
 1

Abstract—Although many efforts have been made on decreasing

the model complexity for speaker verification, it is still challenging
to deploy speaker verification systems with satisfactory result on
low-resource terminals. We design a transformation module that
performs feature partition and fusion to implement lightweight
speaker verification. The transformation module consists of
multiple simple but effective operations, such as convolution,
pooling, mean, concatenation, normalization, and element-wise
summation. It works in a plug-and-play way, and can be easily
implanted into a wide variety of models to reduce the model
complexity while maintaining the model error. First, the input
feature is split into several low-dimensional feature subsets for
decreasing the model complexity. Then, each feature subset is
updated by fusing it with the inter-feature-subsets correlational
information to enhance its representational capability. Finally, the
updated feature subsets are independently fed into the block (one
or several layers) of the model for further processing. The features
that are output from current block of the model are processed
according to the steps above before they are fed into the next
block of the model. Experimental data are selected from two
public speech corpora (namely VoxCeleb1 and VoxCeleb2).
Results show that implanting the transformation module into
three models (namely AMCRN, ResNet34, and ECAPA-TDNN)
for speaker verification slightly increases the model error and
significantly decreases the model complexity. Our proposed
method outperforms baseline methods on the whole in memory
requirement and computational complexity with lower equal
error rate. It also generalizes well across truncated segments with
various lengths.

Index Terms—Lightweight model, feature partition, feature
fusion, speaker verification

I. INTRODUCTION
PEAKER recognition is the task for recognizing a person
based on his/her voices, which is one major development
direction of biometrics [1]. With the wide application of

voice-enabled terminals (e.g., smart watches, smart phones,
smart earphones), speaker recognition has become a crucial
technology in many practical scenarios of voice biometrics,
such as criminal investigation [1], financial security [2]. For
instance, law enforcement agencies usually need to confirm
whether the recorded voices are spoken by the claimed person

This work was supported by national natural science foundation of China

(62371195, 62111530145, 61771200), Guangdong basic and applied basic
research foundation (2021A1515011454), international scientific research
collaboration project of Guangdong (2021A0505030003, 2023A0505050116),
and the Guangdong Provincial Key Laboratory of Human Digital Twin
(2022B1212010004).

All authors of this paper are with School of Electronic and Information
Engineering, South China University of Technology, Guangzhou, China. The
corresponding author is Dr. Yanxiong Li (eeyxli@scut.edu.cn).

or not, which is a key cue for solving criminal cases. In past
decades, judges, detectives, lawyers, and courts intended to
utilize speaker recognition as a powerful tool to identify
criminals [1]. In the application of financial security, speaker
recognition is one of the main ways for remote identity
authentication, which is utilized to protect the security of the
funds in the accounts [2]. In addition, speaker recognition is
also a basic or an indispensable part for implementing other
speech related tasks, such as speaker clustering [3], speaker
diarization [3], multi-speaker speech recognition [4], and
speaker tracking [5].

The task of speaker recognition generally includes two
sub-tasks: speaker identification and Speaker Verification (SV)
[6]. The task of speaker identification is to decide which
enrolled person utters a given voice from a set of known
persons, while the task of SV is to reject or accept the identity
claim of a person based on his/her utterance. The work in this
paper concentrates on the task of SV only. Concretely, we
propose a method for lightweight SV using a Transformation
Module (TM) with feature partition and fusion.

The rest of this paper is organized as follows. Sections II and
III present related works and our contributions, respectively.
Section IV describes the proposed method in detail. Section V
gives the experiments and discussions, and the conclusions are
drawn in Section VI.

II. RELATED WORKS
Many studies have been conducted on the task of SV [7]-[13].

The goal of these previous works was to tackle two main
technical problems. The first problem is to effectively learn a
feature with powerful representational capability. The second
problem is to construct a classifier with strong classification
ability.

Many hand-crafted features (shallow-model based features)
were designed to represent the time-frequency characteristics
of different speakers, including Mel-frequency cepstral
coefficients [14], constant Q cepstral coefficients [15], linear
prediction coding coefficients [14], eigenvoice-motivated
vectors [16], and I-vector [17], [18]. They were proposed for
specific conditions and thus had poor generalization ability for
other situations. Furthermore, they could not effectively
characterize the differences of deep-level properties among
different speakers, since they were obtained based on shallow
models rather than deep ones. Afterwards, the deep-model
based features were learned using different kinds of deep neural
networks. These features mainly included the X-vector learned
by a Time-Delay Neural Network (TDNN) [19]-[23] or an
Emphasized Channel Attention, Propagation and Aggregation
in TDNN (ECAPA-TDNN) [24]; the R-vector learned by a
Residual Network with 34 layers (ResNet34) [25]; the S-vector

Lightweight Speaker Verification Using Transformation Module
with Feature Partition and Fusion

Yanxiong Li, Zhongjie Jiang, Qisheng Huang, Wenchang Cao, and Jialong Li

S

 2

learned by a Transformer [26]. In addition, other kinds of
neural networks were adopted to learn deep embeddings
[27]-[35], such as temporal dynamic convolutional neural
network [31], Attentive Multi-scale Convolutional Recurrent
Network (AMCRN) [33], Siamese neural network [34], and
long short-term memory network [35].

Besides the works on feature learning (extraction), many
efforts were made on the construction of back-end classifiers
for SV. The typical classifiers mainly included the Cosine
Distance (CD) [1], Probabilistic Linear Discriminant Analysis
(PLDA) [36], [37], and deep neural network [38].

Although the SV methods proposed in these aforementioned
works obtained low Equal Error Rate (EER), the reduction of
model complexity (including both computational complexity
and memory requirement) was not explicitly considered.
Accordingly, the model complexity of these methods was very
high, and thus they cannot be directly deployed on the terminals
with limited resources. To reduce the model complexity for
implementing lightweight SV, some recent works were done on
the design of lightweight models or the compression of model
parameters without significantly increasing the model error.
These efforts include the design of computationally-efficient
convolution, the manual or automatic design of better model
architectures, and the construction of small student model,
which are briefly summarized as follows.

Inspired by the success of the Depth-wise Separable
Convolutions (DSC) adopted in the MobileNet for mobile
vision applications [39], both the SpeakerNet [40] and the
AM-MobileNet1D [41] were designed for realizing lightweight
SV. The SpeakerNet mainly consists of residual blocks with
one-dimensional (1D) DSC and has 5 million parameters, while
the AM-MobileNet1D occupies 11.6 megabytes of memory.
Although the DSC operations significantly reduced the model
complexity, they caused the increase of the error. What is more,
the tradeoff between the reduction of the model complexity and
the increase of the model error was generally hard to achieve in
practice.

The model architectures were manually designed to reduce
the model complexity for implementing lightweight SV [42]-
[44]. In the work of [42], the original trunk of the SincNet [45]
was replaced by a lightweight trunk with 2.8 million parameters
for reducing the model complexity. Lee et al. [44] designed a
hyperbolic ResNet for lightweight application. Their model
learned more compact deep embeddings with equivalent error.
In short, the size of the models whose architectures were
manually designed generally reached the level of millions of
parameters.

Additionally, some researchers applied the techniques of
Knowledge Distillation (KD) [46], [47] and Neural Architecture
Search (NAS) [48] to implement lightweight SV [49]-[52]. In
the work of [49], the strategy of teacher-student training was
proposed for text-independent SV, and competitive error rate
with 88-93% smaller models was obtained. Lin et al. [50]
designed a framework with asymmetric structure, in which a
large model was used for enrollment and a small model was
used for verification. The generated small model achieved
competitive results with 11.6 million floating-point operations
per second. Recently, the NAS technique was applied to design
an efficient model (termed EfficientTDNN) which obtained
satisfactory error rate with low computational complexity [51].

In short, these previous methods produced a small model for
verification. However, the KD based methods had to construct
a large model for training the small model, and the NAS based
methods required to search the appropriate model with a lot of
different architecture settings. As a result, the training expense
and whole procedure for implementing lightweight SV are
actually not light.

III. OUR CONTRIBUTIONS
Based on the introductions in Section II, it can be concluded

that a lot of efforts have been made on solving the problems of
both general SV and lightweight SV. However, there are some
shortcomings in prior works. First, there is still room to reduce
the model complexity. For example, the number of model
parameters in prior methods is almost over one million for
obtaining lower EER scores. Second, the structure of the
original model needs to be significantly modified or a new
model has to be designed for implementing lightweight SV. For
example, it is required to redesign the model structure, replace
some components, search for many model architectures, or
pre-train a large model. These operations are not simple, and
various operations are required to lighten models with different
architectures. That is, each one of the previous methods can be
only applicable to one specific model in practice, and thus lacks
generality.

To overcome the aforementioned shortcomings in the prior
works, we design a TM to execute the operations of both
feature partition and feature fusion for realizing lightweight SV.
What is more, we propose a method for lightweight SV by
implanting the TM into models with different architectures.
Experimental results on three different evaluation sets indicate
that implanting the proposed TM into three state-of-the-art
models for SV obtains equivalent EER scores or slightly-lower
EER scores with remarkable reduction of the model complexity.
Compared with the state-of-the-art methods of lightweight SV,
our proposed method can obtain lower EER scores and model
complexity. What is more, the proposed method also obtains
satisfactory results when evaluated on truncated segments with
different durations. In a word, main contributions of this work
are briefly summarized as follows.
1. To reduce the model complexity and obtain the transformed

features with powerful representational capability, we
design a TM to perform feature partition and feature fusion.
The proposed TM is composed of some simple but effective
operations, such as convolution, pooling, concatenation,
mean, normalization, and element-wise summation. It can
be easily implanted into the original models with various
architectures for reducing the model complexity without
replacing any components or changing the architectures of
the original models. That is, it can work in a plug-and-play
way and can be utilized to reduce the complexity of many
types of models for realizing lightweight SV. To the best of
our knowledge, the proposed TM is novel and is not
adopted in prior works.

2. We propose a method for lightweight SV by placing the TM
in front of different blocks of the original model. The
proposed method is a general solution for lightening
existing models for realizing lightweight SV, whereas each
one of all previous methods is a specific solution for

 3

lightweight SV and lacks generality. In addition, we
comprehensively evaluate the effectiveness of the proposed
method, and compare it with the state-of-the-art methods on
three different evaluation sets under various experimental
conditions. Experimental results indicate that our proposed
method basically has advantages over the baseline methods
in both model error and model complexity under the same
experimental conditions.

IV. METHOD
Fig. 1 illustrates the implantation of the TM into the model

for SV, where the TM is placed in front of the block of the
model. The TM consists of two blocks: feature partition and
feature fusion. First, the input feature F (T frames and N
dimensions per frame) is segmented into J feature subsets 𝑭௜ (T
frames and L dimensions per frame, 1≤i≤J) by the feature
partition block. Afterwards, each 𝑭௜ is updated to 𝑭௜ꞌ by the
feature fusion block. Finally, each 𝑭௜ꞌ is fed into the block of the
model to produce the transformed feature subset 𝑭௜ꞌꞌ .

Transformation module
Feature
partition

Feature
fusion

Block of
the model

Input
feature F

Fi Fi
T

N

T
L

T
L

T
L

'

Fi ''

... ...

...

Fig. 1 The schematic diagram of implanting the transformation module into the
model. The feature F is converted into feature subsets 𝑭௜, 𝑭௜ꞌ and 𝑭௜ꞌꞌ in turn.

The motivation for implanting the TM into the model for SV
is based on two considerations. First, we do not want to change
the architecture of the original SV model. The implantation of
the TM can be implemented by placing the TM in front of each
block (layer) of the model. Second, implanting the TM into the
model not only reduces the model complexity (by feature
partition), but basically does not increase the model error (by
feature fusion). The feature partition block splits the input
feature F into J feature subsets 𝑭௜ that will be independently
fed into the block of the model after feature fusion. That is, after
the implantation of the TM, the input of each block of the
model becomes low-dimensional feature subsets rather than the
high-dimensional input feature. Therefore, the number of
parameters of each block of the model can be reduced when
each feature subset is fed into the model. However, the
correlational information (namely cross sub-band dependency
or global contextual spectral information) between feature
subsets 𝑭௜ cannot be utilized if each 𝑭௜ is independently fed
into the model. That is, the model cannot see the complete
feature and thus cannot capture global contextual spectral
information when each 𝑭௜ is independently fed into the model.
As a result, the representational capability of the transformed
feature will be weakened. To make the model see the complete
feature and capture the correlational information between J
feature subsets 𝑭௜ , we design a block of feature fusion that
enables feature subsets 𝑭௜ to interact with each other. After
feeding 𝑭௜ into the feature fusion block, we obtain feature
subsets 𝑭௜ꞌ . Each 𝑭௜ꞌ contains the correlational information
between different 𝑭௜, rather than a fragmented feature subset.
The correlational information is beneficial for enhancing the
representational capability of the learned feature. Therefore, the

model error for SV is expected to be maintained when the
feature subsets 𝑭௜ꞌ are adopted as the input of the model.

A. Transformation Module
Fig. 2 shows the framework of the TM. The feature partition

block is composed of one operation of feature division, while
the feature fusion block comprises the operations of 1D
convolution, mean pooling, mean calculation, concatenation,
Z-score normalization, and element-wise summation.

Initialization: 1D Conv (L, Q)

+

Feature fusion block

F2
F1

Fi

F'1
F'2

F'i

F'J

Element-wise summation

Input
feature F

Mean pooling

Interaction: Mean & 1D Conv (Q, Q)

Fusion: Concatenation & 1D Conv (2Q, L)

Z-score normalization

Feature partition block

Fî

V

Fi

FJ

...
...

...
...

Fĩ

Fī

Fĭ

Shared for all Fi

Fig. 2 The framework of the proposed transformation module for feature
partition and fusion. 1D Conv (L, Q) denotes one-dimensional convolution with
L input channels and Q output channels.

As shown in Fig. 2, the input feature F∈ℝN×T is first fed into
the block of feature partition, and is split into J feature subsets 𝑭௜ ∈ℝL×T along the channel-dimension of deep transformed
feature or along the frequency-dimension of audio feature. T
denotes total number of frames. N and L stand for the
dimension of the feature and feature subsets, respectively.
When adjacent feature subsets overlap to varying degrees, the
value of J will change accordingly. For example, N=80, L=20,
if all adjacent feature subsets do not overlap, then J=4. If there
is 50% overlap between all adjacent feature subsets, then J=7.
After feature partition, each feature subset is fragmented, and
thus does not contain the correlational information between J
feature subsets. The correlational information is originally
contained in the complete feature.

To capture the correlational information between J feature
subsets Fi, we design a block of feature fusion. Each feature
subset Fi is first fed into an initialization layer for producing the
feature subset 𝑭෩௜ ∈ℝQ×T. The initialization layer is to conduct a
one-dimensional convolution whose kernel size is 1, with L
input channels and Q output channels. Afterwards, each feature
subset 𝑭෩௜ is transformed into 𝑭ഥ௜ ∈ℝQ×T by one mean pooling
layer. The feature subset 𝑭ഥ௜ is fed into an interaction layer for

 4

generating the interacted vector V ∈ℝQ×T which is defined by 𝑽 = ℛ ቀଵ௃ ∑ 𝑭ഥ௜௃௜ୀଵ ቁ, (1)

where ℛሺ·ሻ denotes a one-dimensional convolution whose
kernel size is 1, with Q input channels and Q output channels.
The interacted vector V is transformed from the mean vector of
J feature subsets and the output of one-dimensional convolution,
so it contains the correlational information between J feature
subsets. Afterwards, each feature subset 𝑭෩௜ and the interacted
vector V are fed into a fusion layer which is composed of the
operations of concatenation and one-dimensional convolution.
In the fusion layer, the feature subset 𝑭෩௜ and the interacted
vector V are concatenated and then transformed by the
one-dimensional convolution for producing the feature subset 𝑭෱௜ ∈ℝL×T which is obtained by 𝑭෱௜ = ℋ൫ൣ𝑭෩௜, 𝑽൧൯, (2)
where ℋሺ·ሻ represents a one-dimensional convolution whose
kernel size is 1, with 2Q input channels and L output channels;
and ሾ· , ·ሿ denotes an operation of concatenation. We obtain the
feature subset 𝑭෡௜ = {𝑓መ௜௟,௧} ∈ℝL×T after feeding the feature subset 𝑭෱௜ = {𝑓ም௜௟,௧} into a Z-score normalization layer, where 1≤l≤L
and 1≤t≤T. Namely, the 𝑓መ௜௟,௧ is obtained by

 𝑓መ௜௟,௧ = ௙ም೔೗,೟ିఓ೔೟ఙ೔೟ , (3)

where 𝑓መ௜௟,௧ and 𝑓ም௜௟,௧ represent the l-th element of the t-th frame
in the feature subsets 𝑭෡௜ and 𝑭෱௜, respectively; 𝜇௜௧ and 𝜎௜௧ denote
mean and standard deviation of the t-th frame in the feature
subset 𝑭෱௜, respectively. Finally, the feature subsets 𝑭෡௜ and Fi
are element-wisely summed to generate the feature subset 𝑭௜ꞌ ∈ℝL×T.

In summary, the function of the proposed TM is to transform
the input feature F ∈ℝN×T into J feature subset 𝑭௜ꞌ ∈ℝL×T.
Moreover, each feature subset 𝑭௜ꞌ contains the correlational
information between J feature subsets 𝑭௜ . The transformation
process above is defined by 𝑭௜ꞌ = ℱሺ𝑭ሻ, (4)
where ℱሺ·ሻ is the conversion function of the proposed TM.

B. Implanting the Transformation Module into Models
To demonstrate the effectiveness of the proposed TM for

reducing the model complexity, we implant the TM into three
state-of-the-art models for SV, namely ECAPA-TDNN [24],
ResNet34 [25], and AMCRN [33]. Specifically, we place the
proposed TM in front of each block in the frame-level module
rather than the utterance-level module of the model. Main
reasons for doing so are as follows.

First, the computational load of the blocks in the frame-level
module is much heavier than that of the blocks in the
utterance-level module, because the frame-level module is the
main part of the model. Accordingly, implanting the proposed
TM into the blocks of the frame-level module can significantly
reduce the complexity of the model.

Second, the semantic abstraction degrees of the features
learned by the blocks in the frame-level module are much lower
than that obtained in the utterance-level module, because the
utterance-level module is located in the deeper position of the
model. The outputs of both feature partition and feature fusion
from the frame-level module are expected to cause less damage

to the abstract semantic information which has influence on the
representational capability of the learned features.

The implantation of the TM into the AMCRN is shown in
Fig. 3. The AMCRN model is composed of the blocks in black
solid-line boxes, whose detailed information is introduced in
[33]. The proposed TM (as illustrated in green solid-line box) is
placed in front of each block of the frame-level module in the
AMCRN model.

1D dilated Res2Net block with temporal attention

1D dilated Res2Net block with temporal attention

AAM-Softmax classifier

Speech sample

Log Mel-spectrum

Fully-connected layer with batch normalization

Residual BLSTM block

Channel attentive statistic pooling layer

1D initial convolutional layer

The proposed TM

The proposed TM

The proposed TM

The proposed TM

Concatenation

Frame-level module

Utterance-level module

Speaker embedding

Block 1

Block 2

Block 3

Block 4

Fig. 3 The implantation of the TM into the AMCRN. BLSTM: bidirectional
long short-term memory; AAM-Softmax: additive angular margin Softmax.

The AMCRN model after the implantation of the TM works
as follows. First, audio feature of Log Mel-spectrum [53] is
extracted from each speech sample and fed into the TM for
splitting the Log Mel-spectrum feature into feature subsets and
fusing these feature subsets. According to the extraction
process of Log Mel-spectrum in [53], Log Mel-spectrum is
actually the feature of FBank (Filter-Bank). To facilitate the
visualization of feature partition, this audio feature is called
Log Mel-spectrum here. The feature subsets that are output
from the proposed TM are independently and sequentially input
into the 1D initial convolutional layer (in Block 1) for further
processing. Next, the transformed feature subsets are fed into
the proposed TM (in Block 2) and then transformed by the 1D
dilated Res2Net block with temporal attention. Similarly, the
transformed feature subsets are sequentially processed by the
operations in Block 3 and Block 4. Afterwards, these feature
subsets are spliced together by the Concatenation layer (green
solid-line box) to form a complete feature which is input into
the utterance-level module for further transformation. Finally,
the speaker embedding is produced from the Fully-connected
layer with batch normalization for scoring by the CD or PLDA.

 5

The implantations of the proposed TM into the ResNet34 and
ECAPA-TDNN models are illustrated in Fig. 4 (a) and Fig. 4
(b), respectively. The ResNet34 and ECAPA-TDNN models
are composed of layers (or blocks) in black solid-line boxes in
Fig. 4 (a) and Fig. 4 (b), respectively. The workflows of these
two models after the implantation of the proposed TM are
similar to that of the AMCRN model. The ECAPA-TDNN and
ResNet34 models are described in detail in [24] and [25],
respectively. To effectively apply the proposed TM for the
lightweighting of ResNet34 model, all convolutions in the
ResNet34 model for the proposed method of ResNet34-TM are
set to 1D convolutions in the experiments.

ResNetBlock-2

ResNetBlock-1

Dense2 (Softmax)

Speech sample

Log Mel-spectrum

Dense1

ResNetBlock-3

StatsPooling & Flatten

Conv1D-1

The proposed TM

The proposed TM

The proposed TM

The proposed TM

Concatenation

Frame-level
module

Utterance-level
module

Speaker
embedding

ResNetBlock-4

The proposed TM

SE-Res2Block

SE-Res2Block

AAM-Softmax

FC+BN

SE-Res2Block

Attentive Stat Pooling + BN

Conv1D + ReLU + BN

The proposed TM

The proposed TM

The proposed TM

The proposed TM

Concatenation

Frame-level module

Utterance-level
module

Speaker
embedding

Conv1D + ReLU

The proposed TM

(a) (b)
Fig. 4 The implantations of the TM into: (a) the ResNet34 and (b) the
ECAPA-TDNN. Conv1D: one-dimensional convolution; ReLU: Rectified
Linear Unit; BN: batch normalization; StatsPooling: statistics pooling;
SE-Res2Block: Squeeze-and-Excitation Res2Net block; FC: fully-connected.

V. EXPERIMENTS AND DISCUSSIONS
In this section, experimental datasets and setups are first

introduced. Then, we perform ablation experiments for the
proposed method. Next, we compare our proposed method to
the baseline methods in the error and complexity. Finally, we
analyze the robustness of three representatives of the proposed
method on truncated testing segments with various lengths.
A. Experimental Datasets

Experimental datasets were selected from two large-scale
speech corpora: the VoxCeleb1 [54] and the VoxCeleb2 [55].
These two speech corpora are publicly available for research

and widely utilized for speaker verification in prior works.
The VoxCeleb1 consists of 153,516 speech samples spoken

by 1,251 speakers. Its duration is 352 hours in total. Speech
samples of the VoxCeleb1 are collected from the sound tracks
of the videos on YouTube. The gender ratio of the VoxCeleb1
is basically balanced, with 45% of female speakers. Speakers
contained in the VoxCeleb1 span a wide range of different ages,
professions, ethnicities, and accents. The contents of the speech
samples are mainly composed of speeches, interviews, excerpts
from professionally shot multimedia. There are several kinds of
real-world noise in the speech samples, such as background
voices (e.g., chatter, laughter), room reverbs, sampling
equipment noise.

The VoxCeleb2 is an extended speech corpus of the
VoxCeleb1, and consists of 1,128,246 speech samples spoken
by 6,112 speakers. Its duration is 2,442 hours in total. The
gender ratio of the VoxCeleb2 is roughly balanced with 61% of
male speakers. The speakers cover a great range of professions,
accents, ethnicities, and ages. Its speech samples are degraded
with background noise, such as overlapping speech, chatter,
laughter, and varying room acoustics.

Experimental data was chosen from the VoxCeleb1 and the
VoxCeleb2, and was composed of three datasets, namely
VoxCeleb2-dev, VoxCeleb1-dev, and VoxCeleb1-test. These
three datasets were split by the data organizer of the VoxCeleb
[56] and widely adopted in prior works [54], [55]. The training
data was chosen from the VoxCeleb2-dev, and contained 5,994
speakers and 1,092,009 speech samples in total. The testing
data came from the VoxCeleb1-dev and the VoxCeleb1-test,
and had three different evaluation sets: Vox1-O, Vox1-E and
Vox1-H, where O, E, and H denote Original, Extended, and
Hard data subsets of the VoxCeleb1, respectively. These three
different evaluation sets were split by the data organizer of the
VoxCeleb [56]. The proportions of training and validation
subsets that were contained in the training data were 95% and
5%, respectively. The average duration of each speech sample
is basically 8 seconds. Table I gives the detailed information of
the data adopted in the experiments of this paper.

TABLE I
THE DETAILED INFORMATION OF EXPERIMENTAL DATA

 Names Dataset sources #Speakers Data size
Training / VoxCeleb2-dev 5,994 1,092,009 samples

Testing
Vox1-O VoxCeleb1-test 40 37,611 trails
Vox1-E VoxCeleb1-dev 1,211 579,818 trails
Vox1-H VoxCeleb1-dev 1,211 550,894 trails

B. Experimental Setup
The experiments are performed on a computing machine

whose main configurations include: an Intel CPU i7-6700 with
3.10 GHz, a RAM of 64 GB, and a NVIDIA 1080TI GPU. All
methods are implemented on the deep learning toolkit of the
PyTorch. Two different indices are adopted to assess the
performance of the methods (models), namely error and
complexity. The metric of EER [57] is utilized to measure the
error of different methods, which has been commonly used in
prior works. The EER is defined as the rate at which acceptance
error is equal to rejection error. The lower the score of the EER
is, the lower the error of the method is. The complexity index
contains two metrics, namely Parameter Number (PN) and
Multiply-ACcumulate operations (MACs). The PN and MACs

 6

are adopted to measure the memory requirement and the
computational complexity of different methods, respectively.
The MACs is defined as the total amount of multiplication and
addition operations of the model. The PN is defined as the total
amount of parameters of the model. The lower the value of
MACs is, the lower computational complexity of the method is.
Similarly, the lower the value of PN is, the lower memory
requirement of the method is. The MACs and PN have been
widely used to measure the model complexity in prior works,
and thus are also adopted as the evaluation metrics here.

The audio feature adopted as the input of the model is the
80-dimensional Log Mel-spectrum. The Log Mel-spectrum is
extracted from each speech sample with frame length of 25 ms
and frame shift of 10 ms. It is subject to short-time cepstral
mean variance normalization using a 3-second sliding window.
To expand the diversity of the training data, we set a probability
of 0.6 for data augmentation. We randomly add the background
noise, reverberation and speed change on the original speech
samples when they are chosen to be augmented. All the
background noise and reverberation audios are selected from
two public noise datasets MUSAN [58] and RIR [59]. The
speed change rate is set to a value ranging from 95% to 105% of
the original audios. Both the original speech samples and the
augmented speech samples are adopted to train the models.

The structure settings of the three models (AMCRN,
ResNet34, and ECAPA-TDNN) are the same as those in the
corresponding references. All models are trained for 50 epochs
using the cosine annealing learning rate [60] with 10 warm-up
steps from 10-3 to 10-8 in conjunction with the Adam optimizer
[61]. We use the AAM-Softmax [62] with a margin of 0.2 and
Softmax pre-scaling of 30 to train all models. Early stopping
technique is adopted when the loss of model validation no
longer decreases for 10 epochs. The mini-batch size for training
is equal to 512. After each epoch on the training subset, the
trained model is assessed on the validation subset. The model
with the lowest validation loss is used as the final model. After
completing the model training, enrollment data and testing data
are input into the model to produce the speaker embedding for
each speech sample. The dimension of speaker embedding is
set to 256. Finally, the CD is used as the back-end classifier for
scoring on each testing trail.

The dimension of Log Mel-spectrum is 80 in the experiments,
and thus the value of N is equal to 80. In addition, Q, the
number of channels of 1-dimensional convolution, is set to 2L.
The settings of J will be discussed in ablation experiments,
which has direct impact on the model complexity.

C. Ablation Experiments
In this section, we conduct three ablation experiments. First,

we discuss the influence of the settings of main parameters (i.e.,
J, L, N) of the proposed TM on the error and complexity of the
models. Second, we analyze the impact of the overlap between
different feature subsets on the model complexity and error.
Third, we qualitatively analyze the impact of feature fusion on
the representational capability of feature subsets. Without loss
of generality, we adopt the AMCRN as the model and use the
Vox1-O as the testing data in the experiments of this section.
Main parameter settings of the TM

In this ablation experiment, the values of J range from 1 to 16
in steps of the power of 2, namely 1, 2, 4, 8, and 16. The values

of L range from 80 to 5, namely 80, 40, 20, 10, and 5. There is
no overlap between J feature subsets in this experiment. In the
AMCRN model, the number of input channels of the 1D dilated
Res2Net block (denoted as C) and the number of neurons of the
residual BLSTM block (denoted as B) are two main factors that
determine the model complexity. To obtain both lower error
and lower complexity, the values of both C and B need to be
appropriately configured according to the dimensions of feature
subsets. When L takes values from 80 to 5, we give three to four
settings of B and C for each value of L. The values of B and C
range from 512 to 16. Table II lists the scores of EER, PN, and
MACs that are obtained by the AMCRN model with various
values of B and C on the Vox1-O.

TABLE II
IMPACTS OF MAIN PARAMETER SETTINGS OF THE TM ON THE ERROR AND
COMPLEXITY OF THE AMCRN MODEL WHEN EVALUATED ON THE VOX1-O

J L N C B EER (%) PN MACs

1
512 512 1.464 11.38 M (100%) 0.840 G (100%)

80 80 256 256 1.898 3.59 M (31.5%) 0.250 G (29.8%)
128 128 3.734 970.01 K (8.5%) 0.081 G (9.6%)
256 256 1.470 6.45 M (56.7%) 0.276 G (32.9 %)

2 40 80 128 128 1.896 1.76 M (15.5%) 0.093 G (11.1%)
64 64 2.892 571.67 K (5.0%) 0.036 G (4.3%)
256 256 1.459 6.93 M (60.9%) 0.347 G (41.3%)

4 20 80 128 128 1.728 2.01 M (17.7%) 0.128 G (15.2%)
64 64 2.624 644.89 K (5.7%) 0.053 G (6.3%)

8 10 80

256 256 1.461 7.98 M (70.1%) 0.501 G (59.6%)
128 128 1.655 2.53 M (22.2%) 0.205 G (24.4%)
64 64 2.325 902.05 K (7.9%) 0.091 G (10.8%)
32 32 2.981 360.79 K (3.2%) 0.043 G (5.1%)

16 5 80

128 128 1.592 3.58 M (31.5%) 0.362 G (43.1%)
64 64 2.044 1.43 M (12.6%) 0.170 G (20.2%)
32 32 2.757 622.63 K (5.5%) 0.082 G (9.8%)
16 16 3.205 289.02 K (2.5%) 0.040 G (4.8%)

J: number of feature subsets; L: dimension of feature subsets; N: dimension of
input feature; C: number of input channels of the 1D dilated Res2Net block of
the AMCRN; B: number of neurons of the residual BLSTM block of the
AMCRN. K: Kilo; M: Million; G: Giga.

Based on the results presented in Table II, the following three
observations can be obtained.

First, when the value of J equals to 1 (i.e., L=N), the input
feature is not split into feature subsets and thus the proposed
TM is not used for reducing the model complexity. In this
condition, when the values of both B and C are set to 512, the
EER score of 1.464%, the PN value of 11.38 M, and the MACs
value of 0.840 G are obtained. The values of 11.38 M and 0.840
G are used as the benchmark (represented by 100% in Table II)
for reducing the complexity of the AMCRN model. Although
the complexity of the model can be reduced by decreasing the
values of B and C without using the proposed TM, the model
error increases greatly. For example, when the values of B and
C decrease from 512 to 128, the values of PN and MACs
decrease from 11.38 M to 970.01 K (8.5% of 11.38 M), and
from 0.840 G to 0.081 G (9.6% of 0.840 G), respectively.
However, the scores of EER increase from 1.464% to 3.734%.

Second, with the increase the value of J, the model
complexity is remarkably reduced while keeping the model
error basically unchanged or even better. That is, when the EER
score is basically equal to or even lower than 1.464%, the
values of both PN and MACs are significantly reduced
compared with 11.38 M and 0.840 G, respectively. For example,
when J increases to 4, and the values of both C and B are set to
256, the lowest EER score of 1.459%, the PN value of 6.93 M

 7

(60.9% of 11.38 M), and the MACs value of 0.347 G (41.3% of
0.840 G) are produced. This result indicates that not only the
model complexity is significantly reduced, but also the model
error decreases after implanting the TM into the model. In
addition, when the model complexity is close, the model error
after the implantation of the TM is lower than that of the
original model (without the implantation of the TM). For
example, when J=8, B=C=64, the model complexity (i.e., PN =
902.05 K and MACs = 0.091 G) is close to that (i.e., PN =
970.01 K and MACs = 0.08 G) of the original model in which
J=1, B=C=128. However, the EER score of 2.325% is obtained
by the model after the implantation of the TM, which is lower
than that (3.734%) produced by the original model.

Third, when J increases to a certain value (e.g., 16), the
model complexity decreases significantly, but the model error
gradually increases and is worse than that of the original model.
For example, when J=16 and B=C=16, the PN value decreases
to 289.02 K (only 2.5% of 11.38 M) and the MACs value
decreases to 0.040 G (only 4.8% of 0.840 G), but the EER score
increases to 3.205% (higher than 1.464%). The possible reason
is described as follows. With the increase of J, the dimension of
feature subsets will become smaller and smaller. When the
dimension of feature subsets is reduced to a certain value (e.g.,
L=5), the correlational information between these J feature
subsets is so damaged that the fusion block of the TM cannot
recover it. As a result, the error obtained by the model after the
implantation of the TM cannot be smaller than that obtained by
the original model when J exceeds a threshold (e.g., 16).

In summary, this experiment investigates the impact of the
TM implantation on the model error and model complexity by
setting different values of J, N, C and B. The experimental
results indicate that the model complexity is greatly reduced
when the model error is basically unchanged or even becomes
lower after the implantation of the TM.

Impact of the overlap between feature subsets
In this ablation experiment, we analyze the impact of the

overlap between J feature subsets on the model error and
complexity. The configurations of main parameters of the TM
and AMCRN model are as follows: N=80, L=20, B=C=256. We
set three different overlaps between J feature subsets, namely
0%, 25%, and 50%. The overlap of 0% means that there is no
overlap between J feature subsets and the input feature is split
into four feature subsets (J=80/20=4). Similarly, the overlaps of
25% and 50% denote that there are 5-dimension overlap and
10-dimension overlap between J feature subsets, respectively,
and thus the input feature is divided into J=5 and J=7 feature
subsets, respectively. Table III lists the scores of EER, PN, and
MACs that are produced by the AMCRN model on the Vox1-O
with three overlaps between J feature subsets.

TABLE III
IMPACTS OF OVERLAP BETWEEN FEATURE SUBSETS ON THE MODEL ERROR AND
MODEL COMPLEXITY WHEN EVALUATED ON THE VOX1-O

Overlaps J EER (%) PN MACs
0% 4 1.459 6.93 M 0.362 G
25% 5 1.442 6.93 M 0.425 G
50% 7 1.391 6.93 M 0.602 G

Based on the results listed in Table III, we can obtain the
following three observations.

First, as the overlap between feature subsets increases, the

error decreases. For example, the EER score decreases from
1.459% to 1.391% when the overlap increases from 0% to 50%.
The reason is probably that the more overlap between feature
subsets, the richer correlation information contained in each
feature subset, and the stronger the representational capability
of speaker embedding. Hence, the model error can be lower.

Second, the memory requirement of the model is not related
to the overlap between feature subsets. When the overlap
increases from 0% to 50%, the PN value remains unchanged.
The possible reason is described as follows. In our method,
each feature subset is fed into the model independently. No
matter how many feature subsets are, as long as the dimension
of feature subsets and the model parameters remain unchanged,
the PN value will keep the same.

Third, with the increase of the overlap between feature
subsets, the computational complexity of the model increases.
For example, the MACs value increases from 0.347 G to 0.602
G when the overlap increases from 0% to 50%. The reason is
probably that the more overlap between feature subsets, the
more feature subsets the model needs to process. Hence, the
computational load of the model becomes heavier.

In conclusion, increasing the overlap between feature subsets
will lead to the decrease of the model error, but it will result in
the increase of the computational complexity of the model.
Accordingly, in practical applications, we can set different
overlaps between feature subsets as needed. For example, if
there are only limits on the model size without restrictions on
the computational complexity, the error can be reduced by
reasonably increasing the overlap between feature subsets.

Qualitative analysis for feature fusion
In this ablation experiment, we aim to qualitatively analyze

the impact of feature fusion on the representational capability
of feature subsets and visualize this impact. The t-SNE [63] is
one of the most popular methods for visualizing the similarities
of different classes (samples). Although it cannot ensure that
the distances between classes in low-dimensional space
corresponds exactly to the distances in high-dimensional space,
the distances between classes in high-dimensional space are
well preserved in low-dimensional (e.g., two-dimensional)
space [63]. Hence, we adopt the t-SNE to map the feature
subsets Fi and 𝑭௜ꞌ (as shown in Fig. 2) into a two-dimensional
space. Fi and 𝑭௜ꞌ are the input and output feature subsets of the
feature fusion block of the TM, respectively. The scikit-learn (a
Python library) is used to reduce the dimensionality of Fi and 𝑭௜ꞌ , while the Python library of matplotlib is adopted to plot the
distributions of both Fi and 𝑭௜ꞌ in the two-dimension space.

Without loss of generality, ten speakers are randomly chosen
from the Vox1-O to show the distributions of their feature
subsets Fi and 𝑭௜ꞌ in the two-dimensional space. We choose Fi
and 𝑭௜ꞌ from the TM which is implanted into the AMCRN. We
depict the distributions of Fi and 𝑭௜ꞌ (1≤i≤4) output from Block
4 of the AMCRN in two-dimensional space, as shown in Fig. 5.
From the four subgraphs of Fig. 5, we can observe that the
intervals between ten 𝑭௜ꞌ are almost all larger than those
between ten Fi. In other words, compared with the ten Fi
without feature fusion, the ten 𝑭௜ꞌ with feature fusion are further
apart in the two-dimensional space and the confusion between
the ten 𝑭௜ꞌ are expected to be less than that between the ten Fi.

 8

Hence, the processing of the feature fusion block is helpful to
enhance the representational capability of the transformed
feature subsets. The stronger the representational capability of
the feature subsets is, the smaller the error of the model will be.

 (a) F1 and F'1 in Block 4 of AMCRN (b) F2 and F'2 in Block 4 of AMCRN

(c) F3 and F'3 in Block 4 of AMCRN (d) F4 and F'4 in Block 4 of AMCRN

Fig. 5 Visualization of the Fi and 𝑭௜ꞌ (1≤i≤4) of ten speakers that are randomly
selected from the Vox1-O. Fi and 𝑭௜ꞌ denote the input and output feature subsets
of the feature fusion block of the TM, respectively. The digits from 1 to 10
represent ten different speakers.

D. Comparison of Different Methods
In this section, we compare the proposed lightweight method

to six state-of-the-art methods for lightweight SV, including the
ECAPA-TDNNLite [50], EfficientTDNN [51], KD-based [52],
Thin-ResNet34 [64], Fast-ResNet34 [65], and CSTCTS1dConv
(Channel Split Time-Channel-Time Separable 1-dimensional
Convolution) [66]. The ECAPA-TDNNLite based method [50]
is a lightweight version of the ECAPA-TDNN based method, in
which a large model, ECAPA-TDNN, is utilized for enrollment
and a small model, ECAPA-TDNNLite, is used for verification.
The EfficientTDNN based method [51] uses the NAS technique
to design an efficient model to implement lightweight SV. The
KD-based method [52] needs to train a large teacher model first,
and then the KD technique is adopted to obtain a small student
model based on the teacher model for realizing lightweight SV.
The Thin-ResNet34 based method [64] and the Fast-ResNet34
based method [65] are lightweight versions of the ResNet34
based method. In the CSTCTS1dConv based method [66], a
CSTCTS1dConv module was designed and then the KD
technique was applied to improve the performance by learning
better speaker embedding from the large model.

Main parameters of these baseline methods above are set
according to the recommendations in corresponding references
and then properly tuned on the training data. These baseline
methods are implemented using the source codes released by
the authors of these methods, or re-implemented by ourselves
according to the descriptions in the corresponding references.
Our proposed method for lightweight SV is implemented by
implanting the proposed TM into three models and thus has

three different versions, including the AMCRN-TM, the
ResNet34-TM, and the ECAPA-TDNN-TM. Based on the
introductions above, main technical characteristics between
different methods for lightweight SV are briefly presented in
Table IV.

TABLE IV
SUMMARY OF DIFFERENT METHODS FOR LIGHTWEIGHT SV

Methods Technical characteristics
ECAPA-TDNNLite Lightening the ECAPA-TDNN
EfficientTDNN Using the NAS to design model
KD-based Using the KD to obtain teacher-student models
Thin-ResNet34 Thin version of the ResNet34
Fast-ResNet34 Fast version of the ResNet34
CSTCTS1dConv Channel split time-channel-time separable 1D Conv
Ours Implanting the plug-and-play TM into models

Various methods are compared on three different evaluation
sets (Vox1-O, Vox1-E, and Vox1-H) in model error (EER) and
model complexity (including PN and MACs). Under the same
experimental conditions, the scores of EER, PN and MACs that
are achieved by various methods on three different evaluation
sets are presented in Table V.

TABLE V
COMPARISON OF DIFFERENT METHODS IN TERMS OF EER, PN AND MACS

Methods EER (%) PN MACsVox1-O Vox1-E Vox1-H
ECAPA-TDNNLite 3.07 3.00 5.20 318.13K 0.060G

EfficientTDNN 2.20 2.37 3.79 0.90 M 0.204G
KD-based 2.638 2.729 4.117 970.01K 0.081G

Thin-ResNet34 2.531 2.622 4.095 1.41 M 5.403G
Fast-ResNet34 2.594 2.703 4.212 1.41 M 2.712G

CSTCTS1dConv 2.62 2.77 4.44 238.99K 23.2M
AMCRN (1, 512) 1.464 1.551 2.640 11.38 M 0.840G

AMCRN-TM (2, 128) 1.896 2.013 3.108 1.76 M 0.093G
AMCRN-TM (4, 64) 2.624 2.726 3.842 644.89K 0.053G
AMCRN-TM (8, 32) 2.981 3.108 4.219 360.79K 0.043G

AMCRN-TM (16, 16) 3.205 3.419 4.562 289.02K 0.040G
ResNet34 (1, 512) 1.674 1.752 3.440 23.91 M 14.95G

ResNet34-TM (2, 128) 2.015 2.107 2.812 9.32 M 5.783G
ResNet34-TM (4, 64) 2.799 2.915 4.639 3.82 M 2.932G
ResNet34-TM (8, 32) 3.144 3.216 5.014 1.97 M 1.954G
ResNet34-TM (16, 16) 3.446 3.573 5.317 1.20 M 1.842G

ECAPA-TDNN (1, 512) 1.010 1.241 2.320 6.20 M 0.882G
ECAPA-TDNN-TM (2, 128) 1.441 1.635 2.829 2.18 M 0.090G
ECAPA-TDNN-TM (4, 64) 1.922 2.138 3.218 0.89 M 0.051G
ECAPA-TDNN-TM (8, 32) 2.532 2.741 3.920 523.26K 0.034G
ECAPA-TDNN-TM (16, 16) 2.813 2.911 4.225 310.49K 0.026G

As shown in Table V, there are three versions of the
proposed method and six baseline methods for performance
comparison. For each version of the proposed method, we set
five different numbers of feature subsets and channels,
including (1, 512), (2, 128), (4, 64), (8, 32), and (16, 16). The
left digit (i.e., 1, 2, 4, 8, 16) and the right digit (i.e., 512, 128, 64,
32, 16) in the brackets represent the number of feature subsets
and the number of channels, respectively. The AMCRN (1,
512), ResNet34 (1, 512), and ECAPA-TDNN (1, 512) stand for
the original method without the implantation of the TM. The
AMCRN-TM (· , ·), the ResNet34-TM (· , ·), and the
ECAPA-TDNN-TM (· , ·) represent the proposed methods for
lightweight SV with different parameter configurations after
the implantation of the TM. Based on the experimental results
obtained by different methods in Table V, the following three
conclusions can be drawn.

First, the complexity of three versions of the proposed

 9

method decreases significantly but their errors increase slightly,
after the TM is implanted into the models of AMCRN,
ResNet34 and ECAPA-TDNN. As for the AMCRN based
method, the PN value decreases from 11.38 M (39.37 times of
289.02 K) to 289.02 K and the MACs value decreases from
0.840 G (21 times of 0.040 G) to 0.040 G. Meanwhile, the EER
scores on the evaluation sets of Vox1-O, Vox1-E, and Vox1-H
increase from 1.464% to 3.205% (2.19 times of 1.464%), from
1.551% to 3.419% (2.2 times of 1.551%), and from 2.640% to
4.562% (1.73 times of 2.640%), respectively. Similar results
can be obtained for the ResNet34 based and ECAPA-TDNN
based methods. That is, by setting proper parameters (e.g.,
numbers of channels and feature subsets), implanting the TM
into the three models can remarkably reduce the model
complexity with slight increase of the model error.

Second, three versions of the proposed method have different
advantages in both error and complexity. The AMCRN-TM
(· , ·) based method has advantages over the methods based on
the ECAPA-TDNN-TM (· , ·) and the ResNet34-TM (· , ·) in
terms of PN. The ECAPA-TDNN-TM (· , ·) based method
outperforms the methods based on other two models in terms of
EER and MACs. In addition, among the three versions of the
proposed method, the ResNet34 based method has the heaviest
computational load and the highest memory requirement. The
reason is probably that compared with the AMCRN and the
ECAPA-TDNN, the ResNet34 has the largest number of layers,
and each layer (especially the convolutional layer) has a large
amount of computation and parameters.

Third, the proposed methods outperform the six baseline
methods on the whole in model error and model complexity.
For example, the proposed methods of the AMCRN-TM (4, 64)
and the ECAPA-TDNN-TM (16, 16) have advantages over the
ECAPA-TDNNLite based method in terms of EER and MACs,
and in terms of all metrics of EER, PN and MACs, respectively.
The proposed methods of the ECAPA-TDNN-TM (4, 64)
outperforms the baseline methods based on the EfficientTDNN,
Thin-ResNet34 and Fast-ResNet3 in terms of all metrics of
EER, PN and MACs. In addition, the proposed method of the
AMCRN-TM (4, 64) exceeds the KD-based method in terms of
all performance metrics of EER, PN and MACs. Although the
CSTCTS1dConv based method achieves competitive results
under similar model complexity, the proposed method of
ECAPA-TDNN-TM (16, 16) beats it in EER on the Vox1-H.

In addition, the ResNet34-TM (16, 16) based method obtains
a little higher EER scores than the baseline methods based on
both the Thin-ResNet34 and the Fast-ResNet34. However, the
model complexity (namely PN and MACs values) of the
ResNet34-TM (16, 16) based method is much lower than that of
the baseline methods based on the Thin-ResNet34 and the
Fast-ResNet34. It should be noted that the goal of this work is
not to achieve that the proposed method based on any models
outperforms all existing lightweight SV methods in model error.
Instead, our goal is that the proposed method using the
plug-and-play TM can noticeably reduce the complexity of
multiple kinds of models and meanwhile can keep the models’
error basically unchanged.

In summary, the proposed TM can be easily implanted into
several models (here taking three state-of-the-art models as
examples) with different architectures without changing the
structures of the original models. The proposed TM works in a

plug-and-play way to noticeably reduce the complexity of
multiple models rather than one specific model, and only leads
to a slight increase in error. The remarkable difference between
the proposed method and all existing methods is that the former
is a general solution for lightening existing models for realizing
lightweight SV, while the latter is a specific lightweight SV
method. That is, we design a TM for reducing the complexity of
many kinds of models, thereby achieving lightweight SV.
However, all existing lightweight SV methods are designed for
a specific model and thus lack generality. From the perspective
of generality, the proposed method has advantage over existing
lightweight SV methods.

E. Robustness on Truncated Segments
In this section, we analyze the robustness of six baseline

methods and three different representatives of our proposed
method on the truncated testing segments. These methods have
similar values of PN and MACs. We only give the scores of
EER, because the value of PN has no relationship with the
length of speech segments and the value of MACs definitely
increases with the increase of the length of speech segments.
For simplicity, we choose one representative from each of three
versions of the proposed method, namely the AMCRN-TM (16,
16), the ResNet34-TM (16, 16), and the ECAPA-TDNN-TM
(16, 16). The average length of each testing sample is about 8
seconds. Each truncated segment is obtained by randomly
dividing each testing sample into segments with lengths of 2
seconds or 5 seconds. These truncated segments in the three
different evaluation sets are adopted as the testing data to
evaluate the robustness of various methods on the truncated
testing segments with different lengths. Table VI presents the
EER scores obtained by different methods on the truncated
testing segments.

TABLE VI
EER SCORES (IN %) OBTAINED BY SIX BASELINE METHODS AND THREE
REPRESENTATIVES OF OUR PROPOSED METHOD WHEN THEY ARE EVALUATED
ON THE TRUNCATED TESTING SEGMENTS

Methods Length Vox1-O Vox1-E Vox1-H

ECAPA-TDNNLite
8 s 3.07 3.00 5.20
5 s 3.24 3.26 5.48
2 s 5.03 5.12 7.29

EfficientTDNN
8 s 2.20 2.37 3.79
5 s 2.39 2.81 4.11
2 s 4.22 4.60 6.02

KD-based
8 s 2.638 2.729 4.117
5 s 2.832 3.184 4.503
2 s 4.641 4.873 6.311

Thin-ResNet34
8 s 2.531 2.622 4.095
5 s 3.610 3.831 4.514
2 s 5.491 5.772 6.963

Fast-ResNet34
8 s 2.594 2.703 4.212
5 s 3.675 3.922 4.635
2 s 5.571 5.864 7.087

CSTCTS1dConv
8 s 2.62 2.77 4.44
5 s 2.91 3.19 4.72
2 s 4.63 4.88 6.51

AMCRN-TM (16, 16)
8 s 3.205 3.419 4.562
5 s 3.341 3.533 4.738
2 s 5.013 5.104 6.714

ResNet34-TM (16, 16)
8 s 3.446 3.573 5.317
5 s 4.619 4.771 5.723
2 s 6.502 6.763 8.143

ECAPA-TDNN-TM (16, 16)
8 s 2.813 2.911 4.225
5 s 2.957 3.224 4.502
2 s 4.516 4.787 6.269

 10

Based on the experimental results produced by six baseline
methods and the three representatives of our proposed method
in Table VI, we can draw the following two conclusions.

First, the EER scores achieved by all methods on testing
segments steadily increase with the decrease of the segment
length. Furthermore, the increase of EER scores obtained by the
three proposed methods is smaller than that obtained by most
baseline methods. For instance, when the lengths of speech
segments in the Vox1-H decrease from 8 seconds to 2 seconds,
the absolute increment of the EER score achieved by the
proposed method of ECAPA-TDNN-TM (16, 16) is 2.044%
(6.269% - 4.225%). This value (2.044%) is smaller than the
counterparts obtained by all baseline methods.

Second, as the length of the testing segments decreases, the
proposed methods gradually achieve lower EER scores than
most baseline methods. For example, the proposed methods of
ECAPA-TDNN-TM (16, 16) and AMCRN-TM (16, 16)
obtains the EER scores of 2.813% and 3.205%, respectively,
when they are evaluated on the testing segments of 8 seconds in
Vox1-O. These two EER scores of 2.813% and 3.205% are
higher than the EER scores of 2.62% (obtained by the method
of CSTCTS1dConv) and 2.531% (obtained by the method of
Thin-ResNet34), respectively. However, when these methods
are assessed on the testing segments of 2 seconds in Vox1-O,
the proposed methods of ECAPA-TDNN-TM (16, 16) and
AMCRN-TM (16, 16) obtains lower EER scores than the
baseline methods of CSTCTS1dConv and Thin-ResNet34,
respectively. Similar results can be obtained when the proposed
methods and baseline methods are evaluated on the testing
segments in other evaluation sets.

In conclusion, compared with the baseline methods, the EER
scores of the proposed methods are less affected by the length
of testing segments. That is, the proposed methods are more
robust than baseline methods on truncated testing segments.
Accordingly, the proposed methods can generalize well across
truncated testing segments with different lengths instead of
overfitting on testing segments with fixed length.

VI. CONCLUSIONS
In this study, we focused on solving the problem of

lightweight SV with both lower complexity and lower error. To
realize this goal, we designed a TM to conduct feature partition
and fusion on the input feature. Afterwards, we proposed a
method for lightweight SV by implanting the proposed TM into
three state-of-the-art models with different architectures. Based
on the description of both the designed TM and the proposed
method for lightweight SV, and the experimental discussions,
the following two conclusions can be drawn.

First, the proposed TM worked well for reducing the model
complexity while obtaining equivalent or even lower error for
SV. Moreover, it can be implanted into the models with
different architectures in a plug-and-play way without the need
to change the structures of the original models. On the contrary,
the baseline methods for model lightweight need to change the
models by redesigning the entire architectures or replacing
some modules (blocks) of the original models. In addition, the
proposed TM can be used to reduce the complexity of multiple
types of models, whereas each one of the baseline methods is
generally effective for one specific model.

Second, the proposed method for lightweight SV exceeded

the state-of-the-art methods on the whole in terms of EER, PN
and MACs, when evaluated on three different evaluation sets.
In addition, the proposed method generalized well on truncated
testing segments with various lengths.

Although our proposed method has achieved encouraging
results for lightweight SV, there are still some aspects to be
improved in it. First, the application scope of the proposed TM
needs to be extended. Due to the fact that 1D-convolutional
blocks are adopted in most state-of-the-art models (e.g.,
ECAPA-TDNN) for SV, the convolutional operations in the
proposed TM are designed to be 1D (see Fig. 2). Hence, the
proposed TM is effective for lightening the 1D-convolutional
models only. In future work, we will design a TM that includes
2D-convolutional blocks and use the proposed TM to lighten
the 2D-convolutional models. We will also consider designing
a general TM that can effectively lighten the models of any
structures, such as the models including 1D-convolutional and
2D-convolutional blocks. Second, we discussed the lightweight
of three state-of-the-art models only. We basically placed the
proposed TM in front of the blocks of the original models, but
not in each layer of these blocks. In future work, we will
investigate the lightweight variants of other types of models,
and explore the implantation of the proposed TM in front of all
layers of the original models. Third, we did not investigate the
implementation of the proposed method on intelligent speech
terminals with limited resources. In next work, we will consider
the implementation of the proposed method on the portable
speech terminals for the forensic scenarios. To achieve this goal,
we will further reduce the model complexity and keep the
model error as lower as possible by taking effective measures.
For example, we will optimize the structure of the proposed TM,
and integrate other techniques (e.g., model quantization) into
our proposed method.

REFERENCES
[1] J.P. Campbell, W. Shen, W.M. Campbell, R. Schwartz, J.F. Bonastre, and D.

Matrouf, “Forensic speaker recognition,” IEEE SPM, vol. 26, no. 2, pp.
95-103, 2009.

[2] M. Aljasem, A. Irtaza, H. Malik, N. Saba, A. Javed, K.M. Malik, and M.
Meharmohammadi, “Secure automatic speaker verification (SASV) system
through sm-ALTP features and asymmetric bagging,” IEEE TIFS, vol. 16,
pp. 3524-3537, 2021.

[3] Y. Li, W. Wang, M. Liu, Z. Jiang, and Q. He, “Speaker clustering by
co-optimizing deep representation learning and cluster estimation,” IEEE
TMM, vol. 23, pp. 3377-3387, 2021.

[4] W. Zhang, X. Chang, Y. Qian, and S. Watanabe, “Improving end-to-end
single-channel multi-talker speech recognition,” IEEE/ACM TASLP, vol.
28, pp. 1385-1394, 2020.

[5] X. Qian, A. Brutti, O. Lanz, M. Omologo, and A. Cavallaro, “Multi-speaker
tracking from an audio-visual sensing device,” IEEE TMM, vol. 21, no. 10,
pp. 2576-2588, 2019.

[6] C.S. Greenberg, L.P. Mason, S.O. Sadjadi, and D.A. Reynolds, “Two
decades of speaker recognition evaluation at the national institute of
standards and technology,” Comput. Speech Lang., vol. 60, pp. 1-10, 2020.

[7] B.C. Haris, and R. Sinha, “Robust speaker verification with joint sparse
coding over learned dictionaries,” IEEE TIFS, vol. 10, no. 10, pp.
2143-2157, 2015.

[8] L. Zheng, J. Li, M. Sun, X. Zhang, and T.F. Zheng, “When automatic voice
disguise meets automatic speaker verification,” IEEE TIFS, vol. 16, pp.
824-837, 2021.

[9] A. Gomez-Alanis, J.A. Gonzalez-Lopez, S.P. Dubagunta, A.M. Peinado,
and M. Magimai.-Doss, “On joint optimization of automatic speaker
verification and anti-spoofing in the embedding space,” IEEE TIFS, vol. 16,
pp. 1579-1593, 2021.

[10] V. Mingote, A. Miguel, A. Ortega, and E. Lleida, “Memory layers with
multi-head attention mechanisms for text-dependent speaker verification,”

 11

in Proc. of IEEE ICASSP, 2021, pp. 6154-6158.
[11] H. Wu, X. Li, A.T. Liu, Z. Wu, H. Meng, and H. Lee, “Adversarial defense

for automatic speaker verification by cascaded self-supervised learning
models,” in Proc. of IEEE ICASSP, 2021, pp. 6718-6722.

[12] S. Han, J. Byun, and J.W. Shin, “Time-domain speaker verification using
temporal convolutional networks,” in Proc. of IEEE ICASSP, 2021, pp.
6688-6692.

[13] X. Liu, M. Sahidullah, and T. Kinnunen, “Learnable nonlinear
compression for robust speaker verification,” in Proc. of IEEE ICASSP,
2022, pp. 7962-7966.

[14] A. Chowdhury, and A. Ross, “Fusing MFCC and LPC features using 1D
triplet CNN for speaker recognition in severely degraded audio signals,”
IEEE TIFS, vol. 15, pp. 1616-1629, 2020.

[15] M. Todisco, H. Delgado, and N. Evans, “A new feature for automatic
speaker verification anti-spoofing: constant Q cepstral coefficients,” in
Proc. of Odyssey, 2016, pp. 283-290.

[16] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling with
sparse training data,” IEEE TSAP, vol. 13, no. 3, pp. 345-354, 2005.

[17] U. Khan, M. India, and J. Hernando, “I-vector transformation using
k-nearest neighbors for speaker verification,” in Proc. of IEEE ICASSP,
2020, pp. 7574-7578.

[18] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE TASLP, vol. 19,
no. 4, pp. 788-798, 2011.

[19] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur,
“X-vectors: Robust DNN embeddings for speaker recognition,” in Proc. of
ICASSP, 2018, pp. 5329-5333.

[20] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey, and S.
Khudanpur, “Speaker recognition for multi-speaker conversations using
X-vectors,” in Proc. of ICASSP, 2019, pp. 5796-5800.

[21] X. Chen and C. Bao, “Phoneme-unit-specific time-delay neural network
for speaker verification,” in IEEE/ACM TASLP, vol. 29, pp. 1243-1255,
2021.

[22] Z.K. Wan, Q.H. Ren, Y.C. Qin, and Q.R. Mao, “Statistical pyramid dense
time delay neural network for speaker verification,” in Proc. of IEEE
ICASSP, 2022, pp. 7532-7536.

[23] T. Liu, R.K. Das, K.A. Lee, and H. Li, “MFA: TDNN with multi-scale
frequency-channel attention for text-independent speaker verification with
short utterances,” in Proc. of IEEE ICASSP, 2022, pp. 7517-7521.

[24] B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA-TDNN:
Emphasized channel attention, propagation and aggregation in TDNN
based speaker verification,” in Proc. of INTERSPEECH, 2020, pp.
30830-3834.

[25] H. Zeinali, S. Wang, A. Silnova, P. Matějka, and O. Plchot, “BUT system
description to VoxCeleb speaker recognition challenge 2019,” in Proc. of
The VoxCeleb Challange Workshop 2019, 2019, pp. 1-4.

[26] N.J.M.S. Mary, S. Umesh, and S.V. Katta, “S-vectors and TESA: speaker
embeddings and a speaker authenticator based on transformer encoder,”
IEEE/ACM TASLP, vol. 30, pp. 404-413, 2022.

[27] Y. Liu, Y. Song, I. McLoughlin, L. Liu, and L.R. Dai, “An effective deep
embedding learning method based on dense-residual networks for speaker
verification,” in Proc. of IEEE ICASSP, 2021, pp. 6683-6687.

[28] J.W. Jung, H.S. Heo, H.J. Yu, and J.S. Chung, “Graph attention networks
for speaker verification,” in Proc. of IEEE ICASSP, 2021, pp. 6149-6153.

[29] M. India, P. Safari, and J. Hernando, “Double multi-head attention for
speaker verification,” in Proc. of IEEE ICASSP, 2021, pp. 6144-6148.

[30] Y. Zhang, M. Yu, N. Li, C. Yu, J. Cui, and D. Yu, “Seq2Seq attentional
Siamese neural networks for text-dependent speaker verification,” in Proc.
of IEEE ICASSP, 2019, pp. 6131-6135.

[31] S.H. Kim, H.N., and Y.H. Park, “Temporal dynamic convolutional neural
network for text-independent speaker verification and phonemic analysis,”
in Proc. of IEEE ICASSP, 2022, pp. 6742-6746.

[32] T. Zhou, Y. Zhao, and J. Wu, “ResNeXt and Res2Net structures for
speaker verification,” in Proc. of IEEE SLT, 2021, pp. 301-307.

[33] Y. Li, Z. Jiang, W. Cao, and Q. Huang, “Speaker verification using
attentive multi-scale convolutional recurrent network,” Applied Soft
Computing, vol. 26, 2022, 109291, pp. 1-11.

[34] U. Khan, and J. Hernando, “Unsupervised training of Siamese networks
for speaker verification,” in Proc. of INTERSPEECH, 2020, pp.
3002-3006.

[35] L. Wan, Q. Wang, A. Papir, and I.L. Moreno, “Generalized end-to-end loss
for speaker verification,” in Proc. of IEEE ICASSP, 2018, pp. 4879-4883.

[36] C. Xu, W. Rao, J. Wu, and H. Li, “Target speaker verification with
selective auditory attention for single and multi-talker speech,” IEEE/ACM
TASLP, vol. 29, pp. 2696-2709, 2021.

[37] L. Li, Y. Zhang, J. Kang, T.F. Zheng, and D. Wang, “Squeezing value of
cross-domain labels: a decoupled scoring approach for speaker verification,”
in Proc. of IEEE ICASSP, 2021, pp. 5829-2833.

[38] Z. Bai, and X. Zhang, “Speaker recognition based on deep learning: An
overview,” Neural Networks, vol. 140, pp. 65-99, 2021.

[39] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: efficient convolutional neural
networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017, pp. 1-9.

[40] N.R. Koluguri, J. Li, V. Lavrukhin, and B. Ginsburg, “SpeakerNet 1D
depth-wise separable convolutional network for text-independent speaker
recognition and verification,” arXiv preprint arXiv:2010.12653, 2020, pp.
1-5.

[41] J.A.C. Nunes, D. Macêdo, and C. Zanchettin, “AM-MobileNet1D: A
portable model for speaker recognition,” in Proc. of IJCNN, 2020, pp. 1-8.

[42] D. Oneată, L. Georgescu, H. Cucu, D. Burileanu, and C. Burileanu,
“Revisiting SincNet: an evaluation of feature and network
hyperparameters for speaker recognition,” in Proc. of EUSIPCO, 2020, pp.
361-365.

[43] I. Vélez, C. Rascon, and G. Fuentes-Pineda, “Lightweight speaker
verification for online identification of new speakers with short segments,”
Applied Soft Computing, vol. 95, pp. 1-7, 2021.

[44] J. Lee, K. Sung-Bin, S. Kang, and T.H. Oh, “Lightweight speaker
recognition in poincaré spaces,” IEEE SPL, vol. 29, pp. 224-228, 2022.

[45] M. Ravanelli, and Y. Bengio, “Speaker recognition from raw waveform
with SincNet,” in Proc. of IEEE SLT, 2018, pp. 1021-1028.

[46] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015, pp. 1-9.

[47] B. Liu, H. Wang, Z. Chen, S. Wang, and Y. Qian, “Self-knowledge
distillation via feature enhancement for speaker verification,” in Proc. of
IEEE ICASSP, 2022, pp. 7542-7546.

[48] B. Zoph, and Q.V. Le, “Neural architecture search with reinforcement
learning,” in Proc. ICLR, 2017, pp. 1-16.

[49] R.W.M. Ng, X. Liu, and P. Swietojanski, “Teacher-student training for
text-independent speaker recognition,” in Proc. of IEEE SLT, 2018, pp.
1044-1051.

[50] Q. Lin, L. Yang, X. Wang, X. Qiny, J. Wang, and M. Li, “Towards
lightweight applications: asymmetric enroll-verify structure for speaker
verification,” in Proc. of IEEE ICASSP, 2022, pp. 7067-7071.

[51] R. Wang, Z. Wei, H. Duan, S. Ji, Y. Long, and Z. Hong, “EfficientTDNN:
efficient architecture search for speaker recognition,” IEEE/ACM TASLP,
vol. 30, pp. 2267-2279, 2022.

[52] M. Sang, W. Xia, and J.H.L. Hansen, “Open-set short utterance forensic
speaker verification using teacher-student network with explicit inductive
bias,” in Proc. of INTERSPEECH, 2020, pp. 2262-2266.

[53] Y. Li, M. Liu, W. Wang, Y. Zhang, and Q. He, “Acoustic scene clustering
using joint optimization of deep embedding learning and clustering
iteration,” IEEE TMM, vol. 22, no. 6, pp. 1385-1394, 2020.

[54] A. Nagrani, J.S. Chung, W. Xie, and A. Zissermana, “Voxceleb:
Large-scale speaker verification in the wild,” Comput. Speech Lang., vol.
60, pp. 1-15, 2020.

[55] J.S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: deep speaker
recognition,” in Proc. of INTERSPEECH, 2018, pp. 1086-1090.

[56] https://www.robots.ox.ac.uk/~vgg/data/voxceleb/
[57] A. Larcher, K.A. Lee, B. Ma, and H. Li, “Text-dependent speaker

verification: Classifiers, databases and RSR2015,” Speech Commun., vol.
60, pp. 56-787, 2014.

[58] D. Snyder, G. Chen, and D. Povey, “MUSAN: A music, speech, and noise
corpus,” arXiv:1510.08484, pp. 1-4, 2015.

[59] T. Ko, V. Peddinti, D. Povey, M.L. Seltzer, and S. Khudanpur, “A study on
data augmentation of reverberant speech for robust speech recognition,” in
Proc. of IEEE ICASSP, 2017, pp. 5220-5224.

[60] I. Loshchilov, and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” in Proc. of ICLR, 2017, pp. 1-16.

[61] D. Kingma, and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. of ICLR, 2015, pp. 1-15.

[62] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive angular
margin loss for deep face recognition,” in Proc. of IEEE/CVF CVPR, 2019,
pp. 4685-4694.

[63] L.v.d. Maaten, and G. Hinton, “Visualizing data using t-SNE,” Journal of
Machine Learning Research, vol. 9, no. 96, pp. 2579-2605, 2008.

[64] W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and loss
function in end-to-end speaker and language recognition system,” in Proc.
of the Speaker and Language Recognition Workshop, 2018, pp. 74-81.

[65] J.S. Chung, J. Huh, S. Mun, M. Lee, H.-S. Heo, S. Choe, C. Ham, S. Jung,

 12

B.-J. Lee, and I. Han, “In defence of metric learning for speaker
recognition,” in Proc. of INTERSPEECH, 2020, pp. 2977-2981.

[66] L. Cai, Y. Yang, X. Chen, W. Tu, and H. Chen, “CS-CTCSCONV1D:

Small footprint speaker verification with channel split time-channel-time
separable 1-dimensional convolution,” in Proc. of INTERSPEECH, 2022,
pp. 326-330.

