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Abstract

We present a theoretical study of resonance lifetimes in a two-component three-
body system, specifically examining the decay of three-body resonances into a
deep dimer and an unbound particle. Utilising the Gaussian expansion method
together with the complex scaling method, we obtain the widths of these res-
onances from first principles. We focus on mass ratios in the typical range for
mixtures of ultracold atoms and reveal an intriguing dependence of the resonance
widths on the mass ratio: as the mass ratio increases, the widths exhibit oscil-
lations on top of an overall decreasing trend. In particular, for some mass ratios
the resonance width vanishes, implying that the resonance becomes in fact sta-
ble. Notably, near the mass ratio for Caesium-Lithium mixtures, we obtain nearly
vanishing widths of the resonances which validates to treat them in the bound-
state approximation. In addition, we perform our analysis of the resonance widths
in both one and three dimensions and find a qualitatively similar dependence on
the mass ratio.

1 Introduction

Resonances are metastable quantum states that can spontaneously undergo a tran-
sition into a continuum state [1]. This fact makes them ubiquitous in few-body
systems due to the presence of possibly many continua induced by the existence of
breakup thresholds into two or more subsystems. Indeed, three-body resonant states
are known to exist in many fields of physics, e.g. cold-atom physics [2], nuclear [3]
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and hypernuclear physics [4, 5] and three-body analog systems of excitons in bulk
semiconductors [6, 7]. For instance, the celebrated Efimov states [8], first observed
in systems of ultracold atoms [9], are often in fact resonances and not true bound
states [2]. How the lifetimes of Efimov three-body resonances are changed, has already
been analysed when approaching the three-body dissociation threshold [10], or in the
limit of infinitely large mass ratios [11]. Apart from Efimov states, it is relevant to
study the stability of three-body resonances, e.g. for the application of condensates
of three-body states [12, 13]. Moreover, there has been recent progress in the con-
trolled collision of ultracold atoms and molecules [14, 15], and the associated analysis
of resonance spectra [16].

In the present article we theoretically study the lifetimes of three-body resonances
against decay into a deep dimer and an unbound particle. In particular, we analyse
the dependence on the mass ratio between two different components in our system
in the range 1/20 . . . 20, which is most relevant for mixtures of ultracold atoms. We
employ the Gaussian expansion method (GEM) [17, 18] together with the complex
scaling method (CSM) [1, 19] to obtain the widths of three-body resonances from
first principles. Our investigation unveils an intriguing dependence of the resonance
widths on the mass ratio. As the mass ratio increases, the widths display an oscillatory
behaviour on top of an overall decreasing trend. Notably, particular mass ratios result
in a vanishing resonance width, indicating that the resonance becomes in fact stable,
which can be interpreted as so-called bound states in the continuum (BIC) [20]. We
also consider an analytical formula [11] for the widths, derived in the limit of large
mass ratios, and find that it is unable to reproduce our findings. Despite the fact that
the mass ratio is usually not a tunable parameter, it differs depending on the explicit
choice of atomic species, nuclei or semiconductor materials.

Moreover, motivated by a previous work [21], in which excited states in a one-
dimensional (1D) configuration were analysed under the bound-state approximation,
we perform calculations for both 1D and 3D, and contrast the results against each
other. In particular, for a mass ratio near 22 (Cs-Li mixture) we find almost van-
ishing widths of the resonances, justifying the bound-state approximation in the
previous work. Comparison of the results for 1D and 3D indicates qualitatively similar
behaviour. Our one-dimensional results are particularly interesting for experimental
systems with controlled low dimensionality, realised since the advent of optical dipole
traps [22].

Our article is organised as follows: In section 2, we introduce the three-body system
under consideration together with the employed methods. Then, we present the results
of our calculations in section 3, before discussing our findings and presenting an outlook
in section 4.

2 System and Methods

In this section we introduce the three-body system, the regime of interest, and the
relevant quantities and methods we use for its analysis.
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The three-body system

Our three-body system consists of two identical bosons (B) and a third, different par-
ticle (X). We consider only pair interactions between the different particles, but none
between the identical bosons. This is to keep the complexity and the number of system
parameters as low as possible, while at the same time ensuring rich enough features. We
consider this three-body system in both a one-dimensional (1D) and three-dimensional
(3D) configuration, as depicted schematically in Fig. 1 (left). Here, the identical bosons
and the third particle are depicted as red and blue disks respectively, and wavy lines
indicate the interactions.

Fig. 1: Left: Configuration of particles and interactions of our three-body system in
1D (top) and 3D (bottom). Interactions are represented by wavy lines. Right: Three
sets of Jacobi coordinates. In both subfigures, blue disks indicate the different particle
(1) and red disks the two identical bosonic particles (2,3).

Jacobi coordinates

In order to describe this three-body system we employ the commonly used Jacobi-
coordinates [23]. Since the system is translationally invariant, we can choose to work
in the centre-of-mass frame of the three-body system, and conveniently set the centre-
of-mass coordinate R⃗ = 0. The remaining two relative coordinates are defined by

r⃗ij ≡ r⃗j − r⃗i, R⃗k ≡ r⃗k − mir⃗i +mj r⃗j
mi +mj

(1)

and depicted in Fig. 1 (right). Here, r⃗i and mi respectively denote the absolute coor-
dinate and the mass of particle i. In our case we denote the distinct particle by the
number 1, and the two identical bosons by 2 and 3. In total there are three sets of
Jacobi coordinates, hence we are free to choose {i, j, k} = {1, 2, 3}, or cyclic permuta-
tions thereof. The definition of Jacobi coordinates is identical in 1D and 3D, however
in the former case, the vectorial character of the coordinates reduces to simple scalars.
In order to keep the notation simple, we also denote the 1D coordinates by vectors.
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Model

The centre-of-mass Schrödinger equation governing this three-body system reads[
− ℏ2

2µij
∇2

r⃗ij
− ℏ2

2µk
∇2

R⃗k
+ V (r12) + V (r31)

]
Ψ(r⃗ij , R⃗k) = EΨ(r⃗ij , R⃗k), (2)

where we introduced the reduced masses

µij ≡
mimj

mi +mj
, µk ≡ mk(mi +mj)

mk +mi +mj
, (3)

and the distances rij ≡ |r⃗ij |. Again, in the 1D case the Laplacians reduce to scalar
second derivatives.

We consider purely attractive model interactions of Gaussian shape

V (r) = v0e
−(r/r0)

2

, (4)

which can be used to characterise different physical systems [24, 25] by tuning of the
two parameters v0 < 0 and r0. Since we consider isotropic interactions, they depend
only on the distance r = |r⃗| between the interacting particles.

For a uniform description of physical systems that may live in vastly different
energy ranges, it is useful to introduce dimensionless variables which describe the
lengths, masses, and energies in units of appropriately chosen characteristic quantities.
Since our three-body system is determined by the two-body interactions, we scale the
masses

m′
i ≡

mi

2µbx
(5)

by the reduced mass µbx (x = 1, b = 2, 3) of the two interacting particles, and the
lengths (

r⃗′ij
R⃗′

k

)
≡ 1

r0

(
r⃗ij
R⃗k

)
(6)

by the range r0 of interaction. Consequently, the energy

E′ ≡ 1

Echar
E, (7)

is rescaled in units of the characteristic energy Echar ≡ ℏ2/(2µbxr
2
0). Moreover, the

reduced masses then become functions of a single parameter only, which is the mass
ratio β ≡ mb/mx = m2/m1 = m3/m1 between the two components.

Accordingly, using these rescaled quantities, the two-body system of interacting
particles x = 1 and b = 2 (or b = 3) is governed by the Schrödinger equation[

−∇2
r⃗′bx

+ V ′(r′bx)
]
ψ(r⃗′bx) = E(2)′ψ(r⃗′bx), (8)

with
V ′(r′) =

v0
Echar

e−r′2 ≡ v′0e
−r′2 . (9)
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We note that within this notation the relation between v′0 and E(2)′ becomes indepen-
dent of the masses of the constituent particles, and therefore also independent of the
mass ratio.

Regime of interest

We are interested in three-body resonances which are characterised by the possibility
to decay into continuum states of a deeply bound dimer together with an unbound
particle, see Fig. 2 (left). Depending on the specific physics community, this process
is sometimes referred to as predissociation, Auger effect, etc. [26, 27].

Fig. 2: Left: Schematic representation of the decay process of three-body resonances
into the continuum of a deeply bound two-body state and an unbound particle. Due
to energy and momentum conservation the two resulting parts fly away in opposite
directions, as indicated by the arrows. Right: Schematic energy spectrum of our three-

body system. The two-body ground state energy E
(2)
0 (grey) divides the three-body

spectrum into bound states (blue) which lie below it, and resonant states (orange)
which lie above it. Above the dissociation threshold E = 0, there can be unbound
states (red shaded area). Moreover, continua (black thick line) of a dimer state together
with an unbound particle start above the binding energy of each two-body bound state
(grey).

In Fig. 2 (right) we schematically present a typical three-body spectrum. It consists

of true three-body bound states (blue) below the deepest two-body energy level E
(2)
0

(grey), and three-body resonances (orange) above it. While the bound states are stable,
as there is no continuum state to decay into, the resonances are only metastable and
sometimes referred to as quasi-bound states. Each two-body binding energy marks the
start of a continuum of states (thick black line) consisting of a bound pair with that
energy, together with an unbound third particle. Above the dissociation threshold (red
shaded area), there can be unbound states of three free particles.

The resonances are characterised by a complex-valued eigenenergy [28]

E = Er −
i

2
Γ (10)
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with resonance position Er, and width Γ. The width can be related [1] to the time-
dependent probability density

|Ψres(r, t)|2 = |Ψres(r)|2 e−Γt/ℏ ≡ |Ψres(r)|2 e−t/τ , (11)

and then the imaginary part of the energy to the lifetime

τ ≡ ℏ
Γ

= − ℏ
2 Im(E)

. (12)

For a uniform description of the three-body system for all mass ratios, we fix the
rescaled energy E(2)′ of the first excited s-wave state to the value E(2)′ = −0.1. In 1D
we fix the energy of the first excited symmetric state, respectively. This corresponds to
a scattering length of about three times the interaction length, and is a regime which
is feasible in both nuclear and cold atom physics. We choose to study the regime of the
positive side of the scattering length (the corresponding two-body state is bound) in
order to have three-body states in both 3D and 1D. While in 3D the three-body states
exist also on the negative side of the scattering length, such so-called Borromean states
are not known to exist in 1D, at least not for purely attractive pair-interactions [29].

Above in Eq. (8), we have demonstrated that the rescaled two-body system
becomes independent of the masses. Hence, we can obtain the desired value of E(2)′

by choosing v′0 = −19.77 in 3D and v′0 = −5.44 in 1D for all values of the mass ratio.
As a result, the two-body spectrum remains constant under change of the mass ratio
and hence any residual effect is a pure three-body effect.

Method

For solving both the two-body and the three-body problem, we employ the Gaussian
expansion method (GEM) [17, 18]. We expand the total three-body state as

|Ψ⟩ =
3∑

c=1

αmax∑
α=1

A(c)
α |Φ(c)

α ⟩, (13)

where c and α respectively run over the different Jacobi sets, and the basis functions

|Φ(c)
α ⟩. A⃗(c) denotes the vector of coefficients. In 3D we apply the method exactly as

described in the review article [17] with

⟨r⃗c, R⃗c|Φ(c)
α ⟩ = Φ(c)

α (r⃗c, R⃗c) = ϕ
(c)
nα,lα

(rc)ψ
(c)
Nα,Lα

(Rc)Ylα,mα
(r̂c)YLα,Mα

(R̂c), (14)

where Yl,m are the spherical harmonics, and {lα,mα} and {Lα,Mα} denote the angu-

lar momentum and its projection for the relative coordinates r⃗ and R⃗ respectively.
Moreover, we have employed the simplified notation, where now e.g. r⃗c=1 is the Jacobi
coordinate r⃗23, and r̂ denotes the directional unit vector r⃗/r. For the 1D case we
establish the GEM in a similar way with

⟨zc, Zc|Φ(c)
α ⟩ = Φ(c)

α (zc, Zc) = ϕ
(c)
nα,lα

(zc)ψ
(c)
Nα,Lα

(Zc), (15)
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where we drop the angular part, and for clarity use the variables zc and Zc to indicate
the 1D character.

The GEM is a variational method and relies on expanding the spatial part of the
unknown state into a set of basis functions of Gaussian shape

ϕn,l(r) = Nn,lr
le−νnr

2

1 ≤ n ≤ nmax, 1 ≤ l ≤ lmax (16)

ΦN,L(R) = NN,LR
Le−λNR2

1 ≤ N ≤ Nmax, 1 ≤ L ≤ Lmax (17)

with normalisation factors Nn,l and NN,L. Due to the scalar arguments we can
use the same form of basis functions also for the 1D case. Overall, due to the
non-orthogonal character of the Gaussian basis functions, this creates a generalised
matrix eigenvalue problem and both the eigenenergies and corresponding eigenvectors
A⃗ = (A⃗(1), A⃗(2), A⃗(3)) are then obtained by diagonalisation. Since our system contains
two identical particles, and no interaction between them, we can reduce our analysis
to a single set of Jacobi coordinates (c = 2 or c = 3).

In 3D, it turns out that the lowest three-body resonances corresponding to the
2s two-body bound states lie already far below (E′ ≃ −3) the 1p two-body energy
(E(2)′ ≃ −0.25) owing to their (strong) borromean character. By this argument we
justify neglecting the influence of this two-body threshold lying far above the three
body energies and hence choose lmax = Lmax = 0. On the contrary, in 1D the three-
body resonances corresponding to excited symmetric two-body states lie above (E′ ≃
−0.2) the odd-wave two-body energy (E(2)′ ≃ −1.5). Hence, we cannot neglect the
corresponding continuum and have to choose lmax = Lmax = 1 in 1D.

Moreover, for the 3D case, we use the complex-ranged Gaussian basis functions [17],
for which the Gaussian ranges are transformed to νn → (1 ± iω)νn, and accordingly
for λN . As a result, the number of basis functions doubles. A value of ω = 0.8 has
yielded good results. The other numerical parameters are listed in Table 1.

nmax = Nmax lmax = Lmax αmax ν1 νmax λ1 λmax

1D 32 1 2048 318.9 0.037 45.65 0.023
3D 2× 16 0 1024 68.83 0.0058 61.85 0.011

Table 1: Numerical parameters of the GEM used in our calculations.
The total number of basis functions αmax = (nmax(lmax + 1))

2
is deter-

mined by nmax and lmax. In the 1D case, αmax can be reduced from
4096 to 2048 due to global parity conservation. Depending on the mass
ratio, these number of basis functions, as well as minimal (ν1, λ1) and
maximal (νmax, λmax) Gaussian ranges yield an accuracy of the reso-
nance widths between 10−3 and 10−6.

We make use of the complex scaling method (CSM) [1] to obtain the eigenenergies
of the three-body resonances. This method is based on introducing a scaling(

r⃗

R⃗

)
→ eiθ

(
r⃗

R⃗

)
(18)
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to the coordinates. By solving the Schrödinger equation using this complex scaling,
we can obtain the complex eigenenergies by ordinary numerical methods for bound
states. Within the CSM, the discrete spectrum of bound and resonant states remains
unchanged, while the various continua are rotated by an angle −2θ in the complex
space of energies, see Fig. 3. When the rotation angle is chosen large enough this
uncovers the resonances. For more details we refer to Refs. [1, 19, 30].

3 Results and Discussion

3.1 Complex-rotated energy spectra

Fig. 3: Plane of complex energies with the complex-rotated three-body energy spec-
trum for 1D (left column) and 3D (right column), divided also in β = 1 (top row)
and β = 20 (bottom row). The calculations are performed for three different complex-
rotation angles θ = 4◦ (blue), 7◦ (orange), and 10◦ (green). The discretised continuum
states (filled circles) of a deep dimer together with an unbound particle start above
each two-body threshold and appear along a line rotated by 2θ downwards. In contrast,
the discrete spectrum of bound (diamonds) and resonant states (crosses) remains con-
stant for the different angles. For the mass ratio β = 1 (top row), in both 1D and 3D
the three-body resonances have a sizeable imaginary part. Increasing the mass ratio to
β = 20 (botom row) reduces the imaginary part significantly to basically zero, hence
the resonances become almost indistinguishable from bound states. Again, this can be
seen for both 1D and 3D.
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We analyse the resonances in the range of mass ratios 1/20 ≤ β ≤ 20/1. This range
covers the most typical mass ratios in systems of ultracold atoms for both two light
bosons and one heavy particle (β < 1), as well as for the reverted case of two heavy
bosons and a light particle (β > 1). Moreover, our results indicate that this range is
where most of the observed effect is taking place.

The resulting three-body spectra are presented in Fig. 3. The four diagrams are
divided into two columns, where the left (right) column shows the result for 1D (3D),
and two rows where the top (bottom) row depicts the case of mass ratio β = 1 (β = 20).
In each diagram the horizontal and vertical axes respectively represent the real and
imaginary part of the three-body energy. The three colours indicate calculations for
different rotation angles θ = 4◦, 7◦, 10◦. We have added solid lines as a guide to the
eye for the corresponding rotation angles −2θ in energy space.

As previously explained, within the CSM the discretized-continuum states (filled
circles) appear at a rotated position. We note the existence of several continua starting
at the different bound states of the BX subsystem, as well as at the dissociation
threshold E = 0. Again, we emphasise that within the rescaled variables, the two-body
energies are independent of the mass ratio, hence they are at the same position in
both rows of diagrams. In contrast to the rotated continua, the bound (diamonds) and
resonant (crosses) states remain unchanged under the rotation. Overall, the results
show good convergence under change of the complex-rotation angle θ.

We see that in the top row of diagrams (β = 1) the resonances are located visibly
away from the real energy axis, while in the bottom row (β = 20) they all practically
lie on it. This indicates that for increased mass ratio β, the imaginary parts of the
resonant states’ eigenenergies decrease and they become almost indistinguishable from
bound states. This is in agreement with a previous conjecture [21] made for the 1D
case and β = 20 (bottom left diagram), based solely on a real-valued analysis of the
resonance position Er (bound-state approximation). Overall, we find qualitatively the
same behaviour for both the 1D and 3D case. Moreover, we note that with increased
mass ratio both the number of three-body bound states and resonances increase. For
bound states in 1D this dependence has already been studied in more detail in Refs. [31,
32].

3.2 Energy-width of three-body resonances

In Fig. 4 (top) we quantitatively analyse the resonance widths Γ′ as a function of the
mass ratio. Here we focus on three resonant states, which are each the deepest, i.e. the
ones with the lowest Er, of each “family” of resonances associated with a particular
state in the BX subsystem. We refrain from analysing the higher excited resonances in
each family as they partially exist only within a small range of mass ratios. The three-
body resonance labeled (1D, 1p) lies between the ground and first excited state of the
BX system, whereas the (1D, 2s) resonance lies above the first excited and below the
second excited BX state (see Fig. 3). Even though in 1D no partial waves exist and
the two-body states instead have well defined parity (e.g. even and odd), we keep the
notation of s (even) and p (odd) in similarity to the 3D case. There, we analyse only
the (3D, 2s) state as explained above.
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Fig. 4: Top: Widths Γ′ of three-body resonances as a function of the mass ratio β. Here
we depict the deepest one of each “family” of resonances associated with a particular
BX state: (1D, 1p) (blue), (1D, 2s) (green), (3D, 2s) (orange). For all states we find
that for increasing mass ratios, Γ′ oscillates on top of an overall decrease. However,
the frequency and amplitude differs from state to state. It can be seen most clearly
for the (1D, 1p) resonance which shows several maxima and minima in the considered
regime. In comparison, Γ′ for the (1D, 2s) resonance is overall smaller, such that the
oscillations are hard to see. For the (3D, 2s) resonance there is only a single maximum
visible in the region of interest (around the equal mass case), however a minimum at
β ≃ 15 can be inferred from Fig. 5. Bottom: the same result for Γ̃, based on another
scaling, Eq. (19), of energies with the different particle’s mass mx. The effect remains,
however the amplitudes of oscillations are slightly changed.

We have already seen in the previous subsection that for mass ratios larger than
one, the resonance width Γ′ decreases. The more detailed analysis in Fig. 4 however
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reveals an even richer dependence: we find that with increasing mass ratios, Γ′ dis-
plays a damped-oscillatory behaviour, with a global maximum near the equal mass
case. The frequency and amplitude of oscillations depends however on the particular
resonance. Whereas they can be clearly seen for the (1D, 1p) resonance, the ampli-
tude is more suppressed for the (1D, 2s) resonance. For the (3D, 2s) resonance the
oscillation-frequency is smaller such that we see only a single maximum in the region
of analysed mass ratios.

The oscillations come with the remarkable feature that the resonance width van-
ishes entirely for specific values of the mass ratio. This indicates the possibility for
so-called bound states in the continuum (BIC) [20] to be present in few-body sys-
tems. Even though in most experiments of cold atoms or nuclei the mass ratio is not a
directly tunable parameter, it can be varied e.g. for excitons in semiconductor systems
[6].

In order to rule out that our effect is solely an artifact of the specific global scaling,
Eqs. (5)-(7), we introduce another scaling

Ẽ ≡ mxr
2
0

ℏ2
E = 2

mx

µbx
E′. (19)

Here, instead of scaling with the reduced mass µbx of interacting particles, we scale
with mx, the mass of the non-identical particle. Moreover, we now fix Ẽ(2) = −0.1
instead of E(2)′. The corresponding result is presented in Fig. 4 (bottom). The main
difference to Fig. 4 (top) is that the amplitude of oscillations changes a bit depending
on the particular resonant state. Crucially, the main effect persists in its essential form.

For a better representation of the different orders of magnitude in play, we display
in Fig. 5 the lifetime

τ ′ ≡ τ

τchar
(20)

in log-scale against the mass ratio. Hence, the lifetimes are shown in units of a charac-
teristic lifetime τchar ≡ µbxr

2
0/ℏ. For e.g. a system of ultracold atoms with an estimated

interaction range r0 ≃ 100a0, i.e. 100 Bohr radii, τchar is of the order of nanosec-
onds (ns). Indeed, a recent experiment colliding ultracold atoms with molecules has
reported a lifetime of around 60 ns [15].

Due to the relation (12) between τ and Γ, smaller (larger) resonance widths directly
translate into longer (shorter) lifetimes. Here, we see much more clearly the over-
all trend of increased stability for larger mass ratios together with the oscillatory
behaviour. In particular, we see that the frequency of oscillations is quite different
between the 1D and 3D cases. Moreover, the minimum of Γ′ for the (3D, 2s) reso-
nance near β ≃ 15, not visible in Fig. 4, now clearly shows as a maximum. Overall,
the height of the peaks is limited by both (i) how densely we sample the mass ratio
near the minimum of Γ′, and (ii) our numerical accuracy, which depends on the mass
ratio and lies between around 10−3 and 10−6. We estimated the order of magnitude of
the numerical accuracy from performing the calculations for several different complex
rotation angles θ and sizes αmax of the basis set.
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Fig. 5: Lifetime τ ′, Eq. (20), in log-scale as a function of the mass ratio β. Due to
the reciprocal relation, Eq. (12), the maxima in Fig. 4 show here as minima, and vice-
versa. For all the considered states, we find that the lifetimes increase by several orders
of magnitude between β = 1 and β = 20, indicating strongly increased stability of the
resonances. On top of that we find several special mass ratios for which the resonance
width vanishes, i.e. the lifetime diverges. The maximum of the peaks in τ ′ is limited
by our numerical accuracy which varies between 10−3 (β ≃ 1) and 10−6 (β ≃ 20),
depending on the mass ratio.

3.3 Comparison to analytical formula

Already more than two decades ago, Pen’kov has derived [11] an analytical formula to
approximately describe the dependence of three-body resonance widths as a function of
the mass ratio. The formula was derived for the Efimov scenario with three separable,
resonant pair interactions. Despite assumed to be resonant, one of the interactions
was considered to provide a sufficiently deep two-body state compared to the weakly-
bound three-body resonances of interest. Moreover, the formula was derived in the
limit of very large mass ratios m2/m1 → ∞. Overall, the considered regime and states
are therefore quite different from the present work. Nevertheless it is interesting to
compare the formula to the results presented here and to check its validity.

In Fig. 6 we display our result for the (3D, 2s) resonance (blue solid line) together
with the result using Eq. (22) of Ref. [11] (orange dashed line) in a diagram of Γ′

against the mass ratio. We highlight here that we have scaled that formula by a factor
of 1/400 = 0.0025 for an easier comparison. Taking this factor into consideration, we
see that in the considered range of mass ratios 1/20 ≤ β ≤ 20, the formula from
Ref. [11] overestimates the resonance width by more than two orders of magnitude.
Moreover, the reduction of Γ′ for β ≲ 1 is missing. We conclude that the formula is
not able to describe our findings, which is not surprising considering the fact that it
was derived for a specific scenario which is quite different from the one studied here.

Nevertheless, we want to highlight that the original formula of Ref. [11] already
predicts a damped-oscillatory behaviour of resonance lifetimes in the limit of very
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Fig. 6: Comparison of our results for the resonance width Γ′ as a function of the
mass ratio β with those based on Equation (22) of Ref. [11]. The blue line denotes
our results for the (3D, 2s) resonance as shown in Figs. 4, and the orange line the
result from the literature multiplied by a factor of 0.0025. The latter overestimates the
resonance width by more than two orders of magnitude, and is unable to reproduce
the drop-off for β ≲ 1.

large mass ratios. As previously mentioned, the derivation however heavily relied on
the presence of the Efimov effect. In our work it is possible that the result for the 3D
resonance contains some remainder of the Efimov effect, despite being relatively far
away from its typical regime, which might explain the obtained oscillations. On the
other hand, we find the damped-oscillatory behaviour also in the 1D case where the
Efimov effect is absent.

4 Summary and Outlook

In this article we have shown that the lifetime of three-body resonances strongly
depends on the mass ratio between the two components. A larger mass discrepancy
in favour of either species results in a stability increase of several orders of magnitude
against decay into a continuum of a deeply-bound dimer scattering with an unbound
particle. Additionally, the resonance width displays an oscillatory behaviour with the
mass ratio, including particular points where the states become exceptionally stable.
Employing a scaling in which the two-body spectrum remains constant under change
of the mass ratio has allowed us to rule out the effect of shifted two-body thresholds
on the stability, hence the strong residual dependence of the resonance lifetimes arises
from the interplay of all three particles. Finally, we have performed the calculations for
the resonance widths for both 1D and 3D and found qualitatively similar dependence
on the mass ratio.

Naturally, the simplicity of our model comes with limitations. We have focused
here mainly on the effect of the mass ratio and dimensions on the width of resonances.
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Certainly, this does not determine the lifetime of resonances alone, as also other factors
as e.g. the exact level structure of the two-body subsystem, and the energy difference of
two- and three-body states have an effect, as discussed e.g. in Ref. [10]. We have studied
this to some extent by analysing three resonances of different energies. Nevertheless,
for all three states we have found a strong dependence on the mass ratio over several
orders of magnitude, and particular points where the widths even vanish, which can
outweight the influence from other factors. Since the effect is so strong, our result can
be observed for many kinds of systems in which there is an energy spectrum of three-
body resonances and dimer-particle continua as discussed in our article. Moreover, the
intriguing oscillatory behaviour indicates that few-body systems can be candidates for
the existence of bound states in the continuum.

At the moment we cannot provide a simple explanation for our results, therefore a
more thorough analysis is required to bring out the underlying mechanism for stabi-
lization. An approach using a single-particle picture in an effective Born-Oppenheimer
or hyperspherical potential curve might be a promising path to follow.
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