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Abstract—The residual neural networks (ResNet) demonstrate
the impressive performance in automatic speaker verification
(ASV). They treat the time and frequency dimensions equally,
following the default stride configuration designed for image
recognition, where the horizontal and vertical axes exhibit
similarities. This approach ignores the fact that time and fre-
quency are asymmetric in speech representation. We address this
issue and postulate Golden-Gemini Hypothesis, which posits the
prioritization of temporal resolution over frequency resolution
for ASV. The hypothesis is verified by conducting a systematic
study on the impact of temporal and frequency resolutions on
the performance, using a trellis diagram to represent the stride
space. We further identify two optimal points, namely Golden
Gemini, which serves as a guiding principle for designing 2D
ResNet-based ASV models. By following the principle, a state-
of-the-art ResNet baseline model gains a significant performance
improvement on VoxCeleb, SITW, and CNCeleb datasets with
7.70%/11.76% average EER/minDCF reductions, respectively,
across different network depths (ResNet18, 34, 50, and 101),
while reducing the number of parameters by 16.5% and FLOPs
by 4.1%. We refer to it as Gemini ResNet. Further investigation
reveals the efficacy of the proposed Golden Gemini operating
points across various training conditions and architectures.
Furthermore, we present a new benchmark, namely the Gemini
DF-ResNet, using a cutting-edge model. Codes and pre-trained
models are available at https://github.com/Tianchi-Liu9/Golden-
Gemini-for-Speaker-Verification.

Index Terms—Speaker verification, speaker recognition, 2D
CNN, ResNet, stride configuration, temporal resolution.
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AUTOMATIC speaker verification (ASV) aims to verify
the claimed identity of a speaker according to his/her

voice [1]. Currently, deep learning-based speaker embedding
has emerged as the predominant method [2]. In this approach,
fixed-dimensional representations are extracted from enroll-
ment and test speech utterances [3]. These representations,
rich in voice characteristics, are referred to as speaker em-
beddings [2]. The neural networks responsible for extracting
these embeddings are known as the embedding extractors.
The recognition procedure is often done by measuring the
similarity between embeddings, using methods such as co-
sine similarity or probabilistic linear discriminant analysis
(PLDA) [4]–[9].

Typical speaker-embedding neural networks consist of three
components [10]. First, an encoder is used to extract frame-
level features from an input utterance. It is followed by a tem-
poral aggregation layer that combines the frame-level features
from the encoder into a fixed-length condensed representation
of the entire input sequence. Commonly used temporal ag-
gregation techniques include average pooling [11], statistical
pooling [12], attentive pooling [13], [14], and posterior infer-
ence [15]. The output stage of the neural network constitutes
a decoder that classifies utterance-level representations into
speaker classes [16]–[18]. It utilizes a stack of fully-connected
layers, including a bottleneck layer specifically designed for
extracting speaker embeddings. Among these, the encoder
is often the heaviest part of the model. The efficacy and
efficiency of its design are instrumental to the performance
of the model.

Many prior studies have investigated and designed numer-
ous powerful networks as encoders. These backbone networks
can be broadly categorized into four main types:

• 2D convolutional neural network (CNN) [18]–[31],
• Time-delay neural network (TDNN) [31]–[36],
• Transformer [37], [38], and
• Combinations of the aforementioned three [39]–[47].

Among these architectures, 2D CNN is the most widely used
for ASV. It is worth mentioning that in the VoxCeleb Speaker
Recognition Challenge (VoxSRC) 2021 [48] and 2022 [49],
the best-performing models are based on 2D CNNs, with
ResNet [50] being the preferred choice [51]–[54]. ResNet
is not only popular in ASV but also widely employed in
other speech-related tasks, such as speaker extraction [55]–
[59], target-speaker voice activity detection [60]–[62], speaker
diarization [63], [64], and speech anti-spoofing [65]–[68].
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Therefore, investigating the ResNet architecture for speech-
related tasks holds significant importance.

The ResNet architecture was initially designed for image
recognition [50] where the horizontal and vertical dimensions
of images have similar implications [69], [70] and are often
uniform in size, typically N ×N pixels with commonly used
values such as 224 and 384. Consequently, it is intuitive to
treat these two dimensions equally with the default equal-stride
configuration in ResNet [50]. However, when dealing with
speech representations, the time and frequency axes of speech
spectrograms possess distinct implications [71] and often vary
in size (e.g., 80 × 301 [40]). Therefore, the techniques that
work for image recognition may not be suitable for ASV,
thus necessitating appropriate modifications. Despite these
notable differences in feature properties between images and
speech signals, existing ASV systems based on the ResNet
models [18]–[31], [51]–[54] continue to treat the frequency
and temporal resolutions equally by adopting the default stride
configuration as the original ResNet. Doubts arise regarding
the adequacy of this equal-stride configuration for ASV.

The preservation of temporal resolution in various existing
ASV methods [31]–[42], [47], [72]–[74] has led to the hypoth-
esis that ASV may be more sensitive to temporal resolution
than frequency resolution. TDNN-based models [31]–[36],
[39]–[42], [47] preserve the temporal resolution across the
stacked layers. Similarly, recurrent networks, such as the
long short-term memory (LSTM), preserve the number of
frames [73], [74]. Recent studies [37], [38], [47] adopt the
Transformer architecture as the encoder, ensuring the preser-
vation of the temporal resolution across stacked Transformer
blocks. Should temporal resolution prove to be of greater
significance, the equal-stride configuration may not be optimal
since it diminishes the temporal resolution. The current under-
standing of the impact of temporal and frequency resolutions
on the performance of ResNet-based ASV models remains
limited, leaving a research gap to be filled. Consequently, this
motivates us to explore the relative importance of temporal and
frequency resolution in the feature representation process of
ASV. Building upon this investigation, we identify the optimal
stride configurations that account for the inherent characteris-
tics of speech signals to better align with the requirements
of ASV, leading to improved performance. We also conduct a
meticulous analysis of the trade-offs between performance and
model complexity to ensure both efficacy and efficiency. The
major contributions of this work are summarized as follows:

• We postulate Golden-Gemini Hypothesis, which posits
that the preservation of temporal resolution is to be prior-
itized over frequency resolution for the optimal extraction
of speaker characteristics.

• We systematically analyze the joint effects of temporal
and frequency resolutions through a carefully designed
trellis diagram. Two optimal spots on the trellis diagram
are identified and named Golden Gemini.

• Based on the insights gained from the trellis diagram
analysis, we summarize a set of guiding principles for
designing ResNet-based models for ASV.

• The compatibility and efficacy of the proposed Golden
Gemini models are evaluated under various aspects, in-

TABLE I
A COMPARISON BETWEEN THE ORIGINAL RESNET34 [50], MODIFIED

RESNET [19] AND THE PROPOSED Gemini RESNET34. A 2D CNN LAYER
IS REPRESENTED IN THE FORMAT OF [KERNEL SIZE×KERNEL SIZE,

NUMBER OF CHANNELS (C)]. IN THE ORIGINAL RESNET34, C IS SET TO
64, WHILE THE MODIFIED RESNET AND Gemini RESNET USE A VALUE OF

32. THE SYMBOL ‘-’ INDICATES THE LAYER IS NOT EMPLOYED IN THE
MODEL. WHEN APPLICABLE, A (2,2) STRIDE IS PERFORMED IN THE FIRST

CNN LAYER OF THE STAGE.

Stage Layer
original ResNet34 modified ResNet34 Gemini ResNet34
Stride Output Stride Output Stride Output

conv1
7×7, C (2,2) F/2×T/2 - - - -
3×3, C - - (1,1) F×T (1,1) F×T

conv2
Max Pooling (2,2) F/4×T/4 - - - -[
3 × 3, C

3 × 3, C

]
×3 (1,1) F/4×T/4 (1,1) F×T (2,1) F/2×T

conv3

[
3 × 3, C × 2

3 × 3, C × 2

]
×4 (2,2) F/8×T/8 (2,2) F/2×T/2 (2,2) F/4×T/2

conv4

[
3 × 3, C × 4

3 × 3, C × 4

]
×6 (2,2) F/16×T/16 (2,2) F/4×T/4 (2,1) F/8×T/2

conv5

[
3 × 3, C × 8

3 × 3, C × 8

]
×3 (2,2) F/32×T/32 (2,2) F/8×T/8 (2,1) F/16×T/2

cluding model sizes, structures (backbones, attention,
pooling layers and micro design), training strategies, and
in/cross-domain test sets.

• We introduce the Gemini DF-ResNet, as the new state-
of-the-art (SOTA) benchmark for ASV.

II. BACKGROUND

A. ResNet Architecture

ResNet is first proposed for image recognition [50]. A
standard ResNet comprises five stages. The first stage is a
7×7 convolutional (conv) layer, followed by four stages. Each
stage contains multiple residual blocks, as shown in Table I.
Residual blocks are defined as:

y = F(x, {Wi}) + Wsx, (1)

where x and y are the input and output vectors of a residual
block. The function F(x, {Wi}) represents the residual map-
ping to be learned. The operation F + x is performed by a
shortcut connection and element-wise addition. Ws denotes a
linear projection used in the shortcut to match the dimensions
of x to F . The design of F is flexible and commonly
categorized into two types: basic block and bottleneck block.
Basic blocks utilize two (3×3) convolutional layers, whereas
the bottleneck blocks are composed of (1 × 1), (3 × 3), and
(1× 1) convolutions. The weights of these layers are denoted
as {Wi}, and the bias is omitted for simplicity [50].

The depth of ResNet is determined by the number of layers
M , which is dictated by the types and number m of residual
blocks. It is formulated as:

M =

{
2×m+ k, if basic block
3×m+ k, if bottleneck block

, (2)

where k accounts for the convolution layer in the first conv1
stage and the bottleneck layer in the decoder, typically as-
signed a value of 2. ResNets with M = 18/34/50/101/152
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Fig. 1. The illustration of convolution operations in (a) TDNN, (b) 2D CNN with stride = (1,1), and (c) stride = (2,2). The blue and grey cuboids represent
time-frequency bins of feature maps and paddings, respectively.

layers are commonly adopted [50]. The depth can be further
extended, such as 233 [24] and 1202 [50] layers. In addition
to expanding the depth, previous studies explore various
variations of ResNet architecture from different perspectives
to improve the performance, including ResNeXt [75], Con-
vNeXt [70], Res2Net [76], squeeze-and-excitation network
(SENet) [77], depth-first ResNet (DF-ResNet) [24], [25],
separate downsampling ResNet (SD-ResNet) [70], modified
ResNet [19], [21], thin-ResNet [20] and fast ResNet [18].

We observe that the five-stage structure remains intact,
despite the adjustments to network depth or modifications
to the model architecture [18]–[21], [24], [25], [70], [75]–
[77]. Therefore, in this work, we validate our hypothesis by
adopting the five-stage design, while acknowledging that the
hypothesis itself is applicable to architectures with arbitrary
stages. The generality of our proposed method allows its
application to all 2D CNN models following the five-stage
design, including Res2Net [76], SENet [77], DF-ResNet [24],
[25], SD-ResNet [70], and modified ResNet [19], [21], as
validated through experiments.

B. Extensions of ResNet

The ResNet initially designed for an image recognition
task [50], exhibits inferior performance when directly applied
to speaker verification [20]. Our initial findings also suggest
the same, highlighting the inherent differences between image
and speech, and the necessity of customizing ResNet for
speech-related tasks.

Preserve Resolutions. By simply removing the stride oper-
ations (2,2) in the first and second stages, a modified ResNet
gains a remarkable improvement [19], [21]. A comparison
of the original ResNet [50] and the modified structure [19]
is shown in Table I. We believe that removing the stride
operations in the first two stages preserves the time and
frequency resolutions, allowing for the extraction of low-
level features. This assumption emphasizes the significance
of resolutions as an important aspect of ASV. Nevertheless,
it remains uncertain whether the time resolution, frequency
resolution, or both are significant to the overall performance,
which warrants further investigation.

Prioritize depth over width. Previous studies adopt a
computationally efficient operation by reducing the width of
ResNet [18], [19], [28]. Recent work further investigates the
trade-off between the depth and width of networks, highlight-
ing that depth plays a more important role in ASV [24]. In this
paper, we examine ResNet-based networks from a different
perspective, focusing on investigating how time and frequency
resolutions affect performance, as well as considering the
model size and FLOPs. Our findings complement the depth-
first rule [24] presented in Section V-E.

C. Stride and Resolution

In this subsection, we provide an overview of how the
stride configuration influences the temporal and frequency
resolutions in the 1D TDNN and 2D CNN models. This forms
the basis for our subsequent exploration and investigation in
the following sections.

As illustrated in Fig. 1 (a), a TDNN network implemented
with dilated 1D CNN layers [32] treats the input as 1D fea-
tures, while considering the frequency dimension as channels.
TDNN-based models are not included in this study due to
the absence of the frequency dimension, and existing TDNN
models generally maintain time resolution [31]–[36], [39]–
[42], [47]. Unlike TDNNs, a 2D CNN considers the input
feature as a 3-dimensional tensor C × F × T , where C, F,
and T represent the channel, frequency, and time dimensions,
respectively [24]. By employing multiple 2D CNN layers,
the number of channels increases, while the frequency and
temporal resolutions decrease by downsampling operations to
reduce computational complexity [50]. The output dimension
of the downsampling operation is mainly controlled by the
stride. Figure 1 (b) and (c) illustrate that by adjusting the stride
in each dimension, the temporal and frequency resolutions can
be controlled independently. For instance, setting the stride to
2 on the time dimension and 1 for the frequency dimension
roughly halves the time resolution while keeping the frequency
resolution the same.

In addition to stride (S), the output resolution (Rout) is also
affected by the input resolution (Rin), padding (P ), dilation
(D), and the kernel size (K), as follows:
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Rout =
Rin + 2× P −D × (K − 1)− 1

S
+ 1 ≃ Rin

S
. (3)

In summary, the temporal and frequency resolutions are pri-
marily controlled by the stride configuration employed on each
dimension. In this paper, we investigate the impact of time
and frequency resolutions on ASV performance by comparing
different stride configurations. We aim to identify the optimal
stride configurations for ASV.

III. GOLDEN-GEMINI IS ALL YOU NEED

A. Golden-Gemini Hypothesis

Considering the distinct physical implications of the two
dimensions in speech representations, we raise doubts re-
garding the appropriateness of employing the default equal-
stride configuration, originally designed for image recognition.
Furthermore, given that existing studies show the benefit of
preserving the temporal resolution during the feature extrac-
tion stage [31]–[37], [39]–[42], [73], [74], we postulate the
following hypothesis:

Golden-Gemini Hypothesis: In the context of a ResNet
architecture, characterized by a sequence of multiple stages
(typically 5), there exist operational states that yield optimal
performance. These states can be determined by following
a temporal-frequency stride configuration that prioritizes the
preservation of temporal resolution over frequency resolution.
We refer to these specific operational states as the Golden-
Gemini configurations.

The Golden-Gemini Hypothesis posits that the preservation
of temporal resolution is to be prioritized over frequency
resolution for the optimal extraction of speaker characteristics.

The uniqueness of a person’s voice results from the combi-
nation of physiological characteristics inherent in the vocal
tract and the learned speaking habits of different individ-
uals [78]. The vocal tract shape is an important physical
distinguishing factor [78], wherein the laryngeal features
encompass pitch and glottal pulse shape, while the supra-
laryngeal features are associated with the formant frequencies,
bandwidths, and intensities [79]. These features appear across
various time scales, underscoring the significance of maintain-
ing adequate temporal resolution for the convolution filters.
By progressively covering larger local regions as the network
deepens, these filters extract meaningful representations from
neighboring frames. On the other hand, the learned speaking
habits, including speaking rate and prosodic effects [78], vary
along the time dimension. By preserving temporal resolution,
models can effectively capture these time-dependent patterns.
Conversely, downsampling in the time domain leads to a loss
of neighboring frame information and diminishes its ability
to capture fine-grained details necessary for robust speaker
discrimination.

B. Finding the Sweet Spots on the Trellis Diagram

To validate the Golden-Gemini Hypothesis and to deter-
mine the optimal stride configuration for ASV, we carefully
design a search strategy in this subsection. As introduced

Fig. 2. An exemplar trellis diagram. Each node on the trellis diagram
represents the time and frequency downsampling factors, αn and βn, at the
output of each stage in a ResNet. Each path represents a stride configuration
consisting of five sequential stages, for n = 1, 2, ..., 5. The node with a
circular outer ring dgindicates that it remains at the same position by using
a stride of (1,1). Dashed arrows represent two alternative options controlled
by different stride operations.

in Section II-C, the temporal and frequency resolutions are
primarily controlled by the stride configuration employed on
each dimension during the convolution operations. In order to
visually represent the various stride configurations, we utilize a
trellis diagram as a graphical tool to aid our study, as illustrated
in Fig. 2. This diagram effectively captures the essence of each
stride configuration by illustrating a series of sequential stride
operations originating from the start point.

Consider the ResNet structure comprising five stages as de-
tailed in Section II-A and Table I. For each stride configuration
is represented by five sequential steps on the trellis diagram in
Fig. 2, with each step denoting a stride operation performed
in a ResNet stage. For the n-th stage, the stride operation is
denoted as Sn = (st,n, sf,n), indicating a reduction in time and
frequency resolutions by a pair of stride factor of st,n and sf,n,
respectively. When st,n or sf,n equals to 1, the corresponding
resolution remains unchanged. It’s important to highlight that
strides of 1 or 2 are the most commonly used and are also the
default choices in ResNet [50]. Therefore, in this work, we
exclusively focus on these two stride operations.

In Fig. 2, αn and βn are the downsampling factors at
the output of the n-th stage in a ResNet for the temporal
and frequency resolutions, respectively. They are given by the
products of the stride factors , and are formulated as follows.

αn =

n∏
i=1

st,i, and βn =

n∏
i=1

sf,i. (4)

The output temporal resolution Rout,t,n and frequency reso-
lution Rout,f,n of the n-th stage in a ResNet are derived as:

Rout,t,n ≃ Rinit,t

αn
, and Rout,f,n ≃ Rinit,f

βn
, (5)
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where Rinit is the initial input resolution for the first stage in
a ResNet.

For the red path in Fig. 2, a stride of (2,2) reduces both
time and frequency resolutions by half at stage n = 5
simultaneously. The two dashed arrows indicate the alternative
stride configurations for reducing the resolution by half in
either the frequency dimension alone with a stride of (1,2), or
the time dimension alone with a stride of (2,1). Additionally,
it is allowed to stay at the same node on the trellis diagram,
thereby preserving both time and frequency resolutions with
a stride of (1,1). This option is denoted as dg in Fig. 2,
represented by the black node at coordinates (1,1). The early
stages often employ this option to retain sufficient information
in low-level features. This design aligns with that of the
modified ResNet [19], [21], where the first two stages use
a stride of = (1,1).

In the trellis diagram depicted in Fig. 2, the stride con-
figurations that prioritize the preservation of either frequency
or time resolution are delineated. The endpoints located on
the black dotted line indicate stride configurations that treat
time and frequency resolutions equally. This black dotted line
also divides the diagram into two partitions. Within the upper-
left partition, the stride configurations give precedence to the
preservation of temporal resolution over frequency resolution.
Conversely, the lower-right partition represents configurations
that accentuate frequency resolution, while compromising tem-
poral resolution. In our experiments, we search all possible
stride configurations within this trellis diagram to identify
the optimal stride configuration. The experimental results and
analysis of this search are presented in Section V-B.

In addition, there are multiple paths on the diagram that
lead to a single endpoint, each representing a specific stride
configuration. Figure 2 shows an exemplar trellis diagram
illustrating four paths, each represented by a different color,
converging to the endpoint on (2, 16). The difference among
stride configurations that lead to the same endpoint lies in
the specific stages within the total of five stages where the
downsampling operation with a stride of (2,2) is applied.
Performing the downsampling operation in an early stage
reduces the resolution of the output feature map, resulting
in a smaller feature size that needs to be convolved by
2D convolutions. Consequently, this reduction in resolution
contributes to a decrease in FLOPs. Therefore, the stride
configurations towards the same endpoint require for different
FLOPs while maintaining the same number of parameters. To
assess the impact of early or late downsampling, we explored
different paths towards the same point with various FLOPs.
The experimental results and analysis of the findings are
comprehensively presented in Section V-C.

IV. EXPERIMENTAL SETUPS

A. Dataset

The experiments are conducted on four large-scale datasets,
including the VoxCeleb1 [80], VoxCeleb2 [81], Speaker in the
Wild (SITW) [82] and CNCeleb [83] datasets.

Training set. During training, only the development par-
tition of the VoxCeleb2 dataset is used, which consists of

TABLE II
DEVELOPMENT AND TEST SETS STATISTICS

Test set # of speakers # of utterances # of pairs

VoxCeleb1-O 40 4,708 37,611
VoxCeleb1-H 1,190 137,924 550,894
VoxCeleb1-E 1,251 145,160 579,818

SITW - - 721,788
CNCeleb - - 3,484,292

5,994 speakers and 1,092,009 utterances. This protocol for
training on the VoxCeleb2 dataset is widely adopted [24], [25],
[32], [39]–[42], [44], [47]. Additionally, a randomly selected
2% portion of this development partition is reserved as the
validation set. This small validation set is used to identify the
best model for testing on the development and testing sets.

Development set. The VoxCeleb1-Original (Vox1-O) test
set is utilized as the development set in this work to conduct
a performance comparison of all stride configurations. The
outcomes of the tests on this development set are analyzed,
leading to the formulation of observations.

Test set. In order to verify the observations across various
scenarios, we comprehensively encompass testing scenarios
that include in-domain, out-domain, large-scale, and chal-
lenging cases. Specifically, VoxCeleb1-Hard (Vox1-H) and
VoxCeleb1-Extended (Vox1-E) are used as in-domain large
hard cases and a large test set, respectively. The SITW core-
core test set serves the purpose of cross-domain testing, while
the CNCeleb test set is employed to assess challenging cases
within a cross-domain scenario. The statistics of these four
test sets are shown in Table II. It’s important to highlight that
there is no overlap between any of the test sets and the training
set or development set.

B. Training Strategy

The experiments are conducted using the Pytorch frame-
work1. We adopted two training strategies as detailed below.

Training strategy 1: The SpeechBrain Toolkit2 [84] is
used. For fair comparisons, all systems are trained under the
same training strategy following that in [32], [40]. Specifically,
the loss function is the additive angular margin softmax
(AAM-softmax) [16] with a margin of 0.2 and a scale of
30. The Adam optimizer [85] with cyclical learning rate [86]
following a triangular policy [86] is used for training all
models. A weight decay of 2×10−5 is used for all the weights
in the model. The maximum and minimum learning rates of
the cyclical scheduler are 2×10−3 and 2×10−8, and the batch
size is 64 each with 5 types of augmented data. For Res2Net
and ResNet101, learning rates and batch size are reduced to
half due to the large memory occupation.

All training samples are cut into 3-second segments. We
employ five augmentation techniques to increase the diversity
of the training data. The first two follow the idea of random
frame dropout in the time domain [87] and speed perturba-
tion [88]. The remaining three are a set of reverberate data,

1https://pytorch.org/
2https://speechbrain.github.io/
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noisy data, and a mixture of both, achieved by combining
with the Room Impulse Response (RIR) dataset [89]. The s-
norm [90] is applied to normalize the scores.

Training strategy 2: Wespeaker Toolkit3 [21] is used.
This training strategy follows that in [24] for the purpose
of re-implementing DF-ResNet [24] and is only applied to
re-implemented DF-ResNet and Gemini DF-ResNet reported
in Section V-E. Specifically, the loss function is an AAM-
softmax [16] with a margin of 0.2 and a scale of 32. The total
number of training epochs is set to 165. The AdamW [91]
optimizer with 0.05 weight decay is used. The base learning
rate (lbase) decreases from 1.25×10−4 to 1×10−6 with the ex-
ponential scheduler as the learning rate regulator. The learning
rate (l) for training is adjusted according to the batch size (b)
and formulated as l = lbase×b/64. All the samples are cut into
200-frame segments with the augmentations of reverberation,
noise, and speed perturbation [88] during training. The as-
norm [92] is applied to normalize the scores.

C. Evaluation Protocol

We report the performances in terms of the equal error rate
(EER) and the minimum detection cost function (minDCF)
with Ptarget = 0.01 and CFA = CMiss = 1. The scores are pro-
duced by calculating the cosine distance between embeddings.

V. RESULTS AND ANALYSIS

It is worth noting that the FLOPs calculation is correlated
with the duration of the sample. We select the most commonly
used options of 2 seconds [21], [24], [25], [32], [39], [42] and
3 seconds [30], [37], [40], [41], [46], [84], [93] to calculate
FLOPs. The results are labeled as ‘2s/3s’.

A. Original ResNet v.s. Modified ResNet (Baseline)

We first compare the modified ResNet [19] and original
ResNet [50]. The results are presented in Table III. It is
obvious that the modified ResNet outperforms the original
ResNet. The improved performance of the modified ResNet
is attributed to the adequate preservation of frequency-time
resolution by changing the stride configurations from (2,2) to
(1,1) in the first two layers. However, these changes also lead
to an increase in FLOPs.

In addition, as this modified ResNet [19] achieves SOTA
performance using the equal-stride configuration, we adopt it
as the baseline model in this work.

B. Finding the Sweet Spots on the Trellis Diagram

We perform a strategic search on the trellis diagram for
optimal stride configuration, as shown in Fig. 3 (a). All stride
configurations are evaluated on the development set, and the
results are reported in the left sub-table of Table IV. These
results yield the following observations:

Observation 1 – Models that prioritize preservation of
temporal resolution over frequency resolution (indexed start-
ing with ‘T’) tend to outperform the default equal-stride

3https://github.com/wenet-e2e/wespeaker

TABLE III
PERFORMANCE IN EER(%) AND MINDCF OF ORIGINAL RESNET [50]

AND MODIFIED RESNET [19], [21]. THE FLOPS ARE CALCULATED
BASED ON A 3-SECOND SAMPLE.

Vox1-O Vox1-H Vox1-E SITW CNCeleb
EER EER EER EER EERModel Params

(Million)
FLOPs
(Giga) minDCF minDCF minDCF minDCF minDCF

2.903 5.106 2.934 3.609 16.373original ResNet18 11.3 0.90
0.315 0.433 0.322 0.396 1.000
1.760 2.785 1.600 2.132 12.301modified ResNet18 3.45 3.25 0.177 0.244 0.170 0.210 0.657
2.744 4.598 2.614 3.308 15.072original ResNet34 21.41 1.82
0.291 0.400 0.284 0.379 1.000
1.101 2.221 1.252 1.584 12.113modified ResNet34 6.63 6.88 0.128 0.208 0.139 0.161 0.623

configuration (indexed as MOD). Conversely, configurations
that emphasize frequency resolution (indexed starting with
‘F’) generally result in poorer performance. Fig. 3 (a) pro-
vides clear evidence that models utilizing stride configura-
tions located in the upper-left partition of the trellis diagram
prioritize the preservation of temporal resolution, resulting in
a considerable advantage as indicated by the presence of a
large bubble. In contrast, models positioned in the lower-right
partition demonstrate an opposite trend. These observations
strongly support the Golden-Gemini Hypothesis, which posits
that temporal resolution plays a more important role than
frequency resolution in capturing the speaker characteristics
of speech signals.

Observation 2 – The performance of models with end-
points located on the boundary will significantly deteriorate.
As shown in Table IV, models indexed as T05, T15, T25,
F52, F51, and F50 exhibit notable performance degradation
compared to neighboring models on the trellis diagram. Unlike
a TDNN that utilizes large channel numbers (e.g., 512, 1024,
or 2048) [32], [39], [40], ResNet employs a smaller channel
number (such as 32 or 64) at early stages for low-dimensional
information representations [19], [21], [24], [25]. This aligns
with the design principle discussed in Section II-B that empha-
sizes the importance of depth over width. Consequently, when
the temporal or frequency resolution is rapidly compressed,
and constrained by a limited number of filters, it leads to the
loss of information in that specific dimension. This results
in a notable degradation of performance. Therefore, when
designing a narrow ResNet with a smaller width, it is advisable
to avoid the stride configurations located on the boundary.

Observation 3 – Leveraging an optimal stride configuration
effectively utilizes the computational resources of model size
and FLOPs. The trellis diagram in Fig 3 (a) clearly shows that
models in the lower right region with large FLOPs and model
size perform poorly. Even the largest model (indexed as F50),
which employs an unfavorable stride configuration, performs
the worst. On the contrary, models that preserve temporal
resolution achieve good performance with less complexity than
the baseline.

Observation 4 – Models indexed as T14 and T23 show the
best performance among all the models. This supports the
Golden-Gemini Hypothesis that there exist operational states
that yield optimal performance for ASV. We refer to these two
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TABLE IV
PERFORMANCE IN EER(%) AND MINDCF OF THE ORIGINAL RESNET34 (ORI) [50] AND THE MODIFIED RESNET34 (MOD) [19], [21] WITH DIFFERENT

STRIDE CONFIGURATIONS DEMONSTRATED IN FIG. 3 (A). EXPERIMENTS ARE CONDUCTED ON THE DEVELOPMENT SET (VOX1-O) IN THE LEFT
SUB-TABLE AND ON THE TEST SETS (VOX1-H, VOX1-E, SITW, CNCELEB) IN THE RIGHT SUB-TABLE. THE STRIDE CONFIGURATION SHOWS THE

STRIDE FACTORS FOR TIME AND FREQUENCY DIMENSIONS IN THE FIVE STAGES OF RESNET ARCHITECTURE. THE SYMBOL ↑↓ INDICATES THE AVERAGE
RELATIVE CHANGES ACROSS ALL FOUR TEST SETS OVER THE BENCHMARK MODEL.

Downsampling Stride Config. Vox1-O
Factors [Time]

FLOPs
(Giga) EER

Index of
Stride

Config. (α5, β5) [Frequency]

Params
(Million) 2s/3s minDCF

[2,2,2,2,2] 2.744ORI (32,32)
[2,2,2,2,2]

21.41 1.25/1.82
0.291

[1,1,2,2,2] 1.101MOD (8,8)
[1,1,2,2,2]

6.63 4.63/6.88
0.128

[1,1,1,1,1] 1.250T05 (1,32)
[2,2,2,2,2]

5.72 4.49/6.72
0.131

[2,2,2,2,2] 2.526F50 (32,1)
[1,1,1,1,1]

15.81 4.44/6.43
0.241

[1,1,1,1,2] 1.303T15 (2,32)
[2,2,2,2,2]

5.72 3.50/5.24
0.161

[2,2,2,2,2] 2.505F51 (32,2)
[1,1,1,1,2]

10.57 3.52/5.11
0.243

[1,1,1,2,2] 1.218T25 (4,32)
[2,2,2,2,2]

5.72 2.16/3.23
0.133

[2,2,2,2,2] 2.228F52 (32,4)
[1,1,1,2,2]

7.95 2.17/3.16
0.219

[1,1,1,1,2] 1.058T14 (2,16)
[1,2,2,2,2]

5.98 6.68/9.99 0.092
[1,2,2,2,2] 1.882F41 (16,2)
[1,1,1,1,2]

10.57 6.87/10.08
0.150

[1,1,1,2,2] 1.111T24 (4,16)
[1,2,2,2,2]

5.98 4.15/6.20
0.104

[1,2,2,2,2] 1.563F42 (16,4)
[1,1,1,2,2]

7.95 4.24/6.24
0.135

[1,1,2,2,2] 1.260T34 (8,16)
[1,2,2,2,2]

5.98 2.32/3.46
0.128

[1,2,2,2,2] 1.691F43 (16,8)
[1,1,2,2,2]

6.64 2.35/3.47
0.180

[1,1,1,2,2] 1.101T23 (4,8)
[1,1,2,2,2]

6.63 8.27/12.37
0.095

[1,1,2,2,2] 1.223F32 (8,4)
[1,1,1,2,2]

7.95 8.35/12.41
0.105

[1,1,1,1,1] 1.276T04 (1,16)
[1,2,2,2,2]

5.98 8.32/12.45
0.117

[1,1,1,1,2] 1.127T13 (2,8)
[1,1,2,2,2]

6.63 13.33/19.95
0.107

Vox1-H Vox1-E SITW CNCeleb ↑↓
EER EER EER EER EER

Index of
Stride

Config. minDCF minDCF minDCF minDCF minDCF

4.598 2.614 3.308 15.072 +87.27%ORI
0.400 0.284 0.379 1.000 +98.30%
2.221 1.252 1.584 12.113 BenchmarkMOD
0.208 0.139 0.161 0.623 Benchmark
2.297 1.359 1.914 12.149 +8.27%T05
0.211 0.141 0.177 0.587 +1.79%
3.932 2.361 3.262 12.898 +69.51%F50
0.329 0.249 0.316 0.755 +63.83%
2.251 1.319 1.832 12.115 +5.60%T15
0.210 0.137 0.172 0.626 +1.54%
3.914 2.350 3.216 12.678 +67.91%F51
0.332 0.245 0.314 0.797 +64.58%
2.266 1.282 1.640 13.027 +3.88%T25
0.212 0.138 0.174 0.680 +4.61%
3.720 2.195 2.925 12.937 +58.58%F52
0.330 0.235 0.280 0.804 +57.83%
1.998 1.148 1.505 11.670 -6.75%T14
0.185 0.120 0.148 0.549 -11.14%
2.982 1.766 2.433 12.222 +32.46%F41
0.256 0.185 0.240 0.667 +28.11%
2.084 1.177 1.558 12.008 -3.66%T24
0.193 0.125 0.149 0.607 -6.80%
2.765 1.577 2.105 11.878 +20.35%F42
0.245 0.178 0.227 0.768 +27.52%
2.392 1.328 1.750 12.487 +6.83%T34
0.222 0.147 0.169 0.705 +7.75%
2.916 1.636 2.132 12.504 +24.95%F43
0.266 0.178 0.227 0.864 +33.93%
1.965 1.110 1.394 11.141 -10.72%T23 0.182 0.121 0.140 0.572 -11.62%
2.124 1.217 1.476 12.034 -3.65%F32
0.199 0.131 0.161 0.621 -2.61%
2.182 1.282 1.777 11.484 +1.92%T04
0.197 0.133 0.170 0.600 -1.94%
2.009 1.160 1.563 11.400 -6.02%T13
0.183 0.121 0.144 0.548 -11.87%

endpoints on the trellis diagram representing a pair of optimal
operational states as the Golden Gemini.

Points closer to the start points are not explored for two
reasons. Firstly, T13 shows inferior performance compared
to Golden Gemini. Secondly, points closer to the start points
would significantly increase computational complexity, result-
ing in decreased efficiency compared to utilizing a deeper
model with the proposed Golden-Gemini stride configuration.

In the right sub-table of Table IV, the testing results for all
stride configurations are presented. It is evident that across all
four testing sets, covering in-domain, out-domain, large-scale,
and hard-case scenarios, the testing results exhibit a consistent
trend similar to that observed in the development set. This
consistency strongly supports the above observations.

C. Evaluation on Different Paths towards Golden Gemini

There are multiple paths leading to the Golden Gemini, as
shown in Fig. 3 (b), each representing a stride configuration.

As discussed in Section III-B, we further investigate these
paths to assess the impact of early or late downsampling.
The experimental results of the development set are presented
in the left sub-table of Table V. Following are the two
observations:

Observation 5 – All paths towards the Golden Gemini
points outperform the baseline (indexed as MOD) that uses an
equal-stride configuration. This observation supports Golden-
Gemini Hypothesis that the pair of operational states engage
in competition and yield optimal performance.

Observation 6 – Different path options offer the flexibility
to trade off between FLOPs and performance, with increased
FLOPs generally resulting in improved results. This flexibility
in model design allows for better adaptation to specific ap-
plication scenarios. In addition, previous work demonstrates
superiority by comparing FLOPs as a metric [24], [25], [40],
[41], [50], [70], [76], [94], [95]. This practice is based on
the common understanding that bigger FLOPs often correlate
with better performance. However, rather than simply increas-
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Fig. 3. Trellis diagrams of (a) the strategic search for optimal stride configurations and (b) different paths towards Golden Gemini. ^ in (a) indicates proposed
Golden-Gemini stride configurations. In the rectangle box, from top to bottom are: the downsampling factors (α5, β5), performance in EER (%) on VoxCeleb-E
test set, number of parameters, and FLOPs. The size of the endpoint bubble indicates the performance, and the larger the bubble, the better the performance.
The node with a circular outer ring forming as dgindicates that it remains at the same position by using a stride of (1,1). The solid line represents a stride
configuration that prioritizes temporal resolution over frequency resolution, while the dashed line configuration reflects the opposite.

Fig. 4. Performance versus FLOPs and the number of parameters for different
stride configurations in Fig. 3. The color is consistent with Fig. 3 (a). The
size of the bubble indicates the performance in EER (%) on the VoxCeleb-E
test set, and the larger the bubble, the better the performance.

ing FLOPs, experimental results show that an optimal stride
configuration utilizes FLOPs more efficiently.

The testing results reported in the right sub-table of Table V
demonstrate a consistent trend similar to that observed on the
development set. This further verifies the two observations
mentioned above. In addition, all the stride configurations

depicted in both trellis diagrams in Fig. 3 are visualized
in Fig. 4, comparing their performance, model size, and
FLOPs. Among these configurations, the Golden-Gemini T14c
achieves average EER/minDCF reductions of 5.78%/14.37%
over the modified ResNet baseline (indexed as MOD) across
all four test sets while reducing the model size by 9.8% and the
computational complexity by 4.2%. Considering the efficacy
and efficiency, we designate the T14c stride configuration
as the principal stride configuration in this work. Networks
that adopt the proposed Golden-Gemini stride configurations
are referred to as the Gemini networks, such as the Gemini
ResNet. The structure comparison of the proposed Gemini
ResNet with T14c stride configuration, original ResNet [50],
and modified ResNet [19], [21] is presented in Table I.

D. Evaluation on Compatibility

The changes in time and frequency resolutions occur once
per stage in both ResNet and its variant networks, such as DF-
ResNet [24], Res2Net [76], and SD-ResNet [70]. Given that
the Golden Gemini is concluded from investigating the signifi-
cance of time and frequency resolution for speaker verification,
it is expected to apply to all ResNet series networks that still
adhere to the original ResNet’s five-stage structural design.
This subsection aims to confirm the consistently superior per-
formance of the proposed Golden-Gemini stride configuration
across various conditions and its compatibility with different
techniques. We exemplify with the Golden Gemini T14c stride
configuration, conducting experiments to compare the models
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TABLE V
PERFORMANCE IN EER(%) AND MINDCF OF THE MODIFIED RESNET34 [19], [50] AND Golden Gemini MODELS WITH DIFFERENT PATHS

DEMONSTRATED IN FIG. 3 (B). EXPERIMENTS ARE CONDUCTED ON THE DEVELOPMENT SET (VOX1-O) IN THE LEFT SUB-TABLE AND ON THE TEST SETS
(VOX1-H, VOX1-E, SITW, CNCELEB) IN THE RIGHT SUB-TABLE. THE STRIDE CONFIGURATION SHOWS THE STRIDE FACTORS FOR TIME AND

FREQUENCY DIMENSIONS IN THE FIVE STAGES OF RESNET ARCHITECTURE. THE SYMBOL ↑↓ INDICATES THE AVERAGE RELATIVE CHANGES ACROSS
ALL FOUR TEST SETS COMPARED TO THE BENCHMARK MODEL.

Downsampling Stride Config. Vox1-O
Factors [Time]

FLOPs
(Giga) EER

Index of
Stride

Config. (α5, β5) [Frequency]

Params
(Million) 2s/3s minDCF

[1,1,2,2,2] 1.101MOD (8,8) [1,1,2,2,2] 6.63 4.63/6.88 0.128
[1,1,1,1,2] 1.058T14 [1,2,2,2,2] 5.98 6.68/9.99 0.092
[1,1,1,2,1] 1.056T14b [1,2,2,2,2] 5.98 4.97/7.43 0.093
[1,1,2,1,1] 1.053T14c [1,2,2,2,2] 5.98 4.41/6.59 0.092
[1,2,1,1,1] 1.154T14d

(2,16)

[1,2,2,2,2] 5.98 4.18/6.25 0.115
[1,1,1,2,2] 1.101T23 [1,1,2,2,2] 6.63 8.27/12.37 0.095
[1,1,2,2,1] 1.095T23b [1,1,2,2,2] 6.63 5.45/8.13 0.099
[1,1,1,2,2] 1.122T23c [1,2,2,2,1] 6.63 4.99/7.45 0.112
[1,1,2,1,2] 1.095T23d

(4,8)

[1,2,2,2,1] 6.63 4.43/6.61 0.104

Vox1-H Vox1-E SITW CNCeleb ↑↓
EER EER EER EER EER

Index of
Stride

Config. minDCF minDCF minDCF minDCF minDCF

2.221 1.252 1.584 12.113 BenchmarkMOD 0.208 0.139 0.161 0.623 Benchmark
1.998 1.148 1.505 11.670 -6.75%T14 0.185 0.120 0.148 0.549 -11.14%
2.023 1.149 1.531 11.715 -5.94%T14b 0.190 0.124 0.151 0.559 -9.07%
2.010 1.157 1.504 11.828 -6.13%T14c 0.186 0.124 0.146 0.540 -10.99%
2.040 1.169 1.531 11.867 -5.04%T14d 0.189 0.128 0.155 0.569 -7.35%
1.965 1.110 1.394 11.141 -10.72%T23 0.182 0.121 0.140 0.572 -11.62%
1.992 1.134 1.449 11.315 -8.70%T23b 0.184 0.125 0.140 0.588 -10.08%
2.010 1.137 1.476 12.014 -6.59%T23c 0.182 0.118 0.146 0.589 -10.48%
2.017 1.135 1.581 11.805 -5.32%T23d 0.188 0.120 0.144 0.584 -9.94%

Fig. 5. Performance and complexity comparison of proposed Gemini ResNet and modified ResNet [19], [21] with different model sizes on Vox1-E test set.

using the Golden Gemini T14c and the default equal-stride
configuration under the following conditions:

Different model sizes. The ResNet models have different
depths, resulting in different model sizes and computational
resource requirements. For any proposed new method, adapt-
ing to ResNet models of various sizes is important as it
allows for trade-offs between performance and complexity,
enabling better adaptation to different application scenarios.
We further extend the application of the proposed Golden-
Gemini stride configuration from ResNet34 to a smaller model
(ResNet18) and the larger models (ResNet50 and ResNet101).
The experimental results are presented in Table VI and Fig. 5.
The results demonstrate that the proposed Golden-Gemini
stride configuration consistently improves the performance by
an average of 7.70%/11.76% EER/minDCF reduction across
the entire range of model sizes, while reducing parameters and
FLOPs by 16.5% and 4.1%, respectively.

Data augmentations. The training of neural networks ben-
efits from data augmentations [87]. All previous experiments
are trained with augmented data as described in Section IV-B.

We conduct training without data augmentation to assess the
compatibility of Golden Gemini, and the results are shown in
Table VII. It is observed that the Golden-Gemini stride config-
uration achieves an average relative reduction of 8.30%/.88%
in EER/minDCF across five sets, and reduces complexity.

Squeeze-and-excitation (SE) attention module [77]. SE
is one of the most widely used attention modules. We vali-
date the compatibility of the proposed Golden-Gemini stride
configuration with SE (reduction ratio r = 4), and the results
are shown in Table VII. We can observe that the proposed
Golden Gemini outperforms the equal-stride configuration on
most of the test sets, with an average EER/minDCF reduction
of 8.00%/10.75%. However, the SE block does not improve
the performance, which may require further investigation.

A different backbone network – Res2Net [76]. The
proposed Golden-Gemini stride configuration is not limited
to ResNet models and can be applied to other 2D CNN-based
models as well. Res2Net [76] is a well-known 2D CNN-based
architecture recognized for its ability to extract multi-scale fea-
tures. In the design of multi-scale frequency-channel attention
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TABLE VI
PERFORMANCE IN EER(%) AND MINDCF OF DIFFERENT SIZES OF RESNET MODELS WITH EQUAL-STRIDE CONFIGURATION OR THE PROPOSED

Golden-Gemini STRIDE CONFIGURATION (T14C) ON VOXCELEB1, SITW AND CNCELEB TEST SETS. AVG. REDUCTION INDICATES AVERAGED RELATIVE
REDUCTION ACROSS ALL FIVE SETS OVER THE BENCHMARK.

Model Params
(Million)

FLOPs (G) Vox1-O Vox1-H Vox1-E SITW CNCeleb Avg. Reduction
2s/3s EER/minDCF EER/minDCF EER/minDCF EER/minDCF EER/minDCF EER/minDCF

ResNet18 4.11 2.22/3.30 1.760/0.177 2.785/0.244 1.600/0.170 2.132/0.210 12.301/0.657 Benchmark
Gemini ResNet18 3.45 (-16.1%) 2.17/3.25 1.319/0.139 2.474/0.226 1.462/0.153 2.050/0.190 12.211/0.592 -9.89%/-11.57%

ResNet50 11.13 5.22/7.76 1.329/0.141 2.213/0.205 1.249/0.134 1.613/0.158 11.856/0.692 Benchmark
Gemini ResNet50 8.51 (-23.5%) 4.92/7.35 1.196/0.121 2.016/0.189 1.147/0.119 1.449/0.145 11.608/0.603 -7.87%/-11.22%

ResNet101 15.89 10.07/15.00 1.101/0.100 2.051/0.194 1.121/0.121 1.367/0.140 11.884/0.633 Benchmark
Gemini ResNet101 13.27 (-16.5%) 9.72/14.54 0.962/0.099 1.836/0.167 1.035/0.108 1.320/0.125 11.625/0.553 -7.26%/-9.88%

TABLE VII
PERFORMANCE IN EER(%) AND MINDCF OF THE NETWORKS WITH EQUAL-STRIDE CONFIGURATION AND PROPOSED Golden-Gemini T14C STRIDE
CONFIGURATION UNDER DIFFERENT CONDITIONS ON VOXCELEB1, SITW, AND CNCELEB TEST SETS. AUG. INDICATES WHETHER THE SYSTEM IS

TRAINED WITH DATA AUGMENTATIONS. AVG. REDUCTION MEANS THE AVERAGE RELATIVE REDUCTION ACROSS ALL FIVE SETS OVER THE BENCHMARK.

Model Aug. Params
(Million)

FLOPs (G) Vox1-O Vox1-H Vox1-E SITW CNCeleb Avg. Reduction
2s/3s EER/minDCF EER/minDCF EER/minDCF EER/minDCF EER/minDCF EER/minDCF

ResNet34 [19] × 6.63 4.63/6.88 1.489/0.155 2.500/0.224 1.423/0.158 2.378/0.208 12.737/0.639 Benchmark
Gemini ResNet34 × 5.98 4.41/6.59 1.375/0.132 2.261/0.209 1.294/0.139 2.102/0.189 12.271/0.628 -8.30%/-8.88%

ResNet34 + SE [77] ✓ 6.79 4.63/6.89 1.287/0.141 2.512/0.241 1.370/0.157 1.640/0.187 12.408/0.688 Benchmark
Gemini ResNet34 + SE [77] ✓ 6.14 4.41/6.60 1.053/0.104 2.264/0.219 1.223/0.143 1.531/0.165 13.078/0.703 -8.00%/-10.75%

Res2Net34 [76] ✓ 6.57 4.74/7.05 1.071/0.103 2.073/0.195 1.184/0.129 1.524/0.157 11.571/0.568 Benchmark
Gemini Res2Net34 ✓ 5.92 4.46/6.68 1.048/0.100 1.914/0.176 1.092/0.115 1.422/0.135 11.135/0.577 -5.60%/-7.18%
ResNet34 + xi [15] ✓ 7.30 4.66/6.93 1.159/0.111 2.192/0.215 1.288/0.136 1.602/0.161 12.627/0.652 Benchmark

Gemini ResNet34 + xi [15] ✓ 6.31 4.47/6.69 1.101/0.105 2.100/0.199 1.169/0.124 1.480/0.149 11.902/0.644 -6.37%/-6.07%
SD-ResNet38 [70] ✓ 7.37 5.20/7.74 1.202/0.130 2.133/0.203 1.187/0.131 1.586/0.161 11.580/0.618 Benchmark

Gemini SD-ResNet38 [70] ✓ 6.72 4.97/7.43 1.085/0.099 1.974/0.185 1.130/0.117 1.523/0.147 11.507/0.553 -5.32%/-12.60%

TDNN (MFA-TDNN) [40] and multi-scale feature aggregation
convolution-augmented transformer (MFA-Conformer) [46],
multi-scale features have been proven to benefit ASV. Previous
studies have explored the application of Res2Net in ASV [23],
[27], [63]. We compare the Res2Net34 model using the
default equal-stride configuration with that using the proposed
Golden-Gemini stride configuration. The scale (s) of Res2Net
is set to 4. The results in Table VII show that the Golden-
Gemini stride configuration improves performance while re-
ducing complexity compared to the equal-stride configuration.
Additionally, Res2Net34 shows better performance in ASV
compared to ResNet34.

A different temporal aggregation layer – xi posterior
inference (xi) [15]. As introduced in Section I, an embedding
extractor network consists of three components – an encoder,
a temporal aggregation layer, and a decoder. The previous
experiments focus on the encoder component, and for a
fair comparison, a default temporal statistics pooling [12] is
applied across all experiments. We further validate the compat-
ibility of the proposed Golden Gemini with another temporal
aggregation method – xi posterior inference, which is designed
to estimate uncertainty [15]. The experimental results shown in
Table VII demonstrate the consistently superior performance
of Golden Gemini over the equal-stride configuration while
reducing the model size by 13.6% and FLOPs by 4.1%.

A micro design – separate downsampling (SD) [70].
Unlike ResNet [50], which performs downsampling at the
first 2D CNN layer in each stage, Swin Transformer [94]
introduces a separate downsampling layer between stages. This

micro design is also extended to ResNet, resulting in notable
improvements [70]. In this work, we explore this micro design
for ASV by implementing four 3×3 2D CNN layers between
the five stages and name SD-ResNet. It is worth noting that this
modification adds four additional 2D CNN layers, resulting
in the expansion of the ResNet34 [19], [21] architecture to
SD-ResNet38. The results in Table VII demonstrate that SD-
ResNet outperforms the modified ResNet [21] (indexed as
MOD in Table IV). Moreover, the integration of Golden Gem-
ini leads to additional improvements in terms of EER/minDCF,
with averaged reductions of 5.32% and 12.60%, respectively.

In summary, the experimental results validate the compati-
bility of the proposed Golden-Gemini stride configuration with
various existing techniques and training conditions. Golden
Gemini consistently improves performance while reducing
complexity. Its superiority can be attributed to the importance
of temporal resolution. By maintaining temporal resolution,
Golden Gemini ensures adequate representations of both vo-
cal tract features and learned speaker characteristics across
various scales of local time regions and is expected to further
benefit the temporal aggregation layer, leading to significant
performance improvements.

E. New SOTA Benchmark

DF-ResNet [24], [25] is a series of powerful SOTA models
introduced in Section II-B. We first re-implement a small
venison, namely DF-ResNet59. The results reported in Ta-
ble IX demonstrate that the re-implemented DF-ResNet model
slightly outperforms the one reported in [24], [25]. Notably,
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TABLE VIII
THE STRUCTURE COMPARISON BETWEEN DF-RESNET [24] WITH

DEFAULT EQUAL-STRIDE CONFIGURATION AND THE PROPOSED
Golden-Gemini STRIDE CONFIGURATION. SD AND DW INDICATE SEPARATE
DOWNSAMPLING AND DEPTH-WISE CONVOLUTION, RESPECTIVELY [24].

Stage Layer DF-ResNet1824 Gemini DF-ResNet1834

Stride Output Stride Output

conv1 3×3, 32 (1,1) 32×F×T (1,1) 32×F×T
3×3, 32 (SD) - - (2,1) 32×F/2×T

conv2

 1 × 1, 128
3 × 3, 128(dw)

1 × 1, 32

 ×3 (1,1) 32×F×T (1,1) 32×F/2×T

3×3, 64 (SD) (2,2) 64×F/2×T/2 (2,2) 64×F/4×T/2

conv3

 1 × 1, 256
3 × 3, 256(dw)

1 × 1, 64

 ×8 (1,1) 64×F/2×T/2 (1,1) 64×F/4×T/2

3×3, 128 (SD) (2,2) 128×F/2×T/2 (2,1) 128×F/4×T/2

conv4

 1 × 1, 512
3 × 3, 512(dw)

1 × 1, 128

 ×45 (1,1) 128×F/4×T/4 (1,1) 128×F/8×T/2

3×3, 256 (SD) (2,2) 256×F/2×T/2 (2,1) 256×F/4×T/2

conv5

 1 × 1, 1024
3 × 3, 1024(dw)

1 × 1, 256

 ×3 (1,1) 256×F/8×T/8 (1,1) 256×F/16×T/2

Temporal Statistics Pooling Layer N/A 256×F/8×2 N/A 256×F/16×2
Fully Connected Layer (5120, 256) (2560, 256)

# Parameters 9.84×106 9.20×106

FLOPs (2s / 3s) 8.64×109 / 12.87×109 8.25×109 / 12.34×109

we do not apply SpecAugment [87] which is used in [24],
[25]. SpecAugment has been proven effective in automatic
speech recognition (ASR) [87]. However, it can have adverse
effects on the fundamental frequency of the audio, which
is a critical characteristic for speaker discrimination [96].
Prior work [21] shows that combining SpecAugment with
other augmentation methods in ASV can pose compatibility
challenges. Our experiments demonstrate a similar trend.

Similar to other ResNet models, DF-ResNet adopts the
default equal-stride configuration, treating temporal and fre-
quency dimensions equally. By replacing the stride config-
uration with our proposed Golden-Gemini T14c, we see a
notable 4.9% average performance boost and a 7.6% reduction
in model size, as detailed in Table IX. Also, Table VIII shows
a 4.5% decrease in FLOPs. It’s important to note that DF-
ResNet, our chosen baseline, achieves SOTA performance
with a relatively small model size, emphasizing its meticulous
design and efficiency. In this context, achieving further perfor-
mance gains becomes challenging given the already very low
EER and minDCF. Further analysis indicates that, as the model
size increases from the smallest to largest, relative performance
improvements decrease from 7.4% to 5.8%, and then to 1.7%.
This trend aligns with the inherent difficulty of achieving
significant performance improvements over a robust baseline
and low EER/minDCF. Nevertheless, our proposed Golden-
Gemini stride configuration still brings improvements, secur-

4 For the re-implemented DF-ResNet and proposed Gemini DF-ResNet
models, we count the separate downsampling layers as part of the total
layer count. This differs from the counting method used in the original DF-
ResNet [24], [25]. As an example, the DF-ResNet179 in [24], [25] is referred
to as DF-ResNet182 in this work. However, for the experimental results cited
in Table IX, we follow the original work [24], [25].

5 Pre-trained models and codes of the proposed Gemini DF-ResNet
are available at https://github.com/Tianchi-Liu9/Golden-Gemini-for-Speaker-
Verification and https://github.com/wenet-e2e/wespeaker.

TABLE IX
PERFORMANCE IN EER(%) AND MINDCF OF THE PROPOSED Golden

Gemini DF-RESNET AND SOTA SYSTEMS ON VOXCELEB1 TEST SETS.
MODELS WITH OUR PROPOSED Golden-Gemini STRIDE CONFIGURATION

ARE HIGHLIGHTED IN GREY 5 .

System Para. Vox1-O Vox1-E Vox1-H
EER minDCF EER minDCF EER minDCF

Res2Net-14w8s [23] 5.6 1.60 0.178 1.60 0.184 2.83 0.280
ResNet18 [25] 4.11 1.48 0.174 1.52 0.175 2.72 0.244

ECAPA-TDNN (C=512) [32] 6.2 1.01 0.127 1.24 0.142 2.32 0.218
MFA-TDNN (Lite) [40] 5.93 0.968 0.091 1.138 0.121 2.174 0.199
DF-ResNet564 [24], [25] 4.49 0.96 0.103 1.09 0.122 1.99 0.184

DF-ResNet594 (re-implemented) 4.69 0.973 0.097 1.060 0.120 1.866 0.175
Gemini DF-ResNet604 4.05 0.941 0.089 1.051 0.116 1.799 0.166

E-TDNN [32] 6.8 1.49 0.160 1.61 0.171 2.69 0.242
Res2Net-26w8s [23] 9.3 1.45 0.147 1.47 0.169 2.72 0.272

ResNet34 [25] 6.63 0.96 0.089 1.01 0.121 1.86 0.177
H/ASP AP+softmax [28] 8.0 0.88 - 1.07 - 2.21 -

MFA-TDNN (Standard) [40] 7.32 0.856 0.092 1.083 0.118 2.049 0.190
RecXi with Lssp [72] 7.06 0.984 0.091 1.075 0.114 1.857 0.179

PCF-ECAPA (C=512) [44] 8.9 0.718 0.086 0.792 0.114 1.802 0.175
CAM++ [41] 7.18 0.73 0.091 0.89 0.100 1.76 0.173

DF-ResNet1104 [24], [25] 6.98 0.75 0.070 0.88 0.100 1.64 0.156
Gemini DF-ResNet1144 6.53 0.686 0.067 0.863 0.097 1.490 0.144

E-TDNN (large) [32] 20.4 1.26 0.140 1.37 0.149 2.35 0.215
ResNet18 [32] 13.8 1.47 0.177 1.60 0.179 2.88 0.267
ResNet34 [32] 23.9 1.19 0.159 1.33 0.156 2.46 0.229

ECAPA-TDNN (C=1024) [32] 14.7 0.87 0.107 1.12 0.132 2.12 0.210
MFA-Conformer (1/2) [46] 20.5 0.64 0.081 1.29 0.137 1.63 0.153

P-vectors (SFA) [47] 15.1 0.856 0.120 1.117 0.120 2.112 0.208
ResNet52-C2D-32 [97] 10.34 0.771 0.107 0.939 0.111 1.816 0.180

SKA-TDNN [42] 34.9 0.78 - 0.90 - 1.74 -
SimAM-ResNet34 (GSP) [29] 21.54 0.718 0.071 0.993 0.103 1.647 0.159

DS-TDNN-L [98] 20.5 0.64 0.082 0.93 0.112 1.55 0.149
PCF-ECAPA (C=1024) [44] 22.2 0.718 0.089 0.891 0.102 1.707 0.175

NEMO [43] 15.88 0.74 0.110 0.90 0.105 1.90 0.189
Branch-ECAPA-TDNN(b) [99] 24.11 0.72 0.084 0.92 0.098 1.69 0.166

ECAPA++ (Big) [100] 23.9 0.65 0.080 0.84 0.098 1.54 0.154
DF-ResNet1794 [24], [25] 9.84 0.62 0.061 0.80 0.090 1.51 0.148
Gemini DF-ResNet1834 9.20 0.596 0.065 0.806 0.090 1.440 0.137

ing the best performance among all systems. This outcome
supports the remarkable capabilities of the Golden-Gemini
stride configuration and Golden-Gemini Hypothesis, which
emphasizes the critical significance of temporal resolution in
attaining superior results in ASV.

F. Golden-Gemini Guiding Principles

The experiments conducted above consistently demonstrate
the superiority of the proposed Golden Gemini over the de-
fault equal-stride configuration from various perspectives. The
underlying logic behind the Golden Gemini is the utilization
of a series of guiding principles that align with the natural
properties of speech signals for designing 2D CNN-based net-
works for ASV. Based on the aforementioned observations, we
summarize the Golden-Gemini guiding principles as follows:

• Preserve sufficient temporal resolutions during the fea-
ture representation instead of preserving the frequency
resolution.

• Avoid frequently diminishing any dimension at the early
stage when using a narrow network.

• A correct stride configuration surpasses mere FLOP in-
crements. Prioritize the adoption of the optimal stride
configuration followed by the trade-off between FLOPs
and performance according to computation resources.
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VI. CONCLUSION

We investigate efficient stride configurations for speaker
verification. Through a strategic search on a trellis diagram,
we analyze the impact of temporal and frequency resolution on
the ASV performance. Experimental results on the VoxCeleb,
SITW, and CNCeleb test sets highlight the significance of
the temporal resolution. This leads us to identify two points,
named Golden Gemini, representing two series of optimal
stride configurations for ASV. We also present a set of
guiding principles that comprehensively describe the Golden
Gemini for designing 2D ResNet for ASV. Further experiments
demonstrate the consistent superiority and excellent compati-
bility of the proposed Golden Gemini with various structures
across different conditions. Moreover, our approach is simple
yet effective and can be easily applied to any 2D ResNet archi-
tecture style, offering improved performance while reducing
model complexity. Based on the Golden-Gemini guiding prin-
ciples, we introduce a powerful benchmark for ASV, namely
the Gemini DF-ResNet. These findings indicate the promising
value of our method in real-world applications. Additionally,
the significance of time and frequency resolutions may extend
beyond speaker verification, holding great potential for related
tasks such as speaker diarization, speaker extraction, emotion
recognition, and speech anti-spoofing.
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[71] L. Tóth, “Combining time- and frequency-domain convolution in
convolutional neural network-based phone recognition,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 190–194.

[72] T. Liu, K. A. Lee, Q. Wang, and H. Li, “Disentangling voice and
content with self-supervision for speaker recognition,” Proc. Adv.
Neural Inf. Process. Syst., vol. 36, pp. 50 221–50 236, 2023.

[73] T. Liu, R. K. Das, M. Madhavi, S. Shen, and H. Li, “Speaker-utterance
dual attention for speaker and utterance verification,” in Proc. Annu.
Conf. Int. Speech Commun. Assoc, 2020, pp. 4293–4297.

[74] T. Liu, M. Madhavi, R. K. Das, and H. Li, “A unified framework for
speaker and utterance verification,” in Proc. Annu. Conf. Int. Speech
Commun. Assoc, 2019, pp. 4320–4324.

[75] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated resid-
ual transformations for deep neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog, 2017, pp. 1492–1500.

[76] S. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. H.
Torr, “Res2Net: A new multi-scale backbone architecture,” IEEE Trans.
Pattern Anal. Mach. Intell., pp. 652–662, 2019.

[77] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132–
7141.

[78] J. Campbell, “Speaker recognition: a tutorial,” Proc. IEEE, vol. 85,
no. 9, pp. 1437–1462, 1997.

[79] D. Rentzos, S. Vaseghi, E. Turajlic, Q. Yan, and C.-H. Ho, “Transfor-
mation of speaker characteristics for voice conversion,” in Proc. IEEE
Workshop on Autom. Speech Recognit. Understanding, 2003, pp. 706–
711.

[80] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: a large-
scale speaker identification dataset,” in Proc. Annu. Conf. Int. Speech
Commun. Assoc, 2017, pp. 2616–2620.

[81] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep speaker
recognition,” in Proc. Annu. Conf. Int. Speech Commun. Assoc, 2018,
pp. 1086–1090.

[82] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The speakers in
the wild (SITW) speaker recognition database,” in Proc. Annu. Conf.
Int. Speech Commun. Assoc, 2016, pp. 818–822.



ACCEPTED FOR PUBLICATION IN IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 14

[83] Y. Fan, J. Kang, L. Li, K. Li, H. Chen, S. Cheng, P. Zhang, Z. Zhou,
Y. Cai, and D. Wang, “CN-Celeb: A challenging chinese speaker
recognition dataset,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2020, pp. 7604–7608.

[84] M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell, L. Lu-
gosch, C. Subakan, N. Dawalatabad, A. Heba, J. Zhong et al.,
“SpeechBrain: A general-purpose speech toolkit,” arXiv preprint
arXiv:2106.04624, 2021.

[85] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Int. Conf. Learn. Represent., 2015.

[86] L. N. Smith, “Cyclical learning rates for training neural networks,” in
IEEE Winter Conf. Appl. Comput. Vis., 2017, pp. 464–472.

[87] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “SpecAugment: A simple data augmentation method
for automatic speech recognition,” in Proc. Annu. Conf. Int. Speech
Commun. Assoc, 2019, pp. 2613–2617.

[88] H. Yamamoto, K. A. Lee, K. Okabe, and T. Koshinaka, “Speaker Aug-
mentation and Bandwidth Extension for Deep Speaker Embedding,” in
Proc. Annu. Conf. Int. Speech Commun. Assoc, 2019, pp. 406–410.

[89] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A
study on data augmentation of reverberant speech for robust speech
recognition,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2017, pp. 5220–5224.

[90] P. Kenny, “Bayesian speaker verification with heavy-tailed priors.” in
Proc. Process. Speaker Lang. Recognit. Workshop, 2010, p. 14.

[91] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in Int. Conf. Learn. Represent., 2019.
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