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Abstract. Astrometry, the precise measurement of star motions, offers an alternative avenue
to investigate low-frequency gravitational waves through the spatial deflection of photons,
complementing pulsar timing arrays reliant on timing residuals. Upcoming data from Gaia
and Roman can not only cross-check pulsar timing array findings but also explore the un-
charted frequency range bridging pulsar timing arrays and LISA. We present an analytical
framework to evaluate the feasibility of detecting a gravitational wave background, consid-
ering measurement noise and the intrinsic variability of the stochastic background. Further-
more, we highlight astrometry’s crucial role in uncovering key properties of the gravitational
wave background, such as spectral index and chirality, employing information-matrix analy-
sis. Finally, we simulate the emergence of quadrupolar correlations, commonly referred to as
the generalized Hellings-Downs curves.
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1 Introduction

Recent breakthroughs in pulsar timing arrays (PTAs) have heralded a transformative
era for the observation of gravitational waves (GWs) at nano-Hertz (nHz) frequencies. These
advancements leverage the precise timing information obtained from pulsars, enabling a
galactic-scale gravitational wave detector. This innovative approach first led to the detec-
tion of a common-spectrum process by the Nanohertz Observatory for Gravitational Waves
(NANOGrav) collaboration [1], a finding subsequently corroborated by the Parkes PTA, Eu-
ropean PTA, and International PTA [2–4]. More recently, multiple PTA collaborations have
found evidence for the quadrupolar angular correlation of these signals on the sky [5–8].
These collective findings consistently support the presence of a quadrupolar correlation func-
tion known as the Hellings-Downs curve [9], a pivotal characteristic of gravitational-wave
induced timing residuals. Furthermore, the amplitude and spectral index of the inferred
stochastic gravitational wave background (SGWB) align broadly with predictions derived
for a cosmological population of supermassive black hole binaries (SMBHBs) as the gravita-
tional wave sources [10, 11]. Nonetheless, while not definitively ruled out, certain cosmological
sources may still provide potential explanations for the observed SGWB.

On a parallel front, it is essential to note that GWs not only perturb photon travel times
but also deflect their paths. This phenomenon serves as the basis for astrometric detection of
GWs, which relies on measuring correlated wobbling movements of stars on the sky [12–16].
Astrometry represents another promising avenue for the detection and characterization of
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gravitational waves, providing a complementary perspective to the PTA approach [17–30].
While astrometry currently has less constraining power than PTAs [23, 27, 29], complete
datasets from space-borne astrometry missions like Gaia [31], including full time series, have
the potential to provide sensitivity comparable to PTAs. The next-generation astrometric
observations have the potential to exceed the sensitivity of PTAs [26].

Compared to PTAs, astrometry boasts several noteworthy complementary advantages.
The distinct response functions of PTA and astrometry make them sensitive to incoming
GWs from different directions as pulsars or stars are more concentrated toward the direction
of the Galactic Center [17]. Additionally, the strain sensitivity of astrometry remains nearly
constant across the frequency spectrum [17], unlike the linear decrease in PTA sensitivity
toward higher frequencies. This opens a new window for GWs, exploring uncharted frequency
ranges lying between PTAs and the Laser Interferometer Space Antenna (LISA) band [32].
For instance, the Nancy Grace Roman Space Telescope (Roman), with its significantly higher
observing cadence, can indeed extend the frequency range to above 10−4 Hz [28, 33–35].
Moreover, the presence of parity-odd correlations among astrometric observables or PTA-
astrometry cross-correlations can reveal the existence of a chiral component of SGWB [21,
30, 36]. Hence, it is imperative to explore in detail the prospects of astrometry.

This study is dedicated to forecasting the potential of astrometry in discovering SG-
WBs and characterizing their properties with future data releases, in conjunction with PTAs
or without. We establish a framework for predicting the feasibility of astrometric SGWB
detection and the resolution of key SGWB parameters. These parameters, including the
normalization of characteristic strain, spectral index, and chirality, are crucial for compre-
hending the distribution of SMBHBs, their potential interaction with the environment, and
the presence of any sub-leading cosmological sources. The vector nature of astrometry observ-
ables introduces various options for cross-correlations [19, 21], in addition to the redshift-only
correlation of PTA. Each of these correlations possesses unique quadrupolar correlation func-
tions [19, 21] and corresponding variances due to the stochastic nature of GWs. Identifying
them will not only provide a cross-check of the PTA Hellings-Downs curve at nHz but may
also uncover a GW signal at higher frequencies.

The paper’s structure is organized as follows: In Sec. 2, we review the basics of both PTA
and astrometry for the detection of the SGWB. Moving to Sec. 3, we analytically calculate
the sensitivities for various cross-correlation choices associated with PTA and astrometry
and evaluate the resolution of key SGWB properties. Section 4 delves into the simulation
of spatial correlations, specifically exploring the generalized Hellings-Downs curve, and of-
fers a theoretical insight into intrinsic variance of SGWBs. Finally, in Sec. 5, we draw our
conclusions and discuss our findings.

2 PTA and Astrometric Detection of the Stochastic Gravitational Wave
Background

2.1 Responses and Angular Correlations for PTA and Astrometry
GWs induce perturbations in the paths of photons along geodesics. These perturbations

give rise to two distinct categories of observable phenomena: shifts in the temporal arrival
of photons and the proper motion of their sources across the celestial sphere [16]. PTAs,
functioning as an exceptional network of cosmic clocks, possess the remarkable capability
to precisely measure the arrival times of radio pulses from distant pulsars. On the other
hand, astrometry is dedicated to the precise determination of the positions and motion of
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stars across the celestial sphere. The shifts depend on both the metric perturbations at the
observation point (Earth term) and on the emission sources (pulsar or star terms). However,
the latter can usually be disregarded when the distance between the two points significantly
exceeds the wavelength of the GWs [19], or treated as noise when correlations among different
baselines result in only the Earth term being coherently summed up. For the purposes of
this study, we will focus solely on the Earth term.

The received GW strain at a specific location can be represented as a sum of frequency
modes:

hij(t) =
∫ +∞

−∞
df

∫
d2Ω̂

∑
P

hP (f, Ω̂) ϵP
ij(Ω̂) e2πift . (2.1)

In the above equation, f , Ω̂ and P label the frequency, incoming direction, and polarization
mode of the GW, respectively. In this work, we will only consider polarization modes within
the framework of Einstein’s gravity. The strain amplitude in the frequency domain is given
by hP (f, Ω̂), and ϵP

ij(Ω̂) is the polarization basis tensor satisfying ϵP
ij(Ω̂)ϵij

P ′(Ω̂) = 2δP P ′ . The
time-domain strain imposes a real condition, necessitating that hP (f, Ω̂) = hP (−f, Ω̂)∗ and
ϵP
ij(Ω̂)∗ = ϵP

ji(Ω̂) for linear polarization basis P = +/×. The frequency-domain signals from
PTAs and astrometry can be universally expressed as [36]:

Xa(f) ≡ X(f, n̂a) =
∫

S2
d2Ω̂

∑
P

hP (f, Ω̂) ϵP
ij(Ω̂) Rij

X(Ω̂, n̂a). (2.2)

Here, we introduce X ≡ {δz, δx} to encompass both the photon redshift δz from PTAs and
the proper motion on the celestial sphere δx from astrometry. The subscript a designates the
a-th pulsar/star, with the line-of-sight direction denoted as n̂a. The redshift and astrometric
response functions are elucidated in Ref. [16] as follows:

Rij
δz(Ω̂, n̂) = 1

2

(
n̂in̂j

1 + Ω̂ · n̂

)
, Rij

δxl
(Ω̂, n̂) = 1

2

[
n̂in̂j

1 + Ω̂ · n̂
(n̂l + Ω̂l) − δi

l n̂
j

]
. (2.3)

Here, we utilize a Cartesian coordinate system where the components are labeled by i, j and l.
Notably, the timing residual signal represents the time integral of the redshift δz, introducing
an additional factor of 1/(2πf).

For a Gaussian, stationary GW background, the two-point correlation function of hP is
as follows:

⟨hP (f, Ω̂) hP ′(f ′, Ω̂′)∗⟩ = δ(f − f ′) δ(Ω̂, Ω̂′) PP P ′(f, Ω̂) , (2.4)

where PP P ′(f, Ω̂) represents the power spectrum of correlation between the P mode and the
P ′ mode. When the SGWB exhibits isotropy, the power spectrum matrix can be parameter-
ized as [37]:

PP P ′(f) =
(

I(f) −iV (f)
iV (f) I(f)

)
(2.5)

for P/P ′ ∈ {+, ×}, where the real quantities I(f) and V (f) represent the total intensity
and the circular polarization, respectively. The isotropic SGWB, as defined in Eqs. (2.4) and
(2.5), results in correlations between two received signals from a pair of pulsars, stars, or
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pulsar-star pairs, as follows:

⟨Xa(f) X ′
b(f ′)∗⟩ = δ(f − f ′)

∫
d2Ω̂

∑
P,P ′

(
PP P ′(f) ϵP

ij(Ω̂) ϵP ′
kl (Ω̂)∗

)
Rij

X(Ω̂, n̂a)Rkl
X′(Ω̂, n̂b) .

(2.6)
For PTA with redshift correlations, Eq. (2.6) leads to the well-known Hellings-Downs

curve [9]:
⟨δza(f)δz∗

b (f ′)⟩ = δ(f − f ′) I(f) Γz(θab),

Γz(θ) ≡ 4π

3

[
1 − 1

2

(
sin θ

2

)2
+ 6

(
sin θ

2

)2
ln
(

sin θ

2

)]
,

(2.7)

where the function Γz(θab) depends solely on θab ≡ n̂a · n̂b due to the rotational invariance
of an isotropic SGWB.

Correlations involving astrometric motions of a pair of stars or a star and a pulsar can
be categorized into directions that are parallel (êa

|| and êb
||) and perpendicular (ê⊥) to their

great arc [19], defined as:

ê⊥ ≡ n̂a × n̂b√
1 − (n̂a · n̂b)2 , êa

|| ≡ ê⊥ × n̂a√
1 − (ê⊥ · n̂a)2 , êb

|| ≡ ê⊥ × n̂b√
1 − (ê⊥ · n̂b)2 . (2.8)

Using these definitions, the correlations in Eq. (2.6) can be simplified to the following expres-
sions [19, 21, 30, 36]:

⟨δza(f)δx∗
b(f ′)⟩ = δ(f − f ′)

(
I(f) êb

|| + iV (f) ê⊥
)

Γzδx(θab),

⟨δxa(f)δx∗
b(f ′)⟩ = δ(f − f ′)

[
I(f)

(
êa

||ê
b
|| + ê⊥ê⊥

)
+ iV (f)

(
êa

||ê⊥ − ê⊥êb
||

) ]
Γδx(θab),

(2.9)

where the dimensionless correlation functions satisfy

Γzδx(θ) ≡ 4π

3 sin(θ)
[
1 + 3

(
tan θ

2

)2
ln
(

sin θ

2

)]
,

Γδx(θ) ≡ 2π

3

[
1 − 7

(
sin θ

2

)2
− 12

(
sin θ

2

)2 (
tan θ

2

)2
ln
(

sin θ

2

)]
.

(2.10)

These functions are commonly known as generalized Hellings-Downs curves.

2.2 Gravitational Wave Signal in Spherical Harmonic Space

An alternative representation of SGWB signals in PTAs and astrometric observation is
achieved through the use of spherical harmonic space, as demonstrated in prior works such as
Refs. [21, 28, 38–40]. The key advantage of this representation lies in its ability to diagonalize
both the signals and the SGWB-induced variances, simplifying the definition of estimators.
In this formalism, both the GW-induced redshift and angular deflection can be expressed as
discrete summations over the harmonic basis:

δza(f) =
∞∑

ℓ=2

ℓ∑
m=−ℓ

zℓm(f)Yℓm(n̂a)

δxa(f) =
∞∑

ℓ=2

ℓ∑
m=−ℓ

[
Eℓm(f)YE

ℓm(n̂a) + Bℓm(f)YB
ℓm(n̂a)

] (2.11)
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where Yℓm represents spherical harmonic functions, and YE
ℓm and YB

ℓm are the E- and B-
components of vector spherical harmonic functions, respectively. Correspondingly, zℓm(f),
Eℓm(f), and Bℓm(f) are their respective expansion coefficients. Employing the orthogonality
of the spherical harmonic basis, we can determine these components as follows:

zℓm(f) =
∫

S2
d2n̂ δza(f) Yℓm (n̂)∗ ,

Eℓm(f) =
∫

S2
d2n̂ δxa(f) · YE

ℓm(n̂)∗ ,

Bℓm(f) =
∫

S2
d2n̂ δxa(f) · YB

ℓm(n̂)∗ .

(2.12)

It is important to note that in realistic observations, a finite number of pulsars and non-
uniform distributions of pulsars/stars should be taken into account when reconstructing
these components. These factors can lead to a mixture of modes and consequently introduce
noise [41]. However, recent simulations using mock data have shown that the influence of
this mixture is negligible [40].

To simplify notation, we introduce Xℓm ≡ {zℓm, Eℓm, Bℓm} to represent all spherical-
harmonic components. With this representation, we can construct the rotationally invariant
power spectra:

CXX′
ℓ (f) ≡ 1

T (2ℓ + 1)

ℓ∑
m=−ℓ

Xℓm(f) X ′
ℓm(f)∗ . (2.13)

These power spectra satisfy CXX′
ℓ (f)∗ = CX′X

ℓ (f). Here, T represents the total observation
time, which is used to account for the factor δ(0) → T in the discrete frequency domain.

A convenient way to calculate Xℓm is by using the total angular momentum (TAM)
decomposition of GW strain [42], which includes both transverse polarization modes, denoted
as α ∈ {TE, TB}. Consequently the GW-induced (h) spherical harmonic components can
be expressed as [21]:

X
(h)
ℓm (f) =

∑
α

4πiℓ F X,α
ℓ hα

ℓm(f), (2.14)

for ℓ ≥ 2. Here, F X,α
ℓ are projection factors derived for various combinations of X and

α [21]. The respective strain amplitudes, denoted as hα
ℓm(f), exhibit correlations that can be

parameterized as:

⟨hα
ℓm(f) hβ

ℓ′m′(f ′)∗⟩ = 2 δ(f − f ′) δℓℓ′ δmm′ Pαβ(f) . (2.15)

This assumes an isotropic SGWB with vanishing linear polarization components. The power
spectra matrix Pαβ is structured as [37, 43]:

Pαβ(f) =
(

I(f) −iV (f)
iV (f) I(f)

)
, (2.16)

for α/β ∈ {TE, TB}.
The ensemble average of CXX′

ℓ (f) comprises an independent sum of GW-induced signals
(h) and measurement noise (n):

⟨CXX′
ℓ (f)⟩ = CXX′

(h)ℓ (f) + CXX′

(n)ℓ (f) , (2.17)
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The signal part is directly derived from Eq. (2.14) and (2.15):

CXX′

(h)ℓ (f) = 32π2∑
α,β

F X,α
ℓ F X′,β ∗

ℓ Pαβ(f) . (2.18)

More explicitly, each component of Eq. (2.18) is directly related to either the total intensity
I(f):

Czz
(h)ℓ(f) = I(f) Aℓ,

CEE
(h)ℓ(f) = CBB

(h)ℓ(f) = I(f) Aℓ B2
ℓ ,

CzE
(h)ℓ(f) = I(f) Aℓ Bℓ,

(2.19)

or the circular polarization V (f) [25, 30, 36]:

CzB
(h)ℓ(f) = −iV (f) Aℓ Bℓ,

CEB
(h)ℓ(f) = −iV (f) Aℓ B2

ℓ .
(2.20)

Here, we define

Aℓ ≡ 16π2

(ℓ + 2)(ℓ + 1)ℓ(ℓ − 1) , Bℓ ≡ 2√
(ℓ + 1)ℓ

. (2.21)

On the contrary, the Gaussian noise inherent in each measurement results in an ℓ-
independent noise spectrum [39]. In the case of a uniform distribution of NX pulsars or
patches (NE = NB ≡ Nδx) on the celestial sphere, the noise spectra in harmonic space can
be expressed as:

⟨X(n)
ℓm (f) X

′(n)
ℓ′m′(f ′)∗⟩ = 4πS

(n)
X (f)

NX
δ(f − f ′) δℓℓ′ δmm′ δXX′ . (2.22)

Here, S
(n)
X (f) represents the noise spectra from each pulsar/patch. For astrometry, these

spectra satisfy S
(n)
E (f) = S

(n)
B (f) ≡ S

(n)
δx (f), where S

(n)
δx (f) is the measurement noise of the

average proper motion of the patch. The rotational invariant noise spectra directly follow
from Eq. (2.22):

CXX′

(n)ℓ (f) = 4πS
(n)
X (f)

NX
δXX′ . (2.23)

3 Dissecting the Stochastic Gravitational Wave Background

In this section, we assess the sensitivity of both PTA and astrometry utilizing rotational
invariant power spectra CXX′

ℓ . As highlighted earlier, these observables derive considerable
advantage from their diagonal nature in harmonic space. Our exploration commences with
the formulation of estimators built upon CXX′

ℓ , followed by a thorough analysis of their
properties. Subsequently, we employ the information matrix [44–46] to gauge the sensitivity
towards total intensity, spectral index, and chirality.
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3.1 Rotational Invariant Estimators

In the frequency domain, discrete frequencies fk span from 1/T to 1/(2∆t), where ∆t is
the cadence of observation. We use the integer k to label measurements in a certain frequency
bin such that CXX′

ℓ,k ≡ CXX′
ℓ (fk). The total intensity Ik can be estimated from XX ′ =

zz/EE/BB/zE, while the circular polarization Vk arises from the parity-odd observables
zB/EB. Each estimator is directly constructed from Eq. (2.19) and (2.20):

Îzz
ℓ,k ≡

Czz
ℓ,k − 4πS

(n)
z,k /Nz

Aℓ
, Î

EE/BB
ℓ,k ≡

CEE/BB
ℓ,k − 4πS

(n)
δx,k/Nδx

AℓB
2
ℓ

, ÎzE
ℓ,k ≡

ℜ
[
CzE

ℓ,k

]
AℓBℓ

,

V̂ EB
ℓ,k ≡ −

ℑ
[
CEB

ℓ,k

]
AℓB

2
ℓ

, V̂ zB
ℓ,k ≡ −

ℑ
[
CzB

ℓ,k

]
AℓBℓ

,

(3.1)

whose ensemble averages are either Ik or Vk. Given that each power spectrum in harmonic
space is independent, the signal-to-noise ratio (SNR) of these estimators in a given frequency
bin receives contributions from all achievable ℓ-modes:

(
SNRXX′

k

)2
=

ℓmax∑
ℓ=2

2(2ℓ + 1)
∣∣∣CXX′

(h)ℓ,k

∣∣∣2∣∣∣∣∣CXX′
(h)ℓ,k + 4πS

(n)
X,k

NX
δXX′

∣∣∣∣∣
2

+
(

CXX
(h)ℓ,k + 4πS

(n)
X,k

NX

)(
CX′X′

(h)ℓ,k +
4πS

(n)
X′,k

NX′

)

=
ℓmax∑
ℓ=2


(2ℓ + 1)

(
CXX

(h)ℓ,k/(CXX
(h)ℓ,k + 4πS

(n)
X,k/NX)

)2
, X = X ′.

2(2ℓ+1)
∣∣∣CXX′

(h)ℓ,k

∣∣∣2∣∣∣CXX′
(h)ℓ,k

∣∣∣2+(CXX
(h)ℓ,k

+4πS
(n)
X,k

/NX)(CX′X′
(h)ℓ,k

+4πS
(n)
X′,k

/NX′ )
, X ̸= X ′.

(3.2)

Here, ℓmax ∼
√

NX/2 is the highest observable ℓ for the constructed power spectra. The
denominator corresponds to the variance of the estimator in Eq. (3.1), derived using Isserlis’
theorem [47] for Gaussian fields Xℓm.

To gain a quantitative understanding of Eq. (3.2), we depict the SNR2
k as a function of

ξk ≡ Ik/(4πS
(n)
X,k/NX) in Fig. 1 for the Ik estimators. These estimators include PTA-only

(zz) in blue, astrometry-only (EE or BB) in orange, and PTA-astrometry cross-correlation
(zE) in green. Two scenarios are presented with ℓmax = 10 (solid lines) and 50 (dashed lines).
The PTA-only case (zz) aligns with results previously obtained using cross-correlations in
separation-angle space [48]. To better understand the behaviour of the results plotted in
Fig. 1, we consider the plot categorized into three regions:

• Weak signal (ξk ≪ 1): The denominator of Eq. (3.2) is dominated by the measurement
noise ∼ S

(n)
X,k, resulting in SNR2 ∝ ξ2

k.

• Strong signal (ξk → ∞):
The measurement noise is subdominant, and the data variance is predominantly deter-
mined by the stochastic variance of GW. The saturated value of SNR2

k is
∑ℓmax

ℓ=2 (2ℓ+1) =
(ℓ2

max + 2ℓmax − 3)/2, which is universal for all cases.

• Intermediate signal:
Between the weak and strong signal limits, the contribution of the lowest few ℓ-modes
of (CXX′

(h)ℓ,k)2 surpasses that of the measurement noise. As CXX′

(h)ℓ,k decreases with higher
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10−2 100 102 104 106 108

ξk

10−1

100

101

102

SN
R

X
X
′

k

lmax = 10
lmax = 50

zz
zE
EE or BB

Figure 1: SNRXX′
k plotted against ξk ≡ Ik/(4πS

(n)
X,k/NX) for Ik estimators, encompassing

PTA-only correlation zz (blue), astrometry-only correlation EE or BB (orange), and PTA-
astrometry cross-correlation zE (green). Two options for the highest ℓ-mode constructed,
ℓmax = 10 (solid lines) and 50 (dashed lines), are considered. In the case of zE correlation,
we assume S

(n)
z,k /Nz = S

(n)
E,k/NE .

ℓ, the transition commences at lower values of ℓ ≥ 2 until the ℓmax-mode becomes
dominant. In this region, we introduce ℓeff ≤ ℓmax to label the highest ℓ-mode whose
power spectra dominates over the measurement noise. Consequently, the SNR2

k becomes∑ℓeff
ℓ=2(2ℓ + 1) = (ℓ2

eff + 2ℓeff − 3)/2. ℓeff can be related to ξk since CXX′

(h)ℓ,k ∝ 1/ξk

for large values of ℓeff . Thus, for PTA-only with Czz
(h)ℓ,k ∝ 1/ℓ4 and astrometry-only

CEE
(h)ℓ,k = CBB

(h)ℓ,k ∝ 1/ℓ6, SNR2
k scales as ξ

1/2
k and ξ

1/3
k , respectively. The zE correlation

behaves similarly to astrometry only, as for large ℓeff , C
EE/BB
(h)ℓ,k becomes comparable to

the measurement noise much later than Czz
(h)ℓ,k.

The two cases with different ℓmax exhibit nearly identical behavior in the weak signal re-
gions, start to deviate in the middle of the intermediate signal regions, and eventually reach
saturation at their respective maximum SNR values.

For estimators of circular polarization Vk, the variance incorporates CXX
(h)ℓ,k, which is

proportional to Ik. Consequently, their maximum SNR is typically suppressed by the ratio
of circular polarization Vk/Ik.

3.2 Sensitivity and Parameter Estimation

In addition to exploring the total intensity and circular polarization, many aspects of
the SGWB remain to be unraveled. In this section, we establish an analytical framework
to dissect the SGWB. This includes sensitivity estimation and the assessment of various
pertinent parameters, all based on the information matrix [44].
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We introduce a vector Xℓm,k defined as follows:

Xℓm,k ≡ {zℓm,k, Eℓm,k, Bℓm,k}T , (3.3)

encompassing both redshift and astrometric observables. Assuming Gaussianity and station-
arity for both the SGWB and the measurement noise, each Xℓm,k follows an independent
complex multivariate normal distribution:

Xℓm,k ∼ CN (0, Σℓ,k) . (3.4)

Here, Σℓ,k is the 3 × 3 covariance matrix:

Σℓ,k =


Czz

(h)ℓ,k CzE
(h)ℓ,k CzB

(h)ℓ,k

CzE∗
(h)ℓ,k CEE

(h)ℓ,k CEB
(h)ℓ,k

CzB∗
(h)ℓ,k CEB∗

(h)ℓ,k CBB
(h)ℓ,k

+


Czz

(n)ℓ,k

CEE
(n)ℓ,k

CBB
(n)ℓ,k

 , (3.5)

where all the components are defined across Eqs. (2.19), (2.20) and (2.23).
Given the statistical independence of Xℓm,k for different m, ℓ, and k, the joint probability

can be expressed as the product of individual probabilities. Consequently, the ln-likelihood
function is given by:

ln L(X|O) = −
∑

k

ℓmax∑
ℓ=2

ℓ∑
m=−ℓ

[
X†

ℓm,kΣ̃ℓ,k(O)−1Xℓm,k + ln det Σ̃ℓ,k(O)
]

+ Const, (3.6)

where O represents the model parameters, and Σ̃ℓ,k(O) is the covariance matrix constructed
from the corresponding model parameters. Importantly, Σ̃ℓ,k(O) adheres to the condition
Σ̃ℓ,k(Otruth) = Σℓ,k, as defined in Eq. (3.5), where Otruth represents the true parameters. The
ability to estimate the parameters is gauged by the information matrix [44]:

Iij ≡ −
〈

∂2 ln L
∂Oi∂Oj

〉∣∣∣∣∣
O=Otruth

. (3.7)

Here, Oi represents the i-th parameter, and ⟨. . . ⟩ denotes the ensemble average over Xℓm,k.
The inverse of the information matrix I provides the uncertainties for parameter estimation:

σ2(Oi) ≡ (I−1)ii. (3.8)

In cases where the only model parameter of interest is the GW spectrum intensity Ik, the
SNR of this amplitude is given by:

SNR2 ≡
∑

k

I2
kσ−2(Ik). (3.9)

It is crucial to note that the information-matrix analysis is accurate primarily when the SNR
is robust [45, 46, 49]. Therefore, we consistently choose SNR ≥ 1 as the threshold to ensure
the validity of the subsequent discussion.
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3.2.1 Power-law Stochastic Gravitational Wave Background
In this study, we examine power-law SGWB models and investigate the possible pres-

ence of a circularly polarized component. The power-law model is a prevalent approach to
characterize the power spectrum of SGWB. Many SGWB models arising from astrophysical
or primordial origins can be effectively approximated by power laws in the nHz frequencies.
The intensity spectrum of this model is expressed as follows:

I(f) = Iref

(
f

fref

)2α−1
, (3.10)

where fref represents the reference frequency, commonly chosen as fref = 1/yr in PTA obser-
vations, and α denotes the spectrum index. The dimensionless characteristic strain can then
be defined as

hc(f) ≡
√

16πfI(f) ≡ A

(
f

fref

)α

, (3.11)

with A ≡ (16πIreffref)1/2 serving as the strain amplitude normalization factor at fref . This
normalization choice is in accordance with Refs. [50, 51].

The spectral index of the SGWB can deviate from a constant value. At the low-frequency
end of the nHz spectrum, potential interactions with the environment [52–54] or orbital
eccentricities of SMBHBs [55] lead to a turning of the spectrum slope [10]. The high-frequency
turning, occurring around ∼ 10−6 Hz for SMBHBs with masses of ∼ 109 M⊙, happens as
SMBHBs approach the merger phase [56]. However, in the frequency range we consider,
the low-frequency deviation is expected to be small, while the high-frequency contribution is
sub-leading in sensitivity. Thus, we focus on a constant spectral index in the following.

Another feature of the SGWB is chirality, parameterized by macroscopic circular polar-
ization. Cosmological models, such as those described in Refs. [57–61], can generate chirality
through parity-violating interactions. A finite sum of nearby SMBHBs can also produce a
random fraction of chirality [62–64]. As Czz

(h)ℓ,k in Eq. (2.19) is dependent solely on Ik and
lacks any Vk dependence, measuring the isotropic circular polarization map using PTA-only
observations is not possible. It is noteworthy that PTA can still probe anisotropic circular
polarization [65–68], which is beyond the scope of this study.

Fiducial SGWB Model from PTA Observation Recent observations by NANOGrav [5],
PPTA [7], EPTA [6], and CPTA [8] suggest that the SGWB signal is consistent with that
produced by SMBHBs. Assuming that the nearly-circular orbit evolution is predominantly
driven by GW emission, the SGWB spectrum can be well-described by a power-law model
with α = −2/3, despite a potential deviation at the low-frequency end due to environmental
effects or eccentric orbits [10, 69, 70]. With α = −2/3 fixed, the strain found by NANOGrav
(NG) is given by

hNG
c (f) = ANG

(
f

fref

)−2/3
. (3.12)

where ANG ≃ 2.4 × 10−15 [5]. Utilizing Eq. (3.11), the power spectrum of our fiducial SGWB
model has a reference intensity ING

ref = (1/16π)A2
NG yr ≃ 1.1 × 10−31 yr. In the subsequent

sections, the fiducial model will be employed to compare sensitivities across different obser-
vational channels. Any deviation from α = −2/3 can be interpreted as environmental effects
or primordial origins.
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Power-law Model Parameters The power-law model involves two parameters, denoted
as O = {log10 A, α}. The derivatives with respect to these parameters are obtained through
the chain rule:

∂

∂ log10 A
= 2 ln(10)

∑
k

Ik
∂

∂Ik
,

∂

∂α
=
∑

k

2 ln (k∆f ) Ik
∂

∂Ik
,

(3.13)

where we define the dimensionless factor ∆f ≡ 1/(Tfref). The information matrix is ex-
pressed as

I = 4
∑

k

I2
k

σ2
k

(
ln(10)2 ln(k∆f ) ln(10)

ln(k∆f ) ln(10) ln(k∆f )2

)
, (3.14)

where σk ≡ σ(Ik). Note that the matrix inside the summation may appear singular, but the
overall matrix after summation is not. The uncertainties of {log10 A, α} are given by

σ−2(log10 A) = 4 ln(10)2
[∑

k

I2
k

σ2
k

−
[∑

k I2
k/σ2

k ln(k∆f )
]2∑

k I2
k/σ2

k ln(k∆f )2

]
,

σ−2(α) = 4
[∑

k

I2
k

σ2
k

ln(k∆f )2 −
[∑

k I2
k/σ2

k ln(k∆f )
]2∑

k I2
k/σ2

k

]
,

(3.15)

respectively. An alternative parameterization using O = {log10 A, γ}, where α ≡ (3 − γ)/2,
results in a straightforward rescaling of σ(γ) = 2σ(α).

The assessability of both A and α is significantly dependent on the total SNR. However,
the weighted summation of individual frequency bins adds complexity to the equations. In
the following, we will directly calculate σ−2(α) and σ−2(log10 A) and examine their behavior
in different observation channels.

3.2.2 Pulsar Timing Arrays
In PTA-only observations, the ln-likelihood defined in Eq. (3.6) exclusively involves the

redshift zℓm,k, obtained by marginalizing over all Eℓ,m and Bℓ,m:

ln L(PTA) = −
∑

k

ℓmax∑
ℓ

ℓ∑
m=−ℓ

[
z∗

ℓm,kzℓm,k

Czz
(h)ℓ,k + Czz

(n)ℓ,k

+ ln
(
Czz

(h)ℓ,k + Czz
(n)ℓ,k

)]
+ Const. (3.16)

As discussed previously, this likelihood is not sensitive to Vk.
According to Eq. (3.8), the uncertainty of each {Ik} is given by

σ−2
k = ((I−1)kk)−1 =

ℓmax∑
ℓ=2

(2ℓ + 1)

4πS
(n)
z,k

NzAℓ
+ Ik

−2

. (3.17)

The total SNR follows Eq. (3.9)

SNR2
(PTA) =

∑
k

ℓmax∑
ℓ=2

(2ℓ + 1)
[
(ξz

kAℓ)−1 + 1
]−2

, ξz
k ≡ Ik

4πS
(n)
z,k /Nz

, (3.18)

which aligns with the estimator using Czz
ℓ,k in Eq. (3.2). Given various ξz

k value ranges, the
SNR can be categorized into weak, intermediate, and strong signal regions, as discussed in
Sec. 3.1.
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PTA Sensitivity to the Power-law SGWB We proceed to estimate the sensitivity to
the power-law SGWB in realistic PTA observations. The Gaussian noise for timing residual
consists of a white noise component and a red noise one, relatively well-fitted by the power-
law spectrum [71]. By transitioning from timing residual (TR) to redshift, the noise spectrum
for a single pulsar can be expressed as

S(n)
z (f) = S(r)

z (fref)
(

f

fref

)γr

+ S(w)
z (fref)

(
f

fref

)2
, S(w)

z (fref) ≡ σ2
TR(2πfref)2∆t. (3.19)

Here, S
(r)
z and S

(w)
z are the corresponding noise components, σTR is the timing residual

uncertainty of each measurement for a pulsar, ∆t is the cadence of the observation.
We consider recent NANOGrav and future SKA observations. The red noise for NANOGrav

is fit to be S
(r)
z = 1.3 × 10−28 yr and γr = 0 [5, 71], while for SKA, we assume there is only

white noise. The benchmark parameters for the two observations are taken from [71] and
[72, 73], respectively:

NANOGrav : σTR = 80 ns, ∆t = 14 days, Tobs = 15 yr, Nz = 50,

SKA : σTR = 30 ns, ∆t = 14 days, Tobs = 20 yr, Nz = 200.
(3.20)

Here, Tobs is the total observation time. Comparing our noise model for NANOGrav with
the fiducial SGWB model defined in Eq. (3.10), we find that the SGWB dominates the noise
in the lowest 5 bins, consistent with NANOGrav’s result [5]. With Nz = 50 pulsars for
NANOGrav, this leads to ℓmax = 5, while for SKA, ℓmax = 10.

In the left part of Fig. 2, we depict the SNR distribution of the power-law SGWB as a
function of log10 A and α for both PTA observations. The fiducial SGWB model yields an
SNR ≃ 4.0 for NANOGrav (NG) and SNR ≃ 34.1 for SKA. Notably, we observe that above
SNR ≈ 80, the NANOGrav sensitivity reaches a saturation phase, where a stronger A no
longer improves the SNR due to the intrinsic variation in SGWB, consistent with the result
in Ref. [48]. On the other hand, for SKA with a larger value of ℓmax and more sensitive
frequency bins, the threshold for saturation is significantly higher.

We also compute the estimation uncertainty of the power-law model parameters, log10 A
and α, using Eq.(̇3.8), as illustrated in Fig. 3. For the fiducial SGWB model, the NANOGrav
case yields σ(log10 A) ≃ 0.25 and σ(α) ≃ 0.24, consistent with their data analysis [5]. In
comparison, the SKA demonstrates superior resolution over NANOGrav by factors of 21 and
14 for the two parameters, respectively. Akin to the total SNR observations, the uncertainty
ceases to improve beyond the saturation phase for NANOGrav.
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Figure 2: The SNR distribution as a function of the power-law SGWB model parameters, the
reference strain log10 A and spectral index α as defined in Eq. (3.11), for the four considered
observations. The left two correspond to PTAs, while the right two represent astrometric
observations. The white regions indicate SNR < 1, where the information matrix is not
applicable. Yellow stars mark the fiducial parameters from Eq. (3.12), with SNR values of
4.0, 1.5, 34.1, and 43.9 for NANOGrav, Gaia, SKA, and XG-Gaia, respectively. The current
exclusion region, defined as SNR > 10 for NANOGrav, is highlighted by yellow dashed lines.
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Figure 3: The resolution of the two power-law SGWB model parameters, σ(log10 A) and
σ(α), as a function of log10 A and α, for the four considered observations. The yellow stars
correspond to the fiducial parameters observed by NANOGrav, and the yellow dashed lines
are excluded in its SNR > 10 region. The resolutions at the fiducial value, from top to
bottom, are σ(log10 A) = 0.25, 1.3, 0.012, and 0.0056, and σ(α) = 0.24, 1.3, 0.017, and
0.0080.
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3.2.3 Astrometry
For astrometry, we have two independent measurements, Xℓm,k = {Eℓm,k, Bℓm,k}, re-

sulting in a covariance matrix:

Σℓ,k =

CEE
(h)ℓ,k CEB

(h)ℓ,k

CEB∗
(h)ℓ,k CBB

(h)ℓ,k

+

CEE
(n)ℓ,k

CBB
(n)ℓ,k

 . (3.21)

Here, C
EE/BB
(h)ℓ,k is proportional to Ik, while CEB

(h)ℓ,k is proportional to Vk. We insert the
covariance matrix Eq. (3.21) into the likelihood function Eq. (3.6), labeling it as ln L(ast).

We first calculate the SNR of the total intensity Ik assuming vk ≡ Vk/Ik = 0. The
measurement uncertainty of Ik follows Eq. (3.8),

lim
vk−→0

σ−2(Ik) = 2
ℓmax∑
ℓ=2

(2ℓ + 1)

 4πS
(n)
δx,k

NδxAℓB
2
ℓ

+ Ik

−2

. (3.22)

The total SNR is derived from Eq. (3.9):

SNR2
(ast) = 2

∑
k

ℓmax∑
ℓ=2

(2ℓ + 1)
[
(ξδx

k AℓB
2
ℓ )−1 + 1

]−2
, ξδx

k ≡ Ik

4πS
(n)
δx,k/Nδx

. (3.23)

This expression is equivalent to the sum of estimators using CEE
ℓ,k and CBB

ℓ,k in Eq. (3.2).
The SNR is very similar to that of PTA in Eq. (3.17), despite the additional factor B2

ℓ ∝
1/(ℓ(ℓ + 1)), which makes higher ℓ-modes more suppressed. Consequently, while astrometry
can accommodate a significantly higher ℓmax due to the larger number of stars compared
to pulsars, redistributing stars into an appropriate number of patches will not diminish
sensitivity.

Astrometric Sensitivity to the Power-law SGWB Due to the large number of ob-
served stars in astrometry, an efficient strategy, without sacrificing sensitivity, involves divid-
ing the celestial sphere into various patches [17, 18]. The distribution of these patches can
be realized through HEALPix [74]. Each patch combines the spatial deflections of stars on
the celestial sphere into an average δx. For NS stars evenly distributed in Nδx patches, the
two-sided noise power spectrum of each patch is given by

S
(n)
δx = σ2

θ∆t

NS/Nδx
. (3.24)

Here, σθ represents the uncertainty of each measurement for a star. The SNR contribution
from a specific ℓ-mode is characterized by ξδx

k in Eq. (3.23), which is independent of the
number of patches Nδx. On the other hand, Nδx determines ℓmax, influencing SNR in the
strong signal region. Thus, a reasonable choice of Nδx is necessary in astrometric observation.

Gaia [31] and upcoming missions such as Roman [28, 33–35] and Theia [75, 76] play
pivotal roles in astrometric observations. The Gaia mission, having measured the proper
motion of over ∼ 109 stars and ∼ 106 quasi-stellar objects (QSOs) for more than 10 years,
has provided a rich dataset. The QSO data from Gaia has been leveraged to constrain
ultralow (≪ nHz) frequency gravitational waves [23, 27, 29]. In this study, we consider the
full dataset from Gaia upon its release, including its comprehensive measurements. The
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proposed mission Theia boasts significantly improved resolution but with a small field of
view [75, 76]. We anticipate that the next-generation upgrade of Gaia, which we abbreviate
as ’XG-Gaia’, will achieve µas-resolution while maintaining its cadence and the number of
observed stars [77]. The benchmark parameters for the two astrometric missions are listed
as follows [17, 77]:

Gaia : σθ = 100 µas, ∆t = 24 days, Tobs = 10 yr, NS = 1.5 × 109,

XG-Gaia : σθ = 1 µas, ∆t = 24 days, Tobs = 20 yr, NS = 1.5 × 109.
(3.25)

Note that we adopt a conservative estimate for the number of stars compared to Ref. [26].
We evaluate the SNR for various measurements of the power-law SGWB model, assuming

uniform distribution of stars across the celestial sphere, each possessing identical measure-
ment properties. While a total of NS = 1.5×109 stars would allow for an ℓmax ∼ 104, we opt
for Nδx = 40000 for Gaia and XG-Gaia with ℓmax = 200, as further increasing the number
no longer significantly enhances the SNR within our parameter space of interest.

In the right panel of Fig. 2, we depict the SNR distribution of Gaia and XG-Gaia using
Eq. (3.23) concerning power-law model parameters. Generally, PTA’s sensitivity exhibits a
more pronounced change in terms of α, attributed to its more tentative decrease in sensitivity
at higher frequencies. The fiducial SGWB signal yields an SNR ≃ 1.5 for Gaia, compared to
4.0 in NANOGrav, indicating Gaia resides in the marginal region for cross-checking PTA dis-
coveries. On the other hand, XG-Gaia achieves an SNR ≃ 43.9, higher than SKA, benefiting
from contributions at higher ℓ and frequency modes.

In Fig. 3, we compare the resolution of power-law parameters in astrometry with those
in PTA. The resolution approximately follows the distribution of 1/SNR. XG-Gaia, with
resolutions below 10−2 for both amplitude and spectral index, can provide an exceptionally
precise dissection of the SGWB spectrum. This high precision is pivotal for gaining insights
into the distribution and evolution of SMBHBs, including potential environmental effects.

The Roman telescope, distinguished by its much higher cadence, demonstrates sensi-
tivity to the SGWB in the frequency band situated between PTA and LISA [28, 35]. The
associated frequency range of Roman offers valuable insights into whether the SGWB dis-
plays a frequency turning point higher than the typical PTA band. This aspect is crucial
for elucidating the mass distribution of SMBHBs and investigating potential cosmological
components of the SGWB. Additionally, it allows for cross-correlation with other proposed
measurements in the same frequency band, such as binary neutron star resonance [78, 79].

Identifying Circular Polarization with Astrometry Astrometry holds the potential to
explore circular polarization through EB correlation [21, 30, 36]. We estimate the resolution
of the circular polarization fraction vk ≡ Vk/Ik, considering parameters on each frequency
mode Ok ≡ {Ik, vk}. The corresponding information matrix, as per Eq. (3.7), is given by

Iij
k = 1

I2
k

ℓmax∑
ℓ=2

(2ℓ + 1)
2ζ2

ℓ,k(
1 + 2ζℓ,k + ζ2

ℓ,kuk

)2

×

2 − uk + 2ζℓ,kuk + ζ2
ℓ,kuk Ikvk

(
1 − ζ2

ℓ,kuk

)
Ikvk

(
1 − ζ2

ℓ,kuk

)
I2

k

(
1 + 2ζℓ,k + ζ2

ℓ,k (2 − uk)
) ,

(3.26)

where uk ≡ 1 − v2
k and ζℓ,k ≡ ξδx

k AℓB
2
ℓ = IkAℓB

2
ℓ /(4πS

(n)
δx,k/Nδx).

– 16 –



Due to the complexity of the expression in Eq. (3.26), we consider a small portion of
circular polarization in the limit |vk| ≪ 1. In this limit, the off-diagonal terms IvI

k are sub-
leading, implying that Ik and vk are uncorrelated. We find the inverse of the uncertainties
as

σ−2(Ik) =
(
I−1

k

)
II

= Ivv
k

Ivv
k III

k − (IIv
k )2

|vk|≪1−−−−→ 2
I2

k

ℓmax∑
ℓ

(2ℓ + 1)(1 + ζ−1
ℓ,k )−2,

σ−2(vk) =
(
I−1

k

)
vv

= III
k

Ivv
k III

k − (IIv
k )2

|vk|≪1−−−−→ 2
ℓmax∑

ℓ

(2ℓ + 1)(1 + ζ−1
ℓ,k )−2.

(3.27)

Here, the uncertainty for Ik aligns with the expression in Eq. (3.22), as expected.
Considering a power-law model with α fixed at the fiducial value and assuming a constant

circular polarization fraction vk across all frequencies (i.e., vk = v), the uncertainty of v
converges to the total SNR:

lim
vk−→0

σ−2(v) =
∑

k

lim
vk−→0

σ−2(vk) = 2
∑

k

ℓmax∑
ℓ

(2ℓ + 1)(1 + ζ−1
ℓ,k )−2 = SNR2

(ast). (3.28)

Note that this assumption applies to cosmological sources rather than a finite sum of nearby
SMBHBs.

In the top panel of Fig. 4, we display the posterior distribution on the {log10 A, v} plane
for Gaia and XG-Gaia, assuming a truth value of v = 0.1. The degeneracy between the two
parameters turns out to be negligible. We also present the marginalized distribution of both
parameters, finding that the uncertainty for XG-Gaia, σ(v) ≃ 0.022, is very close to 1/SNR.
Thus, XG-Gaia serves as a powerful test for circular polarization that can reach a fractional
value as low as 2.2%. In contrast, the marginal detection of SGWB for Gaia (SNR ≃ 1.5)
makes it challenging to resolve the circular polarization component.

3.2.4 Synergistic Analyses between PTAs and Astrometry
In this section, we explore the synergistic potential of joint observations involving both

PTAs and astrometry, considering all possible correlations. Assuming an ideal scenario where
all measurements share the same cadence and total observation time, we consider indepen-
dent measurements Xℓm,k = {zℓm,k, Eℓm,k, Bℓm,k} with a covariance matrix Σℓ,k defined in
Eq. (3.5). Within Σℓ,k, C

zz/EE/BB/zE
(h)ℓ,k are sensitive to Ik, while C

zB/EB
(h)ℓ,k are proportional to

Vk. Inserting Σℓ,k into the likelihood Eq. (3.6), the SNR in the limit where vk ≡ Vk/Ik = 0
is given by:

SNR2
(syn) =

∑
k

ℓ
(syn)
max∑
ℓ=2

(2ℓ + 1)ζ2 (2β2(ζ + 1)2 + 2β(2ζ + 1)(ζ + 1) + 2ζ(ζ + 1) + 1
)

(ζ + 1)2(βζ + β + ζ)2 , (3.29)

where βℓ,k ≡ B2
ℓ (S(n)

δz,k/Nδz)/(S(n)
δx,k/Nδx), and we omit the index ℓ and k on the right-hand

side for simplicity. We keep ℓ
(syn)
max to be the one of PTA, as ℓmax for astrometry is typically

much higher.
In the weak signal region, where ζℓ,k ≡ IkAℓB

2
ℓ /(4πS

(n)
δx,k/Nδx) ≪ 1, the SNR simplifies

to:

SNR2
(syn)

ζℓ,k≪1
−−−−→

∑
k

ℓ
(syn)
max∑
ℓ=2

(2ℓ + 1) (1/β2
ℓ,k + 2/βℓ,k + 2) ζ2

ℓ,k. (3.30)
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Figure 4: Posteriors of the reference strain amplitude log10 A and the fraction of circular
polarization v ≡ Vk/Ik, for astrometric observations (left) and PTA-astrometry synergistic
analyses (right). The red stars correspond to the true parameters, including the fiducial
value for log10 A and the assumed v = 0.1. The marginalized distribution of each parameter
is presented next to the posterior distribution. The dark and light blue regions represent the
1σ and 2σ regions, respectively. The 1σ uncertainties for v are σ(v) = 0.57, 0.39, 0.022, and
0.022 for Gaia, NANOGrav + Gaia, XG-Gaia, and SKA + XG-Gaia, respectively.

Here, the β−2, β−1, and β0 terms correspond to the estimation from PTA, PTA-astrometry
correlation, and astrometry only, respectively. Thus, in addition to the sum of each type
of observation, the synergistic observation has the additional contribution from the cross-
correlation among the two.

As astrometry has a higher ℓmax than PTAs, the remaining astrometric-only ℓ-modes
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can be included separately into the analysis:

ln L(tot) = ln L(syn) + ln L(ast)

∣∣∣
ℓ

(syn)
max <ℓ≤ℓ

(ast)
max

,

SNR2
(tot) = SNR2

(syn) + SNR2
(ast)

∣∣∣
ℓ

(syn)
max <ℓ≤ℓ

(ast)
max

.
(3.31)

Here, we define ℓ
(syn)
max and ℓ

(ast)
max to distinguish the maximal ℓ from the synergistic analysis

and that from the astrometry-only.

Parameter Estimation in Synergistic Analyses of PTA and Astrometry We ex-
plore two pairs of joint observations: the ongoing NANOGrav + Gaia and the future SKA + XG-
Gaia. A challenge in these synergistic analyses arises from differences in cadence and total
observation time, as detailed in Eq. (3.20) and (3.25). In our approach, we adopt a conserva-
tive strategy by selecting the longer cadence, the shorter observation time, and the smaller
value among Nz and Nδx from each pair. The corresponding benchmark parameters are as
follows:

NANOGrav + Gaia : ∆t = 24 days, Tobs = 10 yr, Nz = Nδx = 50,

SKA + XG-Gaia : ∆t = 24 days, Tobs = 20 yr, Nz = Nδx = 200.
(3.32)

The measurement uncertainties and the total number of observed stars remain consistent
with Eq. (3.20) and (3.25).

The total SNR and parameter resolution for the power-law SGWB model are comparable
between the more sensitive of the pair, namely NANOGrav and XG-Gaia. Thus, no additional
figures similar to Fig. 2 and 3 are presented for further comparison.

The measurement of circular polarization in PTA-astrometry cross-observations can be
realized through the zB correlation, in addition to the EB correlation in the astrometry-only
correlations. Similar to the process outlined in Sec. 3.2.3, we first calculate the information
matrix Iij

k and derive the corresponding uncertainty of v. Due to the complexity of the
expressions, we present the result for the case when |v| ≪ 1:

lim
v→0

σ−2(v) = 2
∑

k

ℓmax∑
ℓ=2

(2ℓ + 1)
(βℓ,k + 1)ζ2

ℓ,k

(ζℓ,k + 1)(βℓ,kζℓ,k + βℓ,k + ζℓ,k) . (3.33)

This expression is the linear sum of contributions from both the zB correlation:

lim
v→0

σ−2
zB(v) = 2

∑
k

ℓmax∑
ℓ=2

(2ℓ + 1)
ζ2

ℓ,k

(ζℓ,k + 1)2(βℓ,kζℓ,k + βℓ,k + ζℓ,k) , (3.34)

and the EB correlation in Eq. (3.28).
In the bottom panel of Fig. 4, we present the posterior distribution for {log10 A, v} for the

two joint observations, along with the two astrometry-only observations. The SKA + XG-
Gaia pair exhibits slightly better resolution σ(v) ≃ 0.022 compared to the XG-Gaia-only
observation, attributed to XG-Gaia’s overall better sensitivity. On the other hand, the
NANOGrav + Gaia pair can achieve a much superior resolution with σ(v) ≃ 0.39 compared
to the Gaia-only observation, benefiting from NANOGrav’s higher sensitivity. Thus, we con-
clude that to effectively constrain circular polarization using current-generation observations,
a cross-correlation between PTA and Gaia is necessary.
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4 Emergence of Generalized Hellings-Downs Correlation Patterns

An essential feature for identifying the quadrupolar nature of SGWB lies in the spatial
correlation pattern, which can be revealed through either the coefficients of CXX′

(h)ℓ as a func-
tion of ℓ, as discussed in Sec. 2.2, or in the separation angle space, such as the Hellings-Downs
curve recently explored by various PTA collaborations [5–8]. While we extensively discussed
observables in spherical harmonic space in Sec. 3, this section focuses on correlation functions
in the separation angle space.

Instead of using the information matrix, we generate random realizations of both SGWB-
induced redshift/deflections and measurement noises. These realizations ultimately lead to
predictions of spatial correlation patterns with uncertainties in each separation angle bin.

4.1 Realization of Correlations in PTA and Astrometry

In this section, we elaborate on the detailed methodology employed for simulating
SGWB-induced signals in both PTA and astrometric observations in configuration space,
presenting various illustrative examples of results.

To commence, we partition the celestial sphere into N evenly distributed patches using
HEALPix [74], denoting their central locations as {n̂a}. In the frequency domain, the signals
are complex variables. Each patch is attributed a stochastic complex dimension-3 vector
denoted as (δza, δxa), where δxa represents complex dimension-2 vectors on planes perpen-
dicular to each n̂a. The generation of δza and δxa follows a probability distribution given
by

({δza}, {δxa}) ∼ N C(03N , C), C = C(h) + C(n). (4.1)

Here, C is the 3N × 3N complex covariance matrix, representing the linear sum of the
SGWB-induced correlation C(h) and the noise C(n). The SGWB covariance matrix, following
Ref. [19], is defined as:

C(h)(I, V ) ≡
(

Cδz Cδzδx
C†

δzδx Cδx

)
, (4.2)

where I and V are the true parameters of total intensity and circular polarization of the
SGWB at a given frequency (with the frequency label k omitted for simplicity). The matrices
Cδz, Cδzδx, and Cδx are of dimensions N × N , N × 2N , and 2N × 2N , respectively. Their
definitions mirror those of Eq. (2.7) and (2.9) but lack the δ-functions:

Cab
δz ≡ Γz(θab) I,

Cab
δzδx ≡ Γzδx(θab)

[
I êb

|| + iV ê⊥
]

,

Cab
δx ≡ Γδx(θab)

[
I
(
êa

||ê
b
|| + ê⊥ê⊥

)
+ iV

(
êa

||ê⊥ − ê⊥êb
||

)]
.

(4.3)

Here, êa
||, êb

||, and ê⊥ are defined in Eq. (2.8), and the Γ functions are defined in Eqs. (2.7) and
(2.10). The symmetry (Cab

δx)† = Cba
δx ensures that Cδx is Hermitian, and so is the covariance

matrix C(h).
The noise matrix is purely diagonal due to spatially uncorrelated measurement noise:

C(n) = diag
(
S(n)

z 1N , S
(n)
δx 12N

)
, (4.4)
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where S
(n)
z and S

(n)
δx are defined in Eq. (3.19) and (3.24), respectively.

In practice, to generate data from a complex normal distribution, we decompose both
the signals and the covariance matrix into real and imaginary parts:

({ℜ[δza]}, {ℜ[δxa]}, {ℑ[δza]}, {ℑ[δxa]}) ∼ N (06N , C′), C′ ≡ 1
2

(
ℜ[C] ℑ[C]T
ℑ[C] ℜ[C]

)
. (4.5)

Here, ℜ[C] contains signals proportional to I and measurement noise C(n), while ℑ[C] only
contains the term proportional to V .

In Fig. 5, we present three cases of realizations for both redshift δz and angular deflec-
tion δx with V/I = −1, 0, and 1, respectively. The background circle colors represent the
real part of δz, ranging from red (δz > 0) to blue (δz < 0). The real and imaginary compo-
nents of the angular deflections are depicted with black and white arrows, respectively, with
lengths proportional to their magnitudes. In these examples, noise is assumed to vanish.
Consequently, in the two maximally polarized cases, the real and imaginary parts of δx are
always perpendicular, with the relative phases having different signs for the two cases. On
the other hand, for V = 0, they exhibit random behavior without any correlations.

Another consistency check, aiming to connect with the previous discussion in the spheri-
cal harmonic space in Sec. 3, involves the reconstruction of the spherical harmonic observable
from {za} and {δxa} using Eqs. (2.12) and (2.13), in the absence of measurement noise. Ex-
amples of the corresponding CXX′

ℓ are depicted in Fig. 6. The violins at each ℓ-mode showcase
the statistical distribution of the estimated CXX′

ℓ values for all ℓ ≤ 6, based on a total of 104

realizations. The modes for ℓ = 0 and 1 turn out to be negligible, as expected. We normalize
the remaining modes by their expected average values, involving CXX′

(h)ℓ defined in Eqs. (2.19)
and (2.20). Consequently, the red dots representing the average values consistently hover
around 1. The variance for I estimators, including zz, EE, BB, and zE correlations, shown
in orange, all exhibit uncertainties of approximately 1. This is again consistent with the
theoretical predictions in the denominator of Eq. (3.2). For V estimators involving EB and
zB correlations, their variance, shown in blue, is larger than 1, attributed to our assumption
of V/I = 0.3, and the fact that the variance for V includes a contribution from I.
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Figure 5: Examples of realizations on the celestial sphere for V/I = −1 (top), 0 (middle),
and 1 (bottom), featuring a total of 432 patches. Each patch contains information on the
real part of the redshift δz represented on a circle, spanning from red (> 0) to blue (< 0).
The real (black arrow) and imaginary (white arrow) components, with lengths proportional
to their magnitudes, are also displayed. The measurement noise is not included in these
examples. In cases with V/I = ±1, the real and imaginary arrows are always perpendicular,
while in the unpolarized case, they are uncorrelated.
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Figure 6: Reconstructions of rotationally invariant power spectra in the spherical harmonic
space for ℓ ranging from 2 to 6. Each reconstruction is derived from a random realization
of a map of 108 patches of {δza} and {δxa} using Eqs. (2.12) and (2.13), in the absence of
measurement noise. Total intensity I estimators are depicted in orange, while circular polar-
ization V estimators are shown in blue, assuming V/I = 0.3. Each spectrum is normalized
by its theoretical average value. Violins represent the variance of reconstructions from 104

realizations, and the red dots denote the average values of realizations. Both are consistent
with the variance calculation in the denominator of Eq. (3.2).
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4.2 Generalized Hellings-Downs Correlations

In this section, we employ the developed simulation to project how spatial correlations in
the configuration space manifest for various PTAs and astrometric observations, accounting
for a more realistic scenario where both measurement noise and intrinsic variance of SGWB
are present.

We consider distinct cases of observations: NANOGrav and SKA as PTAs, Gaia and
its next-generation upgrade as astrometry missions, and their cross-correlations. Each ob-
servation channel differs in terms of the number of pulsars or patches, and noise levels, with
corresponding benchmark parameters listed in Eqs. (3.20), (3.25), and (3.32). For the simu-
lations, we use the fiducial SGWB model defined in Eq. (3.12), assuming V/I = 0 throughout
the analysis.

We conduct a total of 100 simulations, each comprising realizations for all frequency bins,
resulting in distributions of {δza, δxa} maps for each frequency. For every pair of patches,
characterized by their separation angle θ, we categorize them into 11 evenly distributed
bins spanning from 0 to 180◦. Within each separation angle bin, we compute the averages
of the products δzaδz∗

b , (δx
||
aδx

||∗
b + δx⊥

a δx⊥∗
b )/2, and δzaδx

||∗
b , where δx

||/⊥
a represents the

projection of δxa along êa
|| or ê⊥. This computation yields a sky-averaged two-point function

for a single realization. From the 100 simulations, we determine the standard deviation at
the θi-th separation angle and frequency mode k as σθi,k, incorporating contributions from
both the SGWB and measurement noises.

In the left part of Fig. 7, violins are employed to illustrate the distribution from 100
simulations of sky-averaged two-point functions for various observation channels, presenting
only the first frequency bin of the observations. The red solid lines represent the theoretical
prediction for the average correlations, as defined in Eqs. (2.7) and (2.10). In the right part,
we conduct an average across all frequency bins for each separation angle, incorporating a
weight factor 1/σ2

θi,k
. The frequency-averaged variance σ2

θi
, defined as 1/σ2

θi
≡ Σk1/σ2

θi,k
,

becomes narrower, and the average values, shown in blue, closely align with the theoretical
predictions.

Figure 8 illustrates predictions for spatial correlations across various observation chan-
nels. Each gray line represents one realization obtained at a specific frequency bin. The opac-
ity of each line corresponds to the weight factor of the frequency, defined as 1/σ2

k ≡ Σi1/σ2
θi,k

.
The black dashed lines represent the averages of these gray lines, accounting for the weight
factor 1/σ2

θi,k
across all frequencies. For current observations involving NANOGrav or Gaia,

the gray lines fluctuate around the generalized Hellings-Downs curves in red, while the dashed
lines exhibit some deviation from it. In contrast, next-generation observations like SKA or
XG-Gaia have averaged values that align well with the red. The gray lines are predominantly
localized in specific regions, a result of the stochastic nature of the SGWB rather than mea-
surement noise, owing to the high sensitivity of these measurements. In the next subsection,
we will delve into a detailed discussion of the origin of uncertainty regions, commonly referred
to as cosmic variances.
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Figure 7: Distribution of sky-averaged two-point functions from 100 simulations presented
in gray violins for various PTA and astrometric observation channels, displayed for the first
frequency bin (left) and weight-averaged across all frequency bins (right). The red lines
illustrate the generalized Hellings-Downs curves defined in Eqs. (2.7) and (2.10). The variance
from the simulations encompasses both SGWB variance and measurement noises. The central
values of the violins, shown in blue, align with the red lines.
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Figure 8: Sky-averaged two-point functions from a single simulation for various PTA and as-
trometric observation channels. Each gray line represents a realization in a specific frequency
bin, with opacity inversely proportional to the variance associated with that frequency bin.
The black dashed lines depict the weighted averages of all frequency bins, aligning with the
generalized Hellings-Downs curves (red) defined in Eqs. (2.7) and (2.10) for observations in-
volving SKA or XG-Gaia.

4.3 Cosmic Variances

As depicted in Fig. 8, even in the limit of SNR ≫ 1 for high-sensitivity observations that
encompass a large number of patches, the sky-averaged spatial correlations still exhibit an
uncertainty envelope. The discussion of these inherent uncertainties for PTAs, referred to
as cosmic variance, has been the subject of recent studies in Refs. [80–86]. In this section,
we present a theoretical derivation of cosmic variances for general PTA and astrometric
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observations.
Cosmic variance manifests itself in patch pairs separated by a specific angular separation

on the celestial sphere, denoted as the variance intrinsic to the sky-averaged spatial correla-
tions at a given separation angle θ. To calculate cosmic variance, we begin by introducing
the sky-averaged two-point functions [82, 87]:

{
X X ′∗}S

θ ≡
∫

d2n̂a

4π

∫
d2n̂b

4π
XaX ′∗

b δ (n̂a · n̂b − cos θ) , (4.6)

where X can represent δz, δx||, or δx⊥. This expression can be further simplified in the
spherical harmonic space, as seen in the case of PTAs [21, 38–41, 82, 88]:

{δz δz∗}S
θ =

∑
ℓ,m

∑
ℓ′m′

zℓmz∗
ℓ′m′

∫
d2n̂a

4π

∫
d2n̂b

4π
Yℓm(n̂a)Y ∗

ℓ′m′(n̂b) δ (n̂a · n̂b − cos θ)

=
∑

ℓ

2ℓ + 1
4π

Czz
ℓ Pℓ(cos θ).

(4.7)

Here, Pℓ are the Legendre polynomials.
A parallel set of steps can be applied to astrometric observations, taking into account

their expansion in terms of vector spherical harmonics as follows [21]:{
δx|| δx||∗

}S

θ

=
∑

X,X′∈{E,B}

∑
ℓ,m

∑
ℓ′m′

XℓmX
′∗
ℓ′m′

∫
d2n̂a

4π

∫
d2n̂b

4π

[
YX

ℓm(n̂a)
]

||

[
YX′

ℓ′m′(n̂b)
]∗

||
δ (n̂a · n̂b − cos θ)

=
∑

ℓ

2ℓ + 1
4π

[
CEE

ℓ G(ℓ1)(θ) + CBB
ℓ G(ℓ2)(θ)

]
.

(4.8)
Here,

G(ℓ1)(θ) ≡ −1
2

[ 1
ℓ(ℓ + 1)P 2

ℓ (cos θ) − P 0
ℓ (cos θ)

]
, G(ℓ2)(θ) ≡ − 1

ℓ(ℓ + 1)
P 1

ℓ (cos θ)
sin θ

, (4.9)

are functions of associated Legendre polynomials P m
ℓ [21]. The expression for

{
δx⊥ δx⊥∗

}S

θ
only differs from Eq. (4.8) by switching G(ℓ1) ↔ G(ℓ2). The expression for the PTA-astrometry
cross-correlation can be derived similarly:{

ℜ
[
δz δx||∗

]}S

θ
=
∑

ℓ

2ℓ + 1
4π

1√
ℓ(ℓ + 1)

ℜ
[
CzE

ℓ

]
P 1

ℓ (cos θ). (4.10)

The explicit forms of Czz
ℓ , CEE

ℓ , CBB
ℓ , and CzE

ℓ have been defined in Eq. (2.13). The ensemble
averages of Eqs. (4.7), (4.8), and (4.10) yield the generalized Hellings-Downs curves as defined
in Eqs. (2.7) and (2.10).

The cosmic variance (CV) at a separation angle precisely corresponds to the variance of
the sky-averaged two-point correlations defined in Eq. (4.6):

CV(X X ′∗)θ =
〈({

XX ′∗}S
θ

)2
〉

−
〈{

XX ′∗}S
θ

〉2
. (4.11)

– 27 –



Here, ⟨· · · ⟩ denotes the ensemble average over the SGWB, as the definition of CV does not
include measurement noises. The calculation of CV can be simplified using correlations in
the spherical harmonic space [82].

For the PTA-only observation, the CV becomes:

CV(δz δz∗)θ =
∑
ℓℓ′

(2ℓ + 1)
4π

(2ℓ′ + 1)
4π

Pℓ(cos θ)Pℓ′(cos θ)⟨Czz
ℓ Czz

ℓ′ ⟩ −
(∑

ℓ

2ℓ + 1
4π

Pℓ(cos θ)⟨Czz
ℓ ⟩
)2

=
∑

ℓ

2ℓ + 1
16π2

(
Czz

(h)ℓ Pℓ(cos θ)
)2

.

(4.12)
In this calculation, we used ⟨CXX′

ℓ ⟩ = CXX′

(h)ℓ and

⟨CXX
ℓ CXX

ℓ′ ⟩ = CXX
(h)ℓ CXX

(h)ℓ′ + 1
2ℓ + 1

(
CXX

(h)ℓ

)2
δℓℓ′ , (4.13)

which arises from Isserlis’ theorem [47].
A similar result can be obtained for the astrometry-only correlations. We begin by

calculating the first term in Eq. (4.11), focusing on the parallel directions:〈({
δx||δx||∗

}S

θ

)2
〉

=
∑
ℓℓ′

(2ℓ + 1)(2ℓ′ + 1)
16π2 [⟨CEE

ℓ CEE
ℓ′ ⟩G(ℓ1)G(ℓ′1) + ⟨CBB

ℓ CBB
ℓ′ ⟩G(ℓ2)G(ℓ′2)+

⟨CEE
ℓ CBB

ℓ′ ⟩G(ℓ1)G(ℓ′2) + ⟨CBB
ℓ CEE

ℓ′ ⟩G(ℓ2)G(ℓ′1)] ,

(4.14)

where we omit the θ-dependence in G(ℓ1)(θ) and G(ℓ2)(θ) for simplicity. The first two terms
within the [· · · ] can be computed directly from Eq. (4.13), while the last two terms represent

⟨CEE
ℓ CBB

ℓ′ ⟩ = CEE
(h)ℓ CBB

(h)ℓ′ , ⟨CBB
ℓ CEE

ℓ′ ⟩ = CBB
(h)ℓ CEE

(h)ℓ′ , (4.15)

in the absence of circular polarization. The second term in Eq. (4.11) is merely the square
of the sky average in Eq. (4.8) after applying ⟨CXX′

ℓ ⟩ = CXX′

(h)ℓ . Combining these two terms
yields the final CV result:

CV(δx|| δx||∗)θ =
∑

ℓ

2ℓ + 1
16π2

(
CEE

(h)ℓ

)2 (
G(ℓ1)(θ)2 + G(ℓ2)(θ)2

)
, (4.16)

where we utilized the relationship CEE
(h)ℓ = CBB

(h)ℓ. The expressions for correlations involving
δx⊥ are derived analogously, with the result given by the above equation and G(ℓ1) ↔ G(ℓ2)
swapped.

Note that in Figs. 7 and 8, the astrometric observations involve a linear combination of
parallel and perpendicular correlations, specifically (δx

||
aδx

||∗
b + δx⊥

a δx⊥∗
b )/2. The CV for this

configuration is

CV
(
(δx|| δx||∗ + δx⊥δx⊥∗)/2

)
θ

=
∑

ℓ

2ℓ + 1
16π2

(
CEE

(h)ℓ

)2 (
G(ℓ1)(θ) + G(ℓ2)(θ)

)2
, (4.17)

which differs from the parallel-only case presented in Eq. (4.16).
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Finally, turning our attention to the PTA-astrometry cross-correlation, its CV can be
obtained through analogous procedures, yielding:

CV(ℜ
[
δz δx||∗

]
)θ =

∑
ℓ

2ℓ + 1
16π2

1
ℓ(ℓ + 1)

(
CzE

(h)ℓ P 1
ℓ (cos θ)

)2
. (4.18)

It is noteworthy that the CVs presented in Eqs. (4.12), (4.17), and (4.18) share a common
characteristic: each ℓ-mode is the square of the coefficients in their corresponding average
values of Eqs. (4.7), (4.8), and (4.10), divided by (2ℓ + 1). The numerical values of these CVs
align with the variance envelope observed in the right part of Fig. 8.

5 Conclusion

In this study, we utilize a joint likelihood that incorporates both astrometric and PTA
observations to predict the detection of SGWB and the resolution of SGWB parameters.
Our analysis takes advantage of the diagonal structure inherent in both measurement noise
and intrinsic SGWB variance in the spherical harmonic space. This results in an analytical
framework that facilitates the comparison of various PTA and astrometric observations, pro-
viding intuitive insights. Astrometry showcases its advantages in the harmonic space: the
abundance of stars allows for a high value of lmax, yielding more independent estimators and,
consequently, higher SNR in the strong signal regions. This SNR, in turn, translates into the
resolution of SGWB parameters, enabling the precise dissection of SGWB properties.

Our findings yield several predictions regarding astrometric observations. Firstly, the
upcoming full data release of Gaia is expected to marginally detect the SGWB, which has
already been observed by current PTA observations. Consequently, Gaia can serve as a
valuable cross-check for PTA results, providing an independent demonstration of spatial
correlation distinct from PTA’s Hellings-Downs curve. Gaia’s individual observations can
also contribute to checking the chirality nature of SGWB. However, a significantly improved
resolution of chirality can be achieved through cross-correlations between current PTAs and
Gaia. The next-generation upgrade of Gaia is poised to deliver the best-ever sensitivity to the
SGWB, particularly for its spectrum and chirality. Precise measurements of these quantities
are crucial for understanding the evolution of SMBHBs, including eccentricity distribution
and environmental effects that may influence the low-frequency end of the spectrum, as well
as any potential cosmological signatures. The exploration of the high-frequency turning
point in the SGWB spectrum remains an intriguing area, where high-cadence observations
by Roman can provide valuable insights.

Looking forward, the prospects for the field appear promising. The anisotropy in the
SGWB, a facet beyond the scope of our current analysis, represents another crucial aspect
that astrometric observations could potentially illuminate. Our assumption of uniformly
distributed stars on the celestial sphere, with uniform noise levels and cadences, can be
refined by considering the realistic star distribution found in Gaia datasets. Incorporating
this distribution along with the response functions of astrometry and PTA further strengthens
the complementarity between these two types of observations, as they exhibit sensitivity to
different incoming directions of the GWs. Such angular-dependent sensitivity will play an
essential role in resolving individual SMBHBs, likely marking the next significant milestone
in gravitational astronomy.
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