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Abstract

In the era of fast-paced precision medicine, observational studies play a major role in properly eval-
uating new treatments in clinical practice. Yet, unobserved confounding can significantly compromise
causal conclusions drawn from non-randomized data. We propose a novel strategy that leverages random-
ized trials to quantify unobserved confounding. First, we design a statistical test to detect unobserved
confounding above a certain strength. Then, we use the test to estimate an asymptotically valid lower
bound on the unobserved confounding strength. We evaluate the power and validity of our statistical test
on several synthetic and semi-synthetic datasets. Further, we show how our lower bound can correctly
identify the absence and presence of unobserved confounding in a real-world example.1

1 Introduction

Monitoring the performance of a newly approved treatment is crucial, a process commonly referred to as post-
marketing surveillance [62]. Nowadays, the U.S. Food and Drug Administration promotes the integration
of observational data in this process to address the shortcomings of randomized evidence [39, 48]. This
strategy is essential for validating personalized treatments, like immunotherapy for certain types of cancer,
where randomized evidence is scarce, and treatment costs are substantial [23, 25].

Yet, unobserved confounding can significantly compromise causal conclusions drawn from observational data.
To tackle this issue, sensitivity analysis has been the prevalent paradigm since its conception by Cornfield
et al. [10]. This field studies how a specific strength of unobserved confounding affects causal conclusions
and introduces the concept of a critical value [33, 59], i.e. the minimum strength unobserved confounders
would need to have to explain away the estimated treatment effect. However, critical values are solely
based on observational data and can differ substantially from the true confounding strength. As a result,
epidemiologists often rely on heuristic judgments to decide whether an observational study is flawed.

Estimating the true confounding strength is infeasible without further assumptions. Yet, once a treatment
gains approval, we may have access to a randomized trial that allows for more effective strategies to address
unobserved confounding. A recent line of works proposes to combine the estimators from randomized and
observational data, e.g. see Brantner et al. [3], Colnet et al. [7] for a survey. However, these methods crucially
rely on some prior knowledge of the confounding bias structure, that is not always available in practice.

∗These authors contributed equally.
1See our GitHub repository for the source code: https://github.com/jaabmar/confounder-lower-bound.
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Our proposal: lower bounding confounding strength
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Figure 1: An illustrative example of the drug regulatory process: our lower bound allows taking proactive
measures to address the unobserved confounding problem.

We propose an alternative strategy to leverage randomized trials, that is, to test and quantify the true
confounding strength. In particular, if strong confounding is detected, epidemiologists can take proactive
measures to correct it. Most directly, they can identify and incorporate relevant covariates into the study
design if they were initially overlooked [19]. On the other hand, if small confounding is detected, epidemi-
ologists can continue their analysis (see Figure 1 for an illustration of the pipeline). More concretely, our
contributions are as follows.

• In Section 3, we introduce the first statistical test to detect unobserved confounding above a certain
strength. Further, we show how the test can be used to estimate an asymptotically valid lower bound
on the true confounding strength.

• In Section 4, we evaluate the finite-sample validity and power of our test on several synthetic and
semi-synthetic datasets.

• In Section 5, we showcase through a real-world example how our approach leads to conclusions that
align with established epidemiological knowledge.

1.1 Related work

Our approach is closely related to a line of work that proposes statistical tests for the presence of unobserved
confounding. In particular, several works leverage randomized trials to detect unobserved confounding. These
tests check for significant differences between average treatment effect estimates obtained from randomized
and observational data [30, 42, 61, 65]. More sophisticated approaches also test for differences in conditional
average treatment effect estimates [31] and account for right-censored outcomes [15].

Similarly, other works have designed statistical tests using instrumental variables and negative control out-
comes instead of randomized trials [12, 16, 40, 53]. Additionally, multiple observational studies can be
leveraged to test conditional independences and detect unobserved confounding [36].

In contrast to our test, these works have a significant limitation: they cannot quantify the true confounding
strength. Even in infinite samples, they reject observational studies with negligible confounding. In real-
world settings, where some degree of confounding will likely be present, testing for the absence of unobserved
confounding can be too restrictive.

Finally, another line of works proposes calibrating the value of confounding strength using only observational
data [29, 60]. However, the true confounding strength can be arbitrarily different from the calibrated strength,
and there is no theoretical result for how these two quantities are related, even with infinite samples.
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2 Setting and notation

We have access to data from a randomized trial (rct) and an observational study (os), which come from an
underlying distribution P⋄

full over (X,U, Y (0), Y (1), Y, T ), for ⋄ ∈ {rct, os}. Here, (X,U) ∈ Rd×Rk is a vector
of confounders, (Y (0), Y (1)) are real-valued bounded potential outcomes, Y ∈ R is the observed outcome,
and T ∈ {0, 1} is a binary treatment indicator. However, the confounder U and the potential outcomes are
never observed, that is, we can only sample from the distributions Prct := M(Prct

full) and Pos := M(Pos
full),

whereM(Pfull) denotes the marginal distribution of (X,Y, T ) under Pfull.

‣We have access to rct and os data coming 
from the distributions ℙ!"##

$%&  and ℙ!"##
'(   over 

(𝑋,𝑈, 𝑇, 𝑌(1), 𝑌(0), 𝑌) 

‣We only observe the marginal 
distributions ℙ$%& and ℙ!" over (𝑋, 𝑌, 𝑇) 
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For ⋄∈ {rct, os} we can factorize ℙ!"##⋄ = Figure 2: Graphical model that cap-
tures the Neyman-Rubin potential outcome
framework with unobserved confounder U .
Pinv is the causal mechanism that does not
change between the randomized trial and
the observational study, while Pcnf changes
across studies. For the randomized trial,
we assume there is no arrow from the con-
founders (X,U) to the treatment indicator
T due to its internal validity. Observed
variables are colored in shades of grey.

We assume that we can factorize the full distribution as follows
for rct and os

P⋄
full = PY |Y (1),Y (0),T︸ ︷︷ ︸

:=Pdet

PY (1),Y (0)|X,U︸ ︷︷ ︸
:=Pinv

P⋄
X,T,U︸ ︷︷ ︸
:=P⋄

cnf

, (1)

where Pdet is deterministically given by Y = Y (T )2, Pinv is
invariant across studies, and P⋄

cnf differs for ⋄ ∈ {rct, os}.
This factorization captures the essence of the potential out-
come framework, where Y (1) and Y (0) do not depend on T
while being more general. In particular, it allows for shifts
in the marginal distribution of the observed and unobserved
confounders.

We illustrate the corresponding graphical model in Figure 2.
Note that numerous attempts have been made to unify poten-
tial outcomes and graphical models, with the most prominent
being the Single World Intervention Graphs [50]. However, we
propose a simpler graphical model in this context since we do
not use the graph to infer counterfactual independencies.

We now introduce three additional assumptions required for the
validity of our statistical test and the resulting lower bound.
First, we require transportability of the conditional average
treatment effect (CATE).

Assumption 2.1 (Transportability). The conditional average
treatment effect remains invariant across studies, that is

EPos
full

[Y (1)− Y (0) | X] = EPrct
full

[Y (1)− Y (0) | X] .

This property is standard for generalizing the findings of randomized trials to another population [7, 13, 46],
and is a weaker assumption than ignorability of study selection [28, 56] or sample ignorability of treatment
effects [38].

Second, we assume that the randomized trial is internally valid.

Assumption 2.2 (Internal validity). The treatment is assigned independent of the covariates and the po-
tential outcomes, that is,

Prct
cnf = Prct

T Prct
X,U , with Prct

T (T = 1) = π ∈ (0, 1).

2Given that samples are drawn i.i.d., this asumption is equivalent to the classic SUTVA [51].
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Internal validity holds by design in a completely randomized experiment, allowing for an unbiased estimation
of the treatment effect. Observational studies, on the other hand, can have arbitrary confounding structures
reflected in Pcnf , i.e. Pos

cnf = Pos
T |X,U Pos

X,U .

Finally, we assume that the population in the observational study includes the population in the trial.

Assumption 2.3 (Support inclusion). The support of the randomized trial is included in the support of the
observational study, i.e.

supp(Prct
X ) ⊆ supp(Pos

X).

This assumption is strictly weaker than the positivity of trial participation [2, 8, 24, 43, 54]. It is also
expected to hold in our setting, as it aligns with the design of observational studies by regulatory agencies
for drug monitoring [26], and particularly for post-marketing surveillance [20, 52].

2.1 Sensitivity analysis

Sensitivity analysis is commonly used to account for unobserved confounding in observational data. In par-
ticular, this approach estimates an interval for the treatment effect that depends on an assumed confounding
strength Γ of Pos

cnf . Throughout the paper, we define the confounding strength using the widely accepted
marginal sensitivity model [57].

More formally, we assume that Pos
cnf belongs to the set E(Γ) of distributions that have bounded odds ratio,

E(Γ) :=
{
Pcnf :

1

Γ
≤ Pcnf(T = 1 | X,U)

Pcnf(T = 0 | X,U)
/
Pcnf(T = 1 | X)

Pcnf(T = 0 | X)
≤ Γ, a.s.

}
.

Under this notion of confounding strength, we can define a set of full distributions P̃full that are compatible
with the marginal distribution of the observational study Pos and have a bounded odds ratio.

Definition 2.1 (Marginal sensitivity set). Given a distribution Pos over (X,Y, T ) and a confounding strength
Γ ≥ 1, we define the set E(Pos,Γ) of distributions P̃full, as

E(Pos,Γ) := {P̃full = PdetP̃invP̃cnf : P̃cnf ∈ E(Γ) and M(PdetP̃invP̃cnf) = Pos}.

In other words, this set contains all the full distributions that could have induced the marginal distribution
of the observational study Pos. Further, since the marginal sensitivity set contains Pos

full if Γ is well-specified,
we can partially identify the (conditional) treatment effect as follows.

Definition 2.2 (Sensitivity bounds). We define the conditional average treatment effect (CATE) as

µ(X,Pfull) := EPfull
[Y (1)− Y (0) | X] ,

and the upper and lower bounds on CATE within the marginal sensitivity set as

µ+
Γ (X) := sup

P̃full∈E(Pos,Γ)

µ(X, P̃full), µ−
Γ (X) := inf

P̃full∈E(Pos,Γ)
µ(X, P̃full).

Further, we define the average treatment effect (ATE) over a marginal distribution PX that can differ from
the marginal in Pfull as

µ(PX ,Pfull) := EPX
[µ(X,Pfull)] ,

and the upper and lower bounds on ATE as

µ+
Γ (PX) := EPX

[
µ+
Γ (X)

]
, µ−

Γ (PX) := EPX

[
µ−
Γ (X)

]
.
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Above, we do a slight abuse of notation by defining µ as both a function and a real number, depending on
its argument. Several estimators have recently emerged in the literature for the CATE bounds [32, 35, 47]
and for the ATE bounds [17, 18, 66]. We will leverage these estimators to construct a statistical test that
detects unobserved confounding above a certain strength.

3 Methodology

We would like to test whether the unobserved full distribution Pos
full, which marginalizes to Pos, has con-

founding strength at most Γ. This is captured by the following null hypothesis

H0(Γ) : Pos
full ∈ E(Pos,Γ).

Note that in the special case where Γ = 1, the problem reduces to testing whether there are no unobserved
confounders, i.e. (Y (1), Y (0)) ⊥⊥ T | X under Pos. We refer to this case, which has been recently studied in
the literature (see Section 1.1), as binary testing for unobserved confounding.

In real-world scenarios, binary tests can be overly stringent, as they invalidate an observational study even
if the unobserved confounding strength is negligible. To overcome this limitation, we propose the first test,
to the best of our knowledge, for the general case where Γ is greater than one. In particular, underlying
our testing procedure is a simple observation that follows from the sensitivity analysis bounds: When the
null hypothesis is true for some confounding strength Γ, the average treatment effect under some target
population should fall between the valid upper and lower bounds constructed from the observational study.

Lemma 3.1. For any Pfull which satisfies transportability, i.e. µ(X,Pfull) = µ(X,Pos
full), and any PX which

satisfies support inclusion, i.e. supp(PX) ⊆ supp(Pos
X), it holds that

Pos
full ∈ E(Pos,Γ) =⇒ µ(PX ,Pfull) ∈ [µ−

Γ (PX), µ+
Γ (PX)].

Proof. First, note how µ(X,Pfull) ∈ [µ−
Γ (X), µ+

Γ (X)] for all X ∈ supp(Pos
X) when the null hypothesis H0(Γ)

is true, due to the transportability assumption and the definition of CATE sensitivity bounds. The result
then follows by taking expectations with respect to the corresponding marginals PX on both sides.

3.1 Statistical tests for H0(Γ)

In what follows, we have access to a randomized trial Drct = {(Xi, Yi, Ti)}nrct
i=1 sampled i.i.d from the dis-

tribution Prct, and an observational study Dos = {(Xi, Yi, Ti)}nos
i=1, sampled i.i.d. from the distribution Pos.

We first propose estimates for the average treatment effect under two target populations. Then, we leverage
these estimates together with the sensitivity bounds to design an asymptotically valid statistical test at
significance level α. Finally, we show how such a test can be used to establish an asymptotically valid lower
bound on the unobserved confounding strength.

Estimating the ATE We discuss here how the average treatment effect can be estimated using data from
the randomized trial. First, we define a target population P⋄

X to estimate the ATE. Then, the following
lemma shows how the choice of Prct

X and Põs
X := Pos

X | X ∈ supp(Prct) allows us to identify ATE using data
sampled from the randomized trial marginal distribution Prct.

5



Lemma 3.2. For ⋄ ∈ {rct, õs}, under Assumptions 2.1, 2.2 and 2.3, we have

µ(P⋄
X ,P⋄

full) = EPrct

[
Y

(
T

π
− (1− T )

1− π

)
w(X)

]
, where w(X) :=

P⋄(X)

Prct(X)
.

Lemma 3.2 is a well-known result in the transportability literature [6, 9]. Essentially, it establishes that
when the distribution shift between Prct

X and P⋄
X can be corrected, we can identify and estimate the ATE

under P⋄
X .

Estimating the sensitivity interval Next, we discuss how µ−
Γ (P⋄

X) and µ+
Γ (P⋄

X) can be estimated using
data from both the observational study and the target population P⋄

X . Here, the approach varies based on
the target population.

• For P⋄
X = Prct

X , we estimate the CATE sensitivity bounds from observational data and average them over
the target population. Specifically, we use the B-Learner [47] to estimate the sensitivity analysis bounds.

• For P⋄
X = Põs

X , we have two options: either estimate the CATE sensitivity analysis bounds and average
them, or directly estimate the ATE sensitivity analysis bounds over the target population. In our exper-
iments, we directly estimate the ATE sensitivity analysis bounds using either the DVDS [18] or the QB
estimator [17].

These methods yield estimates that are valid, sharp, and efficient under more general conditions than other
existing methods. Nevertheless, our testing procedure is agnostic to the choice of the sensitivity analysis
bound estimator, allowing for various options to be adopted.

Two statistical tests We outline our testing procedure in Algorithm 1, which can be instantiated for
the target populations rct and õs. This results in two statistical tests, ϕ̂rct and ϕ̂õs, for the null hypothesis
H0(Γ). The following proposition confirms their asymptotic validity.

Proposition 3.1 (Validity of the test). Let ϕ̂⋄(Γ, α) be the test defined in Algorithm 1, for a fixed Γ ∈ [1,∞)
and significance level α. Then, under Assumptions 2.1–2.3 and the setting described in Section 2, we have,
for H0(Γ),

(i) If it holds that lim
nrct,nos→∞

nrct/nos = 0 and the estimators of the CATE sensitivity analysis bounds satisfy

∥µ±
Γ − µ̂

±
Γ ∥L2(Prct) = OPos(n−1/2

os ),

ϕ̂rct(Γ, α) is a valid asymptotic test at level α.

(ii) If µ̂+
Γ and µ̂−

Γ are consistent estimators of the ATE sensitivity analysis bounds that satisfy

√
nos µ̂

+
Γ

D−→ N (µ+
Γ , (σ

+
Γ )

2),
√
nos µ̂

−
Γ

D−→ N (µ−
Γ , (σ

−
Γ )

2),

ϕ̂õs(Γ, α) is a valid asymptotic test at level α.

We provide a complete proof in Appendix A.1.2. Notably, Assumption (ii) is relatively mild and expected
to hold for various estimators; for instance, it can be satisfied by the DVDS estimator [18]. On the other
hand, Assumption (i) is stronger and generally only expected to hold when nos ≫ nrct.
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Algorithm 1 Statistical test for detecting unobserved confounding

1: Input: ⋄ ∈ {rct, õs}, Drct, Dos, significance level α, confounding strength Γ.
2: Estimate µ(P⋄,P⋄

full) using the randomized trial dataset:

µ̂ =
1

nrct

∑
(Xi,Ti,Yi)∈Drct

Yi

(
Ti
π
− 1− Ti

1− π

)
w(Xi), σ̂2 = V̂arPrct [µ̂].

3: Estimate the sensitivity analysis bounds µ̂−
Γ (X) and µ̂+

Γ (X) using the observational study dataset, and
average over the target population P⋄:

µ̂+
Γ = ÊP⋄

X
[µ̂+

Γ (X)], (σ̂+
Γ )

2 = V̂arP⋄
X
[µ̂+

Γ (X)], µ̂−
Γ = ÊP⋄

X
[µ̂−

Γ (X)], (σ̂−
Γ )

2 = V̂arP⋄
X
[µ̂−

Γ (X)],

where Ê[·] and V̂ar[·] denote the empirical mean and variance, respectively.
4: Compute the test statistics:

T̂+
Γ =

µ̂+
Γ − µ̂
σ̂+
⋄

, where σ̂+
rct =

√
(σ̂+

Γ )
2 + σ̂2 + 2σ̂+

Γ σ̂ and σ̂+
õs =

√
(σ̂+

Γ )
2 + σ̂2,

T̂−
Γ =

µ̂− µ̂−
Γ

σ̂−
⋄

, where σ̂−
rct =

√
(σ̂−

Γ )
2 + σ̂2 + 2σ̂−

Γ σ̂ and σ̂−
õs =

√
(σ̂−

Γ )
2 + σ̂2.

5: Output: ϕ̂⋄(Γ, α) = I{min
(
T̂+
Γ , T̂

−
Γ

)
< zα/2}, where zα is the α-quantile of the standard normal.

In essence, we propose two tests that work under different assumptions: ϕ̂rct relies on a consistent estimate
of the CATE sensitivity analysis bounds, while ϕ̂õs requires an estimate of the importance weights w(X)3.

Advantages of each test The test ϕ̂õs can be advantageous when CATE estimation is challenging (e.g.
when the outcomes are binary and the classes are imbalanced or when the observational study has a limited
sample size), but the weights w(X) can be identified, and vice versa for the test ϕ̂rct. In addition, ϕ̂õs can
benefit from large observational studies as the variances (σ̂−

Γ )
2 and (σ̂+

Γ )
2 vanish for large nos.

3.2 A lower bound on unobserved confounding strength

The statistical test described in the previous section raises a question about what level of confounding
strength is reasonable to test. Ideally, epidemiologists would like to estimate the confounding strength
instead of conducting a test. However, this is infeasible unless the support of Prct

X and Pos
X are the same.

A practical alternative is to estimate a lower bound on the true unobserved confounding strength defined as

Γ⋆ := inf{Γ : Pos
full ∈ E(Pos,Γ)}.

Given an observational study and a randomized trial, we aim to find a quantity that, with high probability,
is a lower bound for the true confounding strength Γ⋆. Without loss of generality, we fix the test ϕ̂rct and
recall that ϕ̂rct(Γ, α) is a deterministic function given the data4. Hence, we obtain a lower bound for a fixed
significance level α by computing

Γ̂LB = inf
Γ
{Γ : ϕ̂rct(Γ, α) = 0}, (2)

3The importance weights can be identified when the observational study and the randomized trial adhere to a nested trial
design [5, 44, 45]. See Appendix A.2 for a discussion on how the importance weights are estimated in this setting.

4When bootstrap is used to estimate the variance we fix the bootstrap bags for all Γ.
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that is, in words, the smallest Γ such that the test accepts the null hypothesis. In practice, we compute Γ̂LB

with a grid search over values of Γ starting from 1 until the first test acceptance.

We show in the following proposition that Γ̂LB is a valid lower bound for Γ⋆.

Proposition 3.2. Let Γ̂LB be as in Equation (2) for a fixed significance level α. Then, under Assump-
tions 2.1–2.3 and the setting described in Section 2, Γ̂LB is an asymptotically valid lower bound, i.e.

P(Γ̂LB ≤ Γ⋆) ≥ 1− α− oP(1).

Proof. Note that by definition of Γ̂LB, we have that

P(Γ̂LB > Γ⋆) = P(∩Γ≤Γ⋆{ϕ̂rct(Γ, α) = 1})

≤ P(ϕ̂rct(Γ⋆, α) = 1) ≤ α+ oP(1),

where the last inequality follows from the asymptotic validity of the test in Proposition 3.1.

4 Synthetic Experiments

In this section, we evaluate our two tests and the resulting lower bounds in finite-sample synthetic and
semi-synthetic experiments. In particular, we fix the true unobserved confounding strength Γ⋆ and conduct
experiments varying the sample size and the invariant distribution Pinv.

First, we postulate that, for a fixed Γ⋆, the tightness of the lower bound Γ̂LB improves when the confounder U
is more informative about the potential outcomes (Y (1), Y (0)). In our experiments, we choose the correlation
between the unobserved confounder and one of the potential outcomes as a proxy measure of information,

ρu,y =
CovPos

full
[Y (1), U ]

σY (1)σU
. (3)

Intuitively, the sensitivity analysis bounds are tight for a specific Γ⋆ when Pos
cnf leads to a marginal distribution

Pos that maximally biases the estimable ATE. This situation occurs, for instance, when patients experiencing
smaller outcomes are assigned to the control group while those with larger outcomes are in the treatment
group. In this case, the sensitivity analysis bounds must be sufficiently large to include the true ATE and
remain valid. Such a scenario is only possible if U is very informative of Y (1), captured by a high correlation
coefficient. Conversely, when Y (1) is independent of U , the true ATE is unaffected by the unobserved
confounding, and the sensitivity bounds are unnecessarily conservative, leading to low power of the test
and hence looser Γ̂LB. More formally, in Appendix A.3 we show that when the confounder U is equal to
(Y (1), Y (0)), the correlation coefficient ρu,y = 1 and Γ̂LB converges to Γ⋆ in the infinite sample limit. In

contrast, when U is independent of (Y (1), Y (0)), ρu,y = 0 and Γ̂LB = 1.

Second, we study the behavior of the lower bound as the observational study sample size grows. In real-
world situations, increasing the number of samples in a randomized trial is often constrained by the logistical
challenges of conducting additional experiments. However, observational studies have the potential for
continuous growth through electronic health records and insurance claims databases. In the context of
postmarketing, ongoing monitoring enables the inclusion of data from newly exposed individuals. Therefore,
we compare our two tests when the sample size of the observational study grows: our experiments show that
ϕ̂õs has better statistical power when nos is large.
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4.1 Datasets

Synthetic distribution We first benchmark tests and respective lower bounds with a synthetic distribu-
tion similar to [33, 64]. Here, the propensity score, the true unobserved confounding strength Γ⋆, and the
correlation strength can be designed.

We choose the invariant Pinv to be the following linear outcome model

Y (T ) = (2T − 1)X + (2T − 1) + U + ϵ, ϵ ∼ N (0, σ2
Y ).

For the marginal distribution over X,U in P⋄
cnf we generate an unobserved confounder U ∼ Unif(0, 1) for

both study designs and draw the observed covariate according to

Prct
X = Unif(−1, 1), Pos

X = Unif(−2, 2).

Further, for the observational distribution, we choose the conditional distribution of the treatment T given
X,U to be a Bernoulli, which satisfies the marginal sensitivity model with an odds ratio equal to Γ⋆.
Specifically, we fix the marginal propensity score as

Pos
cnf(T = 1 | X) = logistic (0.75X + 0.5) ,

and design the full propensity score Pos
cnf(T = 1 | X,U) such that it marginalizes to Pos

cnf(T = 1 | X). For the
randomized control trial, we choose π = Prct

cnf(T = 1|X,U) = 1/2. We refer the reader to Appendix B.1 for
complete experimental details.

Semi-synthetic datasets We expand our benchmark using three real-world randomized trials: Hillstrom’s
MineThatData Email data [27], the Tennessee STAR study [63] and the VOTE dataset [22]. In contrast to
the synthetic experiments, these datasets involve real outcome functions, though the treatment assignment
is still controlled.

We focus on Hillstrom’s dataset for clarity of presentation, and we refer the reader to Appendix C.2 for
experiments on the other datasets showing similar trends. Hillstrom [27] focused on measuring the impact of
an email campaign on the dollars spent by the recipients in the following two weeks. We first sample a small
subset of the original trial, D, as our randomized trial, Drct. We can then subsample multiple observational
studies from D \Drct sharing a fixed true confounding strength Γ⋆, i.e. Pcnf , but with a varying correlation
between the hidden confounder U and outcome Y (1), i.e. Pinv.

Let us denoteXall as the vector of all observed covariates. While we cannot intervene on Pinv(Y (1), Y (0)|Xall)
as it is intrinsic to the dataset, we can generate multiple observational studies by partitioning Xall into
unobserved U and observed X in different ways. For a given partitioning Xall = (U,X), the resulting Dos

will have a specific Pinv(Y (1), Y (0)|U) and hence correlation coefficient ρu,y. With each choice of U , we
enforce a propensity score Pos

cnf(T = 1 | U) that satisfies E(Pos,Γ⋆) by subsampling D \ Drct. Finally, we
remove U to construct Dos. Our subsampling approach is a variation of the methods presented in Gentzel
et al. [21], Keith et al. [37] (see further details in Appendix B.2). Finally, we enforce Assumption 2.3 by
excluding urban zip codes from the support of the randomized trial.

4.2 Experimental results

We now discuss our experimental results depicted in Figure 3. The top row presents results for the synthetic
experiments, and the bottom row for the semi-synthetic experiments.
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(nos : nrct)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

abc abc abc abc abc

Confounding strength (Ⲅ)
P(

re
je

ct
)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

abc abc abc abc abc

Confounding strength (Ⲅ)
P(

re
je

ct
)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

abc abc abc abc abc

Confounding strength (Ⲅ)

P(
re

je
ct

)
1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

abc abc abc abc abc

Confounding strength (Ⲅ)

P(
re

je
ct

)
Γ̂rctLB1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

abc abc abc abc abc

Confounding strength (Ⲅ)
P(

re
je

ct
)

ϕ⋆

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

abc abc abc abc abc

Confounding strength (Ⲅ)

P(
re

je
ct

)

40

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Confounding strength (Ⲅ)

P(
re

je
ct

)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Confounding strength (Ⲅ)

P(
re

je
ct

)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Confounding strength (Ⲅ)

P(
re

je
ct

)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Confounding strength (Ⲅ)

P(
re

je
ct

)

(a) Small sample (synthetic)
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(e) Small sample (Hillstrom) 40
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(f) Large sample (Hillstrom)
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Figure 3: For all the plots: the significance level is α = 0.05, ϕ⋆ denotes the oracle test which rejects for Γ < Γ⋆, Γ̂rct
LB

and Γ̂õs
LB denote which test is used to compute Γ̂LB. First row with synthetic experiment choosing Γ⋆ = 5: Probability

of rejection for different Γ and average Γ̂LB for the test for (a) small sample size: nrct = 2K,nos = 2K and (b) large
sample size: nrct = 20K,nos = 20K. Γ̂LB for (c) increasing sample size of the observational study with nrct = 20K
and (d) increasing correlation coefficient; nrct = 20K,nos = 20K. Second row with the semi-synthetic Hillstrom
dataset choosing Γ⋆ = 5 and using “history” as unobserved confounder (except in (h)): Probability of rejection for
different Γ and average Γ̂LB for (e) small sample size: nrct = 2300, nos = 6150 and (f) large sample size: nrct = 7680,
nos = 20500. Γ̂LB for (g) increasing nos with nrct = 7680 and (h) increasing correlation coefficient.

Effect of observational study sample size First, we observe in Figures 3a-3b and Figures 3e-3f that
our tests are valid in all settings, i.e. they do not reject for strengths larger than Γ⋆. However, the statistical
power substantially improves in the large sample size regime. In general, the performance of both tests
aligns. In Figures 3c and 3g, the lower bounds Γ̂rct

LB and Γ̂õs
LB vary with the sample size of the observational

study. We confirm that the ϕ̂õs derives greater benefits from a larger observational study sample size than
ϕ̂rct, as discussed in Section 3.1.

Effect of outcome-confounder correlation Note that the tests in Figure 3a-3b and Figure 3e-3f are
somewhat conservative: The probability of rejection for Γ close to Γ⋆ is small, which leads to a rather loose
lower bound estimate Γ̂LB. This is due to a fundamental limitation of the marginal sensitivity model that
cannot be overcome without additional assumptions on how U affects Y, as discussed in Appendix A.3. We
study here the effect of increasing the outcome-confounder correlation (Equation 3). Specifically, we generate
observational datasets with a constant Γ⋆ but varying ρu,y, and report Γ̂LB for both tests. For the synthetic

experiments in Figure 3d, we plot Γ̂rct
LB and Γ̂õs

LB for n = 50 distinct values of σ2
Y (1) ∼ Unif[0, 1]. For the

semi-synthetic experiments in Figure 3h, we depict Γ̂rct
LB and Γ̂õs

LB for different hidden confounders U . Both
plots confirm our hypothesis that higher ρu,y correlates with a tighter lower bound Γ̂LB.
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5 Real-world experiments

Linking back to the pipeline in Figure 1, we demonstrate how epidemiologists can use the lower bound Γ̂LB to
successfully differentiate between studies with significant confounding and those with negligible confounding.
Specifically, we propose comparing Γ̂LB with a critical value of Γ, estimated from the available observational
data

Γ̂CT := inf{Γ : 0 ∈ [µ̂−
Γ , µ̂

+
Γ ]}.

In essence, Γ̂CT represents the minimum strength for which sensitivity analysis includes both positive and
negative values of treatment effect, thereby invalidating the study results. Similar critical values have been
proposed in the literature to assess the robustness of conclusions drawn from observational data, see e.g.
Jin et al. [33], VanderWeele and Ding [59]. The most appropriate choice for the specific context should be
determined by epidemiologists.

We flag an observational study as confounded if Γ̂LB exceeds the critical value, i.e.

ψsensi := I{Γ̂LB > Γ̂CT}. (4)

We compare our decision-making procedure with one based on a binary test

ψbin = I{Γ̂LB > 1}.

In contrast to our procedure, the output of the binary one flags an observational study if any level of
confounding is detected. Note that choosing a more powerful binary test in the literature would only
exacerbate this issue.

Controversy around HRT For years, epidemiologists could not reach a consensus on the impact of
hormone replacement therapy (HRT) on coronary heart disease and stroke based on the findings of the
Women’s Health Initiative (WHI) study [1]. The WHI study included a randomized trial and an observational
study that examined the impact of HRT on various cardiovascular events. While the observational study
suggested that HRT had a protective effect against these outcomes, the randomized trial indicated the
opposite. This discrepancy was recently resolved by identifying a strong unobserved confounder - the time
t since the start of HRT - and reanalyzing the data accordingly [58]. We now present evidence that our
procedure can yield the same epidemiological conclusions and avoid issuing false alarms when the confounding
is negligible.

Experimental details We consider two binary-valued outcomes: the presence of stroke and coronary
heart disease within the follow-up period. We apply our procedure from Equation (4) to both the original
dataset, which includes all patients (i.e. t ≤ 20), and a subsampled dataset that only includes patients who
were not previous users of HRT (i.e. t = 0). Since the WHI study satisfies the criteria for a nested trial

design, we calculate Γ̂LB using our testing procedure ϕ̂õs. See Appendix B.3 for experimental details.

Results In Table 1, we show the result of both procedures on the WHI dataset, with small (t = 0) and
large (t ≤ 20) unobserved confounding .

For coronary heart disease, both algorithms flag the study as confounded when strong unobserved confound-
ing is present (t ≤ 20). However, when minimal unobserved confounding is present (t = 0), our test does
not flag the study, while ψbin does. This difference underscores our test’s capability to distinguish between
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Table 1: The significance level is α = 0.05. For t = 0 (small confounding), the study only included patients
who were not previous users of HRT. For t ≤ 20 (strong confounding), the study includes patients who have
been using HRT for up to 20 years.

Metric
Stroke Coronary heart disease

t = 0 t ≤ 20 t = 0 t ≤ 20

Γ̂CT 1.017 1.172 1.017 1.164

Γ̂LB 1.052 1.207 1.009 1.224

ψbin 1 1 1 1
ψsensi 1 1 0 1

small and large unobserved confounding, thereby addressing a limitation in the flagging procedures based
on existing testing methods.

In the case of stroke, both ψsensi and ψbin correctly flag the observational study, even when we adjust for
the time since the start of treatment (t = 0). This finding aligns with experts suggesting that additional
unobserved confounding factors for stroke are still present after controlling for the time since the start of
hormone replacement therapy [49].

Observe that an alternative way to reach the same conclusions is by testing the difference in ATE estimates
between the two studies. However, our approach offers a notable advantage: it allows us to test if the
observational study is too confounded on arbitrarily fine-grained subgroups up to the individual level. Indeed,
we can estimate the CATE sensitivity analysis bounds and compare critical values for specific subgroups
against our lower bound. In contrast, testing differences in group-level ATE estimates would require several
tests, one for each subgroup, leading to issues with multiple testing and insufficient sample sizes.

6 Discussion and future work

Our approach shares limitations with other methods that test for unobserved confounding. Since we rely
on the transportability assumption, our test could misidentify violations of this assumption as unobserved
confounding. In addition, the lower bound we provide is optimistic; outside the common support of the two
studies, the unobserved confounding could be arbitrarily high. Furthermore, our test is designed to detect
confounding structures that bias the average treatment effect and, hence, would not detect confounding bias
that cancels out on average.

Our discussion suggests several important directions for future research. First, developing a more refined
sensitivity model that accounts for the correlation between outcomes and unobserved confounders could result
in a more powerful test. Second, our test could be adapted to the scenario where multiple observational
datasets may be available but no randomized control trials. Lastly, it would be highly valuable to propose a
procedure that not only identifies hidden confounding but also suggests specific interventions to mitigate it.
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Appendices

The following appendices provide deferred proofs, experiment details, and ablation studies.
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A Methodology

A.1 Remaining proofs

We present here the proofs for Lemma 3.2 and Proposition 3.1.

A.1.1 Proof of Lemma 3.2

For ⋄ = rct, we have

µ(Prct
X ,Prct

full) = EPrct
full

[Y (1)− Y (0)]

= EPrct
X

[
EPrct [Y | T = 1, X]

Prct(T = 1)

Prct(T = 1)
− EPrct [Y | T = 0, X]

Prct(T = 0)

Prct(T = 0)

]
= EPrct

[
Y

(
T

π
− (1− T )

1− π

)]
,

where the last equality follows from the internal validity of the randomized trial.

For ⋄ = õs, we first note that by transportability of CATE and definition of Põs, we have

µ(Põs
X ,Põs

full) = µ(Põs
X ,Pos

full) = EPõs
X

[
EPos

full
[Y (1)− Y (0) | X]

]
= EPõs

X

[
EPrct

full
[Y (1)− Y (0) | X]

]
.

Furthermore, it holds via Assumption 2.3 (support inclusion) and the definition of Põs that

EPrct
X

[
EPrct

full
[Y (1)− Y (0) | X]

Põs(X)

Prct(X)

]
= EPrct

X

[
(EPrct [Y | T = 1, X]− EPrct [Y | T = 0, X])

Põs(X)

Prct(X)

]
= EPrct

[
Y

(
T

π
− (1− T )

1− π

)
Põs(X)

Prct(X)

]
,

where the last equality again follows from the internal validity of the randomized trial.

A.1.2 Proof of Proposition 3.1

First, observe that by definition,

{ϕ̂⋄(Γ, α) = 1} =⇒ {T̂+
Γ ≤ zα/2} ∪ {T̂

−
Γ ≤ zα/2}. (5)

Hence, if PH0(Γ)(T̂
−
Γ ≤ zα/2) ≤

α
2 + oP(1) and PH0(Γ)(T̂

+
Γ ≤ zα/2) ≤

α
2 + oP(1), the theorem follows from the

union bound. For brevity, we only prove T̂+
Γ ≤ zα/2 as the proof for T̂−

Γ is analogous.

Proof of case ⋄ = rct Let (Xi, Yi, Ti) be i.i.d. sampled from Prct and define

Z =

(
Y T

π
− Y (1− T )

1− π
, µ+

Γ (X)

)T

, with

µ := EPrct [Z] =
(
µ
(
Prct
X ,Prct

full

)
, µ+

Γ

(
Prct
X

))T
and Σ := CovPrct(Z) =

(
σ2 ξΓ
ξΓ (σ+

Γ )
2

)
<∞.
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Further, we define

Z̄n =

 1

nrct

∑
(Ti,Yi)∈Drct

YiTi
π
− Yi(1− Ti)

1− π
,

1

nrct

∑
Xi∈Drct

µ+
Γ (Xi)

 .

By the multivariate central limit theorem, we have

√
nrct

(
Z̄n − µ

) D−→ N (0,Σ), as nrct →∞.

Thus, it follows from the Cramér-Wold theorem that

√
nrct

(
1

nrct

∑
Xi∈Drct

µ+
Γ (Xi)− µ̂

)
D−→ N

(
µ+
Γ

(
Prct
X

)
− µ

(
Prct
X ,Prct

full

)
, σ2 + (σ+

Γ )
2 − 2ξΓ

)
, as nrct →∞.

It remains to show that asymptotic normality also holds when we use the empirical estimate µ̂+
Γ . To do so,

we prove the following convergence in probability∣∣∣∣∣ 1
√
nrct

∑
Xi∈Drct

µ+
Γ (Xi)− µ̂+

Γ (Xi)

∣∣∣∣∣ = oPos(1), as nrct →∞. (6)

Then, by Slutsky’s theorem, we have

√
nrct

(
µ̂+
Γ − µ̂

) D−→ N
(
µ+
Γ

(
Prct
X

)
− µ

(
Prct
X ,Prct

full

)
, σ2 + (σ+

Γ )
2 − 2ξΓ

)
, as nrct →∞ and nos →∞. (7)

First, we observe that the mean of the LHS in Equation (6) converges to zero in probability:

EPrct

[
1
√
nrct

∣∣∣∣∣ ∑
Xi∈Drct

µ+
Γ (Xi)− µ̂+

Γ (Xi)

∣∣∣∣∣
]
≤
√
nrct EPrct

[∣∣µ+
Γ (X)− µ̂+

Γ (X)
∣∣] ≤ √nrct ∥µ+

Γ − µ̂
+
Γ ∥L2(Prct) = oPos(1),

where in the last equality we have used ∥µ+
Γ − µ̂

+
Γ ∥L2(Prct) = OPos(n

−1/2
os ) and nrct ≪ nos. Next, we show

that the variance term also converges to zero in probability, i.e.

VarPrct

[
1
√
nrct

∑
Xi∈Drct

µ+
Γ (Xi)− µ̂+

Γ (Xi)

]
≤ EPrct

[(
µ+
Γ (X)− µ̂+

Γ (X)
)2]

= ∥µ+
Γ − µ̂

+
Γ ∥

2
L2(Prct) = oPos(1),

and the statement in Equation (6) follows.

Therefore, by the consistency of σ̂2, (σ̂+
Γ )

2 and Slutsky’s theorem, we have

lim
nrct,nos→∞

PH0(Γ)

(
T̂+
Γ ≤ zα/2

)
= lim

nrct,nos→∞
PH0(Γ)

 µ̂+
Γ − µ̂√

(σ̂+
Γ )

2 + σ̂2 + 2σ̂+
Γ σ̂
≤ zα/2


= lim

nrct,nos→∞
PH0(Γ)

 √
nrct(µ̂

+
Γ − µ̂)√

(σ+
Γ )

2 + σ2 + 2σ+
Γ σ
≤ zα/2


≤ lim

nrct,nos→∞
PH0(Γ)

 √
nrct(µ̂

+
Γ − µ̂)√

(σ+
Γ )

2 + σ2 − 2ξΓ

≤ zα/2

 ,
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where in the last line, we use Cauchy-Schwartz covariance inequality, i.e. −ξ ≤ |ξΓ| ≤ σ+
Γ σ. Finally, by

asymptotic normality established in Equation (7), we conclude that

lim
nrct,nos→∞

PH0(Γ)

(
T̂+
Γ ≤ zα/2

)
≤ lim

nrct,nos→∞
PH0(Γ)

√nrct(µ̂+
Γ − µ̂)− µ

+
Γ (Prct

X ) + µ (Prct
X ,Prct

full)√
(σ+

Γ )
2 + σ2 − 2ξΓ

≤ zα/2


= Φ(zα/2) = α/2.

Proof of case ⋄ = õs Let n = nrct + nos with fixed proportions, where nrct = ρn and nos = (1 − ρ)n for
ρ ∈ (0, 1). Similarly to (1), by the central limit theorem and Lemma 3.2, it holds that

√
n

∑
(Xi,Ti,Yi)∈Drct

(
YiTi
π
− Yi(1− Ti)

1− π

)
w(Xi)

D−→ N
(
µ
(
Põs
X ,Pos

full

)
, σ2/ρ

)
as n→∞.

Then, from the asymptotic normality of µ̂+
Γ and the independence µ̂+

Γ ⊥⊥ µ̂, we have

√
n

(
µ̂+
Γ

µ̂

)
D→ N

((
µ+
Γ

µ

)
,

[
(σ+

Γ )
2/(1− ρ) 0
0 σ2/ρ

])
.

Hence, by the δ-technique with h(X) = X1 −X2, we get

√
n
(
µ̂+
Γ − µ̂

) D−→ N
(
µ+
Γ

(
Põs
X

)
− µ

(
Põs
X ,Prct

full

)
,
(σ+

Γ )
2

1− ρ
+
σ2

ρ

)
as n→∞.

Finally, from the consistency of σ̂2, (σ̂+
Γ )

2 and Slutsky’s theorem, it holds that

µ+
Γ − µ̂√

(σ̂+
Γ )

2 + σ̂2

D−→ N
(
µ+
Γ

(
Põs
X

)
− µ

(
Põs
X ,Pos

full

)
, 1
)

as n→∞.

As before, asymptotic normality implies that

lim
n→∞

PH0(Γ)

(
T̂+
Γ ≤ zα/2

)
= lim

n→∞
PH0(Γ)

 µ̂+
Γ − µ̂√

(σ̂+
Γ )

2 + σ̂2
≤ zα/2


≤ lim

n→∞
PH0(Γ)

 µ̂+
Γ − µ̂− µ

+
Γ

(
Põs
X

)
+ µ

(
Põs
X ,Pos

full

)√
(σ̂+

Γ )
2 + σ̂2

≤ zα/2


= Φ(zα/2) = α/2.

A.2 Nested design

In a nested trial design, the randomized trial is embedded in a cohort of eligible people who are proposed to
participate in the trial, but if they refuse, they are still included in the observational study. Two concrete
examples of nested designs are the Women Health Initiative [1] and the recent study on Medicaid [14].

In contrast to Section 2, the nested design has an extra variable S ∈ {0, 1}, which is a binary indicator for
randomized trial participation. More formally, we observe i.i.d. samples from an underlying distribution Qfull

over (X,U, Y (0), Y (1), Y, S, T ). Further, let Q := M(Qfull) be the marginal distribution over (X,Y, S, T ).
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We can then write the marginal distributions over X of the (restricted) observational study and randomized
trial as

Prct
X (X) = Q (X | S = 1) and Põs

X(X) = Q
(
X | S = 0, X ∈ supp(Prct)

)
.

This study design has a significant impact on the estimators previously introduced. In particular, the
importance weights w(X) can be estimated by pooling the observational study and the randomized trial as
follows

w(X) =
Põs(X)

Prct(X)

=
Q(X | S = 0, X ∈ supp(Prct))

Q(X | S = 1)

=
Q(S = 0 | X)

Q(S = 1 | X)

Q(S = 1 | X ∈ supp(Prct))

Q(S = 0 | X ∈ supp(Prct))
,

where the sampling probability Q(S | X) can be identified under a nested study design [11].

A.3 Limitations of MSM

We discuss here the intuition behind the tightness of Γ̂LB in the infinite-sample limit, though it carries over
to finite samples.

Without loss of generality, we focus on the lower bound derived from ϕ̂õs and assume that the unobserved
confounding biases the average treatment effect upwards, i.e.

µ−
Γ=1(P

õs
X) = µ+

Γ=1(P
õs
X) ≥ µ(Põs

X ,Põs
full),

where µ−
Γ=1(Põs

X) and µ+
Γ=1(Põs

X) are the IPW estimates of ATE on the (restricted) marginal distribution of
the observational study. Further, we define the infinite-sample lower bound as

ΓLB := inf
{
Γ : lim

n→∞
ϕ̂õs(Γ, α) = 0

}
,

which is, in words, the value of Γ such that the sensitivity bounds include the true ATE. Formally, it holds
that

ΓLB = inf
{
Γ : µ(Põs

X ,Pos
full) ∈ [µ+

Γ (P
õs
X), µ−

Γ (P
õs
X)]
}

= inf
{
Γ : µ+

Γ (P
õs
X) = µ(Põs

X ,Pos
full) or µ−

Γ (P
õs
X) = µ(Põs

X ,Pos
full)
}

= inf
{
Γ : µ−

Γ (P
õs
X) = µ(Põs

X ,Pos
full)
}
,

where the second equality follows from the monotonicity of the sensitivity bounds and the last equality from
the assumption of the bias direction. Since the sensitivity bounds are continuous and strictly increasing, the
set is non-empty and contains one element.

The looseness of the lower bound can be characterized by ∆ := Γ⋆−ΓLB: if ∆ > 0 even in the infinite-sample
limit, the lower bound will not be tight. We discuss two interesting cases:

• If Pos
full = argmax

P̃full∈E(Põs,Γ⋆)

µ(X, P̃full), it holds that µ
+
Γ⋆(Põs

X) = µ(Põs
X ,Pos

full) and ∆ = 0. This case is achieved

when U = (Y (1), Y (0)) (see Dorn and Guo [17] for a closed-form solution of the sensitivity bounds).
Intuitively, the MSM does not place any assumptions on the form of the confounder, and the worst-case
Pos
full is achieved when the confounder is equal to the potential outcomes.
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• If U ⊥⊥ (Y (1), Y (0)), it holds that µ−
Γ=1(Põs

X) = µ+
Γ=1(Põs

X) = µ(Põs
X ,Põs

full). Hence, ∆ = Γ⋆ − 1 and the
lower bound can be arbitrarily loose.

B Experimental details

B.1 Synthetic experiments

We design the propensity scores such that the data distribution satisfies the MSM with true confounding
strength Γ∗ = 5. To do so, we define the adversarial propensity score as

e+(X,U) =

{
ℓ(X) if U > t(X)

u(X) if U ≤ t(X)
, where ℓ(X) =

e(X)

e(X) + (1− e(X))Γ⋆
, u(X) =

e(X)

e(X) + (1− e(X))/Γ⋆

are respectively the lower and upper bounds on the full propensity score under the MSM. By choosing t(X) =
e(X)−ℓ(X)
u(X)−ℓ(X) in our data-generating process in Section 4.1 where U ∼ U(0, 1), we ensure that EPos [e+(X,U) |
X] = e(X). We note that this is different from [32, 35, 47] where they choose a fixed threshold t(X) = 1/2,
resulting in a data distribution that does not satisfy the MSM. For all synthetic experiments, we estimate
the propensity score using logistic regression. Further, we set nbootstrap = 100, σ2

Y = 0.1, α = 0.05, and
report the mean and standard error over 20 runs.

For the test ϕ̂õs, we use the sensitivity bound estimator QB [17], and fit the quantile function using quantile

forest regression [41]. For the test ϕ̂rct, we use the sensitivity bound estimator B-Learner [47]. We fit
the quantile function using quantile forest regression [41], and the outcome model using a random forest
regressor.

B.2 Semi-synthetic experiments

We provide the details of the semi-synthetic experiments in Section 4.1. Specifically, we describe the sub-
sampling procedure used to generate a randomized trial and an observational study that satisfy our setting,
along with additional information about the datasets employed.

B.2.1 Subsampling procedure

We now detail the procedure for constructing a randomized trial and multiple observational datasets for
our semi-synthetic experiments. Given a large-scale real-world randomized trial D with covariates Xall, our

objective is to create multiple observational datasets Dos that differ in the correlation ρu,y =
CovPos

full
[Y (1),U ]

σY (1)σU
,

i.e. Pinv, but have the same confounding strength Γ⋆, i.e. Pos
cnf . This setup allows us to separately understand

the effect of ρu,y on the power of the test. While we cannot directly intervene on Pinv(Y (1), Y (0)|Xall) as it is
intrinsic to the dataset, we can hide different U ∈ Xall for each Dos, resulting in different Pinv(Y (1), Y (0)|U)
and hence correlation coefficient ρu,y.

For each candidate hidden confounder U within Xall, we implement the following steps: First, we select a
subset from D to construct our randomized trial dataset, Drct, and remove U from Xall. Next, we subsample
D \Drct to generate a dataset Dos that belongs to E(Pos,Γ⋆). We enforce this constraint by constructing a
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Algorithm 2 Randomized Trial Rejection Sampling [37]

1: Inputs: D \Drct = {(Xi, Ui, Yi, Ti)}ni=1; Pos
cnf(T = 1 | U), a function specified by the user; M a constant

computed empirically.
2: Output: Dos.
3: Dos ← D \Drct

4: while true do
5: for each unit i in Dos do
6: Sample Ki uniform on (0, 1)

7: if Ki >
Pos
cnf (T=ti|Ui)
ˆPrct(T=ti)M

then

8: Dos ← Dos \ {(Xi, Ui, Yi, Ti)}
9: end if

10: end for
11: break if no units were discarded in the last iteration
12: end while
13: Remove U from Dos

specific propensity score Pos
cnf(T = 1 | U) (detailed in the sequel) and employing the subsampling procedure

in Algorithm 2 using this Pos
cnf(T = 1 | U). Note that for simplicity, we choose a propensity score that does

not depend on X; this is consistent with the graphical model in Figure 2.

We use different Pos
cnf(T = 1 | U) for continuous and binary confounders. We first define

ℓ =
π̂

π̂ + [1− π̂]Γ⋆
, u =

π̂

π̂ + [1− π̂]/Γ⋆
, (8)

where we estimate π̂ = ˆPrct(T = 1) from D \Drct. For a continuous confounder U positively correlated with
Y (1), we use the following full propensity score in Algorithm 2:

Pos
cnf(T = 1 | U) =

{
ℓ if U > Qq̂∗(U),

u if U < Qq̂∗(U),
(9)

where Qq(U) = inf {z ∈ R : Pos
cnf(U ≤ z) ≥ q} is the q-th quantile of the marginal distribution of U . Since

the propensity score does not depend on X, using q̂⋆ = u−π̂
u−ℓ makes sure that

e(X) = Pos
cnf(T = 1|X) = Pos

cnf(T = 1) = EU [Pos
cnf(T = 1|U)Pos

cnf(U)] = ˆPrct(T = 1)

and hence the subsampled dataset, Dos, satisfies E(Pos,Γ⋆). Note that this is equivalent to enforcing the
same marginal propensity score before and after the subsampling. For a negatively correlated continuous
confounder, we choose q̂⋆ = π̂−ℓ

u−ℓ and change the direction of the inequalities in Equation (9).

Further, for a positively correlated binary confounder, we use the following full propensity score in Algo-
rithm 2:

Pos
cnf(T = 1 | U) =

{
ℓ if U = 1,

u if U = 0.
(10)

By first subsampling D \Drct such that

ˆPrct(U = 1) =
u− π̂
u− ℓ

,

and then applying Algorithm 2 with the full propensity score from Equation (10), we again obtain e(X) =

Pos
cnf(T = 1) = ˆPrct(T = 1). For a negatively correlated binary confounder, we first enforce ˆPrct(U = 1) = π̂−ℓ

u−ℓ
and swap ℓ for u in Equation (10), and vice versa.
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The subsampling procedure in Algorithm 2 allows for the construction of observational datasets where the
causal effect is identifiable non-parametrically, in contrast to previous approaches, such as [21], that do not

guarantee identifiability after subsampling. In Algorithm 2, we note that M =
maxi∈{1,...,n} Pos

cnf (T=ti|Ui)

mini∈{1,...,n} ˆPrct(T=ti)
in

the limit satisfies M ≥ supT,U
Pos
cnf (T |U)
ˆPrct(T )

, which is required to ensure that the causal effect is identifiable in

the subsampled dataset (see Theorem 3.2 in [37]). We empirically observe that the subsampling procedure
approximately discards half of the instances from D \Drct.

B.2.2 Datasets details

We give additional details about the three datasets we use for the semi-synthetic experiments.

• Hillstrom’s MineThatData Email data [27]. The Hillstrom dataset contains records of 64,000
customers who purchased within the last twelve months. They were part of an e-mail campaign to assess
the effectiveness of distinct campaign strategies. Two treatment groups, “Men’s” and “Women’s” email
campaigns, and a control group were established. Treatments were randomly assigned. Our analysis
primarily focuses on a combined treatment group, which constitutes roughly 66% of the dataset.
While the original dataset has different outcomes, we looked at the dollars spent in the two weeks
post-campaign. The dataset provides data on recent purchase patterns (Recency), annual spending
categories (History Segment) and values (History), merchandise type, either Mens (Mens) or Womens
(Womens), geographical location via zip code (Zip Code), newcomer status (Newbie), and purchasing
avenues (Channel). After subsampling, we end up with a randomized trial of size nrct = 7680 and an
observational dataset of size nos = 20500. Assumption 2.3 is enforced by excluding urban zip codes in
the trial.

• VOTE dataset [22]. The VOTE dataset studies the effect of social pressure on voting behaviors
among Michigan’s registered voters, focusing on those who voted in the prior election and met certain
criteria. The primary outcome is a binary variable indicating whether the letter recipients voted. In
this randomized trial, participants were allocated to a control group or one of four treatment groups.
The treatment groups received distinct letters, each varying in social pressure intensity, aimed at
encouraging voting. The most persuasive letter provided insight into the recipient’s neighbors’ voting
patterns from the previous two elections and implied updates on neighbors’ subsequent voting actions
in future letters. Using the split in [55], we incorporated roughly 190,000 samples in the control group,
and we kept the treatment group with the strongest letter, leaving about 38,000 samples. We retained
preprocessed features like age, household size, gender, and two scores reflecting past voting habits
and the voting patterns of neighbors. After subsampling, we end up with a randomized trial of size
nrct = 10650 and an observational dataset of size nos = 36800. We discard households with more than
4 participants to enforce Assumption 2.3.

• Tennessee STAR Project [63]. The Tennessee STAR experiment, initiated in 1985, was a random-
ized study examining the impact of class size on students’ standardized test scores, tracking them from
kindergarten through third grade. Initially, students and teachers were randomly placed into class
sizes, intending to maintain these conditions throughout the study. We follow the dataset preprocess-
ing outlined in [34]. Their analysis concentrates on two conditions: small classes (13-17 students) and
regular-sized classes (22-25 students). They used the class size at first grade as the treatment variable,
observing 4,509 students. Their outcome aggregates scores from listening, reading, and math tests at
the end of the first grade. After excluding students with missing values, the final sample consisted
of 4,218 students: 1,805 in small classes (treatment) and 2,413 in regular-sized classes (control). The
observed features for each student are gender, race, birth month, birthday, birth year, free lunch given
or not and teacher ID. After subsampling, we end up with a randomized trial of size nrct = 600 and
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an observational dataset of size nos = 1800. For the STAR project, we keep inner-city and suburban
students but remove urban and rural ones to enforce Assumption 2.3.

We one-hot-encode all categorical features and standardize in [0, 1] all continuous features.

Implementation We use QB [17] for the test ϕ̂õs. For continuous outcomes (Hillstrom and STAR), we
fit a random forest regressor for the quantile functions, while we leverage the closed-form solution for the
quantiles in the binary case (VOTE). For the test ϕ̂rct we use the B-Learner [47], fitting respective random
forest regressors for the quantiles, the outcome and the bounds models. For the binary case, we use the
closed-form solution for the quantiles and fit the outcome and bounds models with XGBoost [4]. We always
train a logistic regressor for the propensity score. We report mean and standard error over 15 runs and set
nbootstrap = 200, α = 0.05 for all experiments.

B.3 Women’s Health Initiative

The Women’s Health Initiative (WHI) is a long-term national health study that has focused on strategies for
preventing the major causes of death, disability, and frailty in older women, specifically heart disease, cancer,
and osteoporotic fractures. This multi-million dollar, 20+ year project, sponsored by the National Institutes
of Health (NIH), the National Heart, Lung, and Blood Institute (NHLBI), originally enrolled 161,808 women
aged 50-79 between 1993 and 1998. The WHI was one of the most definitive, far-reaching clinical trials of
post-menopausal women’s health ever undertaken in the US.

The WHI had two major parts: a Clinical Trial and an Observational Study. The randomized controlled
Clinical Trial (CT) enrolled 68,132 women on trials testing three prevention strategies. Eligible women could
choose to enrol in one, two, or three of the trial components.

• Hormone Therapy Trials (HT): This component examined the effects of combined hormones or estrogen
alone on the prevention of heart disease and osteoporotic fractures, and associated risk for breast
cancer. Women participating in this component took hormone pills or a placebo (inactive pill) until
the Estrogen plus Progestin and Estrogen Alone trials were stopped early in July 2002 and March
2004, respectively. All HT participants continued to be followed without intervention until close-out.

• Dietary Modification Trial (DM): The Dietary Modification component evaluated the effect of a low-fat
and high-fruit, vegetable and grain diet on the prevention of breast and colorectal cancers and heart
disease. Study participants followed either their usual eating pattern or a low-fat dietary pattern.

• Calcium/Vitamin D Trial (CaD): This component evaluated the effect of calcium and vitamin D
supplementation on the prevention of osteoporotic fractures and colorectal cancer. Women in this
component took calcium and vitamin D pills or placebos.

The Observational Study (OS) examines the relationship between lifestyle, health and risk factors and
disease outcomes. This component involves tracking the medical events and health habits of 93,676 women.
Recruitment for the observational study was completed in 1998 and participants have been followed since.

To assess our method in a real-world scenario, we use observational study and randomized trial data from
the Women’s Health Initiative (WHI). We use the Postmenopausal Hormone Therapy (PHT) trial as the
RCT in our analysis (nrct = 16, 608), which was run on postmenopausal women aged 50-79 years with an
intact uterus. The trial investigated the effect of hormone therapy on several types of cancers, cardiovascular
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events, and fractures, measuring the “time-to-event” for each outcome. In the WHI setup, the observational
study component was run in parallel and tracked similar outcomes to the RCT.

Data preprocessing We binarize a composite outcome, called the “global index”, in our analysis, where
Y = 1 if coronary heart disease or stroke was observed in the first seven years of follow-up, and Y =
0 otherwise. Note that Y = 0 could also occur from censoring. To establish treatment and control
groups in the observational study, we use questionnaire data in which participants confirm or deny us-
age of combination hormones (i.e. both estrogen and progesterone) in the first three years. Using this
procedure, we end up with a total of nos = 33, 511 patients. Finally, we restrict the set of covari-
ates used to those that are measured in both the RCT and the observational study. In particular, we
use as covariates only those measured in both the RCT and observational study, and we further restrict
them to those identified as significant in epidemiological literature, such as in [49]. Specifically, the co-
variates in our analysis are: AGE, ETHNIC White, BMI, SMOKING Past Smoker, SMOKING Current Smoker,
EDUC x College graduate or Baccalaureate Degree, EDUC x Some post-graduate or professional, MENO,
PHYSFUN. The data used is available on BIOLINCC.

Experimental details We train logistic regression for both outcome models and propensity score. We use
as sensitivity bounds DVDS [18] for the test ϕ̂õs, and B-Learner for the test ϕ̂rct. We test for confounding
in one direction, i.e. we only compute the test statistic T̂+

Γ . We set nbootstrap = 100 and α = 0.05 for all
experiments.
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C Additional Experiments

C.1 VOTE dataset

We present the experimental results with the VOTE dataset in Figure 4. Experiments were conducted
with both weak and strong confounders, and under small and large sample regimes. We use the outcome
Y as a strong confounder given the lack of a feature highly correlated with the outcome in the dataset.
These results corroborate previous findings that higher correlated confounders and larger sample sizes lead
to greater power of our test. In all scenarios, the performance of both tests closely aligns.1 2 3 4 5 6 7 8 9
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(d) Large sample Y

Figure 4: Probability of rejection for different choices of Γ for the test for the VOTE dataset. For all
the plots, the significance level is α = 0.05 and Γ⋆ = 9. (a)-(b) Weak confounder: “age”. (a) small
sample size: nrct = 3.2K,nos = 11K and (b) large sample size: nrct = 10.6K,nos = 36.8K. (c)-(d)
Strong confounder: outcome Y . (c) small sample size: nrct = 3.2K,nos = 11K and (d) large sample size:
nrct = 10.6K,nos = 36.8K.

C.2 Tennessee STAR Project

We present the experimental results with the STAR Project in Figure 5. Experiments were conducted with
both weak and strong confounders with the full dataset. We do not run experiments with a small sample
size since the STAR dataset already represents a small sample regime. These results corroborate previous
findings that higher correlated confounders lead to greater power.
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(b) Strong confounder: Y

Figure 5: Probability of rejection for different choices of Γ for the test for the STAR Project. For all the
plots, the significance level is α = 0.05 and Γ⋆ = 5. We use the original sample sizes nrct = 600, nos = 1.8K.
(a) weak confounder: “free lunch” (b) strong confounder: outcome Y .
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