
1

Parameter-Efficient Transfer Learning of Audio
Spectrogram Transformers

Umberto Cappellazzo, Graduate Student Member, IEEE, Daniele Falavigna, Alessio Brutti, Member, IEEE, and
Mirco Ravanelli, Fellow, IEEE

Abstract—The common modus operandi of fine-tuning large
pre-trained Transformer models entails the adaptation of all their
parameters (i.e., full fine-tuning). While achieving striking results
on multiple tasks, this approach becomes unfeasible as the model
size and the number of downstream tasks increase. In natural
language processing and computer vision, parameter-efficient
approaches like prompt-tuning and adapters have emerged as
solid alternatives by fine-tuning only a small number of ex-
tra parameters, without sacrificing performance accuracy. For
audio classification tasks, the Audio Spectrogram Transformer
model shows impressive results. However, surprisingly, how to
efficiently adapt it to several downstream tasks has not been
tackled before. In this paper, we bridge this gap and present
a detailed investigation of common parameter-efficient methods,
revealing that adapters and LoRA consistently outperform the
other methods across four benchmarks. Whereas adapters prove
to be more efficient in few-shot learning settings, LoRA turns
out to scale better as we increase the number of learnable
parameters. We finally carry out ablation studies to find the
best configuration for adapters and LoRA. Our code is available
at: https://github.com/umbertocappellazzo/PETL AST.

Index Terms—Parameter-efficient Transfer Learning, Audio
Spectrogram Transformer, Adapters, LoRA, Prompt-Tuning

I. INTRODUCTION

Transfer learning from foundations models pre-trained on
a vast amount of data is a well-established paradigm in
machine learning, resulting in superb performance across
various domains like natural language processing (NLP) [1],
vision [2], and speech processing [3], [4]. Typically, when
the pre-trained model is adapted to downstream tasks, all
its parameters are updated (i.e., full fine-tuning) [5], [6].
Despite its popularity, the full fine-tuning approach suffers
some important drawbacks. First of all, given the ever-growing
size of pre-trained models, such as GPT-3 [7] (up to 175 billion
parameters) and Whisper Large [8] (1.55 billion parameters),
fine-tuning the whole model is often exorbitantly expensive
and could potentially result in overfitting, particularly when
dealing with a limited-size downstream dataset. Second, this
method is storage-inefficient in that it needs to keep a replica
of the pre-trained model for every downstream task.

We acknowledge the support of the Digital Research Alliance of Canada
(alliancecan.ca).

Umberto Cappellazzo is with the University of Trento, Via Sommarive, 9,
38122 Povo TN, Italy (e-mail: umberto.cappellazzo@unitn.it).

Daniele Falavigna and Alessio Brutti are with Fondazione Bruno Kessler,
Via Sommarive, 18 - POVO 38123 Trento TN, Italy (e-mail: falavi@fbk.eu,
brutti@fbk.eu).

Mirco Ravanelli is with Concordia University, Montréal, QC H3G 1M8,
Canada (e-mail: mirco.ravanelli@concordia.ca).

In light of these limitations, some lightweight alternatives,
categorized as parameter-efficient transfer learning (PETL),
have been introduced for Transformer models [9]. The general
idea is to keep most of the pre-trained model’s parameters
frozen and instead learn only a small amount of extra pa-
rameters. For example, Adapter-tuning introduces small neural
modules called adapters to all layers [13]. Typical imple-
mentations add the adapter after both the multi-head self-
attention (MHSA) and fully connected feed-forward network
(FFN) blocks (called Houlsby) [14], or only after the FFN
(Pfeiffer) [15]. Another popular approach is LoRA [16], which
learns low-rank matrices to approximate parameter updates
and reduce the number of trainable parameters. Alternatively,
a few task-specific learnable parameters (i.e., prompts) are
prepended either to the input sequence (Prompt-tuning) [10],
[11], or to the key and value matrices of the MHSA block at
each Transformer layer (Prefix-tuning) [12].

While PETL methods have been originally proposed and in-
vestigated in NLP and vision domains, more recently they have
also been adopted in the speech field. Specifically, prompt-
tuning and adapters show competitive performance to full fine-
tuning for various speech classification tasks [21], [22] and
for Automatic Speech Recognition (ASR) [23], [24], [25].
For audio classification, the Audio Spectrogram Transformer
(AST) [19] obtains superb results, standing out as the state-of-
the-art model for several downstream tasks. As for the Vision
Transformer [18], the problem of how to efficiently transfer
the knowledge of the AST is of crucial importance, especially
given the typical computational and storage constraints of
audio devices. Surprisingly, this topic has received minimal
attention. Indeed, only the work in [26] carries out some
preliminary experiments on PETL methods for AST, yet its
focus is on parameter-efficient continual learning.

Given the above arguments, in this paper, we 1) provide
an extensive investigation of the most common PETL ap-
proaches applied to the AST model for audio and speech
downstream tasks. Our experiments reveal that LoRA and
Houlsby adapters achieve the best performance, with LoRA
using fewer parameters. To strengthen our analysis, we 2)
study their behavior under a few-shot learning setting and
3) how they scale with the number of trainable parameters.
We show that adapters perform better in the former scenario,
whereas LoRA showcases superior scalability by leveraging
an increasing number of parameters. Finally, we 4) present
an ablation study for both methods to identify their optimal
configuration, underscoring its pivotal role in achieving peak
performance.

ar
X

iv
:2

31
2.

03
69

4v
3

 [
ee

ss
.A

S]
 1

1
Ja

n
20

24

https://github.com/umbertocappellazzo/PETL_AST

2

II. METHODOLOGY

A. Recap of the Audio Spectrogram Transformer Architecture

The Audio Spectrogram Transformer is the audio coun-
terpart of the Vision Transformer [18]. It is a convolution-
free, purely self-attention-based model that is directly applied
to an audio spectrogram, achieving remarkable performance
on various audio classification tasks [19], [20]. The input
audio undergoes some operations before being fed to the
Transformer encoder. First, the input audio waveform of t
seconds is converted into a sequence of 128-dimensional log
Mel filterbank features, resulting in a 128×100·t spectrogram.
Then, the spectrogram is split into a sequence of N − 1
16×16 overlapping patches, which are subsequently flattened
through a linear projection layer to a sequence of 1-D patch
embeddings, each of size d = 768. Finally, after prepending
the [CLS] token, a trainable positional embedding is added to
each patch embedding. The resulting sequence representation
Xin ∈ RN×d is then used as input to the Transformer encoder.

The Transformer encoder consists of L stacked Transformer
layers, each of which is composed of two sub-layers: a
multi-head self-attention (MHSA) and a fully-connected feed-
forward (FFN) module. The output of the Transformer en-
coder, Xout ∈ RN×d, is computed as follows:

Xout = X̂+ FFN(LN(X̂)), X̂ = Xin + MHSA(LN(Xin)).
(1)

Both blocks, MHSA and FFN, include residual connections
and layer normalizations (LN) [27], with the LN applied
within the residual branch (i.e., Pre-LN).

The MHSA sub-block allows tokens to share information
with one another using self-attention. The conventional atten-
tion function maps queries Q ∈ RN×dk and key-value pairs
K ∈ RN×dk , V ∈ RN×dv :

Attn(Q,K,V) = softmax(
QKT

√
dh

)V. (2)

Multi-head attention performs the attention function in parallel
over Nh heads, where each head is separately parameterized
by W

(i)
q , W(i)

k , W(i)
v ∈ Rd×dh to project inputs to queries,

keys, and values, and dk = dv = dh = d/Nh. The MHSA
block computes the output on each head and concatenates:

MHSA = Concat(head1, · · · , headNh
)Wo,

headi = Attn(xW(i)
q , xW

(i)
k , xW(i)

v),
(3)

with Wo ∈ Rd×d. In conclusion, the FFN sub-block includes
two linear layers with a ReLU activation function in between.
If Xin is a general input vector, then:

FFN(Xin) = ReLU(XinW1 + b1)W2 + b2, (4)

where W1 ∈ Rd×dm , W2 ∈ Rdm×d. In our case, we use
dm = 4d, which is a standard choice for Transformers.

B. Overview of Parameter-efficient Transfer Learning methods

We now introduce the PETL techniques we used in our
experiments: LoRA, prompt/prefix-tuning, and adapter-tuning.

LoRA [16]. LoRA introduces trainable low-rank matrices
into Transformer layers to approximate the weight updates. For

CLS

Layer Norm

Layer Norm

Layer Norm

Head

MHSA

Sequential
Adapter

Parallel
Adapter

FFN

...

...

Linear Projection

LoRA LoRA

PT PT

Input Spectrogram

x L

Parallel
Adapter

Sequential
Adapter

DPT DPT ...

3x3 Conv

GELU

GELU

1x1 Down
Conv

1x1 Up
Conv

Adapter

ReLU

Down
Linear

Up
Linear

Bottleneck

LoRA

Down
Linear

Up
Linear

Adapter
Convpass

Fig. 1: Illustration of the AST model and the PETL methods.
Note that adapters are inserted either parallel or sequentially.
On the right we schematize the structure of Bottleneck and
Convpass adapters, as well as LoRA module.

a pre-trained weight matrix W ∈ Rd×dk , LoRA represents its
update with a low-rank decomposition W+∆W = W+AB,
where A ∈ Rd×r, B ∈ Rr×d are learnable and r << d. LoRA
applies this update to the query and value projection matrices,
Wq and Wv , in the MHSA sub-layer. LoRA computes the
query and value matrices like this:

Q/V = XinWq/v + s ·XinAq/vBq/v, (5)

where s ≥ 1 is a tunable scalar hyperparameter.
Prefix-tuning/Prompt-tuning [12], [10]. Prefix-tuning [12]

inserts p learnable continuous embeddings of dimension d
(i.e., prompts) to the keys and values of the MHSA block
at every layer. Prompt-tuning, instead, prepends the prompts
in the input space after the projection layer. Following [11],
we consider the “shallow” prompt-tuning version (SPT) where
all the prompts are prepended to the first Transformer layer,
and the “deep” version (DPT) by prepending the prompts
uniformly to each Transformer layer.

Adapters [14], [15]. The adapter-tuning approach incorpo-
rates small modules (adapters) within the Transformer layers.
In its simplest form, the adapter layer is typically composed of
a down-projection matrix Wdown ∈ Rd×r to project the input
vector to a lower-dimensional space specified by the bottleneck
dimension r, followed by a non-linear activation function f(·),
and an up-projection matrix Wup ∈ Rd×r. This design choice
is usually referred to as Bottleneck [13], [14].

3

Adapter-tuning is a flexible approach in that we can identify
multiple ways in which an adapter can be included in a
Transformer layer, resulting in different configurations. 1) The
adapter module can be inserted only after the FNN block,
denoted as Pfeiffer [15], or after both the MHSA and FNN
blocks, known as Houlsby [14]. 2) The adapter module can
be included sequentially, either after the FFN block [14]
(i.e., sequential Bottleneck) or after both FFN and MHSA
blocks [28] (i.e., sequential Houlsby), or parallel to only the
FFN block [29], [30], or parallel to both FFN and MHSA
blocks [17]. 3) In computer vision, another popular adapter
design is Convpass [17], which consists of three convolutional
layers: a 1 × 1 down-projection convolutional layer, a 3 × 3
convolution intermediate layer, and a 1 × 1 up-projection
layer. Convpass adapter explicitly introduces inductive bias
due to the convolution layers tailored for computer vision
tasks. Figure 1 depicts all the described PETL methods.

Mathematically, if we consider the configuration in which
the Bottleneck adapter is placed sequentially after the FFN
sub-block as an example, and we let XFFN = FFN(LN(X̂))
following the notation in Eq. 2, then the output is:

Xout = X̂+ f(XFFNWdown)Wup. (6)

For the parallel case, we have:

Xout = X̂+XFFN + f(X̂Wdown)Wup. (7)

III. EXPERIMENT AND DISCUSSION

A. Experiment Settings

Datasets. We evaluate the PETL methods on three au-
dio/speech downstream tasks. (1) Audio classification: we
use the ESC-50 and UrbanSound8K (US8K) datasets. ESC-
50 [31] consists of 2000 5-second-long environmental audio
recordings spanning 50 classes. US8K [32] includes 8732
labeled sound excerpts of urban sounds from 10 classes. (2)
Keyword spotting: Speech Commands V2 [33] has 105, 829
1-second recordings of 35 common speech commands. (3)
Intent classification: Fluent Speech Commands (FSC) [34]
includes 30043 English utterances spanning 31 intent classes.

PETL methods. We include two traditional fine-tuning
strategies: full fine-tuning (Full-FT), which finetunes the
entire pre-trained AST model and the classification head; and
linear probing, which keeps the backbone frozen and only
fine-tunes the head. We then study various PETL methods:
shallow prompt-tuning (SPT), deep prompt-tuning (DPT),
prefix-tuning (Pref-T), and BitFit [35], which is a common
baseline that fine-tunes only the bias terms of the pre-trained
backbone. We finally include LoRA and adapters, and we
categorize the latter based on 1) which design module is
used (Bottleneck or Convpass), 2) whether the Pfeiffer (PF) or
Houlsby (HOU) configuration is used, and 3) how the adapter
is inserted into each Transformer layer, either in parallel (par)
or sequentially (seq). By default, the PF adapter module is
placed in the MHSA layer, which we will show is the best
configuration (see Table III).

Setup details. For all experiments we use the AST model
pre-trained on ImageNet-21K [37] and AudioSet [38] provided
by the Huggingface Transformers library [39]. The hidden

TABLE I: Full results of various PETL methods over 4
datasets. The best and second-best methods for each dataset
are highlighted in bold and underlined, respectively.

Method # params ESC-50 US8K GSC FSC Avg

Full FT 85.5M 87.48 84.31 97.31 93.29 90.07
Linear 9-40K 75.85 77.93 41.78 27.52 55.77
BitFit 102K 86.05 82.17 85.51 63.85 79.40
SPT-300 230K 84.30 79.73 75.28 40.85 70.04
DPT-25 230K 86.52 83.67 89.18 68.60 81.99
Pref-T 24 221K 82.93 81.39 83.46 55.75 75.88
Bottleneck Adapter
PF par 249K 88.38 83.44 91.33 73.19 84.09
PF seq 249K 86.77 82.86 91.41 72.45 83.37
HOU par 498K 88.00 82.80 91.75 78.71 85.32
HOU seq 498K 87.75 83.28 91.76 76.45 84.81
Convpass Adapter
PF par 254K 87.85 82.72 92.27 72.84 83.92
PF seq 254K 86.15 83.10 89.21 70.31 82.19
HOU par 508K 87.15 82.75 92.55 77.79 85.06
HOU seq 508K 87.58 83.06 89.45 74.02 83.53
LoRA 221K 86.45 83.83 93.61 76.00 84.97

DPT-25
0
5
7
10
16
19
21
25
28
30

Adapter
0
5
7
10
16
19
21
25
28
30

Full Fine-tuning
0
5
7
10
16
19
21
25
28
30

Fig. 2: t-SNE plots for the FSC dataset using the projection
of the [CLS] token. We include 10 classes for clarity.

dimension is d = 768. For the final classification, we use
a simple linear layer (head), which uses the entire output
sequence for the final classification (i.e., [CLS] + audio
embeddings). For all datasets, we use AdamW optimizer with
cosine annealing scheduler and weight decay set to 0.1. The
initial learning rate is 0.005 for adapters and LoRA methods,
while for the three prompt-tuning methods is 0.01. As reported
in [36], we also observed that the latter are rather sensitive to
hyperparameters. The dimension of the intermediate space for
adapters and LoRA is computed as r = d/RR, where RR is
the reduction rate. Unless otherwise stated, RR is set to 64 and
128 for adapters and LoRA, respectively. For LoRA, following
[16], the scaling factor is s = α/RR, where α = 8 leads to
the best results. As a final remark, for a fair comparison, we
choose the number of prompts and the reduction rate RR to
ensure that the methods use approximately the same amount of
parameters. The total number of parameters lies in the range
[230, 500]K, which corresponds to 0.3-0.6% of the Full FT
approach. For a complete overview of the hyperparameters,
please refer to our github repository.

B. Main Results and Discussion

Main Results. In Table I, we report the results for the
PETL methods across the four datasets. First of all, we see
that Houlsby adapters and LoRA achieve the best results on
average. Pfeiffer adapters perform slightly worse, yet they still
surpass the other PETL methods (DPT, Pref-T, BitFit). We

4

0 20 40 60 80 100

Fine-tuned Parameters [x10^4]

84

86

88

90

92

94

96

98

A
cc

ur
ac

y
(%

)
GSC

Full Fine-tuning
DPT
LoRA
Bottleneck
Convpass

0 20 40 60 80 100

Fine-tuned Parameters [x10^4]

60

65

70

75

80

85

90

95

A
cc

ur
ac

y
(%

)

FSC

Full Fine-tuning
DPT
LoRA
Bottleneck
Convpass

Fig. 3: Results of various PETL methods in function of the
number of learnable parameters for the GSC and FSC datasets.

TABLE II: Few-shot learning analysis for ESC-50/GSC. We
use parallel insertion for PF Bottleneck/Convpass adapters.

ESC-50 GSC
Examples per class

Method 1 2 4 8 2 8 32 64

DPT-25 32.7 44.3 57.0 71.9 9.4 18.7 43.1 57.1
LoRA 31.8 42.2 58.8 70.7 6.8 15.2 41.8 59.8
Bottle 33.0 45.5 60.2 72.8 7.2 16.0 47.9 66.6
Conv 32.6 45.4 60.3 73.2 7.3 16.2 47.8 66.8

also notice two interesting findings for adapters: a) the parallel
adapter turns out to be more competitive than sequential, and
b) the Convpass adapter, despite the use of convolutional
layers, performs on par or even worse than Bottleneck.

Overall, the results obtained by the PETL methods are close
to or surpass the Full FT method for the audio tasks, while
for GSC and even more for FSC, the results are worse. We
posit that this happens because the AST model is pre-trained
on Audioset [38] which only partially includes speech clips.
This is confirmed also by the fact that the linear baseline
achieves good performance for the audio datasets, while for
the speech ones, the results are poor, showing that training
a linear head on top of the frozen feature embeddings is not
sufficient. Finally, Figure 2 shows t-SNE [40] visualization
of the [CLS] token after the last layer for the FSC dataset.
We see that adapters produce reasonable linearly separable
representations (similar results are obtained for LoRA, which
we do not include for lack of space), not as neat as Full FT
but using far fewer parameters. DPT-25, instead, struggles to
disentangle the underlying manifold structure of the task.

To bolster the previous results, in Figure 3 we study
the trend of the methods as a function of the number of
trainable parameters (to increase/decrease the parameters, we
decrease/increase RR accordingly). We see that LoRA exhibits
superior scalability than adapters and DPT for both datasets.

Few-shot setting. We also test the PETL methods under a
few-shot setting. Table II reveals that adapters attain the best
results when few labeled samples are available, making them
the best option for few-shot learning.

C. Ablation Studies on Adapters and LoRA

We now investigate 1) where and how to insert the adapter
module into the AST model, and 2) which matrices in the
MHSA layer are to be approximated by LoRA in order to
achieve the best results.

TABLE III: Ablation study on the optimal config. of adapters.

Configuration ESC-50 US8K GSC FSC Avg

FFN-Seq/Par-After 86.77 82.86 91.41 72.45 83.37
FFN-Seq-Before 54.68 71.60 86.80 61.44 68.63
FFN-Par-Before 87.07 82.72 90.84 72.08 83.18

MHSA-Seq/Par-After 87.80 83.08 89.30 64.40 81.15
MHSA-Seq-Before 76.03 81.30 90.74 73.76 80.46
MHSA-Par-Before 88.38 83.44 91.33 73.19 84.09

TABLE IV: Ablation study on the optimal config. of LoRA.

Config. Wq Wq ,Wk Wq ,Wv Wq ,Wk,Wv ,Wo

RR 64 128 128 256

ESC-50 83.05 84.15 86.45 86.15
US8K 82.56 82.35 83.83 83.51
GSC 89.08 91.51 93.61 94.08
FSC 61.84 65.59 76.00 78.90
Avg 79.13 80.90 84.97 85.66

Where and how to insert the adapter. There are multiple
ways in which an adapter can be inserted into a Transformer
layer, such as parallel to the FFN block [29], or sequentially to
the FFN block [30]. However, since none of these configura-
tions prevails over the others, but rather seems to depend on the
considered downstream task and dataset, we try to figure out
the optimal way to place the adapter. We try 6 configurations,
based on where and how we put the adapter: 1) into the FFN
or MHSA sub-layer, 2) after or before the selected sub-layer,
and 3) parallel (Par) or sequentially (Seq). In Table III we
report the results for Bottleneck adapters and we see that
the MHSA-Par-Before configuration obtains the best results,
but also Seq/Par-After and Par-Before for FFN achieve good
results, showing that, despite some small differences, adapters
are flexible in terms of their insertion location.

Best configuration for LoRA. Finally, we study which
MHSA weight matrices should LoRA approximate in order
to achieve the best results. Based on [16], we select 4
configurations and we choose the RR such that the number of
parameters remains constant across them (i.e., 221K) for fair
comparison. In Table IV we can observe that approximating
with LoRA all the weight matrices of the MHSA sub-layer
results in the best configuration. The adaptation of (Wq ,Wv)
achieves slightly worse results, yet it is the best configuration
for the audio datasets. On the contrary, the other two con-
figurations get inferior accuracy. Our results confirm previous
results for LLMs [16].

IV. CONCLUSION AND FUTURE WORK

In this work, we study the problem of parameter-efficient
transfer learning for the AST model. Exhaustive experiments
spanning four audio and speech datasets reveal that LoRA and
adapters obtain the best results overall. If adapters perform
better under a few-shot learning scenario, LoRA is the best op-
tion when more parameters can be allocated. We also conduct
ablation studies on the optimal configuration for adapters and
LoRA. We finally notice that there still exists a gap between
Full FT and adapters/LoRA for speech tasks, thus suggesting
that more investigation is necessary. In this direction, future
work will explore new adapter modules tailored for speech.

5

REFERENCES

[1] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in Proceed-
ings of NAACL, 2019.

[2] A. Kolesnikov et al., “Big Transfer (BiT): General Visual Representa-
tion Learning,” in European conference on computer vision (ECCV),
Springer, 2020, pp. 491–507.

[3] Y. Wang, A. Boumadane, and A. Heba, “A fine-tuned wav2vec
2.0/Hubert benchmark for speech emotion recognition, speaker ver-
ification and spoken language understanding,” 2021, arXiv preprint
arXiv:2111.02735.

[4] U. Cappellazzo, E. Fini, M. Yang, D. Falavigna, A. Brutti, and B. Raj,
“Continual Contrastive Spoken Language Understanding,” 2023, arXiv
preprint arXiv:2310.02699.

[5] E. Tsalera, A. Papadakis, and M. Samarakou, “Comparison of pre-
trained CNNs for audio classification using transfer learning,” J. Sensor
Actuator Netw., vol. 10, no. 4, p. 72, Dec. 2021.

[6] C. Raffel et al., “Exploring the limits of transfer learning with a unified
text-to-text transformer,” The Journal of Machine Learning Research,
2020, 21.1: 5485-5551.

[7] T. Brown et al., “Language models are few-shot learners,” in Advances
in neural information processing systems, 2020, vol. 33, pp. 1877-1901.

[8] A. Radford et al., “Robust speech recognition via large-scale weak
supervision,” in International Conference on Machine Learning, 2023,
pp. 28492-28518.

[9] N. Ding et al., “Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models,” 2022, arXiv preprint
arXiv:2203.06904.

[10] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for
parameter-efficient prompt tuning,” in Proceedings of EMNLP, 2021.

[11] J. Menglin et al., “Visual prompt tuning,” in European Conference on
Computer Vision. Cham: Springer Nature Switzerland, 2022. pp. 709-
727.

[12] X. L. Li, and P. Liang, “Prefix-tuning: Optimizing continuous prompts
for generation,” in Proceedings of ACL, 2021.

[13] S. Rebuffi, H. Bilen, and A. Vedaldi, “Learning multiple visual domains
with residual adapters,” in Advances in neural information processing
systems, 30, 2017.

[14] N. Houlsby et al., “Parameter-efficient transfer learning for NLP,” in
International Conference on Machine Learning, PMLR, 2019, pp. 2790-
2799.

[15] J. Pfeiffer et al., “Adapter-Fusion: Non-destructive task composition for
transfer learning,” in Proceedings of EACL, 2021.

[16] E. Hu et al., “LoRA: Low-rank adaptation of large language models,”
2021, arXiv preprint arXiv:2106.09685.

[17] S. jie, and Z. Deng, “Convolutional bypasses are better vision trans-
former adapters,” arXiv preprint arXiv:2207.07039, 2022.

[18] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers
for image recognition at scale,” in Proceedings of the 9th International
Conference on Learning Representations, 2021.

[19] Y. Gong, Y.-A. Chung, and J. Glass, “AST: Audio spectrogram trans-
former,” in Proc. Interspeech, 2021, pp. 571–575.

[20] Y. Gong, C.I. Lai, Y.-A. Chung, and J. Glass, “Ssast: Self-supervised
audio spectrogram transformer,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2022, vol. 36, pp. 10699-10709.

[21] K. Chang et al., “Speechprompt v2: Prompt tuning for speech classifi-
cation tasks,” 2023, arXiv preprint arXiv:2303.00733.

[22] Z. Chen et al., “Exploring efficient-tuning methods in self-supervised
speech models,” in IEEE Spoken Language Technology Workshop (SLT),
2022, pp. 1120-1127.

[23] B. Thomas, S. Kessler, and S. Karout, “Efficient adapter transfer of self-
supervised speech models for automatic speech recognition,” in ICASSP,
2022, pp. 7102-7106.

[24] S. Kessler, B. Thomas, and S. Karout, “An adapter based pre-training for
efficient and scalable self-supervised speech representation learning,” in
ICASSP, 2022, pp. 3179-3183.

[25] S. Otake, R. Kawakami, and N. Inoue, “Parameter Efficient Transfer
Learning for Various Speech Processing Tasks,” in ICASSP, 2023, pp.
1-5.

[26] NM Selvaraj et al., “Adapter Incremental Continual Learning of
Efficient Audio Spectrogram Transformers,” 2023, arXiv preprint
arXiv:2302.14314.

[27] J. L. Ba, J. R. Kiros, and G. E Hinton, “Layer normalization,” 2016,
arXiv preprint arXiv:1607.06450.

[28] R. K. Mahabadi, S. Ruder, M. Dehghani, and J. Henderson, “Parameter-
efficient multi-task fine-tuning for transformers via shared hypernet-
works,” in Annual Meeting of the Association for Computational Lin-
guistics, 2021.

[29] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig, “Towards a
Unified View of Parameter-Efficient Transfer Learning,” in International
Conference on Learning Representations, 2022.

[30] S. Chen et al., “Adaptformer: Adapting vision transformers for scalable
visual recognition,” in Advances in Neural Information Processing
Systems, 2022, vol. 35, pp. 16664-16678.

[31] K. J. Piczak, “ESC: Dataset for environmental sound classification,” in
Proceedings of the 23rd ACM international conference on Multimedia,
2015, pp. 1015-1018.

[32] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for
urban sound research,” in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 1041-1044.

[33] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” 2018, arXiv preprint arXiv:1804.03209.

[34] L. Lugosch, M. Ravanelli, P. Ignoto, V. S. Tomar, and Y. Bengio,
“Speech model pre-training for end-to-end spoken language understand-
ing,” 2019, arXiv preprint arXiv:1904.03670.

[35] E. Ben Zaken, Y. Goldberg, and S. Ravfogel, “BitFit: Simple Parameter-
efficient Fine-tuning for Transformer-based Masked Language-models,”
in Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics, 2022, vol. 2, pp. 1-9.

[36] T. Vu et al., “SPoT: Better Frozen Model Adaptation through Soft
Prompt Transfer,” in Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics, 2022, vol.1 , pp. 5039-5059.

[37] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in CVPR, 2009.

[38] J. F. Gemmeke et al., “Audio Set: An ontology and human-labeled
dataset for audio events,” in ICASSP, 2017.

[39] T. Wolf et al., “Huggingface’s transformers: State-of-the-art natural
language processing,” 2019, arXiv preprint arXiv:1910.03771.

[40] L. Van Der Maaten, and G. Hinton, “Visualizing data using t-SNE,”
Journal of machine learning research, 2008, 9.11.

[41] S. Kim et al., “Hydra: Multi-head Low-rank Adaptation for Parameter
Efficient Fine-tuning,” 2023, arXiv preprint arXiv:2309.06922.

[42] Y. Zhang, K. Zhou, and Z. Liu, “Neural Prompt Search,” 2022, arXiv
preprint arXiv:2206.04673.

http://arxiv.org/abs/2111.02735
http://arxiv.org/abs/2310.02699
http://arxiv.org/abs/2203.06904
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2207.07039
http://arxiv.org/abs/2303.00733
http://arxiv.org/abs/2302.14314
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1904.03670
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2309.06922
http://arxiv.org/abs/2206.04673

6

TABLE V: Ablation study on the optimal adapter configuration
given a specific number of trainable params.

Method # params ESC-50 FSC Avg

PF FFN-Seq-After 249K 86.77 72.45 79.61
PF MHSA-Par-Before 249K 88.38 73.19 80.79
PF FFN-Seq-After x2 470K 87.18 73.60 80.39
PF MHSA-Par-Before x2 470K 88.50 78.19 83.35
HOU seq 498K 87.75 76.45 82.10
HOU par 498K 88.00 78.71 83.35
HOU mixed 498K 87.75 78.41 83.08
HYDRA FFN [41] 470K 87.25 76.18 81.72

APPENDIX

We include in the appendix some additional experiments
we conducted. Specifically, we investigate: 1) what is the
best adapter configuration given a fixed budget of parameters,
2) whether combining multiple PETL methods brings about
further improvement, and 3) the role of residual connections
in the learning process. We finally provide some additional
results on the ESC-50 dataset.

A. How to Optimally Allocate a Given Budget for Adapters

We assume we have a certain amount of parameters to
allocate for an adapter module. In principle, the Houlsby
configuration, due to its design, exploits twice as many pa-
rameters as the Pfeiffer configuration because it introduces two
adapters, one for the MHSA sub-layer and one for the FFN.
For this reason, we provide a fairer comparison between the
Houlsby and Pfeiffer configurations by constraining the former
to have two adapters whose size is half that used by the Pfeiffer
configuration (we achieve this by halving the reduction rate
RR to 32). We include the best configurations that we found
from the analysis in Table III: FFN-Seq-After and MHSA-Par-
Before. We add the word “x2” to emphasize that the adapter’s
size is double that of the individual adapters used by Houlsby.

For the Houlsby configuration, we report three variants: 1)
HOU seq, which adds both the adapters sequentially after
the MHSA/FFN sub-layers; 2) HOU par, which adds parallel
adapters before the MHSA/FFN sub-layers; 3) HOU seq adds
one parallel adapter before the MHSA sub-layer and one
adapter sequentially after the FFN sub-layer, reflecting the
finding that the MHSA and FFN sub-layers have different best
configurations. Finally, we also include a recent configuration
called HYDRA [41], which proposes to leverage both parallel
and sequential adapters. We report the results for the case
in which the adapters are included in the FFN sub-layer like
in the original paper. While we tried to do the same for the
MHSA layer, we found that this configuration led to poor and
unstable results, thus we do not include it.

The results are reported in Table V. We can observe that the
best configurations for Pfeiffer (PF FFN-Par-Before x2) and
Houlsby (HOU par) achieve the same results, thus showing
that having one adapter or two adapters with half size leads
to very similar results. Furthermore, the table suggests that
it seems better to have one adapter for each sub-layer when
the downstream task is more challenging (FSC). As a final
comment, we observe that the concurrent use of parallel and

TABLE VI: Ablation study on the combination of multiple
PETL methods.

Method # params ESC-50 FSC Avg

PF MHSA-Par-Before x2 470K 88.50 78.19 83.35
HOU par 498K 88.00 78.71 83.35
LoRA 442k 86.70 82.84 84.77
Adapter + LoRA 470K 88.00 81.54 84.77
Adapter + DPT-25 479K 86.60 77.15 81.88
Adapter + DPT-14 + LoRA 488K 86.80 79.83 83.32

TABLE VII: Ablation study on the use of residual connections
for sequential/parallel Bottleneck adapters.

Residual Seq/Par ESC-50 FSC

✓ Seq 86.77 72.45
✗ Seq 69.20 56.48
✗ Par 87.07 72.08
✓ Par 73.20 69.28

sequential adapters (i.e., HYDRA) performs worse than the
previous methods.

B. On the Combination of Multiple PETL Methods
In this section, we try to combine adapters with DPT/LoRA.

This study stems from a recent work called NOAH (Neural
Prompt Search) [42], which combines these three methods and
performs neural architecture search on the reduction rate of
adapter and LoRA, as well as on the number of prompts p
used by DPT. In our case, we choose RR and p such that the
combinations of approaches use roughly the same number of
parameters, thus they are not learned by the model itself. Since
DPT and LoRA work on the MHSA sub-layer, we decide to
apply the adapter module parallel to the FFN layer. For the
setting in which we use all three methods, the RR of LoRA
is set to 256 and that of the adapter is kept to 64.

From Table VI, we see that combining adapters and LoRA
does not bring additional improvements. TWith respect to
LoRA alone, adding a parallel adapter is beneficial to ESC-
50 because we see that adapters alone perform better than
LoRA, but for FSC adding adapters to LoRA deteriorates the
performance. Instead, the use of DPT seems to deteriorate
the performance for both datasets, and so it does when all
the three methods are used concurrently. All in all, we can
conclude that, depending on the dataset at hand, the use of a
single PETL methods is the best choice.

C. On Residual Connections
We here ablate the use of residual connections for adapters.

We focus on Bottleneck, RR = 64, FFN case. Table VII
shows that residuals are necessary for sequential adapters,
while they must be avoided for parallel adapters. Indeed, for
the sequential case, the residual connection allows the model
to have direct access to the FFN output, whereas the parallel
adapter can be seen already as a residual.

D. Additional Experiments on ESC-50
We finally include Figure 4 where we show how the PETL

methods scale with respect to the number of parameters for

7

0 20 40 60 80 100

Fine-tuned Parameters [x10^4]

85.0

85.5

86.0

86.5

87.0

87.5

88.0

88.5

A
cc

ur
ac

y
(%

)

ESC-50

Full Fine-tuning
DPT
LoRA
Bottleneck
Convpass

Fig. 4: PETL methods performance on the ESC-50 dataset
when more and more parameters are available.

the ESC-50 dataset, which we do not include in the main
paper for space constraints. We see that LoRA manages to
approach adapters only when the budget of parameters is
close to 1 million, whereas adapters need a small number of
parameters to achieve strong results, and adding more and
more parameters does not lead to better performance (for
Bottleneck adapter using more parameters is even deleterious).
This behavior is in line with what we show in the main
paper, namely that LoRA is able to scale better as more
parameters are available, whilst it struggles when dealing with
few parameters or labeled data. The main difference of LoRA
and MHSA adapters is that LoRA approximates the query and
value projection matrices, whereas adapters try to approximate
the entire MHSA sub-layer function.

	Introduction
	Methodology
	Recap of the Audio Spectrogram Transformer Architecture
	Overview of Parameter-efficient Transfer Learning methods

	Experiment and Discussion
	Experiment Settings
	Main Results and Discussion
	Ablation Studies on Adapters and LoRA

	Conclusion and Future Work
	References
	Appendix
	How to Optimally Allocate a Given Budget for Adapters
	On the Combination of Multiple PETL Methods
	On Residual Connections
	Additional Experiments on ESC-50

