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Abstract—Accurately detecting voiced intervals in speech sig-
nals is a critical step in pitch tracking and has numerous
applications. While conventional signal processing methods and
deep learning algorithms have been proposed for this task, their
need to fine-tune threshold parameters for different datasets
and limited generalization restrict their utility in real-world
applications. To address these challenges, this study proposes
a supervised voicing detection model that leverages recorded
laryngograph data. The model is based on a densely-connected
convolutional recurrent neural network (DC-CRN), and trained
on data with reference voicing decisions extracted from laryn-
gograph data sets. Pretraining is also investigated to improve
the generalization ability of the model. The proposed model
produces robust voicing detection results, outperforming other
strong baseline methods, and generalizes well to unseen datasets.
The source code of the proposed model with pretraining is
provided along with the list of used laryngograph datasets to
facilitate further research in this area.

Index Terms—Voicing detection, supervised learning, clean
speech, laryngograph, densely-connected convolutional recurrent
neural network, DC-CRN.

I. INTRODUCTION

A speech signal consists of voiced, unvoiced, and silent
intervals or segments. Detecting whether speech is voiced
is known as voicing detection. This task is a crucial step
in pitch estimation and benefits various speech processing
tasks, such as speaker recognition [1], computational auditory
scene analysis [2], and speech recognition [3], [4]. In deep
learning, precise voicing detection contributes to enriching
training data with essential context and segmentation. This
can be especially valuable in situations where annotated data
is limited. With voicing information, the potential of deep
learning in advancing speech processing tasks can be further
leveraged. It is important to note that voicing detection is
different from voice activity detection (VAD), which aims to
determine the presence or absence of speech activity in an
audio signal. In contrast, voicing detection concerns detecting
the voiced portions of speech signals.

Voiced speech is produced by the vibration of the glottis,
creating periodic or semi-periodic pulses of air that resonate
through the vocal tract, while unvoiced speech is aperiodic
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and produced when air flows through a narrow constriction in
a way to produce turbulence noise with no glottis vibration
[5]. Therefore, periodicity is the determining factor for voiced
and unvoiced segments. In English, voiced sounds include
all vowels and voiced consonants such as /g/, /v/, and /z/,
while unvoiced sounds include unvoiced consonants such
as fricatives (e.g. /f/) and stops (e.g. /p/). Unvoiced speech
accounts for approximately 20-25% of all speech sounds in
terms of both phoneme occurrence and segment duration [6],
which highlights the significant role that unvoiced sounds
play in speech utterances. Further description of voiced and
unvoiced speech segments in English will be provided in Sec.
II.

Various approaches have been proposed to address voicing
detection, by analyzing the waveform or energy of the signal,
or by examining spectral characteristics such as the presence
of harmonics and formants. Conventional methods include
analyzing the short-term autocorrelation sequence [7], zero-
crossing rate [8], and energy of the speech signal [9], as
well as a combination of these features with classification
techniques like thresholding [10] and rule-based approaches
[11]. Deep learning based approaches for voicing detection
often treat the task as part of pitch tracking and train a
multi-task model [12]–[15]. Pitch contours obtained from
laryngograph data are commonly used as the ground-truth
for evaluating the performance of these algorithms. However,
existing methods for voicing detection have limitations in
robustness and generalizability. Signal processing methods are
sensitive to various types of noise, including device noise,
and typically require ad-hoc tuning of a voicing decision
threshold for each dataset, i.e. lacking consistency [8]–[10].
While deep neural network (DNN) methods [15], [16] can
perform voicing detection on clean speech by applying a
threshold to the estimated periodicity, the sensitivity of this
threshold still presents a challenge. The optimal threshold can
vary depending on the dataset used. Furthermore, the limited
training data can lead to generalization issues, resulting in
unreliable performance.

To address the above issues with existing methods, we
propose to train a voicing detection model with multiple
datasets that provide laryngograph recordings. Specifically,
we directly train a DC-CRN (densely-connected convolutional
recurrent network) model using ground-truth labels extracted
from the laryngograph data. Voicing labels obtained from
laryngograph recordings are generally considered the gold
standard for evaluating the accuracy of voicing detection mod-
els. By gathering existing datasets that contain laryngograph
recordings, we obtain an adequate amount of data to train the
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proposed model.
Laryngograph, also known as electroglottograph, is a med-

ical device used for measuring the electrical activity of the
larynx during speech production. It is a non-invasive device
that is placed on the skin of the neck and detects changes
in the electrical impedance of the vocal folds as they vibrate
by emitting a high-frequency electrical signal into the neck.
These changes in impedance are used to create a waveform
that represents the movement of the vocal folds during pro-
nunciation. Compared to microphone recordings, laryngograph
recordings have several advantages for producing accurate
voicing decisions. First, it provides a direct measure of the
vibration of the vocal folds, which is the source of the voiced
speech signal. This is more accurate than methods that rely on
indirect measures of voicing, such as the spectral or temporal
characteristics of the speech signal. Second, the laryngograph
is relatively unaffected by variations in the amplitude or
frequency of the speech signal caused by acoustic noise or
interference, which can be a problem for voicing detection
methods based on microphone recordings. This makes the
laryngograph a reliable tool for detecting voicing, especially in
adverse acoustic environments. On the other hand, conducting
laryngograph recordings is a cumbersome job. As a result,
publicly accessible laryngograph data is limited, particularly
from the perspective of large-scale DNN training.

This paper presents a robust voicing detection model for
clean speech that achieves state-of-the-art performance by
leveraging multiple laryngograph datasets for training. We find
that the model trained on accessible laryngograph datasets al-
ready yields good generalization. To further mitigate potential
generalization issues, we conduct pretraining on the large-scale
Librispeech dataset [17], which leads to improved and more
robust voicing detection performance. The contributions of our
work can be summarized as follows:

• We investigate the distinct characteristics of voiced and
unvoiced speech sounds, and assess the feasibility of
training on laryngograph datasets.

• We develop a robust supervised voicing detector capable
of accurately estimating voicing in clean speech.

• We propose to use pretraining to further enhance the
accuracy of voicing detection.

• We conduct a comprehensive evaluation of the proposed
method and comparing against other strong baselines.

• We release a pip-installable Python library containing the
trained model, which can be used to generate reliable
ground-truth labels in cases where laryngograph data is
not available, along with compiled laryngograph datasets.

This paper is structured as follows. In Sec. II, we provide
a description of voiced and unvoiced English speech sounds
and their characteristics. Sec. III and Sec. IV describe related
works and publicly accessible laryngograph datasets. Sec. V
presents our voicing detection model. Sec. VI and Sec. VII
describe our experimental setup and evaluations of the pro-
posed approach, including comparisons with existing methods.
Finally, Sec. VIII provides concluding remarks. The source
code and pre-trained model used in this study are provided at
https://github.com/YIXUANZ/rvd.

TABLE I: Voiced and unvoiced phonemes in English.

Phoneme Type Phoneme Voiced or Unvoiced?
Vowels All Voiced

Approximants All Voiced
Nasals All Voiced

Stops /d/, /b/, /g/ Voiced
/t/, /p/, /k/ Unvoiced

Fricatives /z/, /v/, /Z/, /D/ Voiced
/s/, /f/, /S/, /T/ Unvoiced

/h/ Both

Affricates /dZ/ Voiced
/tS/ Unvoiced

II. VOICED AND UNVOICED SPEECH SOUNDS

How to distinguish between voiced and unvoiced speech
sounds? As discussed in Sec. I, the primary characteristic
is periodicity, which is evident as harmonic patterns in the
frequency domain. Therefore, detecting frames with harmonic
patterns in the spectrum of the speech signal becomes an
intuitive approach. Nonetheless, this task can be difficult in
certain scenarios. Unvoiced frames exhibit no harmonic pat-
terns in their spectrum, and can be challenging to distinguish
from background noise. Although the presence of harmonic
structure is a reliable indicator of a voiced frame, it can be
still difficult to recognize such harmonic patterns in frames
located between voiced and unvoiced intervals due to co-
articulation effects. In such cases, harmonic patterns may be
ambiguous, even though harmonic components still exist in the
signal. In order to characterize these ambiguous frames, one
can utilize contextual cues to make a determination. Linguistic
features of the language being spoken provide helpful clues
in distinguishing voiced and unvoiced speech segments. In
English, phonemes are classified as either voiced or unvoiced
[18]. Table I provides a catalog of the voiced and unvoiced
phonemes in English, where all vowels, approximants, and
nasals are voiced [18]. Certain consonants, including stops,
fricatives, and affricates, have pairs of voiced or unvoiced
sounds. It should be noted that the phoneme /h/ can be
pronounced either in a voiced or unvoiced way.

The use of a laryngograph provides an effective way to
distinguish between voiced and unvoiced frames empirically.
As explained in Sec. I, laryngograph recordings provide a
direct measurement of the vibrations from the source of the
voiced signal, which is relatively unaffected by amplitude
or frequency variations caused by environmental noise or
interference.

Figure 1 shows a comparison between the magnitude
spectrogram of a microphone recording and a laryngograph
waveform. The audio recording is from the FDA dataset [19]
and corresponds to the utterance “When forced to make a
choice, Sarah chose ping-pong as her favorite game.” We
can observe that the laryngograph spectrogram provides a
clear distinction between voiced and unvoiced intervals of the
speech signal. For example, the word “choice” can be observed
in the spectrograms between 1.122 and 1.537 s. This word
is composed of both voiced and unvoiced sounds, but the
unvoiced sounds are not captured in the laryngograph. The
microphone recording, however, exhibits both kinds of sound,
potentially complicating voicing detection.

https://github.com/YIXUANZ/rvd
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Fig. 1: Magnitude spectrograms of microphone and laryngo-
graph recordings of an utterance from a female speaker in the
FDA dataset [19]. The demarcated interval corresponds to the
word “choice”.

III. RELATED WORKS

Numerous studies have been conducted for voicing de-
tection given its importance for applications such as speech
synthesis. Earlier studies primarily focus on developing sig-
nal processing algorithms [10], [20]–[25]. Among these al-
gorithms, the robust algorithm for pitch tracking (RAPT)
[10] and the summation of residual harmonics (SRH) [20]
algorithm are considered as the standard methods in clean
and noisy speech, respectively [22]. RAPT is a time-domain
method that employs the normalized cross-correlation function
(NCCF) [26] and dynamic programming for pitch tracking.
In the post-processing stage, a voicing decision is made by
applying dynamic programming to select the set of NCCF
peaks in frames containing voiced speech signals, or to make
no selection otherwise. SRH [20] leverages harmonic informa-
tion in the residual signal to estimate pitch and make voicing
decisions. It calculates SRH using the amplitude spectrum
of the residual signal. During unvoiced intervals of speech,
SRH values tend to be lower. Therefore, the algorithm applies
a simple local threshold to SRH values to make voicing
decisions, and a speech frame is classified as voiced if its
SRH value is above the threshold, and unvoiced otherwise.

In recent years, there has been a growing interest in ex-
ploring deep learning approaches for voicing detection, but
primarily focusing on noisy or multi-talker scenarios. These
approaches aim to address voicing detection and pitch estima-
tion simultaneously. For example, studies in [12], [27] treat
the two tasks as a multi-class classification problem, while
others [13] employ a multi-task learning approach to jointly
perform the two tasks. In these methods, ground-truth labels
are obtained by applying a pitch tracker to the microphone
recordings of clean speech, which limits the accuracy of the
trained model due to errors introduced by the pitch tracker
on such clean speech. When it comes to ground truth, as
discussed earlier, laryngograph data is considered to be the

most reliable reference [28]. Several approaches have been
proposed to address voicing detection in clean speech. Among
them is the representative CREPE [16], which is trained
on synthetic data to provide a periodicity estimate for each
frame. The degree of periodicity indicates the likelihood of
the presence of voiced speech within the frame, with higher
values indicating a greater likelihood of voicing. Similar to
SRH, a simple threshold is utilized to determine whether
a frame is voiced. Such an approach sometimes produces
unreliable voicing decisions. In [15], an entropy-based method
is introduced for generating periodicity, and along with several
training strategies, it significantly improves the accuracy of
voicing decisions. Another approach involves utilizing a laryn-
gograph to create annotations, which can then be employed
to train a model on microphone recordings. For example,
Drugman et al. [29] incorporate both internal data and the
CMU Arctic dataset [30] in their training data. Labels are
obtained from laryngograph data and a leave-one-speaker-
out cross-validation scheme is employed during training to
assess the effectiveness of their approach. While the idea is
sensible, there is certainly room for improvement. First, their
training dataset is relatively small, which potentially limits the
generalizability of their trained model. Second, they employ a
plain multi-layer perception (MLP), which may not be able to
model complex patterns in the data as well as more advanced
deep neural networks.

To our knowledge, there is currently no open-source DNN-
based voicing detection algorithm trained on accessible laryn-
gograph data, which hinders the effort of building on and
improving earlier work. Our study intends to rectify this
situation.

IV. LARYNGOGRAPH DATASETS, PREPROCESSING, AND
LABEL GENERATION

A. Laryngograph Datasets

Voicing labels generated from laryngograph recordings are
widely used as ground-truths for evaluating voicing detection
methods. Table II lists publicly accessible datasets employed in
this study, and provides relevant details for each dataset. We do
not incorporate publicly accessible datasets that provide fewer
than 100 utterances. Among the five datasets, three provide
reference pitch and voicing labels extracted by different algo-
rithms. FDA [19] is a relatively small dataset that provides
microphone and laryngograph recordings from a male and
a female speaker, and each speaker has 50 utterances. The
provided reference labels in the FDA dataset are extracted
using a ‘pulse’ location algorithm where the duration between
consecutive pulses are derived and converted to Hertz. If the
value is within a certain range, the duration is considered
voiced. Otherwise, it is considered unvoiced. PTDB-TUG [31]
has 10 male speakers and 10 female speakers and around
4720 utterances in total. The provided reference labels are
extracted by first applying a high-pass filter on laryngograph
waveforms to remove low frequency components caused by
larynx movements and then applying the RAPT [10] algo-
rithm on the filtered laryngograph waveforms. The KEELE
[28] dataset has recordings from 5 adult male speakers, 5
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TABLE II: Description of accessible laryngograph datasets

Dataset Speaker Information # of Utterances Label Provided? Label Extraction Method
FDA [19] 1 male and 1 female 100 Yes Pulse Location Algorithm

PTDB-TUG [31] 10 male and 10 female 4720 Yes RAPT Algorithm
KEELE [28] 5 male and 5 female 98 (approximated) Yes Autocorrelation Algorithm

Mocha-TIMIT 1 4 male and 5 female 4028 No -
CMU Arctic [30] 2 male and 1 female 3377 No -

Total 22 male and 22 female 12323 - -

adult female speakers, and 5 children. We can only find the
recordings from adult speakers. For male speakers, the length
of each recording is from 27 seconds to 40 seconds. For
female speakers, the length is from 28 to 30 seconds. To better
process the data, we further split the recordings to utterances
around 3 second-long. In total, we obtained 98 utterances.
Mocha-TIMIT 2 and CMU Arctic [30] are relatively large
datasets but do not provide reference labels. The Mocha-
TIMIT dataset has 4028 utterances, which are uttered by 4
male and 5 female speakers. In the CMU Arctic dataset, we
find that the recordings from 2 male and 1 female speakers
come with laryngograph waveforms. In total, the collected
datasets contain 12323 utterances from 22 male and 22 female
speakers.

B. Data Preprocessing

While the laryngograph data in these datasets is generally
suitable for training purposes, our review reveals that certain
datasets, such as PTDB-TUG, contain flawed laryngograph
recordings. Additionally, we observe that some laryngograph
data in the Mocha-TIMIT dataset contains noise with a har-
monic pattern during periods of silence. Examples of these
issues are illustrated in Figure 2. Directly using such data for
training without resolving these issues will negatively impact
the accuracy of model training and evaluation. Therefore, such
utterances should be either excluded or carefully processed.

Specifically, we find that two of the five datasets in Table
II - PTDB-TUG and Mocha-TIMIT - contain problematic
recordings. Upon examining the PTDB-TUG dataset, we find
a number of laryngograph waveforms to be of low quality,
such as the one depicted in Figure 2(a). These recordings do
not appear to capture vocal fold movements, making them
unsuitable for extracting ground-truth labels. We decide to
remove these recordings from training or evaluation sets.
For the Mocha-TIMIT dataset, we have identified some files
that contain noisy harmonic patterns in silence intervals, as
illustrated in Figure 2(b). These silence intervals would be
recognized as voiced frames by a pitch extraction algorithm
due to the presence of harmonic structure. To ensure evaluation
accuracy, we manually correct the labels in these intervals of
the affected files. Files that pose challenges for correction are
omitted. A total of 1230 waveforms are excluded from the
PTDB-TUG dataset, which originally comprises 4720 audio
samples. Additionally, nearly 500 waveforms are corrected and
around 270 waveforms are excluded for the Mocha-TIMIT
dataset.

2https://data.cstr.ed.ac.uk/mocha/

(a)

(b)

Fig. 2: Examples of low-quality laryngograph data in (a)
PTDB-TUG dataset and (b) Mocha-TIMIT dataset, with cor-
responding spectrograms of microphone and laryngograph
recordings. The red line in (b) represents the reference voicing
labels including the erroneous labels extracted from the flawed
laryngograph waveform.

C. Label Generation

Given laryngograph data, different algorithms can be used
to extract ground-truth voicing labels, and there is no standard
way to perform label extraction. Although different algorithms
produce similar results, the results differ to some extent. It
is common that a paper announcing a laryngograph dataset
provides reference labels and encourages users to generate
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TABLE III: Mismatch rates (%) between provided labels and
self-generated labels

Dataset Mismatch Rate (%)
FDA 1.89%

KEELE 2.19%
PTDB-TUG 1.90%

Fig. 3: Comparison of provided and extracted voicing labels
on the utterance with the highest mismatch rate in the FDA
dataset (corresponding to utterance rl006 in the FDA dataset).
Red line represents voicing decisions where 0 indicates un-
voiced and other positive value indicates voiced.

their own reference labels [28], [31].
In alignment with the method outlined for reference voicing

label generation in PTDB-TUG [31], we employ the following
steps to derive reference voicing labels from laryngograph
datasets:

• Pre-process each dataset and manually remove all utter-
ances with quality issues.

• High-pass filter each utterance to remove the lower fre-
quency components caused by larynx movements. Specif-
ically, apply a linear phase Kaiser filter with parameters
β = 5 and n = 2400 to laryngograph signals. For female
speaker signals the cut-off frequency is set to fc = 25
Hz, and for the male speakers fc = 15 Hz.

• Apply the RAPT algorithm to filtered laryngograph sig-
nals to produce voicing decisions.

• If an audio frame is considered voiced, the reference label
yv is set to 1. Otherwise, it is set to 0.

How much do different label extraction algorithms differ?
We use the above method to extract reference labels from
PTDB-TUG, KEELE and FDA datasets and compared to the
provided reference labels. Alignment is performed to maxi-
mize the match between the provided and extracted labels. The
mismatch rates, which represent the percents of mismatched
frames to all frames are given in Table III. We observe that the
mismatch rate is around 2% for all datasets. Figure 3 shows
an example utterance with the top mismatch rate in the FDA
dataset. The figure shows that the provided reference labels
tend to under-label voiced intervals, and our method provides

Fig. 4: The proposed DC-CRN model for voicing detection,
where N is the number of Conv-DC blocks, and ŷv represents
the output for voicing detection and its value ranges from 0
to 1.

more balanced voicing decisions.

V. MODEL DESCRIPTION

In a previous study [32], inspired by the original DC-CRN
model proposed for speech enhancement [33], we developed a
DC-CRN model for both fundamental frequency (F0) estima-
tion and voicing detection in noisy speech. In this study, we
adopt the same network architecture to tackle voicing detection
in clean speech.

The network structure is illustrated in Figure 4. Following
[32] where better F0 estimation and voicing detection per-
formance is obtained in the complex domain rather than in
the magnitude domain, we choose a complex-domain input
feature which is a concatenation of the real and imaginary
parts of the complex short-time Fourier transform (STFT) of
a speech signal,

Xt,f = [ℜ(St,f ),ℑ(St,f ])] (1)

where St,f represents the STFT of the speech signal at time t
and frequency f , ℜ and ℑ denote the real and imaginary parts,
respectively. The advantages of complex-domain features over
magnitude ones have been consistently shown for many speech
processing tasks such as speech enhancement [34] and speaker
separation [35]. As shown in Sec. VII, we also find that
complex-domain features lead to better voicing detection.
Therefore, we adopt the complex-domain input feature in this
study.

As shown in Figure 4, the DC-CRN architecture consists
of 7 convolutional densely-connected (Conv-DC) blocks, a
two-layer bidirectional long short-term memory (BLSTM)
block, and one linear layer followed by sigmoidal activation
to produce the probabilistic output ŷv . A Conv-DC block in
the DC-CRN network is shown in Figure 5. A Conv-DC
block comprises four composite layers followed by a gated
convolutional layer. In each Conv-DC block, the outputs from
all the preceding composite layers are concatenated to form
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(a) Conv-DC Block

(b) Gated Convolution

Fig. 5: Diagrams of (a) a DC-CRN block and (b) gated con-
volution. In (a), each composite layer contains a convolutional
layer followed by batch normalization and ELU activation
function. In (b),

⊗
denotes element-wise multiplication.

the input to each composite layer or gated convolutional layer
(see Figure 5(a)). Specifically,

cl = Hl([cl−1, cl−2, ..., c0]), l = 1, ..., 5, (2)

where cl = Hl(·) is the output of the lth layer, c0 is the input
to the Conv-DC block, Hl represents the mapping function
performed by the lth composite layer, and [...] denotes the
concatenation operation. The dense connectivity allows a layer
to reuse the features computed in all the preceding layers and
results in better information flow through the layers. Each
composite layer contains a 2D convolutional layer, followed
by batch normalization and activation through the exponential
linear unit (ELU). Figure 5(b) depicts the final layer of the
block, which is a gated convolutional layer that incorporates
gated linear units introduced in [36] and results in a masked
convolution,

v = (u ∗W1 + b1)⊙ σ(u ∗W2 + b2) = m1 ⊙ σ(m2) (3)

where W∗, b∗, and σ(·) represent kernels, biases, and the
sigmoidal function, respectively. u and v represent the input
and output of the gated convolutional block. ∗ and ⊙ denote

Fig. 6: Grouping strategy for two-layer BLSTM, where the
group number is set to 4.

convolution and element-wise multiplication. The correspond-
ing gradient is calculated as,

∇[m1⊙σ(m2)] = ∇m1⊙σ(m2)+σ′(m2)∇m2⊙m1 (4)

To minimize the number of trainable parameters and im-
prove computational efficiency, we follow [33] by employing
a grouping technique originally proposed by Gao et al. [37].
Figure 6 illustrates the grouping strategy for a two-layer
BLSTM network with a group number of 4. We first split the
input features and hidden states of the first two recurrent layers
into 4 non-overlapping groups. Intra-group features are learned
within each group in the first recurrent layer. The forward and
backward hidden states for the jth group, denoted as

−→
h j

1,t

and
←−
h j

1,t, are computed based on the input of the jth group
xj
t and the previous or subsequent hidden states

−→
h j

1,t−1 and
←−
h j

1,t+1, respectively,

−→
h j

1,t = f j
forward(x

j
t ,
−→
h j

1,t−1),
←−
h j

1,t = f j
backward(x

j
t ,
←−
h j

1,t+1), j = 1, . . . , 4.
(5)

In the second recurrent layer, inter-group dependency is
modeled from the rearranged outputs from the first recur-
rent layer. A concatenation of the outputs from the second
recurrent layer forms the final output. Layer normalization is
incorporated after each recurrent layer. It has been observed
that this technique reduces computational complexity while
maintaining satisfactory performance.

In terms of network configuration details, the seven Conv-
DC blocks of the proposed model have output channels of 4, 8,
16, 32, 64, 128, and 256, respectively. Each convolutional layer
in a Conv-DC block employs a 1×3 (time × frequency) kernel
size, and has eight output channels. We apply zero padding of
size one to both sides of the frequency dimension. The gated
convolutional layer uses a kernel size of 1 × 4, a stride of
two, and zero-padding of one on both sides of the frequency
dimension. The two-layer BLSTM is composed of 512 units
in each direction for each layer.
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To train the DC-CRN model and obtain the probabilistic
output ŷv for an estimated voicing decision, we minimize the
binary cross-entropy loss Lv for voicing detection. The loss
function is defined as follows,

Lv(yv, ŷv) = −yv log ŷv − (1− yv) log (1− ŷv), (6)

where yv represents the binary ground-truth voicing label, with
yv = 1 denoting a voiced frame, and 0 indicating otherwise.

To get voicing decisions during inference, ŷv is compared
against a threshold of 0.5. The frame is decided as voiced if
ŷv is higher than 0.5, and unvoiced otherwise.

VI. EXPERIMENTAL SETUP

A. Datasets

We train our model on five laryngograph datasets as de-
scribed in Sec. IV: PTDB-TUG, Mocha-TIMIT, FDA, KEELE,
and CMU Arctic. The PTDB-TUG and Mocha-TIMIT datasets
were pre-processed using the method mentioned in IV-B.
Additionally, we utilize a dataset consisting of 50k utterances
from the train-clean-360 subset of LibriSpeech [17] for pre-
training. The labels for these utterances are extracted using the
RAPT algorithm. All audio files are downsampled to 8 kHz.
For STFT computation, we use a Hamming window of 128
ms duration with a 10 ms frame shift.

B. Training Methodology

To evaluate the performance of our approach, we employ
a leave-one-corpus-out technique. Specifically, we divide the
data from four of the five datasets into a training set, which
comprises 90% of the data, and a validation set comprising
the other 10%. The remaining dataset is used for testing or
evaluation, and we repeat this process four times. By using
this technique, we obtain a comprehensive assessment of the
effectiveness of our method across multiple datasets, while
minimizing the potential for bias and overfitting.

To enhance the generalizability of our trained model across
different speakers and datasets, we employ a pretraining
strategy. Specifically, we start with the model that has been
trained on 50,000 microphone recordings from the LibriSpeech
dataset. We use RAPT to generate pseudo voicing labels for
this pretraining. By incorporating this pretraining on Lib-
riSpeech utterances that are more than four times those of
the combined laryngograph datasets, we aim to improve the
overall performance of the model on unseen data and speakers.

All models are trained with the Adam optimizer, with an
initial learning rate of 0.0005 which is reduced by 50% if
the loss is not decreased for more than 5 consecutive epochs.
Gradient clipping is applied with a maximum value of 5 to
avoid gradient explosion. We set the maximum training epoch
number to 80 and all models converge within this limit.

C. Evaluation Metrics

We evaluate the performance of voicing detection using
Voicing Decision Error (VDE) which indicates the percentage
of frames that are wrongly classified in terms of voicing:

V DE =
Np→n +Nn→p

N
, (7)

where N represents the total number of frames, Np→n is the
number of the voiced frames that are misclassified as non-
voiced and Nn→p the number of non-voiced frames that are
misclassified as voiced.

D. Baselines

Our evaluation includes quantitative comparisons against
several strong baselines, including both signal processing
and deep learning methods. For signal processing methods,
we choose RAPT [10] and SRH-Variant [11] which is an
improved version of SRH [20]. It has been shown [22] that
RAPT performs very well for clean speech, while SRH shows
strong voicing detection performance for noisy speech.

For a deep learning baseline, we select a recent DNN-
based approach called PENN [15], which is extended from
the DNN methods of CREPE [16], FCN [38], DeepF0 [39]
and estimates the periodicity of each speech frame to classify
it as voiced or unvoiced. Different from prior methods, PENN
proposes a novel entropy-based method for extracting per-
frame signal periodicity, which significantly enhances the
classification accuracy of voiced and unvoiced speech frames.

For implementation of baselines, we use the code provided
in the Speech Signal Processing Toolkit (SPTK) python pack-
age [40] for RAPT, and the original code provided in [11] for
SRH-Variant. For PENN, we use the default pretrained model
provided in [15], which corresponds to FCNF0++ pretrained
on MDB-stem-synth and PTDB-TUG datasets, with a selected
unvoiced threshold of 0.25; see Sec. VI in [15]. To ensure
fair comparisons, we re-align the results from each baseline
method for the lowest VDE.

VII. EVALUATIONS AND COMPARISONS

A. Cross Corpus Results

To evaluate the proposed and baseline methods, we report
a leave-one-corpus-out voicing detection results to assess
cross-corpus generalization. The VDE results of the proposed
methods and the baselines are given in Table IV. It is worth
noting that the PENN model is trained in part on PTDB-TUG,
so some of the utterances in its PTDB-TUG evaluation are seen
during training, resulting in potentially inflated results in this
evaluation.

DC-CRN (mag.), DC-CRN, and DC-CRN with pretraining,
respectively, denote the versions of the proposed model with
the magnitude STFT feature, complex STFT feature (i.e.,
Equation (1)), and complex STFT feature with pretraining on
LibriSpeech. Table IV shows that Mocha-TIMIT is the most
challenging dataset for the signal processing methods, with
the VDE rates of 10.41% for RAPT and 13.53% for SRH-
Variant. This may be attributed to the fact that the recorded
speech signals in Mocha-TIMIT have significant device noise,
making voicing detection more difficult. On the other hand,
the deep learning methods show more tolerance to such noise.
PENN cuts the VDE of RAPT by half, and DC-CRN with
pretraining cuts the VDE by two thirds. It is worth noting that,
as discussed in [22], RAPT has been shown to yield strong
performance on clean speech, outperforming SRH-Variant on
all datasets.
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TABLE IV: Cross-corpus evaluation results in terms of voicing decision error (%). The datasets used for training and evaluation
are CMU Arctic (C), FDA (F), KEELE (K), Mocha-TIMIT (M), and PTDB-TUG (P).

Training Set Test Set RAPT SRH-Variant PENN DC-CRN (mag.) DC-CRN DC-CRN with pretraining
M, K, F, C PTDB-TUG 3.47% 5.39% 2.37% 2.16% 2.03% 1.83%
P, K, F, C Mocha-TIMIT 10.41% 13.53% 5.24% 3.96% 3.75% 3.43%
P, M, F, C KEELE 5.75% 9.37% 12.31% 5.49% 4.98% 4.06%
P, M, K, C FDA 4.61% 7.84% 10.05% 4.06% 3.77% 4.32%
P, M, F, K CMU Arctic 6.46% 8.79% 5.22% 5.04% 3.74% 3.47%

Fig. 7: An example of voicing detection in clean speech,
which is a male utterance (“It was not Red-Eye’s way to
forego revenge so easily.”) from the CMU Arctic corpus. (a)
Spectrogram of laryngograph waveform, (b) Spectrogram of
microphone recording, (c) Reference voicing decisions, (d)
Estimated voicing decisions by RAPT, (e) Estimated voicing
decisions by SRH-Variant, (f) Estimated voicing decisions
by PENN, (g) Estimated voicing decisions by DC-CRN, (h)
Estimated voicing decisions by DC-CRN with pretraining.

PENN, which was trained on a combination of PTDB and a
synthetic dataset, outperforms the signal processing methods,
except for the two small datasets of KEELE and FDA. In
addition to the very low VDE on PTDB-TUG that is partly
due to some common utterances in training and testing, on the
Mocha-TIMIT dataset PENN achieves a VDE of 5.24%, much
better than 10.41% by RAPT. On the CMU Arctic dataset,
PENN achieves a VDE of 5.22%, better than 6.46% by RAPT.
On the other hand, PENN performs poorly on the KEELE and
FDA datasets, even worse than SRH-Variant, indicating a lack
of generalization to these small datasets.

The proposed DC-CRN model produces the best results
across all datasets. Better voicing detection performance is
obtained in the complex domain than in the magnitude domain,
consistent with our recent observation in noisy speech [32].
DC-CRN outperforms PENN on all datasets. On Mocha-
TIMIT and CMU Arctic where PENN performs well, the
DC-CRN model obtains the VDE of 3.75% and 3.74%,
respectively, compared to PENN’s 5.24% and 5.22%. On the
small datasets where PENN does not perform well, the DC-
CRN model achieves a VDE of 4.98% for KEELE and 3.77%
for FDA, which are significantly lower than those from RAPT.
These results suggest that the trained DC-CRN model have
better generalization by leveraging multiple datasets. Further-
more, the DC-CRN model exhibits outstanding performance
on the PTDB-TUG dataset, even surpassing that of the PENN
model that is trained in part on this corpus.

For the DC-CRN model pretrained on the LibriSpeech
dataset, our evaluation results demonstrate consistent im-
provements across datasets with the exception of the small
FDA corpus. For instance, pretraining improves the VDE on
Mocha-TIMIT by 8.53% and on Keele by 18.5% relatively.
These outcomes suggest that pretraining the DC-CRN model
on LibriSpeech help to boost voicing detection performance
across datasets.

Figure 7 illustrates voicing detection performed on a laryn-
gograph recording, specifically a male utterance from the
CMU Arctic corpus. Figure 7(c) shows the reference voicing
labels derived from Figure 7(a) using the method described in
Sec. IV-C. As shown in Figure 7(d) and 7(e), RAPT is prone
to overestimating voiced regions, while SRH-Variant has both
overestimation and underestimation errors. The DNN baseline,
PENN, makes quality estimation but does not eliminate the
underestimation problem. The proposed DC-CRN and DC-
CRN with pretraining models show better voicing detection
performance than PENN, yielding the most accurate estimate
among all the methods.
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TABLE V: Cross-corpus evaluation results in terms of voicing decision error (%) evaluated on datasets with provided labels.
The datasets used for training and evaluation are CMU Arctic (C), FDA (F), KEELE (K), Mocha-TIMIT (M), and PTDB-TUG
(P).

Training Set Test Set RAPT SRH-Variant PENN DC-CRN DC-CRN with pretraining
M, K, F, C PTDB-TUG 4.29% 7.24% 3.2% 2.97% 2.76%
P, M, F, C KEELE 4.52% 7.84% 13.53% 4.66% 4.55%
P, M, K, C FDA 4.85% 8.01% 12.49% 4.73% 5.34%

B. Cross Corpus Results on Provided Labels

As explained before, three of the five laryngograph corpora
provide voicing labels. We now evaluate the proposed and
baseline methods using the provided labels, and the results
are given in Table V. It should be noted that, for the KEELE
dataset, the provided labels include three classes: voiced,
unvoiced, and uncertain. Our evaluation does not consider
the uncertain frames for evaluation, which results in a lower
VDE for KEELE compared to the results shown in Table
IV. It is observed that the two signal processing methods
have comparable VDE rates across provided and generated
labels, indicating the consistency and similarity of the labels
generated using laryngograph data. In addition, the poor per-
formance of PENN on the KEELE and FDA datasets confirms
our earlier observation of its limited generalization ability. The
VDE of the DC-CRN model is 1.32% lower than that of RAPT
on the PTDB-TUG dataset, and the results of DC-CRN and
RAPT are close on the small KEELE and FDA datasets. These
results demonstrate that the proposed DC-CRN model and
pretraining have strong generalizability across different label
generation algorithms.

VIII. CONCLUDING REMARKS

This study introduces a robust DNN-based voicing detection
model for clean speech by using laryngograph data for train-
ing. The model employs a DC-CRN architecture and incor-
porates a pretraining strategy on the LibriSpeech dataset. Our
cross corpus evaluations demonstrate that the proposed model
outperforms signal processing and deep learning baseline
methods and shows strong generalization. By open sourcing
the model and the data, we expect to accelerate the progress of
voicing detection and related research such as pitch tracking
in challenging environments.

Given the success of using synthesized speech data for
training DNN models for pitch estimation (see, e.g., [16]),
should voicing detection utilize synthetic speech data? While
synthetic data allows complete control of ground-truth voicing
labels, our preliminary investigation suggests that using syn-
thetic data is not effective for voicing detection. A possible
reason is that a voicing detection model trained on synthetic
data generated from microphone recordings relies heavily on
the similarity of the synthetic training data and the voicing pat-
terns of microphone recordings, which is difficult to maintain
at the boundaries between voiced and unvoiced intervals. Also,
voicing detection from the microphone recording of a speech
utterance is prone to errors, as highlighted in this paper. On
the other hand, laryngograph data represents the gold standard
for F0 and voicing label generation. Prior studies on pitch
estimation [14], [38] prefer synthetic data over laryngograph

data partly because octave errors affect the accuracy of F0
labels derived from laryngograph recordings. This concern,
however, does not extend to voicing labels.

In future work, we plan to apply the proposed voicing
detection model to improve pitch tracking performance in
adverse acoustic conditions, including background noise, room
reverberation, and concurrent speakers.
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