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While gauge symmetry is a well-established requirement for representing topological orders in
projected entangled-pair state (PEPS), its impact on the properties of low-lying excited states
remains relatively unexplored. Here we perform PEPS simulations of low-energy dynamics in the
Kitaev honeycomb model, which supports fractionalized gauge flux (vison) excitations. We identify
gauge symmetry emerging upon optimizing an unbiased PEPS ground state. Using the PEPS
adapted local mode approximation, we further classify the low-lying excited states by discerning
different vison sectors. Our simulations of spin and spin-dimer dynamical correlations establish
close connections with experimental observations. Notably, the selection rule imposed by the locally
conserved visons results in nearly flat dispersions in momentum space for excited states belonging
to the 2-vison or 4-vison sectors.

Introduction – The fundamental concept of long-range
entanglement forms the cornerstone of our exploration
into topological orders within quantum phases of mat-
ter [1–3]. The Kitaev spin liquid [4] provides a fer-
tile ground for unraveling topological properties, in-
cluding topological degeneracy and fractionalized excita-
tions, with numerous potential material realizations [5–
7]. The allure of topological excitations extends into
the realm of spin dynamics [8–10], prompting investiga-
tions through inelastic neutron scattering (INS) and light
(Raman and resonant-inelastic-X-ray scattering (RIXS))
measurements on Kitaev materials [11–19]. Thus, sim-
ulations of low-lying excitations in the topologically or-
dered phases are highly valuable for establishing a close
connection with experimental observations.

Projected entangled-pair state (PEPS) provides a ro-
bust framework for capturing the intricate topology and
quantum entanglement in two-dimensional many-body
systems [20, 21]. The additive negative topological en-
tanglement entropy of topologically ordered states [1, 22]
is a manifestation of the gauge symmetry constraint in-
herent in PEPS [21, 23], allowing the construction of the
degenerate ground state manifold [23–30] and associated
boundary Hamiltonian [31] and the computation of mod-
ular matrices [27, 32, 33]. Recent advancements have ex-
panded the applicability of PEPS to excited states [34–
39] through incorporating the single-mode approxima-
tion [40]. In this framework, the ground state is lo-
cally perturbed by an “impurity” tensor, and momentum
states, generated by superpositions of these local per-
turbations, provide natural representations of low-energy
excited states [41]. While achieving a faithful represen-
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tation of gauge symmetry in PEPS is feasible through
variational optimization [33, 42], the exploration of gauge
structure and, consequently, fractionalized excitations in
low-energy excited states remains relatively uncharted.

Here, we delve into the intricate gauge structure of
PEPS simulations, with a particular emphasis on unrav-
eling fractionalized excitations within the Kitaev honey-
comb model. This model is characterized by a gauge sym-
metry involving flux (vison) operators and hosts a vortex-
free spin liquid ground state [4]. The unbiased optimized
ground state PEPS maintains its essential vortex-free na-
ture, on top of which, we construct low-energy excited
states by introducing local impurity tensors and label
them with the associated vison number. While our sim-
ulations of spin dynamics align commendably with ex-
act solutions, the spin-dimer dynamics simulations offer
valuable insights for Raman and RIXS experiments.

Gauge symmetry in ground state PEPS– The Kitaev
honeycomb model [4] is defined as

H = −J
∑
⟨ij⟩γ

σγ
i σ

γ
j , (1)

where σγ represents the Pauli matrices with γ = x, y, z
for the nearest-neighbbor bonds ⟨ij⟩γ , along the x, y and
z directions. In this work, we focus on the ferromag-
netic coupling with J > 0. On the honeycomb lattice, a
variational ground state can be represented in the PEPS
form as |Ψ(A)⟩ = ∑

s1,··· ,sN tTrAsi
abc|s1 · · · si · · · sN ⟩, and
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TABLE I. Variational ground state energy per site E0 (in units of J) and the expectation of the flux operator wp = ⟨Ŵp⟩.

Exact D = 2 D = 4 D = 2 D = 3 D = 4 D = 6
(loop-gas) (loop-gas) (optimized) (optimized) (optimized) (optimized)

E0 -0.78730 -0.65399 -0.78576 -0.75624 -0.77194 -0.78695 -0.78716
wp 1 1 1 0.02533 0.88148 0.999996 0.99997

further graphically expressed as

|Ψ(A)⟩ = p 4
32

1
6 5

· · · ,· · ·

...

...

zx

y

, (2)

where each local tensor As
abc comprises one physical spin-

1/2 index (s) and three virtual indices (a, b, and c) with
bond dimension D. The PEPS virtual legs are along the
nearest-neighbor x, y, and z bonds as depicted in Eq.(2).
The Kitaev model is distinguished by the gauge symme-
try characterized by flux operators Ŵp = σx

1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6

linked to the p-th hexagon plaquette in Eq.(2). Due to

Ŵ 2
p = 1, their eigenvalues are wp = ±1 with Z2 gauge na-

ture. For wp = +1, the plaquette is vortex-free, while for
wp = −1, it possesses a vortex (vison). Under periodic
boundary conditions, the product of all flux operators
equals 1, i.e.,

∏
p Ŵp = 1. This topological constraint im-

poses limitations, allowing only excitations with an even
vison number, indicating a Z2 gauge symmetry in the
local tensor to encode the topological property [23].

The optimization of the ground state PEPS is accom-
plished through variational energy minimization tech-
niques, employing gradient optimization methods [43,

=⇒ wp
w1w3

w2w4
=⇒

w1

w2

w3

w4

w3

w1

w2

w4 =⇒
w1w3

w2w4
=⇒

w1

w2

w3

w4

(a) (b)

(c)

FIG. 1. (a) Mapping the honeycomb lattice to the square lat-
tice through the combination of the A-B sublattices. CTMRG
evaluation of the expectation value wp of the vortex operator
for the ground state PEPS in (b), and excited-state PEPS in
(c).

44]. Here, we use the corner transfer matrix renormaliza-
tion group (CTMRG) method [45–47] for tensor contrac-
tions with a truncation dimension χ = 64. The energy
gradient is obtained through reverse mode automatic dif-
ferentiation [48]. In contrast to prior work [49], where
optimization started from a symmetric initial PEPS, our
unbiased approach initiates from a randomly generated
state. Table. I lists the results of the ground-state vari-
ational energy and the flux operator expectation. Addi-
tionally, results from the loop-gas PEPS wave function,
featuring a meticulously designed gauge structure [28],
are included for comparison. For a small bond dimension
D = 2, the optimized PEPS exhibits a lower variational
energy than the loop-gas PEPS. However, this comes at
the cost of losing gauge symmetry, as evidenced by the
flux expectation wp, which is evaluated as in Fig. 1(b),
being close to zero and deviating from the exact result
wp = 1. With increasing bond dimension D, the vari-
ational energy is further optimized as anticipated, and
concurrently, we observe the flux expectation wp ap-
proaching the exact result wp = 1 for D = 4, thereby
displaying the essential vortex-free nature of the Kitaev
spin liquid ground state. Further improvement for the
energy can be achieved with D = 6, while the flux ex-
pectation remains essentially unchanged.
Gauge symmetry in excited state PEPS– From the

ground state, local excited state PEPSs are constructed
as |Bi⟩ =

∑
abca′b′;sαi

,sβi
B

sαi
,sβi

aba′b′
∂

∂(A
sαi
abc A

sβi
a′b′c)

|Ψ(A)⟩ as

illustrated in the graph

|Bi⟩ =
w2

w3

w1w4
i · · · ,· · ·

...

... (3)

where the impurity tensor B acts on the two sites αi and
βi within the i-th unit cell.
Once the ground state is the vortex-free state

|ψ(A);wp = 1⟩, the excited state in Eq. (3) can be char-
acterized by the eigenvalues w1,2,3,4 of the four plaque-

tte operators Ŵ1,2,3,4, denoted as |Bi; {w1,2,3,4}⟩. Other
plaquettes are not perturbed, and thus wp = 1 for
p /∈ {1, 2, 3, 4}, which follows from the symmetry in the
local tensor (see discussions in Appendix. B). The eigen-

equations Ŵp|Bi⟩ = wp|Bi⟩ for p = 1, 2, 3, 4 can be diag-
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onalized simultaneously as the flux operators commute
with each other. In the CTMRG contraction, the honey-
comb lattice is transformed into a square lattice through
the combination of the A-B sublattices in Fig. 1(a), and
the expectation wp of the vortex operator for the ground
state is evaluated in Fig. 1(b). For the excited states, we
evaluate w1,2,3,4 in Eq.(3) by placing the impurity ten-
sor on the four adjacent positions, respectively, as the
Fig. 1(c).

For the infinite PEPS simulation, our choice of ini-
tial boundary conditions in the CTMRG allows both
even and odd vison sectors (see Appendix A for details).
w1,2,3,4 take the value of ±1, independent of each other,
and |Bi; {w1,2,3,4}⟩ has 24 = 16 different vison configu-
rations. Fig. 2(a) illustrates the absolute value distribu-
tions of w1,2,3,4 for the optimized PEPS with D = 4, in
which all values closely approximate the exact value of
1 within a numerical error of less than 2.5%, affirming
the gauge symmetry in both ground and excited PEPSs.
Note that a small violation of the gauge symmetry in the
optimized PEPS could yield a small deviation of exact
commutativity of the Ŵp and of the projectivity Ŵ 2

p = 1,
leading to the small deviations in wp.
By taking a linear superposition of all locally perturbed

states, we can construct translational-invariant excited
states |Bq⟩ =

∑
i e

iq·ri |Bi⟩ with momentum q. In the
variational space spanned by these excited states (here-
after labeled by m), the generalized eigenvalue equation
for local tensor Bm

i is given by

HqB
m
i = λqNqB

m
i , (4)

where Hq and Nq represent the effective Hamiltonian
and norm matrices.

The locally conserved vison makes the Hamiltonian (4)
block-diagonal. For better clarity, we categorize the 16
vison configurations into distinct vison sectors, spanning
0 to 4 visons. Each sector corresponds to a specific num-
ber of vison configurations: 1 for 0-vison, 4 for 1-vison,
6 for 2-vison, 4 for 3-vison, and 1 for 4-vison. The total
density of state (at momentum q = 0) shown in Fig.2(b)
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FIG. 2. (a) Absolute value distributions of w1,2,3,4, with
red stars denoting the results for the ground state PEPS with
D = 4. (b) Zero momentum low-energy density of state with
a broadening σ = 0.2J for the 0, 1, 2, 3, and 4-vison sectors.
The full density of state is expected to be captured up to an
energy of order 5-7 roughly, above which other excitations not
included here are expected to contribute.

within each sector reveals fractionalized continua, indica-
tive of multiple-spinon excitations.
Spin dynamics – Spin excited states σγ

s |ψ(A)⟩ on the
s-site can be also labeled by the surrounding vison config-
urations w1,2,3,4 since the flux operator Ŵp commutes or
anti-commutes with local operators. Examining the pla-
quettes in Eq.(2), when σx is applied on the site 2, 3, 5,

or 6, we have σx
s Ŵpσ

x
s = −Ŵp; when σ

x acts on the site

1 or 4, we have σx
s Ŵpσ

x
s = Ŵp. Consequently, the spin

excited state σx
s |ψ(A)⟩ introduces a vison in each of the

two plaquettes containing the bond along the x-direction,
adjacent to the s-site [8, 9]. Similar outcomes apply for
σy
s |ψ(A)⟩ and σz

s |ψ(A)⟩, leading to the following

(w1, w2, w3, w4) =



(+1,−1,−1,+1), σx
αi
|ψ(A)⟩

(+1,−1,−1,+1), σx
βi
|ψ(A)⟩

(+1,−1,+1,−1), σy
αi
|ψ(A)⟩

(−1,+1,−1,+1), σy
βi
|ψ(A)⟩

(+1,+1,−1,−1), σz
αi
|ψ(A)⟩

(−1,−1,+1,+1), σz
βi
|ψ(A)⟩

. (5)

The dynamical spin correlation function is defined as

Sγγ
ij (t) = ⟨ψ(A)|σγ

j (t)σ
γ
i |ψ(A)⟩, (6)

from which we obtain the spin dynamics

S(q, ω) =
∑
mγ

|⟨Bm
q |Sγ

q⟩|2δ(ω − (λmq − λ0)). (7)

Figure 3 presents the numerical results on the spin
dynamics S(q, ω) for different ground state PEPSs.
Fig. 3(a) displays S(0, ω) for the optimized PEPS with
D = 4 in which the peak around ω = 0.5J corresponds
to the 2-vison-related excitations.
The spin excited states belong to the 2-vison sector.

Vison excitations, static and conserved over time, ad-
here to the gauge symmetry, leading to an ultra-short
spin correlation with a strictly vanishing of correlations
beyond nearest neighbors [8, 9]. This ultra-short corre-
lation manifests in flat momentum-resolved spin dynam-
ics, providing a crucial validation for our numerical find-
ings. Faithfully capturing the gauge structure in both the
ground-state and excited PEPS, as exemplified by the an-
alytical loop-gas wave function in Fig. 3 (b) and (c) and
the optimized wave function with D = 4 in Fig. 3(f), the
observed flat pattern in spin dynamics signifies an excep-
tionally weak dependence on momentum. In contrast,
the gauge structure is entirely lost in the optimized wave
function with D = 2, resulting in dispersive spin dynam-
ics in Fig. 3 (d). It is noteworthy that despite the loop-
gas wave function with D = 2 providing a less accurate
variational ground state, it accurately captures the gauge
structure, ensuring a correct representation of short spin
correlation physics in Fig. 3 (b) (see Appendix B for fur-
ther details for the gauge structure of excited state based
on the loop-gas PEPS.)
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FIG. 3. Computed spin dynamics with a Lorentzian broadening σ = 0.1J . (a) Zero momentum dynamics for optimized PEPS
with D = 4. The first Brillouin zone and the momentum path for the spectral function are shown in the inset. Momentum-
resolved spin dynamics for loop-gas PEPS with D = 2 in (b) and D = 4 in (c), optimized PEPS with D = 2 in (d), D = 3 in
(e), and D = 4 in (f).
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FIG. 4. Computed spin dimer dynamics with a Lorentzian broadening σ = 0.2J for an optimized PEPS with D = 4; (a)
Kxx(0, ω) and Kyy(0, ω) (Kzz(0, ω)); (b) color plot of Kxx(q, ω); (c) color plot of Kyy(q, ω) (Kzz(q, ω)).

Spin-dimer dynamics – From Eq.(5), we can easily
show the following for the dimer excited states

(w1, w2, w3, w4) =


(+1,+1,+1,+1), Kx

i |ψ(A)⟩
(−1,−1,−1,−1), Ky

i |ψ(A)⟩
(−1,−1,−1,−1), Kz

i |ψ(A)⟩
, (8)

with Kγ
i = σγ

αi
σγ
βi

and i refers to an x-bond. There-

fore, Kx
i |ψ(A)⟩ belongs to the 0-vison sector, whereas

Ky
i |ψ(A)⟩ and Kz

i |ψ(A)⟩ reside in the 4-vison sector [10].
These distinct vison sectors result in markedly different
spin-dimer correlations which are defined as

Kγγ
ij (t) = ⟨ψ(A)|Kγ

j (t)Kγ
i |ψ(A)⟩, (9)

from which we have the spin-dimer dynamical structural
factor

Kγγ(q, ω) =
∑
m

|⟨Bm
q |Kγ

q⟩|2δ(ω − (λmq − λ0)). (10)

Figure 4 presents the spin-dimer dynamics for the op-
timized PEPS with D = 4. The zero-momentum spin-
dimer dynamics K(0, ω), which is potentially probed in
the Raman scattering measurements [13–17], displays a
4-vison peak around 0.5J in Kyy and Kzz, as shown in
Fig. 4(a). The momentum-dependent spin-dimer dynam-
ics, potentially measurable in RXIS experiments [18, 19],
are depicted in Fig. 4(b)-(c). Remarkably, the spin-
dimer dynamics Kxx(q, ω) depicted in Fig.4(b) displays a
dispersive fractional continuum in the zero-vison sector
spanning the entire Brillouin zone. This characteristic
feature is in agreement with the model Eq. (1) being gap-
less [4], and provides a distinctive signature of spinon-pair
excitations, particularly relevant for interpreting RIXS
measurements. In contrast, the selection rule imposed by
vison conservation – all excitations created by Ky

i and Kz
i

belong to the 4-vison sector – results in a flat momentum-
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resolved dynamics (Kyy(q, ω) and Kzz(q, ω)), as seen in
Fig.4(c)[50]. The distinctive momentum dependences of
the spin-dimer dynamics highlight the primordial role of
the gauge structure in the optimized PEPS with D = 4.
Conclusion – In conclusion, our investigation has

delved into the intricate gauge structure of projected
entangled pair state (PEPS) simulations, extending our
scrutiny beyond the ground state to low-lying excited
states within the Kitaev honeycomb model. Impor-
tantly, we have demonstrated that gauge symmetry is
not maintained solely in the unbiased optimized ground
state achieved through variational optimization; rather,
it seamlessly extends to excited states constructed by the
PEPS adaptive local mode approximation method. Fur-
thermore, our simulations of low-energy dynamics in spin
and spin-dimer correlations establish connections with
experimental observations such as INS and light scat-
tering (Raman and RIXS) experiments. The selection
rule imposed by locally conserved vison flux yields flat
momentum-resolved dynamics if the excited states con-
tain vison excitations.

This study underscores the efficacy of employing PEPS
to explore gauge symmetry and fractionalized excitations
within topologically ordered states, presenting a robust
framework for further investigations in the realm of quan-
tum many-body systems. For general topologically or-
dered states, although there is no associated local con-
served quantity the same as vortex operator in the Kitaev
spin liquid, we can still identify the emergent internal
gauge symmetry. Utilizing the gauge flux generated by
this symmetry, analogous to the role of Ŵp in the Kitaev
model, we can extend our method to explore gauge sym-
metries of the excited states in these topological phases.

ACKNOWLEDGMENTS

This work is supported by the National Key Re-
search and Development Program of China (Grant
No. 2021YFA1400400), Shenzhen Fundamental Re-
search Program (Grant No. JCYJ20220818100405013),
the Guangdong Innovative and Entrepreneurial Re-
search Team Program (Grants No. 2017ZT07C062),
Shenzhen Key Laboratory of Advanced Quan-
tum Functional Materials and Devices (Grant No.
ZDSYS20190902092905285), Guangdong Basic and
Applied Basic Research Foundation (Grant No.
2020B1515120100). J.-Y.C. was supported by Open
Research Fund Program of the State Key Labora-
tory of Low-Dimensional Quantum Physics (project
No. KF202207), Fundamental Research Funds for the
Central Universities, Sun Yat-sen University (project
No. 23qnpy60), a startup fund from Sun Yat-sen
University, the Innovation Program for Quantum
Science and Technology 2021ZD0302100, Guangzhou
Basic and Applied Basic Research Foundation (grant
No. 2024A04J4264), and National Natural Science
Foundation of China (NSFC) (grant No. 12304186).

Part of the calculations reported were performed on
resources provided by the Guangdong Provincial Key
Laboratory of Magnetoelectric Physics and Devices,
No. 2022B1212010008. This work was also supported by
the TNTOP ANR-18-CE30-0026-01 grant awarded by
the French Research Council.

Appendix A: Vison excitation under different
boundary conditions

The vison excitations depend on the boundary condi-
tions through the selection of initial boundary tensors,
as shown in Fig. 5(a-b) in our infinite PEPS simulation.
Odd-vison excitations are only allowed when the initial
boundary tensors are chosen as depicted in Fig. 5(a),
while they are not permitted in Fig. 5(b). In the latter
case, the odd-vison will have exactly zero norm, thereby
prohibiting the existence of odd-vison states. Addition-
ally, for periodic boundary conditions, our exact contrac-
tion evaluation on a 3 × 4 torus in Fig. 5(c) indicates
existence only of even-vison states. The allowed odd-
vison excitations in the boundary conditions of Fig. 5(a)
is likely due to vison condensation on the boundary[51],
which needs further investigations.

T=
a1
a2

C
a

b

T=E

T=
c=1

d=1

a

b

C
a

b

T=
c=1

E

T

(a) (b) (c)

FIG. 5. Tensor network evaluation under the different bound-
ary conditions. (a-b) Open boundary condition in CTMRG.
The initial boundary tensors are chosen as: transfer matrices
of the trace of the redundant bond (

∑
x Txxab) in (a), and

transfer matrices of the first index of the redundant bond
(T11ab) in (b). (c) Periodical boundary condition in a 3 × 4
torus, where each tensor includes a unit cell of the honeycomb
lattice.

Appendix B: Gauge structure of excited states for
the loop-gas PEPS

In this section, we interpret our result in terms of the
analytical loop-gas PEPS for the Kitaev spin liquid [28],
in which the gauge symmetry is explicitly incorporated.
In an effort to preserve the symmetries of the Kitaev

spin liquid ground state, a straightforward naive trial
wave function for the Kitaev model is the GHZ state
along the (111)-direction

|GHZ⟩ =
⊗
i

|(111)⟩i +
⊗
i

|(−1− 1− 1)⟩i. (B1)

When we rotate the (111)-direction into the z̃-axis in the
rotated axis, where the spin indices are rotated as |s̃⟩ =
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S|s⟩ with S = exp
(
−iπ8σz

)
exp

(
−i θ2σy

)
(cos θ = 1√

3
),

it becomes straightforward to write down the non-zero

elements of the local tensor for the GHZ state T s̃=↑
111 =

T s̃=↓
222 (2, 2, 2) = 1. We obtain the local tensor for the

(111)-GHZ as T s
abc =

∑
s̃ Sss̃T

s̃
abc by applying the spin-

rotation operator S.
The (111)-GHZ state not only exhibits inadequate

variational energy but also lacks the crucial property of
being an eigenstate of the vortex operator Wp, a charac-
teristics essential for maintaining the vortex-free nature
of the Kitaev spin-liquid ground state. To address the
vortex-related challenge, Lee et al. introduced the loop
gas operator Q̂LG layer atop the GHZ state with the local
tensor

1
1

1

= 12 1
2

2
= σx

2
1

2
= σy 1

2

2
= σz

, (B2)

which preserves the symmetries of the Kitaev model, and
additionally possesses the Z2 gauge structure

= σz

σz

σz
, (B3)

=
σ̃y

σ̃y

σx

= σ̃y

σ̃y

σy

= σ̃y

σ̃y
σz

, (B4)

with σ̃y = (σx−σy)/
√
2 and satisfying the following eigen

equations

=

σ̃y

=

,

σz
= σ̃y

=− σz

, (B5)

where denotes the vortex operator Wp. The loop

gas operator Q̂LG enriches the gauge symmetry of the
GHZ state. When applied to the GHZ state, it yields the
gauged GHZ state as the loop-gas PEPS

|GHZ⟩g = Q̂LG|GHZ⟩, (B6)

with the local tensor a1

b1

c1

a2

b2

c2

s

, which can be readily

demonstrated to manifest a vortex-free character accord-
ing to the eigen equations in Eq.(B5).
Numerically verifying the ground state of the loop-gas

PEPS, we confirm its vortex-free nature with wp = 1.
Additionally, we examine the excited states with local
impurity tensors, finding that they exhibit wp = ±1 for
p = 1, 2, 3, 4. Specifically, for the D = 2 loop-gas PEPS,
where the GHZ state is replaced by the product state⊗

i |(111)⟩i, our numerical check involves both CTMRG
contraction on an infinite lattice and exact contraction on
a small 3×4 unit cluster. In the case of the torus-shaped
cluster with periodic boundary conditions, excited states
in the odd (1 and 3) vison sectors display zero norm.
Conversely, for the cluster with open boundary condi-
tions, excited states in the odd (1 and 3) vison sectors
exhibit non-zero norm.
The local impurity tensors for the spin-excited states

are

|Sx
i ⟩ =

σx

= =

σx

σz

,

|Sy
i ⟩ =

σy

= =

σy

σz

, (B7)

|Sz
i ⟩ =

σz

= =

σz

σz ,

and those for the spin-dimer excited states are

|Kx
i ⟩ =

σx σx

= =

σx σx

,

|Ky
i ⟩ =

σy σy

= =

σy σy

σz

σz
, (B8)

|Kz
i ⟩ =

σz σz

= =

σz σz

σz

σz
.

From the eigen equations in Eq.(B5) for the loop opera-

tor, we notice that each σz on the virtual bond of Q̂LG

(the blue layer in Eqs.(B7) and (B8)) introduces two-
visons excitations associated with the bond. Thus we
are ready to show that the spin and spin-dimer excited
states are the eigen-states of the vortex operator

Wp|Ei⟩ =


+|Ei⟩, p /∈ i

−|Ei⟩, p ∈ i

, (B9)
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where p ∈ i represents the vison excitation for the vortex
operator Wp. The spin-excited states |Sα

i ⟩ introduce two
visons associated with the bond along α-direction joint

with the i-site. While the spin-dimer excited state |Kx
i ⟩

does not induce any vortex in the vicinity of the impurity
tensor, |Ky

i ⟩ and |Kz
i ⟩ harbor four visons.
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