(β/2). These relations

were obtained by comparing the FCS in the diagonal en-
semble (DE) and in the GGE of the quench problem in
Sec. II and were justified in the following subsections
by explicitly computing the corresponding cumulants in
the initial and steady-states. While our explanation for
these relationships at its present form shall remain for-
mal, in this appendix we intend to comment more on the
non-trivial bit therein, namely why and how the diagonal
ensemble can describe the FCS in the initial and not in
the steady-state.

First of all, let us recall the result of Ref. [68], which
claims that in a (G)GE, the SCGF of a conserved charge
can be obtained by

Cs
GGE(β) = fGGE(β

(k) − β)− fGGE(β
(k)) , (A1)

where fGGE denotes the free energy density of a GGE

characterized by the chemical potentials β(k) and β is
associated with the particular conserved quantity of in-
terest. We shall use this relation as a guideline in what
follows. Let us now specify the FCS in the initial state
denoted by |Ψ0⟩

⟨Ψ0|eβN̂A |Ψ0⟩ =
1

⟨Ψ0|Ψ0⟩
∑
Φ,Φ′

e−ϵ∗Φ−ϵΦ′ ⟨Φ|eβN̂A |Φ′⟩ ,

(A2)
where A denotes the subsystem whose length is ℓ, ϵΦ =
− log ⟨Φ|Ψ0⟩ are the logarithmic overlaps and in Eq. (A2)
we merely expanded the initial state in the eigenbasis of
the post-quench Hamiltonian. For simplicity and trans-
parency, we assume only one particle species. Following
the logic of the QA method, we can replace one summa-
tion by a functional integral over root distributions as-
suming that the size of the entire system L is very large
and is eventually sent to infinity. This way we may write

⟨Ψ0|eβN̂A |Ψ0⟩ =
∑
Φ

∫
D[ρ]eSY Y [ρ]

[
e−ϵ∗Φ−ϵ[ρ]⟨Φ|eβN̂A |ρ⟩

+ Φ ↔ ρ

]
× 1

⟨Ψ0|Ψ0⟩
, (A3)

where SY Y is the Yang-Yang entropy of the root distribu-
tion whose exponential gives the number of microstates
with the same root distribution. Note that up to this
point we have two length scales, ℓ associated with the
length of the subsystem and L with the total length of
the system. The essential next step is the following: we
extend the support of the subsystem A and consider the
charge operator in the entire system. This is formal
step since when L = ℓ no charge fluctuations are ex-
pected. The step is rather based on the analogy with the
treatment of FCS, more precisely the SCGF in GGEs.
Namely one can relate the SCGF of a very large sub-
system (ℓ → ∞) with free energy densities in which the
conserved quantity is regarded in the entire system. Per-
forming this extension, it can immediately be seen that
we can get rid of the second summation, since N̂ is a
conserved quantity and can have only diagonal matrix
elements. That is, we can rewrite Eq. (A3) as

⟨Ψ0|eβN̂ |Ψ0⟩ =
1

⟨Ψ0|Ψ0⟩

∫
D[ρ]eSY Y [ρ]−2Re ϵ[ρ]⟨ρ|eβN̂ |ρ⟩ ,

(A4)
where we keep in mind that we changed the way of
sending L and ℓ to infinity by essentially equating these
lengths. This expression can be further rewritten as

⟨Ψ0|eβN̂ |Ψ0⟩ =
∫

D[ρ]eSY Y [ρ]−2Re ϵ[ρ]+ℓ
∫
dλβqρ(λ)

×
[∫

D[ρ]eSY Y [ρ]−2Re ϵ[ρ]

]−1

,

(A5)

which is equivalent to Eq. (23), if the pair-structure of
the initial state is imposed. The r.h.s. of (A5) is the
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rewriting of ⟨Ψ0|eβN̂ |Ψ0⟩ in the diagonal ensemble. Using
the saddle point approximation and taking the logarithm
of (A5) we can write down the SCGF as a difference of
two effective free energy densities, i.e.,

log⟨Ψ0|eβN̂ |Ψ0⟩ = ℓCs
0(β) + o(ℓ)

= − ℓ

2

∫
dλ (g(λ)− 2βq) ρ̄sp(λ)−

1

2
SY Y [ρ̄sp]

+
ℓ

2

∫
dλg(λ)ρsp(λ) +

1

2
SY Y [ρsp] + o(ℓ) ,

(A6)

where we adapted the notation of the logarithmic over-
laps from Sec. II, took into account the 1/2 factors due to
the pair-structure of the initial state, and ρ̄sp and ρsp are
the two saddle-point root distributions of the nominator
and the denominator of (A5).
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G. Zaránd, Nonequilibrium time evolution and rephas-
ing in the quantum sine-Gordon model, Phys. Rev. A
100, 013613 (2019).

[30] A. Roy, D. Schuricht, J. Hauschild, F. Pollmann, and

https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1088/1742-5468/2016/06/064001
https://doi.org/10.1088/1742-5468/2016/06/064007
https://doi.org/10.1088/1742-5468/2016/06/064007
https://doi.org/10.1088/1742-5468/2016/06/064002
https://doi.org/10.21468/SciPostPhysLectNotes.18
https://doi.org/10.1088/1742-5468/ac3e6a
https://doi.org/10.1088/1742-5468/ac3e6a
https://doi.org/10.1088/1742-5468/ac257d
https://doi.org/10.1146/annurev-conmatphys-031119-050630
https://doi.org/10.1146/annurev-conmatphys-031119-050630
https://doi.org/10.1017/CBO9780511628832
https://doi.org/10.1017/CBO9780511628832
https://doi.org/10.1017/CBO9780511524332
https://doi.org/10.1017/CBO9780511524332
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1088/1742-5468/2016/06/064006
https://doi.org/10.1088/1742-5468/2016/06/064006
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.131.027101
https://doi.org/10.1103/PhysRevLett.131.027101
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1007/978-3-662-10018-9_25
https://doi.org/10.1103/PhysRevLett.19.1312
https://doi.org/10.1016/0375-9601(67)90193-4
https://doi.org/10.1016/0003-4916(79)90391-9
https://doi.org/10.1016/0003-4916(79)90391-9
https://doi.org/10.1038/nature04693
https://doi.org/10.1103/PhysRevLett.99.200404
https://doi.org/10.1103/PhysRevB.75.174511
https://doi.org/10.1103/PhysRevB.75.174511
https://doi.org/10.1103/PhysRevLett.120.173601
https://doi.org/10.1103/PhysRevLett.120.173601
https://doi.org/10.1103/PhysRevX.10.011020
https://doi.org/10.1103/PhysRevB.100.155425
https://doi.org/10.1103/PhysRevB.100.155425
https://doi.org/10.1103/PhysRevA.100.013613
https://doi.org/10.1103/PhysRevA.100.013613


18

H. Saleur, The quantum sine-Gordon model with quan-
tum circuits, Nuclear Physics B 968, 115445 (2021).

[31] C. Rylands, Y. Guo, B. L. Lev, J. Keeling, and V. Gal-
itski, Photon-mediated peierls transition of a 1d gas in a
multimode optical cavity, Phys. Rev. Lett. 125, 010404
(2020).
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scription of symmetry-resolved Rényi entropies after a
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