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Abstract—Although many efforts have been made on decreasing 

the model complexity for speaker verification, it is still challenging 
to deploy speaker verification systems with satisfactory result on 
low-resource terminals. We design a transformation module that 
performs feature partition and fusion to implement lightweight 
speaker verification. The transformation module consists of 
multiple simple but effective operations, such as convolution, 
pooling, mean, concatenation, normalization, and element-wise 
summation. It works in a plug-and-play way, and can be easily 
implanted into a wide variety of models to reduce the model 
complexity while maintaining the model error. First, the input 
feature is split into several low-dimensional feature subsets for 
decreasing the model complexity. Then, each feature subset is 
updated by fusing it with the inter-feature-subsets correlational 
information to enhance its representational capability. Finally, the 
updated feature subsets are independently fed into the block (one 
or several layers) of the model for further processing. The features 
that are output from current block of the model are processed 
according to the steps above before they are fed into the next 
block of the model. Experimental data are selected from two 
public speech corpora (namely VoxCeleb1 and VoxCeleb2). 
Results show that implanting the transformation module into 
three models (namely AMCRN, ResNet34, and ECAPA-TDNN) 
for speaker verification slightly increases the model error and 
significantly decreases the model complexity. Our proposed 
method outperforms baseline methods on the whole in memory 
requirement and computational complexity with lower equal 
error rate. It also generalizes well across truncated segments with 
various lengths.  

Index Terms—Lightweight model, feature partition, feature 
fusion, speaker verification  
 

I. INTRODUCTION  
PEAKER recognition is the task for recognizing a person 
based on his/her voices, which is one major development 
direction of biometrics [1]. With the wide application of 

voice-enabled terminals (e.g., smart watches, smart phones, 
smart earphones), speaker recognition has become a crucial 
technology in many practical scenarios of voice biometrics, 
such as criminal investigation [1], financial security [2]. For 
instance, law enforcement agencies usually need to confirm 
whether the recorded voices are spoken by the claimed person 
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or not, which is a key cue for solving criminal cases. In past 
decades, judges, detectives, lawyers, and courts intended to 
utilize speaker recognition as a powerful tool to identify 
criminals [1]. In the application of financial security, speaker 
recognition is one of the main ways for remote identity 
authentication, which is utilized to protect the security of the 
funds in the accounts [2]. In addition, speaker recognition is 
also a basic or an indispensable part for implementing other 
speech related tasks, such as speaker clustering [3], speaker 
diarization [3], multi-speaker speech recognition [4], and 
speaker tracking [5]. 

The task of speaker recognition generally includes two 
sub-tasks: speaker identification and Speaker Verification (SV) 
[6]. The task of speaker identification is to decide which 
enrolled person utters a given voice from a set of known 
persons, while the task of SV is to reject or accept the identity 
claim of a person based on his/her utterance. The work in this 
paper concentrates on the task of SV only. Concretely, we 
propose a method for lightweight SV using a Transformation 
Module (TM) with feature partition and fusion.  

The rest of this paper is organized as follows. Sections II and 
III present related works and our contributions, respectively. 
Section IV describes the proposed method in detail. Section V 
gives the experiments and discussions, and the conclusions are 
drawn in Section VI.  

II. RELATED WORKS 
Many studies have been conducted on the task of SV [7]-[13]. 

The goal of these previous works was to tackle two main 
technical problems. The first problem is to effectively learn a 
feature with powerful representational capability. The second 
problem is to construct a classifier with strong classification 
ability.  

Many hand-crafted features (shallow-model based features) 
were designed to represent the time-frequency characteristics 
of different speakers, including Mel-frequency cepstral 
coefficients [14], constant Q cepstral coefficients [15], linear 
prediction coding coefficients [14], eigenvoice-motivated 
vectors [16], and I-vector [17], [18]. They were proposed for 
specific conditions and thus had poor generalization ability for 
other situations. Furthermore, they could not effectively 
characterize the differences of deep-level properties among 
different speakers, since they were obtained based on shallow 
models rather than deep ones. Afterwards, the deep-model 
based features were learned using different kinds of deep neural 
networks. These features mainly included the X-vector learned 
by a Time-Delay Neural Network (TDNN) [19]-[23] or an 
Emphasized Channel Attention, Propagation and Aggregation 
in TDNN (ECAPA-TDNN) [24]; the R-vector learned by a 
Residual Network with 34 layers (ResNet34) [25]; the S-vector 
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learned by a Transformer [26]. In addition, other kinds of 
neural networks were adopted to learn deep embeddings 
[27]-[35], such as temporal dynamic convolutional neural 
network [31], Attentive Multi-scale Convolutional Recurrent 
Network (AMCRN) [33], Siamese neural network [34], and 
long short-term memory network [35].  

Besides the works on feature learning (extraction), many 
efforts were made on the construction of back-end classifiers 
for SV. The typical classifiers mainly included the Cosine 
Distance (CD) [1], Probabilistic Linear Discriminant Analysis 
(PLDA) [36], [37], and deep neural network [38]. 

Although the SV methods proposed in these aforementioned 
works obtained low Equal Error Rate (EER), the reduction of 
model complexity (including both computational complexity 
and memory requirement) was not explicitly considered. 
Accordingly, the model complexity of these methods was very 
high, and thus they cannot be directly deployed on the terminals 
with limited resources. To reduce the model complexity for 
implementing lightweight SV, some recent works were done on 
the design of lightweight models or the compression of model 
parameters without significantly increasing the model error. 
These efforts include the design of computationally-efficient 
convolution, the manual or automatic design of better model 
architectures, and the construction of small student model, 
which are briefly summarized as follows. 

Inspired by the success of the Depth-wise Separable 
Convolutions (DSC) adopted in the MobileNet for mobile 
vision applications [39], both the SpeakerNet [40] and the 
AM-MobileNet1D [41] were designed for realizing lightweight 
SV. The SpeakerNet mainly consists of residual blocks with 
one-dimensional (1D) DSC and has 5 million parameters, while 
the AM-MobileNet1D occupies 11.6 megabytes of memory. 
Although the DSC operations significantly reduced the model 
complexity, they caused the increase of the error. What is more, 
the tradeoff between the reduction of the model complexity and 
the increase of the model error was generally hard to achieve in 
practice.  

The model architectures were manually designed to reduce 
the model complexity for implementing lightweight SV [42]- 
[44]. In the work of [42], the original trunk of the SincNet [45] 
was replaced by a lightweight trunk with 2.8 million parameters 
for reducing the model complexity. Lee et al. [44] designed a 
hyperbolic ResNet for lightweight application. Their model 
learned more compact deep embeddings with equivalent error. 
In short, the size of the models whose architectures were 
manually designed generally reached the level of millions of 
parameters. 

Additionally, some researchers applied the techniques of 
Knowledge Distillation (KD) [46], [47] and Neural Architecture 
Search (NAS) [48] to implement lightweight SV [49]-[52]. In 
the work of [49], the strategy of teacher-student training was 
proposed for text-independent SV, and competitive error rate 
with 88-93% smaller models was obtained. Lin et al. [50] 
designed a framework with asymmetric structure, in which a 
large model was used for enrollment and a small model was 
used for verification. The generated small model achieved 
competitive results with 11.6 million floating-point operations 
per second. Recently, the NAS technique was applied to design 
an efficient model (termed EfficientTDNN) which obtained 
satisfactory error rate with low computational complexity [51]. 

In short, these previous methods produced a small model for 
verification. However, the KD based methods had to construct 
a large model for training the small model, and the NAS based 
methods required to search the appropriate model with a lot of 
different architecture settings. As a result, the training expense 
and whole procedure for implementing lightweight SV are 
actually not light. 

III. OUR CONTRIBUTIONS 
Based on the introductions in Section II, it can be concluded 

that a lot of efforts have been made on solving the problems of 
both general SV and lightweight SV. However, there are some 
shortcomings in prior works. First, there is still room to reduce 
the model complexity. For example, the number of model 
parameters in prior methods is almost over one million for 
obtaining lower EER scores. Second, the structure of the 
original model needs to be significantly modified or a new 
model has to be designed for implementing lightweight SV. For 
example, it is required to redesign the model structure, replace 
some components, search for many model architectures, or 
pre-train a large model. These operations are not simple, and 
various operations are required to lighten models with different 
architectures. That is, each one of the previous methods can be 
only applicable to one specific model in practice, and thus lacks 
generality. 

To overcome the aforementioned shortcomings in the prior 
works, we design a TM to execute the operations of both 
feature partition and feature fusion for realizing lightweight SV. 
What is more, we propose a method for lightweight SV by 
implanting the TM into models with different architectures. 
Experimental results on three different evaluation sets indicate 
that implanting the proposed TM into three state-of-the-art 
models for SV obtains equivalent EER scores or slightly-lower 
EER scores with remarkable reduction of the model complexity. 
Compared with the state-of-the-art methods of lightweight SV, 
our proposed method can obtain lower EER scores and model 
complexity. What is more, the proposed method also obtains 
satisfactory results when evaluated on truncated segments with 
different durations. In a word, main contributions of this work 
are briefly summarized as follows. 
1. To reduce the model complexity and obtain the transformed 

features with powerful representational capability, we 
design a TM to perform feature partition and feature fusion. 
The proposed TM is composed of some simple but effective 
operations, such as convolution, pooling, concatenation, 
mean, normalization, and element-wise summation. It can 
be easily implanted into the original models with various 
architectures for reducing the model complexity without 
replacing any components or changing the architectures of 
the original models. That is, it can work in a plug-and-play 
way and can be utilized to reduce the complexity of many 
types of models for realizing lightweight SV. To the best of 
our knowledge, the proposed TM is novel and is not 
adopted in prior works. 

2. We propose a method for lightweight SV by placing the TM 
in front of different blocks of the original model. The 
proposed method is a general solution for lightening 
existing models for realizing lightweight SV, whereas each 
one of all previous methods is a specific solution for 



 3

lightweight SV and lacks generality. In addition, we 
comprehensively evaluate the effectiveness of the proposed 
method, and compare it with the state-of-the-art methods on 
three different evaluation sets under various experimental 
conditions. Experimental results indicate that our proposed 
method basically has advantages over the baseline methods 
in both model error and model complexity under the same 
experimental conditions.  

IV. METHOD 
Fig. 1 illustrates the implantation of the TM into the model 

for SV, where the TM is placed in front of the block of the 
model. The TM consists of two blocks: feature partition and 
feature fusion. First, the input feature F (T frames and N 
dimensions per frame) is segmented into J feature subsets 𝑭௜ (T 
frames and L dimensions per frame, 1≤i≤J) by the feature 
partition block. Afterwards, each 𝑭௜ is updated to 𝑭௜ꞌ  by the 
feature fusion block. Finally, each 𝑭௜ꞌ  is fed into the block of the 
model to produce the transformed feature subset 𝑭௜ꞌꞌ  .  
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Fig. 1 The schematic diagram of implanting the transformation module into the 
model. The feature F is converted into feature subsets 𝑭௜, 𝑭௜ꞌ  and 𝑭௜ꞌꞌ  in turn. 

The motivation for implanting the TM into the model for SV 
is based on two considerations. First, we do not want to change 
the architecture of the original SV model. The implantation of 
the TM can be implemented by placing the TM in front of each 
block (layer) of the model. Second, implanting the TM into the 
model not only reduces the model complexity (by feature 
partition), but basically does not increase the model error (by 
feature fusion). The feature partition block splits the input 
feature F into J feature subsets 𝑭௜ that will be independently 
fed into the block of the model after feature fusion. That is, after 
the implantation of the TM, the input of each block of the 
model becomes low-dimensional feature subsets rather than the 
high-dimensional input feature. Therefore, the number of 
parameters of each block of the model can be reduced when 
each feature subset is fed into the model. However, the 
correlational information (namely cross sub-band dependency 
or global contextual spectral information) between feature 
subsets 𝑭௜  cannot be utilized if each 𝑭௜  is independently fed 
into the model. That is, the model cannot see the complete 
feature and thus cannot capture global contextual spectral 
information when each 𝑭௜ is independently fed into the model. 
As a result, the representational capability of the transformed 
feature will be weakened. To make the model see the complete 
feature and capture the correlational information between J 
feature subsets 𝑭௜ , we design a block of feature fusion that 
enables feature subsets 𝑭௜  to interact with each other. After 
feeding 𝑭௜  into the feature fusion block, we obtain feature 
subsets 𝑭௜ꞌ . Each 𝑭௜ꞌ  contains the correlational information 
between different 𝑭௜, rather than a fragmented feature subset. 
The correlational information is beneficial for enhancing the 
representational capability of the learned feature. Therefore, the 

model error for SV is expected to be maintained when the 
feature subsets 𝑭௜ꞌ  are adopted as the input of the model.  

A. Transformation Module  
Fig. 2 shows the framework of the TM. The feature partition 

block is composed of one operation of feature division, while 
the feature fusion block comprises the operations of 1D 
convolution, mean pooling, mean calculation, concatenation, 
Z-score normalization, and element-wise summation.  
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Fig. 2 The framework of the proposed transformation module for feature 
partition and fusion. 1D Conv (L, Q) denotes one-dimensional convolution with 
L input channels and Q output channels.  

As shown in Fig. 2, the input feature F∈ℝN×T is first fed into 
the block of feature partition, and is split into J feature subsets 𝑭௜ ∈ℝL×T along the channel-dimension of deep transformed 
feature or along the frequency-dimension of audio feature. T 
denotes total number of frames. N and L stand for the 
dimension of the feature and feature subsets, respectively. 
When adjacent feature subsets overlap to varying degrees, the 
value of J will change accordingly. For example, N=80, L=20, 
if all adjacent feature subsets do not overlap, then J=4. If there 
is 50% overlap between all adjacent feature subsets, then J=7. 
After feature partition, each feature subset is fragmented, and 
thus does not contain the correlational information between J 
feature subsets. The correlational information is originally 
contained in the complete feature. 

To capture the correlational information between J feature 
subsets Fi, we design a block of feature fusion. Each feature 
subset Fi is first fed into an initialization layer for producing the 
feature subset 𝑭෩௜ ∈ℝQ×T. The initialization layer is to conduct a 
one-dimensional convolution whose kernel size is 1, with L 
input channels and Q output channels. Afterwards, each feature 
subset 𝑭෩௜ is transformed into 𝑭ഥ௜ ∈ℝQ×T by one mean pooling 
layer. The feature subset 𝑭ഥ௜ is fed into an interaction layer for 
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generating the interacted vector V ∈ℝQ×T which is defined by  𝑽 = ℛ ቀଵ௃ ∑  𝑭ഥ௜௃௜ୀଵ ቁ,                                (1) 

where ℛሺ·ሻ  denotes a one-dimensional convolution whose 
kernel size is 1, with Q input channels and Q output channels. 
The interacted vector V is transformed from the mean vector of 
J feature subsets and the output of one-dimensional convolution, 
so it contains the correlational information between J feature 
subsets. Afterwards, each feature subset  𝑭෩௜ and the interacted 
vector V are fed into a fusion layer which is composed of the 
operations of concatenation and one-dimensional convolution. 
In the fusion layer, the feature subset  𝑭෩௜  and the interacted 
vector V are concatenated and then transformed by the 
one-dimensional convolution for producing the feature subset 𝑭෱௜ ∈ℝL×T which is obtained by  𝑭෱௜ = ℋ൫ൣ𝑭෩௜, 𝑽൧൯,                                 (2) 
where ℋሺ·ሻ represents a one-dimensional convolution whose 
kernel size is 1, with 2Q input channels and L output channels; 
and ሾ· , ·ሿ denotes an operation of concatenation. We obtain the 
feature subset 𝑭෡௜ = {𝑓መ௜௟,௧} ∈ℝL×T after feeding the feature subset 𝑭෱௜ = {𝑓ም௜௟,௧} into a Z-score normalization layer, where 1≤l≤L 
and 1≤t≤T. Namely, the 𝑓መ௜௟,௧ is obtained by    

 𝑓መ௜௟,௧ = ௙ም೔೗,೟ିఓ೔೟ఙ೔೟ ,                                 (3) 

where 𝑓መ௜௟,௧ and 𝑓ም௜௟,௧ represent the l-th element of the t-th frame 
in the feature subsets 𝑭෡௜ and 𝑭෱௜, respectively; 𝜇௜௧ and 𝜎௜௧ denote 
mean and standard deviation of the t-th frame in the feature 
subset 𝑭෱௜, respectively. Finally, the feature subsets 𝑭෡௜ and Fi 
are element-wisely summed to generate the feature subset 𝑭௜ꞌ ∈ℝL×T. 

In summary, the function of the proposed TM is to transform 
the input feature F ∈ℝN×T into J feature subset 𝑭௜ꞌ ∈ℝL×T. 
Moreover, each feature subset 𝑭௜ꞌ  contains the correlational 
information between J feature subsets 𝑭௜ . The transformation 
process above is defined by  𝑭௜ꞌ = ℱሺ𝑭ሻ,                                 (4) 
where ℱሺ·ሻ is the conversion function of the proposed TM.  

B. Implanting the Transformation Module into Models 
To demonstrate the effectiveness of the proposed TM for 

reducing the model complexity, we implant the TM into three 
state-of-the-art models for SV, namely ECAPA-TDNN [24], 
ResNet34 [25], and AMCRN [33]. Specifically, we place the 
proposed TM in front of each block in the frame-level module 
rather than the utterance-level module of the model. Main 
reasons for doing so are as follows.  

First, the computational load of the blocks in the frame-level 
module is much heavier than that of the blocks in the 
utterance-level module, because the frame-level module is the 
main part of the model. Accordingly, implanting the proposed 
TM into the blocks of the frame-level module can significantly 
reduce the complexity of the model.  

Second, the semantic abstraction degrees of the features 
learned by the blocks in the frame-level module are much lower 
than that obtained in the utterance-level module, because the 
utterance-level module is located in the deeper position of the 
model. The outputs of both feature partition and feature fusion 
from the frame-level module are expected to cause less damage 

to the abstract semantic information which has influence on the 
representational capability of the learned features.  

The implantation of the TM into the AMCRN is shown in 
Fig. 3. The AMCRN model is composed of the blocks in black 
solid-line boxes, whose detailed information is introduced in 
[33]. The proposed TM (as illustrated in green solid-line box) is 
placed in front of each block of the frame-level module in the 
AMCRN model. 

1D dilated Res2Net block with temporal attention

1D dilated Res2Net block with temporal attention

AAM-Softmax classifier

Speech sample

Log Mel-spectrum

Fully-connected layer with batch normalization

Residual BLSTM block
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The proposed TM

The proposed TM

The proposed TM

The proposed TM

Concatenation

Frame-level module

Utterance-level module

Speaker embedding

Block 1

Block 2
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Block 4

 
Fig. 3 The implantation of the TM into the AMCRN. BLSTM: bidirectional 
long short-term memory; AAM-Softmax: additive angular margin Softmax.  

The AMCRN model after the implantation of the TM works 
as follows. First, audio feature of Log Mel-spectrum [53] is 
extracted from each speech sample and fed into the TM for 
splitting the Log Mel-spectrum feature into feature subsets and 
fusing these feature subsets. According to the extraction 
process of Log Mel-spectrum in [53], Log Mel-spectrum is 
actually the feature of FBank (Filter-Bank). To facilitate the 
visualization of feature partition, this audio feature is called 
Log Mel-spectrum here. The feature subsets that are output 
from the proposed TM are independently and sequentially input 
into the 1D initial convolutional layer (in Block 1) for further 
processing. Next, the transformed feature subsets are fed into 
the proposed TM (in Block 2) and then transformed by the 1D 
dilated Res2Net block with temporal attention. Similarly, the 
transformed feature subsets are sequentially processed by the 
operations in Block 3 and Block 4. Afterwards, these feature 
subsets are spliced together by the Concatenation layer (green 
solid-line box) to form a complete feature which is input into 
the utterance-level module for further transformation. Finally, 
the speaker embedding is produced from the Fully-connected 
layer with batch normalization for scoring by the CD or PLDA. 
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The implantations of the proposed TM into the ResNet34 and 
ECAPA-TDNN models are illustrated in Fig. 4 (a) and Fig. 4 
(b), respectively. The ResNet34 and ECAPA-TDNN models 
are composed of layers (or blocks) in black solid-line boxes in 
Fig. 4 (a) and Fig. 4 (b), respectively. The workflows of these 
two models after the implantation of the proposed TM are 
similar to that of the AMCRN model. The ECAPA-TDNN and 
ResNet34 models are described in detail in [24] and [25], 
respectively. To effectively apply the proposed TM for the 
lightweighting of ResNet34 model, all convolutions in the 
ResNet34 model for the proposed method of ResNet34-TM are 
set to 1D convolutions in the experiments.  

ResNetBlock-2

ResNetBlock-1

Dense2 (Softmax)

Speech sample

Log Mel-spectrum
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ResNetBlock-3

StatsPooling & Flatten

Conv1D-1

The proposed TM

The proposed TM

The proposed TM

The proposed TM

Concatenation

Frame-level 
module

Utterance-level
module

Speaker 
embedding

ResNetBlock-4

The proposed TM

SE-Res2Block

SE-Res2Block

AAM-Softmax

FC+BN
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Attentive Stat Pooling + BN
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The proposed TM

The proposed TM

The proposed TM

The proposed TM

Concatenation

Frame-level module

Utterance-level
module

Speaker 
embedding

Conv1D + ReLU

The proposed TM

(a) (b)  
Fig. 4 The implantations of the TM into: (a) the ResNet34 and (b) the 
ECAPA-TDNN. Conv1D: one-dimensional convolution; ReLU: Rectified 
Linear Unit; BN: batch normalization; StatsPooling: statistics pooling; 
SE-Res2Block: Squeeze-and-Excitation Res2Net block; FC: fully-connected.  

V. EXPERIMENTS AND DISCUSSIONS 
In this section, experimental datasets and setups are first 

introduced. Then, we perform ablation experiments for the 
proposed method. Next, we compare our proposed method to 
the baseline methods in the error and complexity. Finally, we 
analyze the robustness of three representatives of the proposed 
method on truncated testing segments with various lengths.  
A. Experimental Datasets  

Experimental datasets were selected from two large-scale 
speech corpora: the VoxCeleb1 [54] and the VoxCeleb2 [55]. 
These two speech corpora are publicly available for research 

and widely utilized for speaker verification in prior works. 
The VoxCeleb1 consists of 153,516 speech samples spoken 

by 1,251 speakers. Its duration is 352 hours in total. Speech 
samples of the VoxCeleb1 are collected from the sound tracks 
of the videos on YouTube. The gender ratio of the VoxCeleb1 
is basically balanced, with 45% of female speakers. Speakers 
contained in the VoxCeleb1 span a wide range of different ages, 
professions, ethnicities, and accents. The contents of the speech 
samples are mainly composed of speeches, interviews, excerpts 
from professionally shot multimedia. There are several kinds of 
real-world noise in the speech samples, such as background 
voices (e.g., chatter, laughter), room reverbs, sampling 
equipment noise. 

The VoxCeleb2 is an extended speech corpus of the 
VoxCeleb1, and consists of 1,128,246 speech samples spoken 
by 6,112 speakers. Its duration is 2,442 hours in total. The 
gender ratio of the VoxCeleb2 is roughly balanced with 61% of 
male speakers. The speakers cover a great range of professions, 
accents, ethnicities, and ages. Its speech samples are degraded 
with background noise, such as overlapping speech, chatter, 
laughter, and varying room acoustics.  

Experimental data was chosen from the VoxCeleb1 and the 
VoxCeleb2, and was composed of three datasets, namely 
VoxCeleb2-dev, VoxCeleb1-dev, and VoxCeleb1-test. These 
three datasets were split by the data organizer of the VoxCeleb 
[56] and widely adopted in prior works [54], [55]. The training 
data was chosen from the VoxCeleb2-dev, and contained 5,994 
speakers and 1,092,009 speech samples in total. The testing 
data came from the VoxCeleb1-dev and the VoxCeleb1-test, 
and had three different evaluation sets: Vox1-O, Vox1-E and 
Vox1-H, where O, E, and H denote Original, Extended, and 
Hard data subsets of the VoxCeleb1, respectively. These three 
different evaluation sets were split by the data organizer of the 
VoxCeleb [56]. The proportions of training and validation 
subsets that were contained in the training data were 95% and 
5%, respectively. The average duration of each speech sample 
is basically 8 seconds. Table I gives the detailed information of 
the data adopted in the experiments of this paper.  

TABLE I 
THE DETAILED INFORMATION OF EXPERIMENTAL DATA 

 Names Dataset sources #Speakers Data size 
Training / VoxCeleb2-dev 5,994 1,092,009 samples

Testing
Vox1-O VoxCeleb1-test 40 37,611 trails 
Vox1-E VoxCeleb1-dev 1,211 579,818 trails 
Vox1-H VoxCeleb1-dev 1,211 550,894 trails 

B. Experimental Setup 
The experiments are performed on a computing machine 

whose main configurations include: an Intel CPU i7-6700 with 
3.10 GHz, a RAM of 64 GB, and a NVIDIA 1080TI GPU. All 
methods are implemented on the deep learning toolkit of the 
PyTorch. Two different indices are adopted to assess the 
performance of the methods (models), namely error and 
complexity. The metric of EER [57] is utilized to measure the 
error of different methods, which has been commonly used in 
prior works. The EER is defined as the rate at which acceptance 
error is equal to rejection error. The lower the score of the EER 
is, the lower the error of the method is. The complexity index 
contains two metrics, namely Parameter Number (PN) and 
Multiply-ACcumulate operations (MACs). The PN and MACs 
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are adopted to measure the memory requirement and the 
computational complexity of different methods, respectively. 
The MACs is defined as the total amount of multiplication and 
addition operations of the model. The PN is defined as the total 
amount of parameters of the model. The lower the value of 
MACs is, the lower computational complexity of the method is. 
Similarly, the lower the value of PN is, the lower memory 
requirement of the method is. The MACs and PN have been 
widely used to measure the model complexity in prior works, 
and thus are also adopted as the evaluation metrics here. 

The audio feature adopted as the input of the model is the 
80-dimensional Log Mel-spectrum. The Log Mel-spectrum is 
extracted from each speech sample with frame length of 25 ms 
and frame shift of 10 ms. It is subject to short-time cepstral 
mean variance normalization using a 3-second sliding window. 
To expand the diversity of the training data, we set a probability 
of 0.6 for data augmentation. We randomly add the background 
noise, reverberation and speed change on the original speech 
samples when they are chosen to be augmented. All the 
background noise and reverberation audios are selected from 
two public noise datasets MUSAN [58] and RIR [59]. The 
speed change rate is set to a value ranging from 95% to 105% of 
the original audios. Both the original speech samples and the 
augmented speech samples are adopted to train the models. 

The structure settings of the three models (AMCRN, 
ResNet34, and ECAPA-TDNN) are the same as those in the 
corresponding references. All models are trained for 50 epochs 
using the cosine annealing learning rate [60] with 10 warm-up 
steps from 10-3 to 10-8 in conjunction with the Adam optimizer 
[61]. We use the AAM-Softmax [62] with a margin of 0.2 and 
Softmax pre-scaling of 30 to train all models. Early stopping 
technique is adopted when the loss of model validation no 
longer decreases for 10 epochs. The mini-batch size for training 
is equal to 512. After each epoch on the training subset, the 
trained model is assessed on the validation subset. The model 
with the lowest validation loss is used as the final model. After 
completing the model training, enrollment data and testing data 
are input into the model to produce the speaker embedding for 
each speech sample. The dimension of speaker embedding is 
set to 256. Finally, the CD is used as the back-end classifier for 
scoring on each testing trail. 

The dimension of Log Mel-spectrum is 80 in the experiments, 
and thus the value of N is equal to 80. In addition, Q, the 
number of channels of 1-dimensional convolution, is set to 2L. 
The settings of J will be discussed in ablation experiments, 
which has direct impact on the model complexity.  

C. Ablation Experiments 
In this section, we conduct three ablation experiments. First, 

we discuss the influence of the settings of main parameters (i.e., 
J, L, N) of the proposed TM on the error and complexity of the 
models. Second, we analyze the impact of the overlap between 
different feature subsets on the model complexity and error. 
Third, we qualitatively analyze the impact of feature fusion on 
the representational capability of feature subsets. Without loss 
of generality, we adopt the AMCRN as the model and use the 
Vox1-O as the testing data in the experiments of this section.  
Main parameter settings of the TM 

In this ablation experiment, the values of J range from 1 to 16 
in steps of the power of 2, namely 1, 2, 4, 8, and 16. The values 

of L range from 80 to 5, namely 80, 40, 20, 10, and 5. There is 
no overlap between J feature subsets in this experiment. In the 
AMCRN model, the number of input channels of the 1D dilated 
Res2Net block (denoted as C) and the number of neurons of the 
residual BLSTM block (denoted as B) are two main factors that 
determine the model complexity. To obtain both lower error 
and lower complexity, the values of both C and B need to be 
appropriately configured according to the dimensions of feature 
subsets. When L takes values from 80 to 5, we give three to four 
settings of B and C for each value of L. The values of B and C 
range from 512 to 16. Table II lists the scores of EER, PN, and 
MACs that are obtained by the AMCRN model with various 
values of B and C on the Vox1-O.  

TABLE II 
IMPACTS OF MAIN PARAMETER SETTINGS OF THE TM ON THE ERROR AND 
COMPLEXITY OF THE AMCRN MODEL WHEN EVALUATED ON THE VOX1-O 

J L N C B EER (%) PN MACs 

1
512 512 1.464 11.38 M (100%) 0.840 G (100%)

80 80 256 256 1.898 3.59 M (31.5%) 0.250 G (29.8%)
128 128 3.734 970.01 K (8.5%) 0.081 G (9.6%)
256 256 1.470 6.45 M (56.7%) 0.276 G (32.9 %)

2 40 80 128 128 1.896 1.76 M (15.5%) 0.093 G (11.1%)
64 64 2.892 571.67 K (5.0%) 0.036 G (4.3%)
256 256 1.459 6.93 M (60.9%) 0.347 G (41.3%)

4 20 80 128 128 1.728 2.01 M (17.7%) 0.128 G (15.2%)
64 64 2.624 644.89 K (5.7%) 0.053 G (6.3%)

8 10 80

256 256 1.461 7.98 M (70.1%) 0.501 G (59.6%)
128 128 1.655 2.53 M (22.2%) 0.205 G (24.4%)
64 64 2.325 902.05 K (7.9%) 0.091 G (10.8%)
32 32 2.981 360.79 K (3.2%) 0.043 G (5.1%)

16 5 80

128 128 1.592 3.58 M (31.5%) 0.362 G (43.1%)
64 64 2.044 1.43 M (12.6%) 0.170 G (20.2%)
32 32 2.757 622.63 K (5.5%) 0.082 G (9.8%)
16 16 3.205 289.02 K (2.5%) 0.040 G (4.8%)

J: number of feature subsets; L: dimension of feature subsets; N: dimension of 
input feature; C: number of input channels of the 1D dilated Res2Net block of 
the AMCRN; B: number of neurons of the residual BLSTM block of the 
AMCRN. K: Kilo; M: Million; G: Giga. 

Based on the results presented in Table II, the following three 
observations can be obtained.  

First, when the value of J equals to 1 (i.e., L=N), the input 
feature is not split into feature subsets and thus the proposed 
TM is not used for reducing the model complexity. In this 
condition, when the values of both B and C are set to 512, the 
EER score of 1.464%, the PN value of 11.38 M, and the MACs 
value of 0.840 G are obtained. The values of 11.38 M and 0.840 
G are used as the benchmark (represented by 100% in Table II) 
for reducing the complexity of the AMCRN model. Although 
the complexity of the model can be reduced by decreasing the 
values of B and C without using the proposed TM, the model 
error increases greatly. For example, when the values of B and 
C decrease from 512 to 128, the values of PN and MACs 
decrease from 11.38 M to 970.01 K (8.5% of 11.38 M), and 
from 0.840 G to 0.081 G (9.6% of 0.840 G), respectively. 
However, the scores of EER increase from 1.464% to 3.734%.  

Second, with the increase the value of J, the model 
complexity is remarkably reduced while keeping the model 
error basically unchanged or even better. That is, when the EER 
score is basically equal to or even lower than 1.464%, the 
values of both PN and MACs are significantly reduced 
compared with 11.38 M and 0.840 G, respectively. For example, 
when J increases to 4, and the values of both C and B are set to 
256, the lowest EER score of 1.459%, the PN value of 6.93 M 
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(60.9% of 11.38 M), and the MACs value of 0.347 G (41.3% of 
0.840 G) are produced. This result indicates that not only the 
model complexity is significantly reduced, but also the model 
error decreases after implanting the TM into the model. In 
addition, when the model complexity is close, the model error 
after the implantation of the TM is lower than that of the 
original model (without the implantation of the TM). For 
example, when J=8, B=C=64, the model complexity (i.e., PN = 
902.05 K and MACs = 0.091 G) is close to that (i.e., PN = 
970.01 K and MACs = 0.08 G) of the original model in which 
J=1, B=C=128. However, the EER score of 2.325% is obtained 
by the model after the implantation of the TM, which is lower 
than that (3.734%) produced by the original model.  

Third, when J increases to a certain value (e.g., 16), the 
model complexity decreases significantly, but the model error 
gradually increases and is worse than that of the original model. 
For example, when J=16 and B=C=16, the PN value decreases 
to 289.02 K (only 2.5% of 11.38 M) and the MACs value 
decreases to 0.040 G (only 4.8% of 0.840 G), but the EER score 
increases to 3.205% (higher than 1.464%). The possible reason 
is described as follows. With the increase of J, the dimension of 
feature subsets will become smaller and smaller. When the 
dimension of feature subsets is reduced to a certain value (e.g., 
L=5), the correlational information between these J feature 
subsets is so damaged that the fusion block of the TM cannot 
recover it. As a result, the error obtained by the model after the 
implantation of the TM cannot be smaller than that obtained by 
the original model when J exceeds a threshold (e.g., 16).  

In summary, this experiment investigates the impact of the 
TM implantation on the model error and model complexity by 
setting different values of J, N, C and B. The experimental 
results indicate that the model complexity is greatly reduced 
when the model error is basically unchanged or even becomes 
lower after the implantation of the TM. 

Impact of the overlap between feature subsets 
In this ablation experiment, we analyze the impact of the 

overlap between J feature subsets on the model error and 
complexity. The configurations of main parameters of the TM 
and AMCRN model are as follows: N=80, L=20, B=C=256. We 
set three different overlaps between J feature subsets, namely 
0%, 25%, and 50%. The overlap of 0% means that there is no 
overlap between J feature subsets and the input feature is split 
into four feature subsets (J=80/20=4). Similarly, the overlaps of 
25% and 50% denote that there are 5-dimension overlap and 
10-dimension overlap between J feature subsets, respectively, 
and thus the input feature is divided into J=5 and J=7 feature 
subsets, respectively. Table III lists the scores of EER, PN, and 
MACs that are produced by the AMCRN model on the Vox1-O 
with three overlaps between J feature subsets. 

TABLE III 
IMPACTS OF OVERLAP BETWEEN FEATURE SUBSETS ON THE MODEL ERROR AND 
MODEL COMPLEXITY WHEN EVALUATED ON THE VOX1-O 

Overlaps J EER (%) PN MACs
0% 4 1.459 6.93 M 0.362 G 
25% 5 1.442 6.93 M 0.425 G
50% 7 1.391 6.93 M 0.602 G

Based on the results listed in Table III, we can obtain the 
following three observations.  

First, as the overlap between feature subsets increases, the 

error decreases. For example, the EER score decreases from 
1.459% to 1.391% when the overlap increases from 0% to 50%. 
The reason is probably that the more overlap between feature 
subsets, the richer correlation information contained in each 
feature subset, and the stronger the representational capability 
of speaker embedding. Hence, the model error can be lower.  

Second, the memory requirement of the model is not related 
to the overlap between feature subsets. When the overlap 
increases from 0% to 50%, the PN value remains unchanged. 
The possible reason is described as follows. In our method, 
each feature subset is fed into the model independently. No 
matter how many feature subsets are, as long as the dimension 
of feature subsets and the model parameters remain unchanged, 
the PN value will keep the same.  

Third, with the increase of the overlap between feature 
subsets, the computational complexity of the model increases. 
For example, the MACs value increases from 0.347 G to 0.602 
G when the overlap increases from 0% to 50%. The reason is 
probably that the more overlap between feature subsets, the 
more feature subsets the model needs to process. Hence, the 
computational load of the model becomes heavier. 

In conclusion, increasing the overlap between feature subsets 
will lead to the decrease of the model error, but it will result in 
the increase of the computational complexity of the model. 
Accordingly, in practical applications, we can set different 
overlaps between feature subsets as needed. For example, if 
there are only limits on the model size without restrictions on 
the computational complexity, the error can be reduced by 
reasonably increasing the overlap between feature subsets.  

Qualitative analysis for feature fusion 
In this ablation experiment, we aim to qualitatively analyze 

the impact of feature fusion on the representational capability 
of feature subsets and visualize this impact. The t-SNE [63] is 
one of the most popular methods for visualizing the similarities 
of different classes (samples). Although it cannot ensure that 
the distances between classes in low-dimensional space 
corresponds exactly to the distances in high-dimensional space, 
the distances between classes in high-dimensional space are 
well preserved in low-dimensional (e.g., two-dimensional) 
space [63]. Hence, we adopt the t-SNE to map the feature 
subsets Fi and 𝑭௜ꞌ  (as shown in Fig. 2) into a two-dimensional 
space. Fi and 𝑭௜ꞌ  are the input and output feature subsets of the 
feature fusion block of the TM, respectively. The scikit-learn (a 
Python library) is used to reduce the dimensionality of Fi and 𝑭௜ꞌ , while the Python library of matplotlib is adopted to plot the 
distributions of both Fi and 𝑭௜ꞌ  in the two-dimension space.  

Without loss of generality, ten speakers are randomly chosen 
from the Vox1-O to show the distributions of their feature 
subsets Fi and 𝑭௜ꞌ  in the two-dimensional space. We choose Fi 
and 𝑭௜ꞌ  from the TM which is implanted into the AMCRN. We 
depict the distributions of Fi and 𝑭௜ꞌ  (1≤i≤4) output from Block 
4 of the AMCRN in two-dimensional space, as shown in Fig. 5. 
From the four subgraphs of Fig. 5, we can observe that the 
intervals between ten 𝑭௜ꞌ  are almost all larger than those 
between ten Fi. In other words, compared with the ten Fi 
without feature fusion, the ten 𝑭௜ꞌ  with feature fusion are further 
apart in the two-dimensional space and the confusion between 
the ten 𝑭௜ꞌ  are expected to be less than that between the ten Fi. 
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Hence, the processing of the feature fusion block is helpful to 
enhance the representational capability of the transformed 
feature subsets. The stronger the representational capability of 
the feature subsets is, the smaller the error of the model will be. 

         
  (a) F1 and F'1 in Block 4 of AMCRN       (b) F2 and F'2 in Block 4 of AMCRN 

           
(c) F3 and F'3 in Block 4 of AMCRN       (d) F4 and F'4 in Block 4 of AMCRN 

Fig. 5 Visualization of the Fi and 𝑭௜ꞌ  (1≤i≤4) of ten speakers that are randomly 
selected from the Vox1-O. Fi and 𝑭௜ꞌ  denote the input and output feature subsets 
of the feature fusion block of the TM, respectively. The digits from 1 to 10 
represent ten different speakers.  

D. Comparison of Different Methods 
In this section, we compare the proposed lightweight method 

to six state-of-the-art methods for lightweight SV, including the 
ECAPA-TDNNLite [50], EfficientTDNN [51], KD-based [52], 
Thin-ResNet34 [64], Fast-ResNet34 [65], and CSTCTS1dConv 
(Channel Split Time-Channel-Time Separable 1-dimensional 
Convolution) [66]. The ECAPA-TDNNLite based method [50] 
is a lightweight version of the ECAPA-TDNN based method, in 
which a large model, ECAPA-TDNN, is utilized for enrollment 
and a small model, ECAPA-TDNNLite, is used for verification. 
The EfficientTDNN based method [51] uses the NAS technique 
to design an efficient model to implement lightweight SV. The 
KD-based method [52] needs to train a large teacher model first, 
and then the KD technique is adopted to obtain a small student 
model based on the teacher model for realizing lightweight SV. 
The Thin-ResNet34 based method [64] and the Fast-ResNet34 
based method [65] are lightweight versions of the ResNet34 
based method. In the CSTCTS1dConv based method [66], a 
CSTCTS1dConv module was designed and then the KD 
technique was applied to improve the performance by learning 
better speaker embedding from the large model. 

Main parameters of these baseline methods above are set 
according to the recommendations in corresponding references 
and then properly tuned on the training data. These baseline 
methods are implemented using the source codes released by 
the authors of these methods, or re-implemented by ourselves 
according to the descriptions in the corresponding references. 
Our proposed method for lightweight SV is implemented by 
implanting the proposed TM into three models and thus has 

three different versions, including the AMCRN-TM, the 
ResNet34-TM, and the ECAPA-TDNN-TM. Based on the 
introductions above, main technical characteristics between 
different methods for lightweight SV are briefly presented in 
Table IV.  

TABLE IV 
SUMMARY OF DIFFERENT METHODS FOR LIGHTWEIGHT SV 

Methods Technical characteristics
ECAPA-TDNNLite Lightening the ECAPA-TDNN 
EfficientTDNN Using the NAS to design model 
KD-based  Using the KD to obtain teacher-student models 
Thin-ResNet34 Thin version of the ResNet34 
Fast-ResNet34 Fast version of the ResNet34  
CSTCTS1dConv Channel split time-channel-time separable 1D Conv
Ours Implanting the plug-and-play TM into models 

Various methods are compared on three different evaluation 
sets (Vox1-O, Vox1-E, and Vox1-H) in model error (EER) and 
model complexity (including PN and MACs). Under the same 
experimental conditions, the scores of EER, PN and MACs that 
are achieved by various methods on three different evaluation 
sets are presented in Table V.  

TABLE V 
COMPARISON OF DIFFERENT METHODS IN TERMS OF EER, PN AND MACS 

Methods EER (%) PN MACsVox1-O Vox1-E Vox1-H
ECAPA-TDNNLite 3.07 3.00 5.20 318.13K 0.060G

EfficientTDNN 2.20 2.37 3.79 0.90 M 0.204G
KD-based 2.638 2.729 4.117 970.01K 0.081G

Thin-ResNet34 2.531 2.622 4.095 1.41 M 5.403G
Fast-ResNet34 2.594 2.703 4.212 1.41 M 2.712G

CSTCTS1dConv 2.62 2.77 4.44 238.99K 23.2M
AMCRN (1, 512) 1.464 1.551 2.640 11.38 M 0.840G

AMCRN-TM (2, 128) 1.896 2.013 3.108 1.76 M 0.093G
AMCRN-TM (4, 64) 2.624 2.726 3.842 644.89K 0.053G
AMCRN-TM (8, 32) 2.981 3.108 4.219 360.79K 0.043G

AMCRN-TM (16, 16) 3.205 3.419 4.562 289.02K 0.040G
ResNet34 (1, 512) 1.674 1.752 3.440 23.91 M 14.95G

ResNet34-TM (2, 128) 2.015 2.107 2.812 9.32 M 5.783G
ResNet34-TM (4, 64) 2.799 2.915 4.639 3.82 M 2.932G
ResNet34-TM (8, 32) 3.144 3.216 5.014 1.97 M 1.954G
ResNet34-TM (16, 16) 3.446 3.573 5.317 1.20 M 1.842G

ECAPA-TDNN (1, 512) 1.010 1.241 2.320 6.20 M 0.882G
ECAPA-TDNN-TM (2, 128) 1.441 1.635 2.829 2.18 M 0.090G
ECAPA-TDNN-TM (4, 64) 1.922 2.138 3.218 0.89 M 0.051G
ECAPA-TDNN-TM (8, 32) 2.532 2.741 3.920 523.26K 0.034G
ECAPA-TDNN-TM (16, 16) 2.813 2.911 4.225 310.49K 0.026G

As shown in Table V, there are three versions of the 
proposed method and six baseline methods for performance 
comparison. For each version of the proposed method, we set 
five different numbers of feature subsets and channels, 
including (1, 512), (2, 128), (4, 64), (8, 32), and (16, 16). The 
left digit (i.e., 1, 2, 4, 8, 16) and the right digit (i.e., 512, 128, 64, 
32, 16) in the brackets represent the number of feature subsets 
and the number of channels, respectively. The AMCRN (1, 
512), ResNet34 (1, 512), and ECAPA-TDNN (1, 512) stand for 
the original method without the implantation of the TM. The 
AMCRN-TM (· , ·), the ResNet34-TM (· , ·), and the 
ECAPA-TDNN-TM (· , ·) represent the proposed methods for 
lightweight SV with different parameter configurations after 
the implantation of the TM. Based on the experimental results 
obtained by different methods in Table V, the following three 
conclusions can be drawn.  

First, the complexity of three versions of the proposed 
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method decreases significantly but their errors increase slightly, 
after the TM is implanted into the models of AMCRN, 
ResNet34 and ECAPA-TDNN. As for the AMCRN based 
method, the PN value decreases from 11.38 M (39.37 times of 
289.02 K) to 289.02 K and the MACs value decreases from 
0.840 G (21 times of 0.040 G) to 0.040 G. Meanwhile, the EER 
scores on the evaluation sets of Vox1-O, Vox1-E, and Vox1-H 
increase from 1.464% to 3.205% (2.19 times of 1.464%), from 
1.551% to 3.419% (2.2 times of 1.551%), and from 2.640% to 
4.562% (1.73 times of 2.640%), respectively. Similar results 
can be obtained for the ResNet34 based and ECAPA-TDNN 
based methods. That is, by setting proper parameters (e.g., 
numbers of channels and feature subsets), implanting the TM 
into the three models can remarkably reduce the model 
complexity with slight increase of the model error.  

Second, three versions of the proposed method have different 
advantages in both error and complexity. The AMCRN-TM 
(· , ·) based method has advantages over the methods based on 
the ECAPA-TDNN-TM (· , ·) and the ResNet34-TM (· , ·) in 
terms of PN. The ECAPA-TDNN-TM (· , ·) based method 
outperforms the methods based on other two models in terms of 
EER and MACs. In addition, among the three versions of the 
proposed method, the ResNet34 based method has the heaviest 
computational load and the highest memory requirement. The 
reason is probably that compared with the AMCRN and the 
ECAPA-TDNN, the ResNet34 has the largest number of layers, 
and each layer (especially the convolutional layer) has a large 
amount of computation and parameters.  

Third, the proposed methods outperform the six baseline 
methods on the whole in model error and model complexity. 
For example, the proposed methods of the AMCRN-TM (4, 64) 
and the ECAPA-TDNN-TM (16, 16) have advantages over the 
ECAPA-TDNNLite based method in terms of EER and MACs, 
and in terms of all metrics of EER, PN and MACs, respectively. 
The proposed methods of the ECAPA-TDNN-TM (4, 64) 
outperforms the baseline methods based on the EfficientTDNN, 
Thin-ResNet34 and Fast-ResNet3 in terms of all metrics of 
EER, PN and MACs. In addition, the proposed method of the 
AMCRN-TM (4, 64) exceeds the KD-based method in terms of 
all performance metrics of EER, PN and MACs. Although the 
CSTCTS1dConv based method achieves competitive results 
under similar model complexity, the proposed method of 
ECAPA-TDNN-TM (16, 16) beats it in EER on the Vox1-H.  

In addition, the ResNet34-TM (16, 16) based method obtains 
a little higher EER scores than the baseline methods based on 
both the Thin-ResNet34 and the Fast-ResNet34. However, the 
model complexity (namely PN and MACs values) of the 
ResNet34-TM (16, 16) based method is much lower than that of 
the baseline methods based on the Thin-ResNet34 and the 
Fast-ResNet34. It should be noted that the goal of this work is 
not to achieve that the proposed method based on any models 
outperforms all existing lightweight SV methods in model error. 
Instead, our goal is that the proposed method using the 
plug-and-play TM can noticeably reduce the complexity of 
multiple kinds of models and meanwhile can keep the models’ 
error basically unchanged. 

In summary, the proposed TM can be easily implanted into 
several models (here taking three state-of-the-art models as 
examples) with different architectures without changing the 
structures of the original models. The proposed TM works in a 

plug-and-play way to noticeably reduce the complexity of 
multiple models rather than one specific model, and only leads 
to a slight increase in error. The remarkable difference between 
the proposed method and all existing methods is that the former 
is a general solution for lightening existing models for realizing 
lightweight SV, while the latter is a specific lightweight SV 
method. That is, we design a TM for reducing the complexity of 
many kinds of models, thereby achieving lightweight SV. 
However, all existing lightweight SV methods are designed for 
a specific model and thus lack generality. From the perspective 
of generality, the proposed method has advantage over existing 
lightweight SV methods. 

E. Robustness on Truncated Segments 
In this section, we analyze the robustness of six baseline 

methods and three different representatives of our proposed 
method on the truncated testing segments. These methods have 
similar values of PN and MACs. We only give the scores of 
EER, because the value of PN has no relationship with the 
length of speech segments and the value of MACs definitely 
increases with the increase of the length of speech segments. 
For simplicity, we choose one representative from each of three 
versions of the proposed method, namely the AMCRN-TM (16, 
16), the ResNet34-TM (16, 16), and the ECAPA-TDNN-TM 
(16, 16). The average length of each testing sample is about 8 
seconds. Each truncated segment is obtained by randomly 
dividing each testing sample into segments with lengths of 2 
seconds or 5 seconds. These truncated segments in the three 
different evaluation sets are adopted as the testing data to 
evaluate the robustness of various methods on the truncated 
testing segments with different lengths. Table VI presents the 
EER scores obtained by different methods on the truncated 
testing segments.  

TABLE VI 
EER SCORES (IN %) OBTAINED BY SIX BASELINE METHODS AND THREE 
REPRESENTATIVES OF OUR PROPOSED METHOD WHEN THEY ARE EVALUATED 
ON THE TRUNCATED TESTING SEGMENTS 

Methods Length Vox1-O Vox1-E Vox1-H

ECAPA-TDNNLite 
8 s 3.07 3.00 5.20
5 s 3.24 3.26 5.48
2 s 5.03 5.12 7.29

EfficientTDNN 
8 s 2.20 2.37 3.79
5 s 2.39 2.81 4.11
2 s 4.22 4.60 6.02

KD-based 
8 s 2.638 2.729 4.117
5 s 2.832 3.184 4.503
2 s 4.641 4.873 6.311

Thin-ResNet34 
8 s 2.531 2.622 4.095
5 s 3.610 3.831 4.514
2 s 5.491 5.772 6.963

Fast-ResNet34 
8 s 2.594 2.703 4.212
5 s 3.675 3.922 4.635
2 s 5.571 5.864 7.087

CSTCTS1dConv 
8 s 2.62 2.77 4.44
5 s 2.91 3.19 4.72
2 s 4.63 4.88 6.51

AMCRN-TM (16, 16) 
8 s 3.205 3.419 4.562
5 s 3.341 3.533 4.738
2 s 5.013 5.104 6.714

ResNet34-TM (16, 16) 
8 s 3.446 3.573 5.317
5 s 4.619 4.771 5.723
2 s 6.502 6.763 8.143

ECAPA-TDNN-TM (16, 16)
8 s 2.813 2.911 4.225 
5 s 2.957 3.224 4.502
2 s 4.516 4.787 6.269



 10

Based on the experimental results produced by six baseline 
methods and the three representatives of our proposed method 
in Table VI, we can draw the following two conclusions.  

First, the EER scores achieved by all methods on testing 
segments steadily increase with the decrease of the segment 
length. Furthermore, the increase of EER scores obtained by the 
three proposed methods is smaller than that obtained by most 
baseline methods. For instance, when the lengths of speech 
segments in the Vox1-H decrease from 8 seconds to 2 seconds, 
the absolute increment of the EER score achieved by the 
proposed method of ECAPA-TDNN-TM (16, 16) is 2.044% 
(6.269% - 4.225%). This value (2.044%) is smaller than the 
counterparts obtained by all baseline methods.  

Second, as the length of the testing segments decreases, the 
proposed methods gradually achieve lower EER scores than 
most baseline methods. For example, the proposed methods of 
ECAPA-TDNN-TM (16, 16) and AMCRN-TM (16, 16) 
obtains the EER scores of 2.813% and 3.205%, respectively, 
when they are evaluated on the testing segments of 8 seconds in 
Vox1-O. These two EER scores of 2.813% and 3.205% are 
higher than the EER scores of 2.62% (obtained by the method 
of CSTCTS1dConv) and 2.531% (obtained by the method of 
Thin-ResNet34), respectively. However, when these methods 
are assessed on the testing segments of 2 seconds in Vox1-O, 
the proposed methods of ECAPA-TDNN-TM (16, 16) and 
AMCRN-TM (16, 16) obtains lower EER scores than the 
baseline methods of CSTCTS1dConv and Thin-ResNet34, 
respectively. Similar results can be obtained when the proposed 
methods and baseline methods are evaluated on the testing 
segments in other evaluation sets. 

In conclusion, compared with the baseline methods, the EER 
scores of the proposed methods are less affected by the length 
of testing segments. That is, the proposed methods are more 
robust than baseline methods on truncated testing segments. 
Accordingly, the proposed methods can generalize well across 
truncated testing segments with different lengths instead of 
overfitting on testing segments with fixed length. 

VI. CONCLUSIONS 
In this study, we focused on solving the problem of 

lightweight SV with both lower complexity and lower error. To 
realize this goal, we designed a TM to conduct feature partition 
and fusion on the input feature. Afterwards, we proposed a 
method for lightweight SV by implanting the proposed TM into 
three state-of-the-art models with different architectures. Based 
on the description of both the designed TM and the proposed 
method for lightweight SV, and the experimental discussions, 
the following two conclusions can be drawn.  

First, the proposed TM worked well for reducing the model 
complexity while obtaining equivalent or even lower error for 
SV. Moreover, it can be implanted into the models with 
different architectures in a plug-and-play way without the need 
to change the structures of the original models. On the contrary, 
the baseline methods for model lightweight need to change the 
models by redesigning the entire architectures or replacing 
some modules (blocks) of the original models. In addition, the 
proposed TM can be used to reduce the complexity of multiple 
types of models, whereas each one of the baseline methods is 
generally effective for one specific model. 

Second, the proposed method for lightweight SV exceeded 

the state-of-the-art methods on the whole in terms of EER, PN 
and MACs, when evaluated on three different evaluation sets. 
In addition, the proposed method generalized well on truncated 
testing segments with various lengths. 

Although our proposed method has achieved encouraging 
results for lightweight SV, there are still some aspects to be 
improved in it. First, the application scope of the proposed TM 
needs to be extended. Due to the fact that 1D-convolutional 
blocks are adopted in most state-of-the-art models (e.g., 
ECAPA-TDNN) for SV, the convolutional operations in the 
proposed TM are designed to be 1D (see Fig. 2). Hence, the 
proposed TM is effective for lightening the 1D-convolutional 
models only. In future work, we will design a TM that includes 
2D-convolutional blocks and use the proposed TM to lighten 
the 2D-convolutional models. We will also consider designing 
a general TM that can effectively lighten the models of any 
structures, such as the models including 1D-convolutional and 
2D-convolutional blocks. Second, we discussed the lightweight 
of three state-of-the-art models only. We basically placed the 
proposed TM in front of the blocks of the original models, but 
not in each layer of these blocks. In future work, we will 
investigate the lightweight variants of other types of models, 
and explore the implantation of the proposed TM in front of all 
layers of the original models. Third, we did not investigate the 
implementation of the proposed method on intelligent speech 
terminals with limited resources. In next work, we will consider 
the implementation of the proposed method on the portable 
speech terminals for the forensic scenarios. To achieve this goal, 
we will further reduce the model complexity and keep the 
model error as lower as possible by taking effective measures. 
For example, we will optimize the structure of the proposed TM, 
and integrate other techniques (e.g., model quantization) into 
our proposed method.  
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