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The study of nonlinear Schrodinger-type equations with nonzero boundary conditions introduces
challenging problems both for the continuous (partial differential equation) and the discrete (lat-
tice) counterparts. They are associated with fascinating dynamics emerging by the ubiquitous
phenomenon of modulation instability. In this work, we consider the discrete nonlinear Schrédinger
equation with linear gain and nonlinear loss. For the infinite lattice supplemented with nonzero
boundary conditions, which describe solutions decaying on the top of a finite background, we pro-
vide a rigorous proof that for the corresponding initial-boundary value problem, solutions exist for
any initial condition, if and only if, the amplitude of the background has a precise value A, defined
by the gain-loss parameters. We argue that this essential property of this infinite lattice can’t be cap-
tured by finite lattice approximations of the problem. Commonly, such approximations are provided
by lattices with periodic boundary conditions or as it is shown herein, by a modified problem closed
with Dirichlet boundary conditions. For the finite dimensional dynamical system defined by the pe-
riodic lattice, the dynamics for all initial conditions are captured by a global attractor. Analytical
arguments corroborated by numerical simulations show that the global attractor is trivial, defined
by a plane wave of amplitude A.. Thus, any instability effects or localized phenomena simulated
by the finite system can be only transient prior the convergence to this trivial attractor. Aiming
to simulate the dynamics of the infinite lattice as accurately as possible, we study the dynamics of
localized initial conditions on the constant background and investigate the potential impact of the
global asymptotic stability of the background with amplitude A, in the long-time evolution of the
system.

Keywords: Dissipative discrete nonlinear Schrodinger systems, Ablowitz—Ladik lattice, non-zero boundary
conditions, modulation instability

I. INTRODUCTION

In the present paper, we continue our studies initiated in [I] on the dynamical behavior of the solutions of
the following discrete nonlinear Schrodinger [2] (DNLS)-type equation

iy 4 k(Ung1 — 2Up + Up_1) F |[Un|?Un = iy, + 0|t *u,. (1.1)

Eq. (1.1) is a fundamental nonlinear lattice model incorporating linear and nonlinear gain/loss effects. The
parameter v describes linear loss (v < 0) [or gain (y > 0)], while ¢ describes nonlinear loss (6 < 0) [or gain
(6 > 0)]. The important of the presence of these effects is crucial, particularly in the context of nonlinear optics,
where the model (1.1) may describe the evolution of localized modes in optical waveguides, see [3—6] (and the
references therein). In this context, v describes a linear absorption (v < 0) [or linear amplification (y > 0)],
while ¢ stands for nonlinear amplification (6 > 0) [or gain saturation (§ < 0)]. The importance of these effects

in various discrete and continuous set-ups has been also highlighted in [7—12] as they may have a prominent
role in the potential stability/instability of the localized modes.
In [1] we studied the dynamics of the model (1.1) in the gain/loss regimes for v and d, where collapse

in finite-time (or blow-up) is manifested. We identified therein, distinct types of collapse and estimates for
the blow-up time which in various cases proved to be sharp. We remark that the potential destabilization by
finite-time collapse has been proved to be a major characteristic of the dynamical behavior of DNLS models
incorporating gain/loss effects [5, 6].

Herein, we will focus on the study of the dynamics in the case of linear gain v > 0 and nonlinear loss § < 0.
While the loss/loss regime v < 0, 6 < 0 is yet of physical significance, it is characterized by the decay of
solutions for all initial data. Therefore, our primary concern will be the former regime which is characterized
by non-trivial long-time asymptotic behavior.
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We will consider equation (1.1) both in infinite and finite and lattices. The first case concerns the system
supplemented with nonzero boundary conditions at infinity

lim u,(t) = Aexp(iA®t), A >0, (1.2)

[n|—o0

where A is the amplitude of the constant background. Note that the specific choice of boundary conditions (1.2)
is rather general. The specific choice is imposed by the the unit strength of the nonlinearity in the left-hand side
of (1.1), which is selected for simplicity. In the case of a general nonlinearity f(|u,|?)u,, a consistent problem
requires that the right-hand side of the boundary conditions (1.2) must have the form Aexplif(A?)t], for a
sufficiently smooth function, so that lim,| e f(Jtun]?) = flimy, e [un|?) = f(A?).

On the one hand, there is a strong motivation from the mathematical point of view for the study of (1.1) with
non-zero boundary conditions like (1.2). The problem (1.1)-(1.2) is drastically different from the case of zero
boundary conditions and is associated with the emergence of fascinating dynamics and a wide class of localized
phenomena which may occur on the top of the finite background A, due to the ubiquitous phenomenon of
modulation instability (MI). Numerical evidence is provided in [13, Appendix C, pg. 903] for the Hamiltonian
non-integrable DNLS (v = § = 0) that the system exhibits the dynamical behavior of modulationally unsta-
ble integrable models, like the NLS partial differential equation and the Ablowitz-Ladik (AL) lattice, when
supplemented with the boundary conditions (1.2) and the relevant initial conditions of the form of a localized
perturbation of a constant background [13, initial data 8(a)-8(c), pg. 891]. The potential persistence of this
behavior in the presence of gain and loss effects will be a main question which will be investigated and dis-
cussed below. On the other hand, due to the physical relevance of the model (1.1) in the context of optics,
it is important to remark that rogue wave-type structures have been observed in remarkable experiments [14],
[15]. In the discrete realm, such structures are described by the famous class of discrete rational solutions
of the Ablowitz-Ladik lattice [16] which satisfy nonzero boundary conditions like (1.2). The important ques-
tion of the potential emergence, even robustness of such waveforms in the dynamics of non-integrable DNLS
equations initiated new studies as in [17] in the framework of the Salerno lattice and its generalization which
may interpolate between the DNLS and the AL system [18]; see also [19], [20] for the existence, stability and
dynamics of periodic and quasi-periodic solutions on the top of a finite background for this modified Salerno
model. The potential emergence of extreme waveforms in the dynamics of the dissipative DNLS (1.1) will be
also investigated in the present work.

The second case concerns the system supplemented with periodic boundary conditions. For instance, we will
consider an arbitrary number of N + 1 oscillators which are placed equidistantly on the interval Q = [—L, L]
of length 2L. We denote k = 1/h? the discretization parameter, where h = 2L /N is the lattice spacing. The
spatial coordinate of the oscillators is given then by x, = —L +nh, n = 0,1,2,...,N. Then we supplement
Eq. (1.1) with periodic boundary conditions

Uy = Upt N (1.3)

and initial conditions u,(0) = u, 0 € €5, the space of periodic sequences (see [1] and below). We remark that
apart of the physical significance of the periodic boundary conditions (1.3), the periodic problem serves also
as a finite lattice approximation of the infinite lattice problem in the case of the nonzero boundary conditions
(1.2) (but also for the vanishing boundary conditions A = 0) when L is sufficiently large.

However, regarding even its local in time solvability, the problem (1.1)-(1.2) is fundamentally different than its
periodic counterpart. We prove that the problem (1.1)-(1.2) admits a unique, at least a local in time solution if
and only if A = A, := \/—~/d. In other words, spatially localized solutions on the top of the finite background
A > 0 exist if and only if A is fixed to the “critical value” A,. Apart of its independent interest, this result
raises a serious warning concerning the approximations of the infinite lattice problem by the finite lattice, as
the periodic one: when L is sufficiently large one may simulate the dynamics of the problem with non-zero
boundary conditions (1.2) for arbitrary A > 0, by triggering initial conditions of the form

lim wu,(0) = A4, (1.4)
[n|—o0
with a sufficiently fast rate of decay of u,(0) on A, in order to make the error induced by the periodic boundary
conditions negligible since the initial data and the corresponding solutions will satisfy them only asymptotically.
It is evident that the numerical solutions which can be produced for an arbitrary A, do not capture the crucial
restriction for the solvability of the infinite lattice problem stated above.

In light of the above result for the infinite lattice, the periodic problem (1.1)-(1.3) deserves much attention.
It is shown that the relevant finite dimensional dynamical system posseses a global attractor and its spatially
averaged [2-norm is uniformly bounded by A,. In this paper, to the best of our knowledge, we provide a novel
argument that characterizes the global attractor. Specifically, we establish that the global attractor is a time-
periodic orbit defined by the unique non-trivial plane wave solution with a constant amplitude denoted as A,
a frequency of @, and a wave number of ¢. This solution satisfies the dispersion relation given by:

& = 4k sin? (%) _ A2,



To implement this argument, we first demonstrate that the attractor represents the w-limit set of all initial
conditions stemming from solutions in the form of:

Uy (T, t) = A(t) exp [i(qz, — Q1)], teR.

What sets our argument apart is that we prove convergence not only in terms of amplitudes, where A(t) — A,
as t — 0o but also through a detailed analysis of the exact frequency function 2(¢). We determine its behavior in
relation to its slant asymptotes, ultimately establishing that Q(t) — Qs (t) := @t. We extend this result to cover
the remaining initial conditions through a finite-dimensional representation using their discrete Fourier series.
Secondly, we conduct a MI analysis for the plane wave attractor, demonstrating its potential for instability. By
combining the convergence results with the MI analysis, we establish that this instability is transient.

To illustrate the convergence and transient MI effects, we perform numerical simulations for two representative
scenarios: plane-wave initial conditions and localized ones superimposed on a finite background. These numerical
findings, which align closely with the theoretical results, also showcase the evolution of the initial conditions’
spectrum. Of particular interest is the case of unstable wave numbers, where the system ultimately selects a
node from within the stability band upon reaching convergence to the attractor.

The analysis presented above, particularly in the context of numerical simulations for the periodic lattice,
underscores that any localized phenomena arising due to MI are inherently transient. However, within a finite
time frame before reaching ultimate equilibrium, these localized phenomena can be notably intriguing.

For localized initial conditions superimposed on top of A = A,, we observe the emergence of waveforms similar
to Peregrine solitons as initial events. Subsequently, at later time intervals, spatiotemporal patterns develop
due to the MI of the underlying background. These patterns bear a remarkable resemblance to those observed
in the dynamics of localized initial data in the integrable Ablowitz-Ladik lattice [13]. They exhibit the universal
structure described in [21] during the nonlinear stage of MI. This structure consists of two outer, quiescent
sectors corresponding to the supporting background, separated by a wedge-shaped central region characterized
by modulated periodic oscillations. The proximity of these dynamics is noteworthy, considering that DNLS (1.1)
represents a system that has moved “two steps forward” in breaking the integrability barrier defined by the AL
system. DNLS (1.1) is a dissipative perturbation of the non-integrable Hamiltonian DNLS. The stability of the
quiescent sectors can be fully justified by the analytical results. Notably, A = A, represents the amplitude of
the supporting background, which, as highlighted earlier, is the only amplitude supporting localized solutions
in the infinite lattice. Moreover, for the periodic lattice used in the numerical simulations, A = A, corresponds
to the amplitude of the globally asymptotically stable background. In the case where A # A, where solutions
for the infinite lattice do not exist, the numerical simulations for the periodic lattice show that the MI pattern
persists on the top, this time of the evolving background. This continues until the amplitude reaches its limiting
value A,, at which point the entire MI structure disappears and is replaced by the attracting plane wave.

Motivated by the above results and our current investigations on the closeness between integrable and non-
integrable lattice systems [22—-24], we examine the potential proximity between the solutions of the Ablowitz-
Ladik lattice and the DNLS system (1.1) when both systems are supplemented with periodic boundary condi-
tions. While for bounded solutions the distance is always uniformly bounded, in the same fashion as in [22-24],
we prove that for finite times this distance grows at most linearly. Since the first events reminiscent to rogue
waves occur at small time intervals, this growth is proved to be effective in measuring the distance between
the rogue wave events emerging in the dynamics of (1.1) and those defined by the analytical discrete Peregrine
soliton solution of the Ablowitz-Ladik lattice.

The paper is structured as follows. In Section II, we provide the proof of the existence of solutions for the
infinite lattice with nonzero boundary conditions. For the definition and properties of the sequence spaces that
define the functional analytic set-up of the problem, we refer to [1] and the references therein. In Section 111,
we present the results concerning the dynamics of the periodic lattice. Sections IV and V are devoted to the
numerical results. In particular, in Section IV, we present the results of the numerical studies concerning the
transient MI of the plane wave attractor. In Section V, we present the numerical results for localized initial
conditions, distinguishing between the case A = A,, the only case permitted for the infinite lattice, and the case
A # A,, which can be relevant in the periodic lattice. In this section, we also provide the proof of the estimates
for the distance between the solutions of the DNLS (1.1) and the Ablowitz-Ladik periodic lattices, along with
the corresponding numerical investigations. We conclude with Section VI, which summarizes our findings.

II. THE CASE OF THE INFINITE LATTICE WITH NONZERO BOUNDARY CONDITIONS

Solutions of the initial value problem for the infinite lattice (1.1) with the nonzero boundary conditions and
v >0, 6 < 0 exist if and only if A = A,. This is the main result of this section stated in the following theorem.

Theorem I1.1. Consider the DNLS system (1.1) with v > 0,8 < 0 in the infinite lattice supplemented with the
nonzero boundary conditions (1.2). We also assume that the initial condition satisfies (1.4). Then the system
has a solution if and only if A = A.. The solution is unique.



Proof. First, we apply to the DNLS (1.1) the gauge transformation
Un (t) = Y (t) exp(iA®t), (2.5)
(in order to make the boundary conditions time independent), yielding the system in the form
Wb + k(Ynt1 — 200 + Yp_1) — A2 + [Vnl*n = i7n + 18[00 P, (2.6)
which satisfies the boundary conditions

lim o (t) = A. (2.7)

[n|—o0
Next, we apply to the system (2.6), the change of variables
U,=v,— A, neZ, (2.8)
The system for the new variable U, reads as

iU, + k(Unpr — 2Up + Un_y) — A2(Up + A) + Uy, + AP (U, + A)
= iy(U, + A) +16|U, + A*(U, + A), (2.9)

where U,,, due to the non-zero boundary conditions (2.7), should satisfy the vanishing boundary conditions at
infinity

lim U,(t) = 0. (2.10)

[n|—o0

Thus, the system should be examined for its solvability in the sequence spaces ¢, for any p > 1. Let us recall
the crucial embedding

1P lullee < Jlufles, 1<g<p<oo. (2.11)

For the local existence of solutions, we may apply the generalized Picard-Lindel6f Theorem [25, Theorem 3.A,
pg. 78]. The discrete Laplacian

AU, = k(Upy1 — 2U, + Up—1),
is a bounded linear operator Ay : 7 — (P for any p > 1, that is, there exists a constant C' > 0, such that
1AUler < C|U|\gp, forall U € ¢P. (2.12)
Next, we consider the nonlinear operators

Fi(Un) = =AU + A) + |Up + AP(Un + A),
By(U,) =iy(U, + A) +16|U, + AP (U, + A).

For the operator Fi, we observe that

Fi(U,) = —A%U, — A% + (|U,|* + AU, + AU, + A?)(U,, + A)
= |Up|PU, 4+ A(U? +2|U,|?) + A%(U, +T,).

Using the inequality
““n|2un - |Un‘2vn’ < |Un|2|un = Un| + [un| (Jvn| + [un]) [un — vl

and the embedding (2.11), we may show that F; : £ — (P, for any p > 1, is well defined and is Lipschitz
continuous on bounded sets of /7. That is, for any U,V € Bpg, with Bg a closed ball of ¢P of center 0 and radius
R, we derive the existence of constants K7 (A, R) and K4 1(A, R), such that

I (O)]ler < K1(A, R), (2.13)
IF1(U) = Fr(V)|ler < K11(A, R)|U = V| 4w. (2.14)

Similarly, for the operator F5, we have that

Fo(Un) = WUy, +ivA +164° + 16 {|U,|?U,, + A(UZ 4 2|U,|*) + A*(2U,, + U, } . (2.15)



5

Assume that A = A,. Then, iyA + i0A% = 0 and we can show that the operator F, has the properties
(2.13)-(2.14). We may proceed by recasting the system (2.9) in the form of the abstract evolution equation

U=LU), LU)=i-AqU)—F(U)+ F(U)], (2.16)

and we will implement the aforementioned Picard-Lindel6f Theorem on its equivalent integral formula
t
U(t)=U(0) +/ L[U(s)]ds, (2.17)
0

to establish the existence of a unique solution U € [P, for any p > 1, when the initial condition U(0) € ¢P. This
is the case, since the operator £ : % — (P has the properties (2.13)-(2.14) and the conditions of the Picard-
Lindel6f Theorem are satisfied. The solution has the following properties: There exists some T*(U(0)) > 0
such that the corresponding initial value problem for (2.9)-(2.10), has a unique solution which is continuously
differentiable with respect to time, i.e., U € C1([0,T],¢P) for all 0 < T < T*(U(0)). In addition, the following
alternatives hold: Either T7*(U(0)) = oo (global existence) or T*(U(0)) < oo and limgyp« (o)) [|U(#)[[er = o0
(collapse). Furthermore the solution U depends continuously on the initial condition U(0) € 7, with respect to
the norm of C([0,T],¢P). Using the change of variables (2.5) and (2.8), we establish the existence of a unique
solution of the original problem (1.1)-(1.2),

un(t) = (Un(t) + Ay) exp(iA2t). (2.18)

For the reverse direction of the proof, we have to show that if a solution of the initial boundary value (1.1)-(1.2)-
(1.4) problem exists, then A = A,. We argue by contradiction: Assume that a solution of the problem (1.1)-
(1.2)-(1.4) exists for all ¢t € [0, 7], for some T > 0 and that A # A,. Then, through the same transformations
(2.5)-(2.8), a solution U of the problem (2.9)-(2.7) should exist for all ¢ € [0,T], and U € C([0, T}, ¢?), which
means that |U(t)||s < oo, for all ¢ € [0,T]. Hence, due to (2.16), |£(U)||s» < oo for all t € [0,T]. This can’t
be valid because if A # A, the operator F2 is not bounded on bounded sets of ¢P as it follows from (2.15).
Indeed, for U the solution of the problem which satisfies ||U(t)||¢» < R, for all ¢ € [0, T}, the boundedness of F
in bounded sets of #? would imply the counterpart of (2.13),

| F2(U@)]ler < K2(A,R), forall te][0,T]. (2.19)

Since from (2.15),
YA +10A% = —Fo(Uy) + ivU,, + 10 {|Un|?Un + A(U2 + 2|U,|?) + A2(2U,, + U, }, (2.20)
(2.19) and the fact that the rest of the terms of the right-hand side of (2.20) are bounded in ¢? for all ¢ € [0, T,

would imply that the left hand side of (2.20) is summable, and this is impossible. Therefore, the initial-boundary
value problem (1.1)-(1.2)-(1.4) has a solution if and only if A = A.,. O

A. Remarks on Theorem II.1 for finite lattice approximations

The finite lattice approximations are defined either in the spaces of periodic sequences with period N, denoted
by

N-1 1
P
0k, = {U = (Unnez €ER: Up=Unsn, Uz, := (h > |Un|p) < oo}, 1<p< oo,
n=0
or in the case of the Dirichlet boundary conditions, in the finite dimensional subspaces of £2,
1

N-1
5= {U: (Un)nez €ER: Up=Un=0, [Up:= (h Z |Un|p> < oo}, 1<p<oo.
n=1

If XP is either one of the above spaces, their norms are equivalent, according to the inequality

(a—p)
q

[Ullxa < [[Ullxr < N"# ||Ul|xe, 1<p<gq<oo. (2.21)
In this finite dimensional set-up, it is evident from the definition of the operators F; and F» that Theorem II.1
is valid for any A since the operators Fi, Fo : XP — XP are well defined and locally Lipschitz continuous for
any A. Therefore, finite lattice approximations do not capture the essential necessary and sufficient conditions
on A, for the existence of solutions of the infinite lattice which is proved in Theorem II.1.



III. THE CASE OF THE LATTICE WITH PERIODIC BOUNDARY CONDITIONS

In this section we consider the case of the finite lattice (1.1) when supplemented with the periodic boundary
conditions (1.3). This finite dimensional system, apart of its physical significance may serve as one of the main
finite lattice approximations of the problem of the infinite lattice supplemented with the nonzero boundary
conditions discussed in the previous section. In this connection, the value of the background amplitude A,
which is the only one which may support localized solutions on top of the background in the infinite lattice,
chiefly governs the dynamics. The phase space of the system is the Hilbert space Zper endowed with the scalar
product

Theorem III.1.

1. (The global attractor in £2.,). Let un(0) = uno € 2, and y >0, § < 0. Then, the solution of the initial
value problem for (1.1) (1 3) u, € CH([0,00),¢2,.,). Furthermore, for the dynamical system

s Yper
o(t, un,o) : é r gierﬂ o(t, un,0) = un(t), (3.1)
there exists a global attractor and the averaged power P,[u Z lun (t)]? of the solutions satisfy
the estimate
lim sup Py[u(t)] < A2 (3.2)
t—o0

2. The system (1.1)-(1.3) admits solutions of the form
wi (1) == w(xn, t) = A(t)exp [i(qgz, — Q1)], tER, (3.3)

where ¢ = Kn/L, K € N is the constant wavenumber and the time variable frequency function Q(t) and
amplitude A(t) satisfy the system of equations

Q(t) = 4k sin? (%)t — o), O(t) =A%) (3.4)
A(t) = yA(t) + 6 A3(¢). (3.5)

for allt € R. The solutions (3.3) have the following property under the flow (3.1): The limit set
w(wn(0)) = Cx, (3.6)

where C, is the time-periodic orbit defined by the only non-trivial plane wave solution of constant amplitude
A, with frequency & and wave number q satisfying (3.4), when we set in (3.4) A(t) = A., that is,

hq
& = Ak sin? ( . ) A2, (3.7)
For the solutions (3.3), the limiting bound (3.2) is exact, in the sense that
. 42
Jim Py w, (1)) = AL (3.8)
Proof. 1. We multiply equation (1.1) by —iuy, in the £2,, -inner product. Using that (Agu,iu); = —i Z [thrp1—

un|?, by keeping the real parts of the resulting equation, we derive the following power balance law

o (h Z |un|2> =2vh Z [un|® +20 b Z un| . (3.9)

n=0

Note that for v = § = 0 we have the conservation of the power, which is one of the conserved quantities of the
conservative DNLS .
Let v > 0 and 6 := —0 < 0. The second term of the right-hand side of Eq. (3.9) can be estimated as

N-1
—26h > Jun|* < _<h Z |un|2)
n=0



where we used the Cauchy—Schwarz inequality

N-1 N-1 1/2
S Junl? < m( 3 |un|4) .

n=0 n=0

Consequently, Eq. (3.9) turns to a Bernoulli’s differential inequality

g/ Nl N-1 of / N-1 2
— 2) <2 2o = 2 1
i (1 k) <290 3l = g (1 3 ) (3.10)
and equivalently, when diving by Nh, the equation for P,[u(t)]
d %52
%Pa[u] < 2yP,[u] — 20 P [u]. (3.11)
Setting ¢ = 1/P,[u] we see that ¢ satisfies
iqﬁ + 27 > 26
dt 10 =0
which (with the aid of the integrating factor exp(27t)) gives
6
o(t) = ¢(0) exp(—=271) + 5 [1 — exp (=271)]
and finally
1
P,lu(t)] < vt > 0. (3.12)

Pa[u(0)]~  exp(~2yt) + & [1 — exp (~2y1)]

The latter means that P,[u(t)] is uniformly bounded. Letting ¢t — oo, we conclude that P,[u(t)] satisfies the
estimate (3.2).

From (3.2), we deduce that the dynamical system (3.1) has bounded orbits V¢ € [0,00). Let B := {uno €
€., : Po[u] < R?} be an arbitrary closed ball in £2,.. The ball B4(0,p) :={u € £2,, : P,[u] < p*, p*> > A2} is

an absorbing set for the dynamical system ¢(t, u, o): there exists T*(B, B,) > 0 such that for any ¢ > T*(B, B,)
it holds that P,[u] < p* and ¢(¢, B) C B,. Hence, we may define the w-limit set in ¢2_., for any bounded set B,

w(B) = N U #(t.B).
s>0t>s

Since the dynamical system is finite-dimensional the above limit set defines its compact global attractor.
2. We start by seeking solutions of the form

un(t) = W(t)exp li(qz, —&t)], @ €R. (3.13)

By substituting (3.13) to (1.1) we derive the equation for W (%)

W+ AW + [WRW = iy W +i6|W[2W, X =@ — 4k sin? (%) (3.14)
The linear term AW will be removed by the gauge transformation
W (t) = ®(t) exp(irt), (3.15)
applied to (3.14). Then, the equation for ®(¢) is
id + |B|® = iy® + 10| P|*. (3.16)
The last transformation we will apply is
d(t) = A(t)exp[iO(t)], A,0 € C'(R), (3.17)

to (3.16). We derive the equation for A(t),

A — QA+ A3 =iyA+i6 A%, (3.18)



The choice
O = 42, (3.19)

eliminates the second and the third term of the left-hand side of (3.18), in order to obtain (3.5). Then returning
to the starting form of solutions (3.13), by applying the transformations (3.15) and (3.17) one after another,
we build the solution (3.3) with the system (3.4)-(3.5). Note that in this process, the term @&t was eliminated
resulting in equation (3.4) for Q(t). We could start with the ansatz u, (t) = W (¢) exp(igz,,) instead of (3.13) to
build exactly the same solution, however we started with (3.13) for notational purposes relevant to the solution
of constant amplitude A(t) = A, which will be discussed below. Indeed, we will discuss the limit of the orbit
(3.3) as t — oo, by using (3.4)-(3.5).
Let A(0) be the initial amplitude of the solution (3.3). Equation (3.5) has the unique solution

7A?(0)
(7 + 6A2(0)) exp(—2vt) — §A2(0)°

A%(t) = (3.20)

for which, it holds that

lim A%(t) = A2 (3.21)

t—o00

Next, by integrating (3.19) in the interval [0, t], we get

o(t) - O(0) = /0 A2(s)ds. (3.22)

The function ©(t) — ©(0) has the following properties:

tliglo (O(t) — ©(0)) = oo, (3.23)
- O)—0(0) a0
tl}?oo ot tlgrolo o) = A, (3.24)
Jim [(6(1) - ©(0)) — A%] = _2% In (AA(QO)) —b>0. (3.25)

Note that when A%(0) = A2, we have A%(t) = A2 for all t > 0, and in this case, we have that b = 0. From (3.24)
and (3.25), we have that as t — oo, the function ©(t) has the slant asymptote

Ooo(t) = A%t + O(0) +b. (3.26)
Without loss of generality we can select ©(0) = —b (since we can always adjust by the relevant phase factor).
Then, in the limit ¢ — oo, we replace the function (t) by
h h
Qo (t) = 4k sin? (?q)t — 0. () = 4k sin? (7(1)15 ~ A% =G, (3.27)
h
& = 4k sin? (é’) A2, (3.28)

Now, we may use (3.21) in the solution (3.3) and (3.27)-(3.28) (or alternatively (3.18) and (3.24)), to see that
as t — oo, C, is the orbit defined by the solution

Woon(t) = Ay exp [i(gr, — Qoo (t)] = A exp [i(gz, — @], (3.29)

where @ and ¢ satisfy (3.28). This is exactly the claimed dispersion relation (3.7) for the unique plane wave of
constant amplitude A, (3.29), to exist. Usually we derive the dispersion relation (3.28) by substitution of the
solution (3.29) to the DNLS (1.1). Here, it is interesting to find, that the solution (3.29) can be derived when
using (3.20) for A(0)2 = A2 for its amplitude, and importantly, by the interpretation of the function ©(t) for
B =0 and ©(0) =0 in (3.26). The assertion (3.6) is proved. The proof of (3.8) follows by the calculation of

P (0] =+ 3 w0 = A4%() (3.30)

and the limit (3.21).
O

Remark: It is important to stress the following: The system (1.1) do not admits solutions of the form (3.3)
with constant amplitude A, unless this amplitude is A = A,. In other words, there is no other constant A > 0
than A., which satisfies both equations (3.4) and (3.5) simultaneously. On the other hand, we may always
trigger initial conditions of the form

un(0) = Aexp(igr,), A # A, (3.31)

and arbitrary ¢, which can be considered generically as perturbations of the unique plane wave solution of
constant amplitude. The fate of such initial conditions will be determined in the next paragraph.



A. Consequences of Theorem IIl.1 with respect to a linear instability analysis

The main consequence of Theorem II.1 is that the dynamical system defined by the periodic lattice (1.1)-(1.3)
is globally asymptotically stable for any initial condition in éfmz for arbitrary initial conditions all the orbits
are converging to a state whose averaged norm satisfies the bound (3.2). In the special case where the initial
condition is defined by a solution of the form (3.3), the attractor is trivial, defined by the only plane wave
solution which can have constant amplitude, which is A*. This global asymptotic stability do not excludes the
emergence of instability effects. Nevertheless, these effects can be only transient, prior the convergence of the
system to its ultimate state. We investigate the potential of these transient instability effects in the framework
of the linear MI analysis of plane waves. The motivation is that the fate of such initial conditions is predicted
by the Theorem II.1 as stated above.

The modulation instability of plane-waves is well studied in the case of the Hamiltonian DNLS [26]. We will
perform here this analysis for the system (1.1) with the presence of the linear gain and nonlinear loss effects.
The significance of these findings lies on the fact that they prove that the simplest initial data of the form (3.31)
have interesting dynamics prior the convergence to the attractor, and that even this attractor can be transiently,
modulationally unstable.

To justify the above statement, we consider the perturbation of the only plane wave solution (3.3) with
constant amplitude A(t) = A,,

un(t) = (As + bn(t)) exp [i(0n(t) + ¢n ()], (3.32)

where 0,,(t) = gz, —&t, x, = —L+nh,n=10,1,..., N and b,, ¥, are the amplitude and the angle perturbations,
respectively. Substitution of (3.32) to (1.1), yields the system

{—A*l/}n — kA, (Yng1 — Pn—1) sin(hq) + k(Aqby,) cos(hq) + 2A2b, =0, (3.33)

by + kAL (Agth,) cos(hq) + k(bny1 — by_1) sin(hg) — 26A%b,, = 0.
For the derivation of (3.33), we used the dispersion relation (3.28) and that v + § A2 = 0.

To simplify the system (3.33), we consider amplitude perturbations of the form b,,(¢) = by exp(i(Qz,, — Qpt))
and phase perturbations of the form ,,(t) = 1 exp(i(Qz,, — Qpt)). Then the system (3.33) becomes

{ (Q — 2k sin(hQ) sin(hq)) Axtboi + (—4k sin?(hQ/2) cos(hq) + 2A4%)by = 0, (3.34)

— 4k A, (sin® (hQ/2) cos(hq)thoi + (Q — 2k sin(hQ) sin(hg) — 26 A2i) by = 0.

The linear homogeneous system (3.34) for (bg, ¥p) has a nontivial solution if and only if its determinant is zero.
This request provides the modulation instability formula:

A? —2i6A2A — T (I' — 24%) =0, (3.35)

with A = Q — 2k sin(hQ) sin(hq) and T' = 4k sin?(Q/2) cos(hq). We elaborate further on the formula (3.35), to
derive the conditions for the MI of the examined plane wave solution. Since (3.35) is a quadratic equation in A
with complex coefficients, it has only complex roots. The discriminant of (3.35) is

Ay = 4(D(I — 242%) — 52A4%),

and accordingly, the roots are

Ay =6A% £ Y ?A = §A% + /T(T — 242) — 52 AL, (3.36)

We are interested in the case Im(€2) = Im(A+) > 0 for the exponential growth of the perturbations, and thus
the emergence of instability. If the quantity under the square root is positive, we have that

Im(Ay) =6 < 0.

If the quantity under the square root is negative, we have that

Im(A_) =6 — /3244 —T(T — 242) < 0.

Thus, we are only interested for the case

Im(Ay) >0 <= 0A2 + /6244 —T(T — 242) >0
— I'(T —24%) <0. (3.37)
= 4k sin®(hQ/2) cos(hq)[4k sin®(hQ/2) cos(hq) — 24%] < 0.
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If cos(hg) < 0, then (3.37) is violated and the plane wave solution is stable. Therefore, instability occurs when
cos(hg) > 0. (3.38)

Indeed, in order to verify (3.38), it suffices to show that there exists at least one @ such that (3.37) holds. This
Q = Q™ satisfies the equation

h2 A2
sin(h@"/2) = 5 —7— cos(ha)’
and implies the requested condition for instability (3.37), if (3.38) holds.

We will illustrate the above transient MI of the plane wave attractor with numerical simulations, in the next
section.

IV. NUMERICAL STUDY I: TRANSIENT MODULATION INSTABILITY EFFECTS AND
CONVERGENCE OF PLANE WAVE INITIAL CONDITIONS TO THE PLANE WAVE
ATTRACTOR

This section is devoted to the first part of the numerical investigations of the paper. We illustrate the transient
MI of the plane wave attractor, which is verified by the analysis of the section IIT A. For this purpose, we study
the dynamics of the simplest plane wave initial conditions, defining perturbations of the plane wave attractor,

un(0) = (Ax + Ap) exp <1K7m:n)’ (4.1)
where A, is the perturbation of the amplitude A, and K is the wave number of the plane wave initial condition
(4.1). The spatial parameters of the lattice are fixed to L = 50, h = 1, thus N = 100. The linear gain and
nonlinear loss strengths are v = —J = 1.5. These values of v and § are chosen to achieve a faster convergence
to the attractor.

Due to the periodic boundary conditions (1.3) and discreteness, the physically meaningful K are integers in
the interval [0, N/2]. In terms of the analysis of section IIT A, ¢ = 7K /L, and the MI condition (3.38) is satisfied
for 0 < K < 25, defining the unstable modes. The rest of the modes K are modulationally stable.

(a) (b) (c)

t=0 1¢=10 [ [ ‘ Tm (ug) t €[0,50]
x107
ol 1T ] 1 {)4? ’\\ Re(ug)

0.5 ' 05 05 - 2 3
1 1 0.5
0 0

0 20 40 50 0 20 40 50

0 10 20 30 40 50 0 10 20 30 40 50
K K

Figure 1. Convergence to the plane wave attractor with amplitude A, = 1 for the stable mode K = 45. Rest of
parameters: L = 50, h = 1, v = —6 = 1.5. Panel (a): Fourier spectrum of the initial condition (4.1) for 4, = 2
and A, = —0.999. Panel (b): Fourier spectrum of the solutions at ¢ = 10, for A, = 2 and A, = —0.999. Panel (c):
Convergence of the orbits of the central node of the lattice uo(t) in the phase plane (Re(uo(t)), Im(uo(t))) to the limit
cycle of radius A. = 1; internal (red) orbit for A, = —0.999 and external (blue) orbit for A, = 2. Details are given in
the text.

The first example concerns the dynamics of the stable modes. We choose the stable mode K = 45. According
to the results of Section III, for arbitrary perturbations A,, the orbit starting from the initial condition (4.1)
will converge to the plane wave attractor with amplitude A, = 1 and the initially chosen mode K = 45. The
dynamics for the amplitude perturbations 4, = 2 and 4, = —0.999 is depicted in Fig. 1. Panel (a) depicts the
Fourier spectrum of the initial condition (4.1) for A, = 2 and A4, = —0.999, where K = 45 is the chosen stable
mode. Panel (b) depicts the Fourier spectrum of the solutions at ¢ = 10 where convergence to the attractor is
attained, for both cases of the perturbations A,. It shows that the attractor preserves the initial wave number
K = 45, as predicted. No other modes are excited transiently (intermediate snapshots are omitted as they are
identical to (b)), since the initial mode is stable. Panel (c) illustrates the convergence to the attractor in the
plane (Re(uo(t)),Im(uo(t))) which is the phase plane for the central node ug(t) of the lattice located at n = 0.
The dynamics is portrayed as a convergence to the asymptotically stable limit cycle of radius A,; the orbit in
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Figure 2. Snapshots of the evolution of the Fourier spectrum of the solution with initial condition (4.1) for A, = 2 and
K = 8. Rest of parameters: L =50, h =1, v = —§ = 1.5. Details are given in the text.

the interior of the limit cycle is the one for A, = —0.999 and the orbit in the exterior of the limit cycle is the
one for 4, = 2.

The second example concerns the case of the unstable modes. We choose the unstable mode K = 8. According
to the results of Section IIT A the corresponding orbit should converge to the plane wave attractor with amplitude
A, = 1. Concerning the wave number of the attracting state, the analytical arguments provide the prediction
for its choice: For the linear gain strength v = 1.5 the convergence to the amplitude A, should be fast. On
the other hand, the initial unstable wave number should introduce transient MI effects. While the convergence
to the steady-state amplitude A, has a fast exponential rate, the emergence of instability effects will occur
later, perturbing the phase of the attracting state, transiently. Nevertheless, the ultimate state should choose
a stable wave number, since it is the globally asymptotically stable state for the system. This prediction is
fully illustrated in Figures 2 and 3 depicting the dynamics for A, = 2. The dynamics for the corresponding
unstable case of A, = —0.999 is very similar and, thus, is not shown herein. Figure 2 shows the evolution of
the Fourier spectrum of the solution. The initial wave number K = 8, of panel (a) is preserved as shown in
panel (b) for t = 5; at this time the system has almost converged to the plane wave with amplitude A, =1
at a fast exponential rate as shown in the panel (a) of Figure 3, and MI effects are not yet visible. These are
developed later as depicted in panel (c) of Figure 2, demonstrating the excitation of the whole Fourier spectrum
at t = 125. Panel (b) of Figure 3 portrays the deformed orbit for ¢ € [0, 125] which is a time period within the
stage of MI. The instability can last for large times, however, eventually, the global attractor is attained and its
wave number should be selected by the stability band. This is exactly the case, depicted in panel (d) of Figure
2, showing the snapshot of the Fourier spectrum at ¢ € [3600,3700]. At this time the only active wavenumber
is the stable mode K = 44 which is the one selected by the plane wave attractor of amplitude A,.

V. NUMERICAL STUDY II: SIMULATING THE INFINITE LATTICE WITH NONZERO
BOUNDARY CONDITIONS BY THE FINITE LATTICE WITH PERIODIC BOUNDARY
CONDITIONS

This section is devoted to the second part of the numerical investigations of the paper. We study the dynamics
of localized initial conditions on the top of a background A > 0 of the form

un(0) = A+ f(), (5.2)

where f(r) is a decaying function lim ;| f(7) = 0. The case of localized data is relevant to the simulations
of the infinite lattice (1.1)-(1.2) and thus, they will be explored in detail regarding their global and transient
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(c)

t €[3600,3700] Tm(uo)

0.5

Figure 3. Snapshots of the orbits of the central node of the lattice uo(t) in the phase plane (Re(uo(t)), Im(uo(t))) for
the solution of Figure 2. Details are given in the text.

dynamics.

A. Localized initial data (5.2) and the global attractor

The analytical results of sections I1I and IIT A corroborated with the numerical findings of section IV, provide
a strong indication that the global attractor for all the initial data under the dynamical system (3.1) is the
plane wave attractor (3.6). These indications are enhanced by the fact that any solution of the DNLS (1.1) in
éf)e,. can be represented by the finite sum of plane waves which is its discrete Fourier series,

N-1 .
un(t) = 5 O Ax(t)exp (),
K=0

Aw(t) = hKi Un(t) exp ( - iKZQV“”)
n=0

and the fact that any plane wave initial condition is attracted by the orbit C,.
Figure 4 depicts the dynamics of the Fourier spectrum of the solution for the initial condition (5.2) with

fa) = —N

o )\2 + )\3$2 ’
the standard example of an initial condition decaying on A at a quadratic rate. For the initial condition (5.2)-
(5.3), we choose A = 0.5, A\; = Ay = 1, A3 = 4. The gain and loss parameters are v = —¢ = 0.1; note that
A # A,. The rest of the lattice parameters are L = 50, h =1, N = 100.

The transient dynamics prior to the convergence to C, is illustrated. This involves the excitation of the full
spectrum at the early stages of the evolution as it is shown in panel (b) for ¢ = 40, while progressively, the active
Fourier modes are reduced, as it is shown in the snapshots (c) for ¢ = 80, (d) for ¢ = 200 and (e) for ¢ = 600.
When the orbit C, is reached, the only active mode is the stable mode K = 50, see panel (f). Qualitatively, the
same dynamics was observed for other choices of the lattice parameters and gain and loss strengths.

We can summarize the results regarding the convergence of all initial data to the plane wave attractor as
follows: Theorem III.1 and the MI analysis of section IIT A theoretically predict that the amplitude and spectrum
of the initial condition will undergo a transient evolution before converging to the attractor. Ultimately, this
process selects the amplitude A, and a wavenumber within the stable modes of the spectrum. It is important
to note that this prediction is qualitative rather than quantitative, as the theoretical results do not specify the
exact stable mode of the attractor.

N >0, i=1,23, (5.3)

B. Transient dynamics of localized initial data (5.2): MI dynamics and excitation of extreme wave
events in the dynamics of the DNLS (1.1).

For the periodic lattice (1.1)-(1.3) the numerical simulations illustrate that the dynamics prior the conver-
gence to the global attractor are associated with the emergence of characteristic patterns of MI dynamics
and the emergence of extreme wave events. This is a consequence of the transient MI discussed above. Our
numerical investigations consider two examples of initial conditions of the form (5.2), with different rates of
localization. The first concerns (5.2) with the quadratically decaying function f(z) (5.3), and the second with
the exponentially decaying function

f(z) = osech(pz), o, p>0. (5.4)

In the light of Theorem II.1 we distinguish between two cases for A in (5.2). The case where A = A, and the
case where A # A,.
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Figure 4. Snapshots of the Fourier spectrum of the solution for the initial condition (5.2)-(5.3) with A = 0.5. Lattice
parameters:, L = 50, h = 1, v = — = 0.1. Details are given in the text.

a. The case A = A,. We discuss the dynamics for the lattice parameters h = 1, N = 400, L = 200 and
gain and loss strengths v = 0.0025, § = —0.01. According to Theorem II.1, the infinite lattice supplemented
with the non-zero boundary conditions (1.2) support localized solutions if and only if A = A, = /—v/§ = 0.5.
This is the suitable choice of the background of the initial condition (5.2), in order to simulate the dynamics of
the infinite lattice.

The top row of Figure 5 depicts the contour plots of the spatiotemporal evolution of the density |u,, (¢)|? of the
DNLS (1.1), for the initial conditions (5.2), with A = A,. Panel (a) depicts the dynamics for the quadratically
decaying f(x) (5.3) with Ay = Ay = 1 and A3 = 4. The choice of A3 = 4 is made so that the initial condition
has the same spatial decaying rate as the discrete Peregrine soliton (dPS) [16]

4(1+ ¢*)(1 + 4ig?(t — to)) . 9
o, q) = (1— ) %2 (t — 1)), 5.5
dar(@ntito,q) = a(l = 77 12 1 16981 5 ) — io)? exp (2ig°(t — to)) (5.5)
the rational analytical solution of the integrable AL lattice
i+ k(dnt1 = 260 + Sn1) + |00l ($n—1 + Pni1) = 0, (5.6)

in the case where k = 1. We remark that this choice for A; is not restrictive, since similar dynamics exhibited for
various cases of \;. Actually, regarding the general structure of the pattern, the localization rate of the initial
condition is proved to be irrelevant as it is shown in panel (b), where apart of the differences of the centered
oscillations, almost the same pattern is structured for the exponentially decaying initial condition f(z) (5.4),
with 0 = 0.6 and p = 1.

The patterns of the DNLS (1.1) share major characteristics of the ones emerging in the dynamics the AL-
lattice when the same initial conditions are used, as it is shown in the bottom row of Figure 5, where panel (c)
corresponds to the initial condition with f(z) (5.3) and panel (d) to the initial condition with f(x) (5.4). In
particular, the patterns of the AL system are specific examples, here in the case of the integrable AL-lattice, of
the universal behavior of modulationally unstable media [13]. Let us recall that in [13], the long-standing open
question about the nonlinear stage of MI on the infinite line for the integrable NLS equation

g + Ugy + |u|2u =0, (57)
with non-zero boundary conditions,

lim w(z,t) = Aexp(iA®t),

|z|—o00

A>0 (5.8)

was fully resolved. It was proved in [21], that for any given initial condition u(x,0) representing a sufficiently
localized initial perturbation of the constant background A, the solution u(x,t) of (5.7) is u(x,t) = Uasymp(x, )+
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Figure 5. Top row: Spatiotemporal evolution of the density |un (t)|? for the DNLS equation (1.1), with initial conditions
(5.2) for A = A, = 0.5 when v = 0.0025 and 6 = —0.01. Panel (a) for f(z) (5.3) with Ay = A2 = 1 and A3 = 4. Panel (b)
for f(z) (5.4) with o = 0.6, p = 1. Bottom row: The spatiotemporal evolution of the density |¢n(t)|* of the solutions of
the AL-lattice (5.6). Panel (c) for f(z) (5.3) and panel (d) for f(z) (5.4) with parameters as above. Rest of the lattice
parameters for both systems: L = 200, h = 1. The straight (black) lines depict the graphs of the lines z = +4+/2At.
More details in the text.
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O(1/v/t) as t — oo. Cruciallly, ugsymp(z,t) has different forms in different sectors of the zt-plane, namely: (i)
in the two “plane-wave” regions, ¥ < —4v2At and = > 4v/2At, we have that |ugsymp(7,t)] = A, that is,
the solution has the same amplitude as the undisturbed background A (ii) in the “modulated elliptic wave”
region —4v/2At < 2 < 44/2At the solution is expressed by a slow modulation of the elliptic solutions of (5.7).
In [13], analytical arguments corroborated with numerical simulations provided evidence that this behavior is
universal, as it is shared by a wide class of NLS-type equations and systems, including the AL-lattice (5.6)
and the Hamiltonian DNLS, which corresponds to the case of v = § = 0 of the dissipative DNLS (1.1) (see
[13, Appendix C, pg. 903]). The findings of [13] regarding the universal behavior of MI for the DNLS systems,
combined with the theoretical results proven herein, will serve as a roadmap for explaining our numerical results,
as elaborated below.

In this context, of the universality of the MI behavior, we claim that the findings depicted for the DNLS (1.1)
in Figure 5 are important. First we should stress that the DNLS (1.1) is a system at least “two steps forward”
regarding the breaking of the integrability barrier defined by the AL system, since it is a dissipative perturbation
of the non-integrable Hamiltonian DNLS. Second, the theoretical results of Theorems II.1 and III.1 accompanied
with the MI analysis of the plane-wave of amplitude A, are fully explaining the dynamics observed in panels (a)
and (b) if combined with the findings of [13] mentioned above. The illustrated dynamics show that the breaking
of integrability induced by the DNLS (1.1) is not dramatic. It shares the major characteristics of the dynamics of
the AL-lattice and of the Hamiltonian DNLS observed in [13], that is, the structure comprised of the two outer,
quiescent sectors separated by the wedge-shaped central region characterized by the oscillatory behavior. The
straight (black) lines depict the graphs of the lines x = 4+4+/2At, which are the exact boundaries of the wedge
in the case of the integrable NLS partial differential equation, calculated in [21]. It is crucial to remark that,
according to the analysis of [13], the slopes of the boundaries are modified depending on the particular system
considered; this modification also occurs in the case of the dissipative DNLS lattice (1.1). It is interesting to
observe, however, that the slopes of the lines = +4+/2At approximate quite well the slopes of the boundaries
of the wedge in the case of the AL lattice (panels (c) and (d)). It could be of interest to investigate if this fact
could be another manifestation of the integrability of the AL lattice despite its discrete nature. In the outer
sectors, the amplitude of w,,(¢) is A, of the undisturbed background, the only one which may sustain localized
solutions in the case of the infinite lattice. On the other hand, since the numerical solutions are generated
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Figure 6. Parameters of the lattice and initial conditions as in Figure 5. Top row: initial condition (5.2) with f(x) (5.3).
The continuous (blue) curve in panel (a) traces the temporal evolution of the density |uo(t)|* of the central node of the
DNLS (1.1). The dashed (red) curve shows the same evolution for the density of the central node |¢ar (zo,t,2.40, A,)|?
of the analytical dPS solution (5.5). Panel (b) depicts a comparison of the profile of the first extreme wave event for the
DNLS (1.1) (see panel (a) of Figure 5), against the profile of the analytical dPS solution (5.5) with ¢ = A., to = 2.40.
Bottom row: Same comparisons as above but for the initial condition (5.2) with f(z) (5.4). In this case, the compared
dPS solution is ¢ar(zo,t,3.30, A.). More details in the text.
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Figure 7. Spatiotemporal evolution of the density |un(t)|? for the DNLS equation (1.1) with initial conditions (5.2) with
A = 0.5 when v = 0.01, 6 = —0.01, i.e., A # A,.. Panel (a) for f(z) (5.3) with Ay = A2 = 1 and A3 = 4. Panel (b) for
f(z) (5.4) with 0 = 0.6, p = 1. Rest of the lattice parameters for both systems: L = 200, h = 1. The straight (black)
lines depict the graphs of the lines = +4v/2At. More details in the text.

by solving numerically the periodic lattice, this background will never lose stability in terms of the amplitude
in the outer regions since the solutions are initiated on the stable attractor of the finite system regarding its
amplitude. Yet for the finite dimensional system, the MI dynamics in the wedge-shaped central region can be
only transient as it is proved in Theorem III.1 and analyzed in the discussion of section V A. Importantly, in
the case of the finite lattice the wedge will eventually disappear as the system will select a stable wave number
defining the global attractor, and the asymptotic state of the solution will be the plane wave of amplitude A,
with the stable wavenumber. However, in subsections C and D that follow, we provide estimates for the Eger—
distance between the solutions of the AL lattice and the DNLS (1.1). As we will discuss therein, these estimates
provide additional theoretical justification for the proximity of the dynamics between the AL lattice and the
DNLS (1.1), at least in the early stages of the MI behavior.

Focusing in shorter time intervals, where the formation of the first events occur, it is interesting to observe
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Figure 8. The counterpart of the study of Figure 6 in the case A # A,. Parameters of the DNLS lattice (1.1) and initial
conditions as in Figure 7. Details in the text.

that these are reminiscent of the dPS. This similarity is illustrated in Figure 6. In this figure, a comparison of
the dynamics of the DNLS (1.1) against the analytical dPS solution (5.5) of the AL-lattice (5.6) is made, for
short times around the emergence of the first extreme events spotted in panels (a) and (b) of Figure 5. Panels
(a) and (b) correspond to the case of the initial condition (5.2) with the quadratically decaying f(x) (5.3), and
panels (c¢) and (d) to the case of the sech-type f(z) (5.4). Panels (a) and (c) depict the temporal evolution of
the density of the central node |ug(t)|? of DNLS (1.1), traced by the continuous (blue) curve. The dashed (red)
curves depict the same evolution for the density of the central node |par(xo,t,t0, A+)|? of the analytical dPS
solution (5.5). For the algebraic f(z) (5.3), the time of occurrence of the rogue wave is ¢y = 2.40 and for the
sech-type f(z) (5.4), the time is tg = 3.30. These instants tg are used in the formula (5.5) in order to define the
dPS solutions which are used for the comparison. We observe the remarkable similarity of the time growth and
decay rates of the events, close to that of the analytical dPS solutions. Panels (b) and (d) depict a comparison
of the profiles of the first extreme wave events for the DNLS (1.1), against the profiles of the analytical dPS
solution (5.5) with ¢ = A,, and the corresponding times ¢ty mentioned above. Again, the similarity of the profiles
is remarkable, and importantly, the coincidence of the supporting backgrounds of the solutions A = A,. It is
interesting to observe that the profile emerging from the sech-profiled initial condition is more proximal to the
dPS analytical profile.

b. The case A # A,. The parameters and initial conditions are as in the previous case, with the major
difference that v = —4 = 0.01 which define the value for A, = 1. Therefore, the initial conditions are on top
of the background with amplitude A = 0.5 # A.. It is crucial to remark that the results are not relevant for
the infinite lattice with nonzero boundary conditions since according to Theorem III.1, solutions do not exist
when A # A,. However, we see in Figure 7, that for finite times, the characteristic MI pattern is present. The
important feature is that since the initial condition is on the top of A # A,, the wedge-shaped region is not
formed on an undisturbed plane wave region. In full agreement with the theoretical analysis, since A < A*,
the wedge is developed on a background of increasing amplitude according to the ode solution (3.20); this is
evident by the change of ”shading” in the outer regions of the wedge. The background eventually converges to
that of the global attractor A*, accompanied by the disappearance of the wedge, as predicted theoretically by
Theorem II.1.

However, since we have chosen A = 0.5 < A, = 1, for short times prior those for which the effect of the
increasing amplitude will become significant, we expect a similarity with the dynamics illustrated in Figure 6
for the case A = 0.5 = A,. This fact is shown in Figure 8 which illustrates the same comparison of the first
emerging extreme wave events spotted in Figure 7 against the analytical dPS solutions. The dynamics are found
to be almost indistinguishable to the one presented in Figure 6. Nevertheless, when examining the dynamics for
larger times, we can clearly see a distinction between the scenario where A = 0.5 = A, and the scenario where
A =0.5# A, = 1. To illustrate this, we focus on the sech-type initial conditions (5.4) and refer to Figures 5b
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Figure 9. The profile of the density |un(t)|?> (blue curve) of the third extreme event of the DNLS (1.1) with initial
conditions (5.2) and f(z) (5.4) with 0 = 0.6, p = 1. The dashed (red) curve shows the background of the initial condition
for A =0.5. Panel (a): A, = A and ¢t = 38.5. Panel (b): A, =1 and ¢ = 32.8.

and 7b. Panel (a) of Figure 9 shows a snapshot of the solution at ¢ = 38.5 when A = 0.5 = A,. It is evident
that the amplitude of the background A, is preserved in full accordance with Theorem II.1. In contrast, in
panel (b) of Figure 9 which corresponds to the case A = 0.5 # A, = 1 and shows a snapshot of the solution at
t = 32.8, the background of the solution is elevated, in accordance with Theorem III.1.

Thus, we may expect that two systems with initial conditions (5.2) with A; = As may exhibit similar dynamics
for short time intervals when A, = A; and A, # As which defer for large times, particularly regarding their
long-time asymptotics. Accordingly, we may expect a similarity of the dynamics of both of the above systems
to the dynamics of the AL-lattice for short-time intervals. We will discuss this issue theoretically, in the next
section.

C. Return to the analytical considerations: measuring the distance between the solution the DNLS
(1.1) and of the Ablowitz-Ladik lattice

The following results provide a theoretical consideration of the numerical observations on the distance between
the analytical rogue wave solution of the AL-lattice and the rogue wave alike structure emerged as a first event
in the dynamics of the DNLS (1.1). First, we prove the following property of the solutions of the AL-lattice
(5.6) when supplemented with the periodic boundary conditions (1.3).

Lemma V.1. For the initial condition ¢,,(0) € £2,,. of the AL-lattice (5.6), we consider the quantity

per

N-1

N(©)=h> " In(1+ [¢n(0)*) < 0. (5.9)

n=0

Then, the corresponding solution of the AL-lattice satisfies the estimate

|6, < hesp(h™ " N(0) ~ B, ¥i>0. (5.10)

Proof. The fact that A(0) is finite follows by the elementary inequality In(1+z) < z for all x > 0 which implies
that

N1
NO) <0 S 60 = [6(0) ;. (5.11)
n=0
Setting A2 () = In(1 + |, (t)]?), we write N (¢) in the form
N-1 N-1
NE) =0 I+ ¢ (t)?) =h > A2(t). (5.12)
n=0 n=0

We recall that A/ () is one of the conserved quantities of the AL-lattice and has this property still in the case
of the periodic boundary conditions (1.3), [27]. From (5.12), and by using the equivalence of norms (2.21) for
q = 2j and p = 2, which implies that

N-1 . s N1 J
WY Il < (03 )
n=0 n=0
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we get the estimate:

N-1 N-1 NoL ey
DY 0P =3 (epn ) - 1) = Y (X 1)
n=0 n=0 n=0 7=0 J
N—-1 oo 0o N—-1
_ Ml b >
n=0 j=1 j=1 n=0
e} hl_j N-1 ) J oo (h_lN)]
<) —n Y
j=1 J n=0 j=1 J:
< (RN J -
= h(Z (N i ) _ 1) = hexp(h™'N) — h. (5.13)
=0
From the conservation of N, that is A (¢) = N(0) for all ¢ > 0, it follows that
N-1
hY " on(t))? < hexp(h'N(0) —h, ¥t >0,
n=0
which is the claimed estimate (5.10). O

Theorem V.1. Let u,(0), ¢,(0) € €2, be the initial conditions of the DNLS (1.1) and of the AL-lattice (5.6),
respectively. For the initial condition of the DNLS (1.1) we assume additionally that

N-1
P, [u(0)] := % > lun(0)* < A2, (5.14)
n=0

Then, the distance ||Y (t)]]2

per

= [lu(t) — ¢(t)llez,, satisfies for allt =0, the following estimates:

e estimate I:
[u() = @Oz, < 1u(0) = @(0)lez,, +7F1 () + (V62 + 1) Fa(t) +2[exp(N(0) — 11 * ¢ .= F(t),  (5.15)

where the functions Fi(t), F5(t) are defined explicitly as

A I VIV =B
Fl(t)—/o \/md _\/ml <\/B€_7t+ (e2fyt_1)6+ryy>7

Fy(t) = /OtB(s)?’/zds

_ # {ﬁArcsmh(\/\Z%) - (eﬁi; — - ﬁArcsmh(W‘{L_ﬁ) + ‘\/g]
) T R}
e estimate IT
[u(t) = o()llez,, < lu(0) = ¢(0)[lez,, + at := Fu(t), (5.16)

o = yANNh + (V82 + 1)VRASN2 + 2R [exp(h~'A7(0)) — 1]*/2 (5.17)

Proof. We derive the equation for Y, (t) = u,(t) — ¢, (t), by subtracting the equations (1.1)-(5.6). Then, Y,,(t)
satisfies

1Yy, + AqYy, = ity + (i6 — 1)|un 2un + |6n|?(dn-1 + bng1)- (5.18)

We multiply the equation (5.18) by Y, in the éf)er—inner product. By keeping the imaginary parts of the resulting
equation, we get the balance law for Y,

1d N-1 . N-1 . N-1 .
SVl =7h > un¥o + him{(i6 — 1) ;0 [tn 0¥ o } + hTm{ ;O [6al(@n-1+ 9ui1)V 0} (5.19)

n=0 =
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Using the Cauchy—Schwarz inequality, the first term at the right-hand side of (5.19) can be estimated as

N—-1 N-1
WY unYn=> VhuaVIY , < lulle, Ve (5.20)
n=0 n=0

per”

For the second term of the right-hand side of (5.19) we have the estimate:

N—-1 N—-1
hIm{(ia -0y \un|2\un||?n|} <(VEFD( R sup funl?)h 3 Junl|Yal
n=0

0<n<N-— s

N—1

< (Va2 +1D)h ullfe, h Y funl|Yal (5.21)
n=0

< (VO + D) Hfulf, 1Y ]l

per”

For the third term, let us note that due to the periodic boundary conditions (1.3), we have that

N-1 N-1 N-1
D1l =D 1> =D lonl™ (5.22)
n=0 n=0 n—0
Then, by using (5.22), the third term of the right-hand side of (5.19) can be estimated as follows:
N—1 , - ) , N-1 N-1
him{ 2 166 +onallVal} < (A0 sup ol ){hg Sncal al +13 [6aa Yal}

<o, (03 tons ) (05 ) (0 b ) (0 2 D N S CESS
n=0 n=0 n=0 n=0

< 2h 7|6l [Vl

per’

Now, using the estimates (5.20), (5.21) and (5.23) together with the equation

1d d
=Y =Ye —|Y
SVl =1Vl SV s,
we derive from (5.19), the differential inequality
d _ _
il lle,, = lulle,, + (Vo2 + 1) h ullgs, +2h7 glIZs, - (5.24)

Proof of estimate I: We bound from above the right hand side of (5.24) by using the estimate
’y =
yexp(~2)u(0)]l; + Lyl — exp(~2y1)]

lu(®)lz2,, <

per

= B(t), Vt>0, (5.25)

(which can be easily deduced for [[u(t)||sz, from the bound (3.12)) and the estimate (5.10) for [|¢(t)lez . We
remark that under the assumption (5.14), the function B(t) satisfies

0 < B(t) < A2Nh, forallt >0, (5.26)
and recall from Theorem III.1, that
. 42
tlggo B(t) = A;Nh. (5.27)

Then we integrate in the arbitrary interval [0,¢] to get the claimed estimate (5.15). We also note that the
assumption (5.14) can be written alternatively as

vy > f, (5.28)

and due to (5.28) the functions Fj(t) and F»(t) are well defined for all ¢ > 0.
Proof of the estimate II: Since the bound (5.26) holds for all ¢ > 0, the right-hand side of (5.24) can be estimated
alternatively, giving the differential inequality

%HY”@%W < YANNE+ (V82 + 1)VRhAR(N)32 4+ 2v/h[exp(h N (0)) — 1]*/%. (5.29)

Integration of (5.29) in the arbitrary interval [0, ¢] proves the alternative estimate (5.16) with the at most linear
growth rate (5.17). O
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D. Remarks on the numerical observations of section V B under Theorem V.1

The numerical observations of section (V B) can be explained under the light of Theorem V.1. It is more
tractable for simplicity, to consider the estimate II given in (5.16)-(5.17). The explicit linear growth rate «
(5.17) and its dependence on v > 0, § < 0, N, suggests a moderate linear growth for short time intervals when
|0] and || are small, and N is physically relevantly large. In particular, we observe that the spatially averaged
distance (which is equivalent and close to the £>° metric in the case of the finite lattices as it is justified from
(2.21))

Da(t) = \/%HY

has a linear growth rate, at most of O(1) for short time intervals, if

ez, » (5.30)

] 53
3 i ) —
v < mm{ Nh (P4 D 3} O(1). (5.31)

The smallness requirement (5.31) is relevant in physical setups where v and —¢ are small, as chosen for our
numerical experiments. It is highlighted in the top row of Figure 10, depicting plots of the function (5.30) when
t € [0, 10] for the initial conditions (5.2) (panel (a)) and (5.4) (panel (b)). The rest of parameters are selected
as in Figures 5 and 6. In accordance with the theoretical estimates, for these set of lattice parameters and time
interval, D,(t) is smaller than O(1); we remark the almost linear growth after the minimum (attained close to
the rogue wave event), which is still less than of O(1), for this time interval.

Moreover, the estimates (5.16)-(5.17) suggest that the distance between the structures for the above set
of parameters, should be smaller when focused to the core of the MI pattern around xy = 0 for small time
intervals. This prediction is illustrated in the bottom row of Figure 10, depicting the time evolution of the
averaged distance

1 = N
Der = e (R ul®) = ) (5:32)

where N, denotes the number of nodes in z,, € [—10, 10].

E. Concluding remarks for the boundary conditions

1. Generalized boundary conditions at infinity: existence and uniqueness. Motivated again by [13] and
[21], instead of the boundary conditions (1.2), one may seek to consider more general nonzero boundary
conditions at infinity, of the form

Hm un(t) = lim e'9°t¢,, (5.33)
where G € R and
., n<0, .
= { §+, o, Cx€Cwith|Csl=C. (5.34)

Using first the change of variables w, (t) = 1, (t) exp(iG?t), and then, the change of variables U,, = 1, —(p,
we derive that the modified system for U, reads now as

iU, + AqUn, + DaCn — G*(Un + Co) + |Un + G2 (Un + Ga)
= iUy, + o) +16|Up + Cal?(Un + o), (5.35)

and the boundary conditions for U,, are again zero at infinity, that is, the solution of (5.35) must satisfy
(2.10). Note that the term AyC, € €% by the definition of ¢, in (5.34). The operators F; and F» are
defined in this case by

Fl(Un) = *G2(Un + Cn) + |Un + €n|2(Un + Cn)a
Fo(Un) = iy(Un + Ca) +161Un + Cul*(Un + o)

The operator F; can be written as

fl(Un) = _G2Un - G2<n + |<n|2<n + {|Un|2Un + 2(|Un|2Cn + Un'Cn|2) + ngn +Un<721} ’
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Figure 10. Parameters as in Figures 5 and 6. Panels (a) and (b): Plot of the spatially averaged distance Dq(t) (5.30)
when ¢ € [0, 10], for the initial conditions (5.2) and (5.4), respectively. Panels (c¢) and (d): Plot of D, (t) (5.32) when
t € [0,10] and z,, € [—10, 10], for the same initial conditions.

while the operator Fs, as
Fo(Un) = 17Un + 17 +161Cul*Co + 16 {|Un[*Un + 2(|Unl* G + UnlCal®) + UnCy + UnGr } -

Carrying out the same analysis as for the proof of Theorem II.1 for the operators F; and Fs, we have
that a unique solution U € C([0,T],¢P) of the modified equation (5.35) exists, if and only if

_G2Cn + |C’IL|2C’!L =0 and i’YCn + 15|<n|2<n =0.

Therefore, we conclude with the following corollary.

Corollary V.1. Consider the DNLS system (1.1) with v > 0,8 < 0 in the infinite lattice supplemented
with the nonzero boundary conditions (5.33)-(5.34). We also assume that the initial condition satisfies the
boundary conditions (5.33)(5.34). Then the system has a solution if and only if G* = (?> and ¢ = A,. The
solution is unique.

2. Dirichlet boundary conditions. (a) As proven in Theorem II.1, Dirichlet boundary conditions are relevant
for approximating problem (1.1)-(1.2) if and only if one uses the equivalent modified DNLS equation (2.9)
supplemented with zero Dirichlet boundary conditions. This approach approximates the zero boundary
conditions at infinity (2.10) for (2.9). Repeating the numerical studies of sections IV and V with this
approximation and using the change of variables u,(t) = (U,(t) + A)exp(i4%t) produces exactly the
same results as those reported in these sections for the DNLS (1.1) supplemented with periodic boundary
conditions. (b) Clearly, Dirichlet boundary conditions for the original, unmodified DNLS (1.1) are not
relevant for the finite lattice approximation of the non-zero boundary conditions at infinity (1.2).

3. Generalized boundary conditions: asymptotic behavior. Corollary V.1 generalizes Theorem II.1 to the case
of more general nonzero boundary conditions at infinity (5.33)-(5.34). Then, one can speculate that the
results on the structure of the attractor of section III and the numerical results of sections IV and V can
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be of similar nature as for the simplest case of boundary conditions (1.2). However, this speculation, to
be verified, needs theoretical and numerical analysis either (i) on the modified DNLS (5.35) supplemented
with Dirichlet boundary conditions or (ii) on the unmodified DNLS (1.1) supplemented, this time, with the
relevant non-zero Dirichlet boundary conditions. Such an analysis may have similarities but also differences
compared with the one of the boundary conditions (1.2) and may deserve independent attention to be
considered elsewhere. In this regard, even more general boundary conditions can be considered with a
varying (,, such that lim,_, |[¢,] = ¢ (a discretized version of the boundary conditions of [28, Section 3,
pg. 127]).

VI. CONCLUSIONS

In this work, we studied the dynamics of the Discrete Nonlinear Schrodinger Equation incorporating linear
gain and nonlinear loss effects, a significant model in various physical contexts. In the case of the infinite lattice
we considered the problem with nonzero boundary conditions proving that solutions exist if and only if the
supporting background has a prescribed critical value A, defined by the gain and loss strengths. We argued
that this property cannot be captured by finite lattice approximations, as those defined by the system supple-
mented with periodic boundary conditions, which are essential for the numerical simulations of the problem.
For the periodic lattice, which is of physical and mathematical significance itself, we proved that the dynamics
are dominated by the convergence to a global attractor which is the unique plane wave of constant amplitude,
namely A,, with a novel argument which studies not only the limits of the amplitudes of the initial conditions
but also their frequencies and spectrum. The convergence arguments accompanied by the analysis for modula-
tion instability justify that this fundamental mechanism for the emergence of localized structures can be only
transient in the case of the periodic lattice. The dynamics of localized initial data are investigated numerically:
in the case where A = A, which is the only relevant in order to approximate the infinite lattice, we identify the
persistence of the major characteristics of the modulation instability patterns manifested in the dynamics of
integrable NLS systems, as the Ablowitz-Ladik lattice: the oscillatory wedge shaped sector and the two outer
plane wave regions of the undisturbed background of amplitude A, which is globally asymptotically stable in
the case of the finite lattice. In the case A # A, which is only relevant for the finite lattice, the instability
pattern still persists, this time on a varying background transiently, prior the convergence of the dynamics to
the plane wave attractor. We may conclude that the analysis of the infinite lattice “leaves its mark” on the
dynamics of the finite-dimensional one, particularly regarding the manifestation of the major characteristics of
the universal behavior in the nonlinear stage of modulation instability.

At the early stages of the dynamics we identified the emergence of rogue wave events which are remarkably
proximal to the analytical discrete Peregrine rogue wave solution of the Ablowitz-Ladik lattice. This proximity
is justified analytically by suitable estimates for the distance between the solutions of the DNLS system and
the Ablowitz-Ladik lattice. This proximity, in light of the theoretical analysis for the infinite lattice, may pave
the way for new and interesting investigations for the potential construction of rogue wave-like solutions for the
dissipative DNLS via fixed-point iterations, using the numerical methods outlined in [18-20].

As a summary, we argue that the breaking of integrability by the considered dissipative DNLS system is not
dramatic since the major features of the integrable dynamics are preserved. The above results showcase that
the behavior due to modulation instability can be universal and observed not only in Hamiltonian NLS systems
but also in even more realistic set-ups described by non integrable systems where dissipation and forcing effects
are present.
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