
Urban Region Representation Learning with
Attentive Fusion

Fengze Sun1, Jianzhong Qi1†, Yanchuan Chang1, Xiaoliang Fan2, Shanika Karunasekera1, Egemen Tanin1

1The University of Melbourne, 2Xiamen University
{fengzes@student., jianzhong.qi@, yanchuanc@student., karus@, etanin@}unimelb.edu.au, fanxiaoliang@xmu.edu.cn

Abstract—An increasing number of related urban data sources
have brought forth novel opportunities for learning urban region
representations, i.e., embeddings. The embeddings describe latent
features of urban regions and enable discovering similar regions
for urban planning applications. Existing methods learn an
embedding for a region using every different type of region
feature data, and subsequently fuse all learned embeddings of
a region to generate a unified region embedding. However, these
studies often overlook the significance of the fusion process.
The typical fusion methods rely on simple aggregation, such as
summation and concatenation, thereby disregarding correlations
within the fused region embeddings.

To address this limitation, we propose a novel model named
HAFusion 1. Our model is powered by a dual-feature attentive
fusion module named DAFusion, which fuses embeddings from
different region features to learn higher-order correlations be-
tween the regions as well as between the different types of region
features. DAFusion is generic – it can be integrated into existing
models to enhance their fusion process. Further, motivated by
the effective fusion capability of an attentive module, we propose
a hybrid attentive feature learning module named HALearning
to enhance the embedding learning from each individual type
of region features. Extensive experiments on three real-world
datasets demonstrate that our model HAFusion outperforms
state-of-the-art models across three different prediction tasks.
Using our learned region embeddings leads to consistent and up
to 31% improvements in the prediction accuracy.

Index Terms—Region representation learning, self-attention,
spatial data mining

I. INTRODUCTION

Urban region representation learning has recently gained
much attention in the field of urban data management [1]–
[6], which transforms urban regions into vector representations
called embeddings. These embeddings yield the correlation
of regional functionalities and valuable insights into urban
structures and properties. They are valuable in developing
innovative solutions to critical urban issues and common
problems in daily life [7]–[9]. For example, if the manager
of a well-run restaurant in a particular region is considering
expanding to new locations, utilizing region embeddings can
assist in identifying the most comparable regions for this new
venture. As the volume of urban data sources continues to
grow, it is essential to develop effective methods for region
representation learning from rich urban data.

Recently, a rising number of studies [10]–[19] focus on
learning region representations by comparing region correla-

1Code and datasets released at https://github.com/MiRuacle24/HAFusion
† Corresponding author.

Simple Aggregation

Mobility Features POI Features

Our Method
Mobility Features POI Features

Self-adaptive Aggregation

Region Embeddings

Existing Methods

Region Embeddings

Fig. 1: Multi-view fusion region representation learning (each
dot denotes a region). Left: existing methods; Right: ours.

tions from multiple types of region features that describe the
same regions (e.g., human mobility and POI features). Each
type of region features is referred to as a view, i.e., it depicts
the region from a distinct view. For example, two regions may
share a similar functionality if they both feature huge human
mobility and a large number of entertainment venues.

As Fig. 1 (left sub-figure) shows, existing studies [10]–
[12], [14] primarily adhere to the following process. Initially,
they construct multiple region-based graphs based on distinct
views, collectively referred to as multi-view graphs. Subse-
quently, a view-based embedding is generated from each indi-
vidual view graph by capturing information of the same region
within a single view and across multiple views. Following this,
the view-based embeddings are fused to generate a cohesive
and unified region embedding.

There are two limitations with the existing studies.
Limitation 1. Existing studies overlook higher-order

correlations between regions in the fused embeddings. They
often emphasize the generation of more effective view-based
embeddings from individual views, neglecting the fusion pro-
cess. The typical fusion methods leverage simple aggregation,
such as summation and concatenation, to fuse multiple view-
based embeddings. They overlook higher-order correlations
between regions in the fused embeddings, while regions are
implicitly interconnected through various types of correlations.

Limitation 2. Existing studies do not consider the corre-
lations of different regions in different views. Existing meth-
ods [10], [14] typically learn region correlations in the view-

ar
X

iv
:2

31
2.

04
60

6v
2

 [
cs

.L
G

]
 2

6
A

pr
 2

02
4

https://github.com/MiRuacle24/HAFusion

based embedding learning process. As Fig. 1 (left sub-figure)
shows, they consider the correlations of different regions in
each individual view, and those of the same region in different
views (denoted by the blue curves connecting the same region
in different views). They do not consider the correlations of
different regions in different views.

To address these limitations, we propose a novel model
named HAFusion (Fig. 1, right sub-figure), which consists of a
dual-feature attentive fusion (DAFusion) module and a hybrid
attentive feature learning (HALearning) module.

DAFusion (Section IV-B) has two sub-modules: a view-
aware attentive fusion module (ViewFusion) and a region-
aware attentive fusion module (RegionFusion). ViewFu-
sion aggregates view-based embeddings from multiple views
into one, through the attention mechanism. RegionFusion fur-
ther captures higher-order correlations between regions from
the embeddings that have aggregated information from multi-
ple views, through a self-attention mechanism. By introducing
RegionFusion, we can propagate information in the fused
region embeddings to encode more comprehensive region
correlation information into the final region embeddings. It
is important to note that our DAFusion module is generic – it
can be integrated with existing models to enhance their fusion
process, as shown by our experiments (Section VI-C).

HALearning (Section V) focuses on enhancing the view-
based embedding learning process. It captures region corre-
lations in individual views and across views, for both the
same region and different regions (denoted by the red curves
connecting different regions in different views in the right sub-
figure of Fig. 1), with intra-view attentive feature learning (In-
traAFL) and inter-view attentive feature learning (InterAFL)
modules based on adapted self-attention mechanisms.

To summarize, this paper makes the following contributions:
(1) We propose an effective learning model named HAFu-

sion for region representation learning over multiple types of
features for the same region.

(2) For effective learning, we propose two modules: (i) The
hybrid attentive feature learning module computes view-based
embeddings that capture region correlations from both indi-
vidual views and across different views, for both the same
region and different regions. (ii) The dual-feature attentive
fusion module fuses the view-based embeddings and further
learns higher-order region correlations from the embeddings
that have aggregated information from different views.

(3) We develop two additional datasets to assess the gener-
alizability of urban region representation learning models.

(4) We conduct extensive experiments to evaluate HAFu-
sion on three real-world datasets. The results demonstrate
that HAFusion produces embeddings that yield consistent
improvements in the accuracy of downstream urban prediction
tasks (crime, check-in, and service call predictions), with an
advantage of up to 31% over the state-of-the-art.

II. RELATED WORK

Single-view region representation learning. We catego-
rize the single-view region representation learning models by

the type of region features considered.
Human mobility feature-based. ZE-Mob [20] calculates the

point-wise mutual information (PMI) between regions by
measuring the co-occurrences of regions in the same trip (i.e.,
as source and destination regions). It learns region embeddings
whose dot products approach the PMI values. CDAE [21]
utilizes human mobility features between POIs to construct
a graph in a region. It uses a collective deep auto-encoder
model to learn the POI embeddings over the graph, which are
aggregated (i.e., weighted sum) as the region embedding.

MGFN [22] constructs multiple mobility graphs, each with
trip counts recorded at a different hour. Despite constructing
multiple graphs, they are all based on a single type of features.
It is thus considered as a single-view approach. After that, it
clusters the graphs into seven groups according to their time-
weighted “distances,” which are defined based on aggregations
(e.g., sum) of the edge weights of each graph. All mobility
graphs of the same group form a mobility pattern graph. Each
mobility pattern graph is then treated as a view, and MGFN
learns intra-view and inter-view correlations using vanilla self-
attention on these graphs to generate region embeddings.

POI feature-based. HGI [23] mainly leverage POI features
to learn region embeddings. It generates embeddings at three
hierarchical levels: POI, region (aggregation of POI embed-
dings), and city (aggregation of region embeddings) levels.
It uses a GNN to compute the POI embeddings, which are
aggregated to initialize the region embeddings. Another GNN
is then used to refine and produce the final region embeddings.

Others. RegionDCL [24] uses building footprints. It parti-
tions the buildings in a region into non-overlapping groups
using the road network. The footprint of each building (i.e., an
image) is used to compute an embedding with a convolutional
neural network (CNN). The building footprint embeddings of
a group are aggregated (average) to initialize the embedding of
the group. A contrastive learning layer [25] is applied to refine
the building group embeddings. The mean of the embeddings
of all building groups in a region is the final region embedding.
Tile2Vec [26], on the other hand, applies a CNN to learn region
embeddings from satellite images directly.

The works above (including our own recent work [27])
except for MGFN use single views and do not require multi-
view fusion, which differs from our model structure. MGFN
constructs multiple views from a single type of input features
and thus requires multi-view fusion. Our model HAFusion also
uses self-attention like MGFN does. However, we adapt the
self-attention mechanism such that the correlation coefficients
learned are explicitly (rather than implicitly as done in MGFN)
encoded into the region embeddings learned from each view.
Further, we learn the correlation between different regions in
different views, instead of just the same region in different
views as done in MGFN. Thus, we achieve more effective
learning outcomes as shown in Section VI.

Multi-view region representation learning Multi-view
region representation learning models [10]–[19] incorporate
different types (i.e., views) of region features. Studies [28]–
[31] have shown that multi-view learning-based models lead to

embeddings of a higher quality – they yield higher accuracy on
downstream (prediction) tasks. We review these studies based
on their view encoders.

Multi-layer perceptron (MLP)-based. Methods in this cat-
egory include HDGE [32], MP-VN [11], CGAL [12] and
ReMVC [15]. HDGE creates two graphs based on human mo-
bility and the spatial similarity between regions, respectively,
where regions are the vertices. The human mobility graph uses
the trip count from one region to another (recorded over some
period) as an edge weight, and the spatial similarity graph
uses the inverse of region distance. HDGE then runs random
walks on the two graphs to generate sequences of vertices and
applies word2vec [33] to learn region embeddings.

MP-VN utilizes spatial distance features and human mobil-
ity features (i.e., two views) between POIs to construct two
graphs in a region, thereby forming a multi-view solution.
POI embeddings on each graph are randomly initialized and
updated with probabilistic propagation-based aggregation [34].
The POI embeddings from both graphs are concatenated into
a vector to initialize the region embedding. Then, MP-VN
uses an MLP-based autoencoder to learn the latent region
embedding. CGAL further introduces two adversarial modules
into the autoencoder, which bring in constraints on the learned
embeddings, e.g., the cosine similarities of region embeddings
should match the region similarity calculated by POI distribu-
tions in the regions.

ReMVC is based on self-supervised contrastive learning. It
uses an MLP-based encoder to transform region features (e.g.,
count of POIs in different POI categories) into a latent embed-
ding. Then, it performs contrastive learning on embeddings of
the same view, as well as embeddings of different views (for
the same region). The embeddings of the same region from
different views are concatenated as the final region embedding.

GNN-based. GNN-based models [10], [13], [14], [16] repre-
sent regions and their correlations with a graph. For example,
DLCL [13] applies a graph convolutional network (GCN) [35]
on top of the region embeddings learned from CGAL, to
further learn the correlations between the regions.

MVURE [10] also treats regions as vertices. It constructs
four graphs using human mobility (source and destination),
POI category vector similarity, and POI check-in vector sim-
ilarity for the edges. It then uses graph attention networks
(GAT) [36] to learn embeddings. The final region embeddings
are weighted sums of the embeddings from the graphs.

HREP [14] enhances MVURE by replacing the GATs with a
relation-aware GCN to learn different relation-specific region
embeddings on each graph. Given a downstream task (e.g.,
crime count prediction), HREP further attaches a task-specific
prefix (i.e., a prompt) to the front of each region embedding,
which is fine-tuned (i.e., prompt learning) for the task.

HUGAT [16] constructs a heterogeneous spatio-temporal
graph where the vertices include regions, POIs, and time slots.
Then, it leverages a heterogeneous GAT [37] to learn region
embeddings on the graph.

Multi-modal-based. Multi-modal-based models [17]–[19]
combine numerical features and visual features (e.g., street

view images). RegionEncoder [17] uses a GCN and a CNN
to jointly learn region embeddings from POIs category count
vectors, trip counts, region adjacency data, and satellite im-
ages. Urban2Vec [18] and M3G [19] use the triplet loss [38]
(similar to contrastive learning) to learn region embeddings
from street view images and POI textual descriptions.

Discussion. After embeddings are computed from each
view, existing models use simple aggregations, e.g., summa-
tion or concatenation, to fuse these embeddings and generate
the final region embeddings. In contrast, we propose a self-
adaptive fusion module that learns higher-order correlations
between the regions as well as between the different types
of region features, thus obtaining region embeddings that are
more effective for downstream (prediction) tasks.

III. PRELIMINARIES

We start with a few basic concepts and a problem statement.
Frequently used symbols are listed in Table I.

TABLE I: Frequently Used Symbols

Symbol Description

R A set of regions (non-overlapping space partitions)

Xj (M,P,L) Region feature matrices

Z View-based region embedding matrix

Z̃ Region embedding matrix after ViewFusion

H Final model output region embedding matrix

Region. Regions R refer to a set of non-overlapping space
partitions within a designated area of interest, acquired through
a certain partition method (e.g., by census tracts). We consider
three types of features for each region to compute their
representations as follows.

Human mobility features. Given a set R of n regions, we
define a human mobility matrix M with a set of human flow
records between regions, where mi,j ∈ M denotes the number
of people moving from region ri to region rj (ri, rj ∈ R) in
an observed period of time (e.g., a month or a year as in
our experimental datasets, which is orthogonal to our problem
definition). We further use mi to denote the vector of outflow
records from ri , i.e., mi = [mi,1,mi,2, . . . ,mi,n]. We call it
the human mobility feature vector of ri.

POI features. Given a region ri ∈ R, we collect all POIs
in ri from OpenStreetMap [39] and extract the POI categories.
We consider 26 categories (e.g., restaurants, schools, etc.)
following a previous study [27] and count the number of POIs
in each category, resulting in a 26-dimensional POI feature
vector pi. Such vectors of all n regions form a POI matrix P.

Land use features. The land use features share a similar
setup with the POI features. Given a region ri, we count
the number of zones in ri that fall into different zone cat-
egories, e.g., industrial zones, residential zones, or transporta-
tion zones. These counts together form the land use feature
vector li of ri. The land use feature vectors of all n regions
form a land use matrix L.

Human mobility and POI features have been commonly
used in urban region representation learning [10]–[12], [14],
[17], while we are the first to introduce land use features

View-based Embedding
Learning

View-based Embeddings

Embedding Fusion
Region

Embeddings

IntraAFL

RegionFusion

InterAFL

N

d

Region Embeddings

ViewFusion D
ual-feature A

ttentive Fusion M
odule

Region Features

H
yb

ri
d

A
tt

en
tiv

e
Fe

at
ur

e
L

ea
rn

in
g

M
od

ul
e

Fig. 2: HAFusion model overview. The model takes region feature matrices X1,X2, . . . ,Xv (called views) as input and
computes region embeddings with two main modules: (1) The hybrid attentive feature learning module computes view-based
embeddings (Z1,Z2, . . . ,Zv) for each input view. (2) The dual-feature attentive fusion module further fuses the view-based
embeddings at both the view and region perspective to generate the final region embeddings H.

into the problem. Compared with the POI features, the land
use features are coarser-grained, which could yield a clearer
overall picture about the most distinctive functionalities of
a region. Land use data is often available in the open data
repositories of different cities [40]–[42].

Problem statement. Given a set R of regions and v (v > 1)
feature matrices X1,X2, . . . ,Xv of the regions, we aim to
learn a function f : (ri,x

1
i ,x

2
i , . . . ,x

v
i) → hi that maps a

region ri ∈ R, described by its features xj ∈ Xj (j ∈ [1, v]) ,
to a d-dimensional vector hi ∈ H, where d is a small constant.

The learned region representation (i.e., hi) is expected to
preserve characteristics of the region and can be applied to a
wide range of downstream tasks, e.g., crime count predictions.

Here, the human mobility, POI, and land use matrices M,
P, and L serve as the three feature matrices X1, X2, and X3

in our model implementation. For generality of discussion, we
will use Xj to refer to an input region feature matrix.

IV. PROPOSED MODEL

This section presents our proposed model HAFusion. We
first provide an overview of the model (Section IV-A). Then,
we detail its core component, the dual-feature attentive fu-
sion module (Section IV-B) Finally, we present the training
objective of our model (Section IV-C).

A. Model Overview

Fig. 2 shows the overall architecture of HAFusion. The
model takes as input a set R of regions as represented by
their feature matrices X1,X2, . . . ,Xv . We call each feature
matrix a view as it corresponds to a different type of features.
The views are first fed into a feature learning module to

learn view-based region embeddings on each view. Any feature
learning model can be applied, e.g., a GNN as done in the
literature [10], [14]. We propose a hybrid attentive feature
learning module (HALearning) for the task (Section V).

The view-based region embedding matrices, denoted by
Z1,Z2, . . . ,Zv , are then fed into our dual-feature attentive
fusion (DAFusion) module to generate the final region embed-
dings H. DAFusion fuses (1) embeddings of the same region
from different views and (2) embeddings of different regions
(hence “dual fusion”). It captures the correlation and dissimi-
larity between the regions. The generated region embeddings
can be used in various downstream tasks, e.g., crime count
and check-in predictions as shown in our experimental study.

It is important to note that our model HAFusion offers a
generic framework to learn region embeddings with multiple
(not necessarily our three) input features. As will be shown
in our experiments (Section VI-C), our DAFusion module can
be easily integrated into existing models [10], [14], [22] and
enhance their fusion process, resulting in region embeddings
of higher effectiveness for downstream prediction tasks.
B. Dual-Feature Attentive Fusion

As Fig. 3 shows, DAFusion has two sub-modules: view-
aware attentive fusion (ViewFusion) and region-aware at-
tentive fusion (RegionFusion). ViewFusion fuses the view-
based embeddings of the same region from different views
into one embedding; RegionFusion further fuses the resulting
embeddings of different regions to learn their higher-order
correlations and derive the final embedding of each region.

View-aware attentive fusion. ViewFusion leverages the
attention mechanism to learn fusion weights that indicate the

ViewFusion

RegionFusion

Layer Transformation

LeckyReLU

SUM (View-dimension)

AVG (Region-dimension)

MLP

Add & LN

Add & LN

Self-Attention

Softmax

Softmax

Scale

Fig. 3: Dual-feature attentive fusion. (1) DAFusion (upper
left); (2) ViewFusion (lower left); (3) RegionFusion (right).

relative importance of the views to aggregate the view-based
embeddings {Z1,Z2, ...,Zv}. It first computes correlation
scores between different views by adopting a simplified self-
attention [36] as follows:

ajki = LeakyReLU
(
a⊺(WF z

j
i ||WF z

k
i)
)
, (1)

where ajki is the correlation score between the j-th and the
k-th views of the region ri, a ∈ R2d′

and WF ∈ Rd′×d are
learnable parameters (Linear Transformation in Fig. 3), d′ is
the dimensionality of the latent representation (d′ = 64 in the
experiments), ‘||’ denotes concatenation, and LeakyReLU is
an activation function.

Then, we aggregate the correlation scores along the views
and the regions to obtain an overall weight for each view, and
then we apply a Softmax function to obtain the normalized
fusion weight αj (j ∈ [1, v]) of each view.

αj = Softmax(
1

n

n∑
i=1

v∑
k=1

ajki), (2)

We use the fusion weights to fuse the view-based embed-
dings into a single embedding matrix, denoted as Z̃ ∈ Rn×d:

Z̃ =

v∑
j=1

αj · Zj (3)

Region-aware attentive fusion. RegionFusion further ap-
plies self-attention [43] on the embeddings Z̃ learned by
ViewFusion, to encode the higher order correlations among
the learned region embeddings.

As Fig. 3 shows, the embeddings Z̃ are first fed into a self-
attention module, which applies linear transformations to Z̃
to form three projected matrices in latent spaces, i.e., a query
matrix Q ∈ Rn×d = WQZ̃, a key matrix K ∈ Rn×d =

WKZ̃, and a value matrix V ∈ Rn×d = WV Z̃. Here, WQ,

WK , and WV are learned parameter matrices of the linear
transformations and are all in Rd×d. Multi-head attention [43]
is applied here to enhance the model learning capacity, while
its details are omitted as it is a direct adoption.

Next, we compute attention coefficients between regions:

Arf = Softmax
(Q ·K⊺

√
d

)
, (4)

where
√
d is a scaling factor and Arf ∈ Rn×n is a coefficient

matrix that records the correlation between every two regions.
After that, we compute hidden representations of the regions

based on the attention coefficients Arf :

Ẑ = Arf ·V. (5)

The output of the self-attention module Ẑ is added with
the input embeddings Z̃ (through a residual connection) and
then goes through a layer normalization (LN) with dropout
(to alleviate issues of exploding and vanishing gradients).
Subsequently, a multi-layer perceptron (MLP) and another
layer normalization (again with a residual connection) are
applied to enhance the model learning capacity as follows:

Ẑ′ = LayerNorm(Z̃+Dropout(Ẑ)), (6)

H = LayerNorm(Ẑ′ +Dropout(MLP(Ẑ′))). (7)

Here, Ẑ′ is the output of the first layer normalization, and H
is the output region embeddings.

We stack multiple layers of the structure above, and the
output of the final layer is our learned region embeddings H.

C. Model Training

We present a multi-task learning objective L with v
sub-objective functions L1,L2, . . . ,Lv to guide our model
HAFusion to learn generic and robust region representations:
L = L1 + L2 + . . . + Lv . Here, each sub-objective function
Lj (j ∈ [1, v]) focuses on learning from an input feature.

Given that there are no external supervision signals (e.g.,
region class labels), we use the similarity between the regions
as computed by their input feature vectors to guide model
training. To compute Lj , we use an MLP (i.e., a linear layer
and a ReLU activation function) to map the region embedding
matrix (H) to an input-feature-oriented region embedding
matrix (H)j , i.e., Hj = MLP(H). Then,

Lj =
1

n

1

n

n∑
i=1

n∑
k=1

∣∣∣cos(xj
i ,x

j
k)− hj

i · h
j
k

∣∣∣ (8)

Here, xj
i and xj

k are feature vectors of regions ri and rk of the
j-th input feature, and cos(·) computes their cosine similarity.
Vectors hj

i and hj
k from Hj are the learned embeddings of

ri and rk mapped towards the j-th feature, and their dot
product represents the region similarity in the embedding
space. The intuition is that the learned embeddings should
reflect the region similarity as entailed by the input features.
We note that the cosine similarity of hj

i and hj
k can be used

in Equation 8 instead of the dot product. Empirically, we
find that both approaches produce embeddings that yield very
similar accuracy in downstream tasks, while using the cosine

similarity takes more time in embedding learning. Thus, we
have used the dot product instead.

The loss function above is generic and can be applied to
input features without requiring further domain knowledge.
We use it for the POI and land use features. For the hu-
man mobility features, they entail both the source and the
destination distribution patterns of human mobility. While the
sub-objective function above also works, we follow previous
studies [10], [14], [22] and use a KL-divergence based sub-
objective function described below.

Mobility distribution loss. Using the human mobility
feature matrix M (cf. Section III). We compute two transition
probabilities for movements from region ri to region rk:

ps(rk|ri) =
mi,k∑n
l=1 mi,l

, pd(rk|ri) =
mi,k∑n
l=1 ml,k

(9)

Here, ps(·) denotes how likely people move to region rk
when they move out from region ri, and pd(·) denotes how
likely people come from ri when they move into rk.

To enable computing the KL-divergence loss, we need such
probability values from the learned embeddings. We map H
into a source feature-oriented matrix HS and a destination
feature-oriented HD (each with an MLP like above). We
compute two transition probabilities with these matrices:

p̂s(rk|ri) =
exp(hS

i · hD
k)∑n

l=1 exp(h
S
i · hD

l)
(10)

p̂d(rk|ri) =
exp(hS

i · hD
k)∑n

l=1 exp(h
S
l · hD

k)
(11)

Here, hS
i ∈ HS and hD

k ∈ HD correspond to regions ri and
rk, respectively. The KL divergence loss is then computed:

LM =

n∑
i=1

n∑
k=1

(
− ps(rk|ri) log(p̂s(rk|ri))

− pd(rk|ri) log(p̂d(rk|ri))
)
.

(12)

V. HYBRID ATTENTIVE FEATURE LEARNING

Motivated by the strong learning performance of our
attention-based fusion module, we further propose an
attention-based embedding learning module for the view-based
embedding learning process, i.e., the hybrid attentive feature
learning (HALearning) module, as mentioned in Section IV-A.

HALearning consists of an intra-view attentive feature
learning (IntraAFL) module and an inter-view attentive feature
learning (InterAFL) module. IntraAFL encodes region corre-
lation entailed in the input features of each single view, while
InterAFL further captures region correlation across views.

Intra-view attentive feature learning. Fig. 4 shows the
structure of the IntraAFL module, which is also based on
the Transformer encoder [43] structure like the RegionFusion
module described earlier, except that its input is a view matrix
Xj and its output is an intermediate region embedding matrix,
denoted by Zj

sv (“sv” refers to “single view”).
We do not repeat the full computation steps of IntraAFL.

Instead, we focus on its RegionSA module (right sub-figure

MLP

Add & LN

Add & LN

RegionSA

Softmax

Scale

Conv2D

Softmax

MLP

AVG

AvgPool

Fig. 4: Intra-view attentive feature learning (IntraAFL).

in Fig. 4), which is our new design for learning both region
correlations and region embeddings within each view.

RegionSA adapts the vanilla multi-head self-attention by
incorporating a simple yet effective module (inside the dashed
rectangle in Fig. 4). It takes as input the region features of
one view, Xj , and computes the attention coefficient scores
between the regions, denoted by Aj

sv , and the latent region
representations, denoted by Cj

V . The calculations are similar
to Equations 4 and 5 except that the inputs to the equations
are different. We hence do not repeat the equations again.

Next, we aim to combine the intermediate view-based
region embeddings Cj

V and the coefficient score matrix Aj
sv ,

such that the region embeddings further encode the region
correlation information. We observe that it is sub-optimal to
directly concatenate the two matrices. This is because the
coefficient score matrix Aj

sv is obtained by computing the
correlation between every two regions. It does not capture
the correlations among multiple regions, e.g., the feature of
a region may be impacted by multiple regions jointly.

To address this issue, we introduce a lightweight module
(inside the dashed rectangle in Fig. 4) applied on Aj

sv to learn
multi-region correlations. We first employ a 2-dimensional
convolution layer and an average pooling layer, denoted as
Conv2D and AvgPool, to compute a correlation matrix (in
Rc×n×n) that learns the higher-order region correlations (en-
tailed in convolution operation), where c is a hyper-parameter
(c = 32 in our experiments). Let the resulting matrix be Aj′

sv .
We compute the element-wise product between Aj′

sv and its
normalized version (obtained by a Softmax layer). Finally, we
average the resulting matrix and project the matrix to Rn×d

with an MLP, such that it can be added with Cj
V . The steps

above are summarized as follows:

Aj′

sv = AvgPool(Conv2D(Aj
sv)), (13)

Cj
A = MLP(AVG(Aj′

sv ⊙ Softmax(Aj′

sv))). (14)
Then, we encode the region correlation information into the

region embeddings as the output of RegionSA, denoted as Cj :

Cj = Cj
V +Cj

A. (15)

Matrix Cj will go through the rest of the computation steps
of IntraAFL as shown in the left sub-figure of Fig. 4 (which
resemble Equations 6 and 7) to produce the output embeddings
of the module, Zj

sv . Overall, from the v input views, we will
obtain v embedding matrices, Z1

sv,Z
2
sv, . . . ,Z

v
sv . We call these

matrices the intra-view attentive region embedding matrices.
Inter-view attentive feature learning. Next, we present

InterAFL to learn correlations between regions across views.
Note that we consider the correlations between all regions
across all views, instead of only the same region from different
views as done in existing works [10], [14], [15], [22].

A naive method is to apply self-attention over Zsv , like
RegionFusion does, to compute correlation coefficients be-
tween all pairs of regions from the same and different views.
This approach, however, is computationally expensive, as
Z1

sv,Z
2
sv, . . . ,Z

v
sv together form a large matrix in Rn×v×d,

and it introduces unnecessary noise signals – many regions
far away from each other are unlikely to be correlated.

To avoid these issues, we introduce a learnable memory
unit [44] to help effectively and efficiently learn the corre-
lations among the regions across views. Fig. 5 shows the
structure of InterAFL. The memory unit stores a list of
dm (dm = 72 in the experiments) learned representative
embeddings in the latent region embedding space (which can
be thought of as the cluster centers of the region embeddings).
We learn the correlations between each region and the repre-
sentative embeddings in the memory unit to implicitly learn the
correlation between the region and the rest of the regions, since
the memory unit serves as a summary of the latent embedding
space. As there are limited embeddings in the memory unit,
the learning process can be done efficiently.

L1-Norm

Softmax

FFN Memory Unit

Fig. 5: Inter-view attentive feature learning (InterAFL).

InterAFL reads the embedding matrices {Zj
sv}vj=1 from

IntraAFL and concatenates them into one large matrix Zsv ∈
Rn×v×d for ease of process. It computes the correlation
coefficients between all regions in Zsv and the memory unit:

Acv = FFN(Zsv) (16)

where Acv denotes inter-view region correlation coefficients
between regions. FFN(·) denotes a feedforward neural net-
work, where the weight matrix is in Rd×dm . The dm vectors
in this weight matrix are considered as the representative em-

beddings (of d dimensions). They can be seen as dm randomly
sampled cluster centers in the latent region embedding space.

Then, the inter-view region correlation coefficients are fed
into two normalization layers (i.e., a Softmax layer and an
L1-Norm layer) and another FFN to produce embeddings Zcv

embedded with cross-view region correlation coefficients:

Zcv = FFN(L1-Norm(Softmax(Acv))) (17)

where the weight matrix of the FFN is in Rdm×d. Here, the
Softmax layer is applied on the second dimension (i.e., the
view dimension), and the L1-Norm layer is applied on the
third dimension (i.e., the embedding dimension). We repeat
the computations above for multiple layers to enhance the
model learning capacity. The final Zcv output of InterAFL
can be decomposed into a list of sub-matrices by the second
dimension (the views), i.e., Z1

cv,Z
2
cv, ...,Z

v
cv , where each sub-

matrix is in Rn×d. We call these matrices the inter-view
attentive region embedding matrices.

Finally, we adaptively combine the intra-view attentive
region embedding matrices {Zj

sv} and the inter-view attentive
region embedding matrices {Zj

cv} with a learnable weight
β ∈ [0, 1], to form the view-based region embeddings {Zj}:

Zj = βZj
sv + (1− β)Zj

cv (18)

VI. EXPERIMENTS

We perform an empirical study to verify: (Q1) the accu-
racy of our proposed model HAFusion on three downstream
tasks as compared with the state-of-the-art (SOTA) methods,
(Q2) the general applicability of our proposed dual-feature
attentive fusion when incorporated into existing multi-view
region representation learning models, (Q3) the effectiveness
of our model components and different input views, (Q4) the
impact of number of regions and population density to our
model, and (Q5) the impact of model hyper-parameters.

TABLE II: Dataset Statistics
NYC [40] CHI [41] SF [42]

#regions 180 77 175
#POIs 24,496 57,891 28,578
#POI categories 26 26 26
#land use categories 11 12 23
#taxi trips 10,953,879 3,381,807 357,749
(data collection time) 06/2015 - 07/2015 01/2021 - 01/2022 05/2008 - 06/2008
#crime records 35,335 18,200 48,489
(data collection time) unknown 12/2022 - 12/2022 01/2022 - 12/2022
#check-ins 106,902 167,232 87,750
(data collection time) 04/2012 - 09/2013 04/2012 - 09/2013 04/2012 - 09/2013
#service calls 516,187 24,350 34,385
(data collection time) 01/2023 - 03/2023 12/2022 - 12/2022 01/2022 - 12/2022

A. Experimental Settings

Dataset. The experiments are conducted using real-world
data from cities: New York City (NYC) [40], Chicago
(CHI) [41], and San Francisco (SF) [42]. Previous works [10],
[14], [22] only used NYC, while CHI and SF are used for the
first time in our study, to show the general applicability of our
model across different datasets.

Table II summarizes the datasets. For each city, we have:
(1) region boundary of each region;

(2) taxi trip records including the pickup and drop-off points
of each trip – we use the numbers of trips from a region to
the others as the mobility feature vector of the region;

(3) POIs in each region (from OpenStreetMap [39]), along
with their category labels as described in Section III;

(4)) zones in each region, along with their land use category
labels as described in Section III – there are 11, 12, and 13
categories for NYC, CHI, and SF, respectively;

(5) crime, check-in (from a Foursquare dataset [45]), and
service call records, each with a location and a time – we count
the number of these records in each region, respectively, and
predict the counts using the region embeddings learned from
the features above, following previous works [10], [14], [22].

Prediction model. We use three downstream tasks for
model evaluation, i.e., crime, check-in, and service call count
prediction, which are regression tasks. We implement a Lasso
regression model (model parameter α = 1) for each prediction
task, following previous works [10], [14], [22].

Evaluation metrics. We use three classic evaluation met-
rics for regression tasks: Mean Absolute Error (MAE =∑n

i=1 |yi−ŷi|
n), Root Mean Square (RMSE =

√∑n
i=1(yi−ŷi)2

n),

and Coefficient of Determination (R2 = 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−ȳ)2).
Competitors. We compare with the following models, in-

cluding the SOTA models RegionDCL [24] and HREP [14]:
(1) MVURE [10] leverages both the intra-region (POI and

check-in features) and inter-region features (human mobility
features) to construct multi-view graphs, which is followed by
multi-view fusion to learn region embeddings.

(2) MGFN [22] leverages human mobility features to
construct mobility pattern graphs by clustering mobility graphs
based on their spatio-temporal distances. Afterwards, it per-
forms inter-view and intra-view messages passing on the
mobility pattern graphs to generate region embeddings.

(3) RegionDCL [24] leverages building footprints from
OpenStreetMap and uses contrastive learning at both the
building-group and region levels to learn building-group em-
beddings. Afterwards, it aggregates all building-group embed-
dings in a region to generate region embeddings.

(4) HREP [14] leverages human mobility, POI, and ge-
ographic neighbor features to generate region embeddings.
Subsequently, it integrates task-based learnable prompt em-
beddings with the pre-trained region embeddings to customize
the embeddings for different downstream tasks.

Hyperparameter settings. For the competitor models, we
use parameter settings recommended in their papers as much
as possible. Special settings have been made on CHI, to
prevent model overfitting on this dataset which has fewer
regions. For MGFN, we employ a 1-layer (instead of the
default 3-layer) mobility pattern joint learning module on CHI.
For MVURE and HREP, we reduce the number of layers in
their GNN modules from 3 to 2 on CHI. RegionDCL does not
need a special setting on CHI because the training process is
determined by the number of buildings and building groups,
rather than the number of regions.

For our model HAFusion, the number of layers in the
IntraAFL module is 3 for NYC and SF and 1 for CHI,
respectively. In the InterAFL module, the number of layers is
3 for NYC and 2 for CHI and SF, respectively. The number of
layers in the RegionFusion module is 3 for all three datasets.
These parameter values are set by a grid search. We train
our model for 2,500 epochs in full batches, using Adam
optimization with a learning rate of 0.0005.

The region embedding dimensionality d is set as 144
for HAFusion following an SOTA model HREP [14], and 96,
96, and 64 for MVURE, MGFN, and RegionDCL, respec-
tively, as suggested by their original papers. Our experimental
results in Section VI-H also show that these dimensionality
values are optimal for the respective models.

We note that MVURE is designed to take check-in records
as part of its input. We follow this setting and use check-in
records to train MVURE even for the check-in prediction task.
The training and testing data come from non-overlapping time
periods, i.e., MVURE has not seen the testing data at training.

B. Overall Results

We evaluate the quality of the learned region embeddings
through using them in three downstream prediction tasks.
We first learn region embeddings using each model on data
from each city, respectively. We subsequently feed the learned
region embeddings into a Lasso regression model for each
prediction task, employing ten-fold cross-validation (because
the number of regions in each dataset is relatively small), and
report in Table III the average prediction accuracy results.

1) Task 1: Check-in Count Prediction: Predicting check-in
counts for regions can provide guidance for urban planning
and business decision-making (e.g., movement tracking [46],
[47]), based on people’s locations and interests.

We make the following observations from Table III (Task 1):
(1) Our model HAFusion outperforms all competitors across

all datasets with up to 28% improvement in RMSE. Our
model not only considers various types of features of each
region but also learns the correlation among the features of
different regions both within a single view and across multiple
views, which captures the feature patterns to a full extent.
Simultaneously, we effectively fuse the patterns to extract
their joint impact, leading to highly effective embeddings for
region-based prediction tasks.

(2) MGFN, which only considers one input feature (i.e.,
human mobility), outperforms (up to 20% in terms of R2) the
baseline methods MVURE and HREP that use human mobil-
ity, POI, geographic neighbor, and check-in features, on CHI
and SF datasets, while it performs worse on NYC. There are
three main reasons: (i) human mobility is intrinsically linked
to the check-in count of each region. (ii) MGFN explores
the complex mobility patterns from the human mobility data,
allowing it to learn the relationships among regions from such
patterns. (iii) the human mobility data of NYC is noisy, which
negatively impacts the learning effectiveness of MGFN. In this
case, the limitations of relying on a single data feature become
evident, emphasizing the necessity of a multi-view approach.

TABLE III: Overall Prediction Accuracy Results (‘↓’ indicates that smaller values are preferred, and ‘↑’ indicates that large
values are preferred. The best results are in boldface, and the second-best results are underlined. Same for the tables below.)

Taks 1:
Check-in

New York City Chicago San Francisco

MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑

MVURE [10] 306.7 ± 8.20 499.6 ± 12.9 0.627 ± 0.019 1693 ± 74 3171 ± 128 0.656 ± 0.029 346.8 ± 8.7 659.3 ± 15.7 0.562 ± 0.021
MGFN [22] 292.6 ± 17.1 451.8 ± 28.1 0.690 ± 0.040 1281 ± 41 2276 ± 86 0.817 ± 0.011 310.8 ± 9.1 542.1 ± 17.6 0.708 ± 0.010
RegionDCL [24] 371.2 ± 10.3 495.5 ± 15.9 0.471 ± 0.023 2427 ± 123 4184 ± 136 0.402 ± 0.042 398.8 ± 9.9 748.1 ± 17.8 0.437 ± 0.024
HREP [14] 276.3 ± 11.7 448.2 ± 17.1 0.703 ± 0.021 1679 ± 71 3135 ± 79 0.664 ± 0.017 330.9 ± 9.3 606.7 ± 25.8 0.629 ± 0.032

HAFusion 202.8 ± 7.2 322.8 ± 12.6 0.844 ± 0.012 929 ± 62 1947 ± 75 0.870 ± 0.010 233.1 ± 9.5 429.6 ± 28.1 0.813 ± 0.024

Improvement 26.6% 28.0% 20.6% 27.4% 14.5% 6.5% 25% 20.7% 14.8%

Task 2:
Crime

New York City Chicago San Francisco

MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑

MVURE [10] 67.9 ± 1.1 93.8 ± 1.9 0.591 ± 0.016 100.4 ± 6.6 129.2 ± 7.3 0.461 ± 0.062 130.3 ± 1.7 201.7 ± 3.2 0.594 ± 0.013
MGFN [22] 70.2 ± 2.3 89.6 ± 2.5 0.630 ± 0.020 107.4 ± 5.4 137.9 ± 5.2 0.386 ± 0.047 128.4 ± 3.3 199.9 ± 4.3 0.601 ± 0.017
RegionDCL [24] 98.7 ± 3.1 127.9 ± 5.2 0.251 ± 0.026 121.7 ± 4.8 159.6 ± 6.3 0.179 ± 0.053 156.3 ± 2.1 242.3 ± 4.6 0.413 ± 0.021
HREP [14] 62.8 ± 2.1 83.1 ± 2.3 0.680 ± 0.014 88.3 ± 6.4 114.4 ± 5.5 0.578 ± 0.041 124.4 ± 2.3 196.9 ± 3.9 0.612 ± 0.014

HAFusion 56.1 ± 1.3 76.1 ± 2.2 0.734 ± 0.015 77.8 ± 3.6 107.1 ± 5.4 0.631 ± 0.036 101.5 ± 3.3 178.4 ± 3.6 0.682 ± 0.013

Improvement 10.8% 8.4% 7.8% 11.9% 6.4% 9.2% 18.4% 9.4% 11.4%

Task 3:
Service call

New York City Chicago San Francisco

MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑

MVURE [10] 1428 ± 33 2180 ± 46 0.367 ± 0.027 190.3 ± 9.8 266.9 ± 12.1 0.441 ± 0.050 102.1 ± 4.8 164.7 ± 2.7 0.479 ± 0.017
MGFN [22] 1554 ± 81 2286 ± 115 0.303 ± 0.069 208.2 ± 11.3 293.4 ± 16.6 0.329 ± 0.077 102.8 ± 2.2 166.3 ± 2.5 0.468 ± 0.021
RegionDCL [24] 1783 ± 21 2597 ± 38 0.103 ± 0.026 195.7 ± 7.6 272.1 ± 10.1 0.445 ± 0.041 116.6 ± 2.3 196.7 ± 3.2 0.256 ± 0.024
HREP [14] 1430 ± 29 2286 ± 34 0.398 ± 0.021 185.7 ± 6.1 262.2 ± 10.8 0.468 ± 0.022 103.4 ± 3.2 167.4 ± 4.6 0.461 ± 0.029

HAFusion 1273 ± 20 1951 ± 27 0.493 ± 0.014 159.3 ± 13.9 222.0 ± 18.9 0.613 ± 0.067 81.5 ± 2.5 142.1 ± 3.2 0.612 ± 0.018

Improvement 10.9% 8.3% 23.9% 14.2% 15.3% 31.0% 20.2% 13.7% 27.8%

(3) HREP outperforms MVURE across all three datasets,
as it introduces a relational embedding to capture different
correlations among regions and the importance of the correla-
tions. It also incorporates prompt learning to add task-specific
prompt embeddings for different downstream tasks.

(4) RegionDCL performs the worst, even though it is one of
the SOTA models. It only utilizes building footprints to learn
region embeddings (its original targeted downstream tasks are
population and land use predictions [24]), which do not exhibit
a strong correlation with the check-in counts. Furthermore,
distinguishing the functionality of regions by buildings can be
challenging in cities such as NYC, where buildings predom-
inantly take on a rectangular shape, irrespective of whether
they are situated in industrial or residential areas. In addition,
RegionDCL is based on contrastive learning, which is biased
to generate similar embeddings for regions nearby.

2) Task 2: Crime Prediction: Predicting crime counts in
different regions is a valuable tool for law enforcement and
community safety, as it allows for a more proactive and
strategic approach to crime prevention and reduction.

Table III (Task 2) presents model performance for such a
task. Our model HAFusion again outperforms the best com-
petitor model HREP across all datasets (7.8% on NYC, 9.2%
on CHI, and 11.4% on SF in R2), for our more effective multi-
view fusion techniques to capture inter-region relationships.

The baseline models MVURE and HREP that take multiple
types of input features are now also better than those taking

only a single type of features, i.e., MGFN and RegionDCL.
Crime counts are impacted by multiple factors. Regions with
high crime counts typically have a high level of human mo-
bility, many entertainment venues such as bars and clubs, and
are proximity to public transportation. These factors cannot be
reflected by only a single type of region features.

3) Task 3: Service Call Prediction: Predicting service calls
in each region is a valuable tool for service providers, allowing
proactive optimization of facility and service deployments.
As Table III shows, our model HAFusion achieves consistent
and substantial improvements over all competitors, with an
advantage over the best baseline by 23.9% on NYC, 31% on
CHI, and 27.8% on SF in R2, respectively, further confirming
the robustness of the embeddings learned by HAFusion.

Like in the crime count prediction task, the baseline models
MVURE and HREP which consider multiple types of input
features, once again outperform MGFN and RegionDCL.

Model performance on NYC is, in general, lower than
that on CHI and SF. This is because NYC contains about
400 categories of service calls, including noise complaints,
graffiti cleanup, etc., while SF and CHI only have 67 and
104, respectively. It is more challenging to generate region
embeddings that correlate to all these different types of calls.

Model running time. Table V reports the embedding learn-
ing and downstream task running times (including regression
model learning and inference, and they have the same input

TABLE IV: Prediction Accuracy Results When Powering Existing Models with Our DAFusion Module (NYC)

New York City Check-in Prediction Crime Prediction Service Call Prediction

MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑

MGFN 292.6 ± 17.1 451.8 ± 28.1 0.690 ± 0.040 70.2 ± 2.3 89.6 ± 2.5 0.630 ± 0.020 1553.8 ± 80 2286 ± 115 0.303 ± 0.069
MGFN-DAFusion 222.0 ± 5.7 363.6 ± 8.5 0.802 ± 0.009 59.8 ± 1.2 81.1 ± 2.4 0.699 ± 0.018 1375.7 ± 16 2101 ± 29 0.412 ± 0.016

Improvement 24.2% 19.5% 16.2% 14.8% 9.5% 11.0% 11.5% 8.1% 36.0%

MVURE 306.7 ± 8.2 499.6 ± 12.9 0.627 ± 0.019 67.9 ± 1.1 93.8 ± 1.9 0.591 ± 0.016 1428 ± 33 2180 ± 46 0.367 ± 0.027
MVURE-DAFusion 275.8 ± 5.9 438.5 ± 14.4 0.712 ± 0.018 62.6 ± 1.5 85.9 ± 1.9 0.663 ± 0.015 1317 ± 16 2049 ± 33 0.441 ± 0.018

Improvement 10.1% 12.2% 13.6% 7.8% 8.4% 12.4% 7.8% 6.0% 20.2%

HREF 276.3 ± 11.7 448.2 ± 16.9 0.703 ± 0.022 62.8 ± 2.1 83.1 ± 2.3 0.681 ± 0.014 1430 ± 29 2127 ± 34 0.398 ± 0.019
HREF-DAFusion 224.6 ± 8.5 360.0 ± 10.3 0.806 ± 0.011 59.2 ± 1.6 78.6 ± 1.3 0.717 ± 0.011 1325 ± 19 2031 ± 29 0.451 ± 0.015

Improvement 18.7% 19.7% 15.1% 5.7% 5.4% 5.3% 7.3% 4.5% 13.3%

TABLE V: Embedding Learning and Testing Time (seconds)
Embedding Learning Downstream Task
NYC CHI SF NYC CHI SF

MVURE CPU 557 153 518 0.016 0.049 0.028
GPU 35 15 34 0.023 0.053 0.026

MGFN CPU 1,452 460 1,388 0.017 0.054 0.032
GPU 92 123 47 0.019 0.061 0.029

RegionDCL CPU 2,004 17,435 5,748 0.014 0.051 0.026
GPU 149 1,779 324 0.017 0.054 0.023

HREP CPU 302 136 267 171 325 152
GPU 51 45 51 92 146 91

HAFusion CPU 934 346 856 0.019 0.062 0.037
GPU 79 51 78 0.022 0.061 0.028

and output size irrespective to the downstream tasks). All
models are trained and tested on a machine equipped with
a 16-core Intel i7 2.6 GHz CPU and 16 GB memory, and a
machine equipped with an NVIDIA Tesla V100 GPU and 64
GB of memory, to test the efficiency of the models on CPU
and on GPU, respectively (same for the other experiments).

HAFusion takes extra time to learn the embeddings because
of its extra attention computation and fusion steps. However,
we see that its embedding learning time is still on the same
order of magnitude as that of the fastest model MVURE, on
both CPU and GPU. It can be trained on GPU in under 80
seconds, making it highly practical in terms of training costs.

MVURE and HREP simply aggregate region embeddings
from all views, which are faster to train, but this efficiency
comes at the cost of significantly higher prediction errors with
their learned embeddings, as shown above.

All models share the same prediction model for the down-
stream tasks, and hence their downstream task running times
are very similar (except for HREP). The slight running time
differences are due to the difference in the embedding dimen-
sionality. The running time difference between GPU and CPU
is insignificant, as the prediction model has a simple structure
that limits the potential benefits from GPU parallelization.
HREP is much slower because it requires a prompt embedding
learning step for each downstream task.

C. Applicability of Dual-feature Attentive Fusion

To show the general applicability of our dual-feature at-
tentive fusion module (DAFusion), we integrate it with the

three baseline models that compute multiple views and require
an embedding fusion, i.e., MVURE, MGFN, and HREP. We
denote the resulting models as MVURE-DAFusion, MGFN-
DAFusion, and HREP-DAFusion, respectively.

We run experiments with the three datasets and three
downstream tasks on these new model variants, with 10-
fold cross-validation as done above. We show the results
on NYC in Table IV for conciseness, as the results on the
other two datasets have a similar comparative pattern. We
see that DAFusion also enhances the effectiveness of the
existing multi-view based models. Compared with the vanilla
models, the variants powered by DAFusion achieve significant
improvements, i.e., up to 16.2%, 12.4%, and 36% in R2,
across the three downstream tasks. These results confirm the
effectiveness and applicability of our DAFusion module. The
improvement on MGFN, in particular, indicates that DAFusion
can also better integrate information from multiple graphs even
when the graphs are constructed from a single type of features.

By further comparing the results in Tables III and IV, we
note that HAFusion still outperforms the baseline models even
when they are powered by DAFusion, which confirms the
contribution of our hybrid attentive feature learning module
to the overall model accuracy.

D. Ablation Study

We use the following model variants to study the effective-
ness of our model components:

(1) HAFusion-w/o-D+: We replace DAFusion with a sim-
ple element-wise sum of embeddings from different views.

(2) HAFusion-w/o-D∥: We replace DAFusion with a simple
concatenation of the embeddings from different views, fol-
lowed by an MLP layer to reduce the dimensionality.

(3) HAFusion-w/o-C: We replace InterAFL with the vanilla
self-attention.

(4) HAFusion-w/o-S: We replace IntraAFL with the vanilla
self-attention.

We again repeat the above experiments with these model
variants and report the results in Table VI. We only show
the R2 results, as the comparative performance in MAE and
RMSE is similar (same below). Our full model HAFusion
significantly outperforms all variants. This highlights the con-

tribution of all model components to the overall effectiveness
of HAFusion. We make the following further observations:

TABLE VI: Ablation Study Results (NYC)
Prediction Task Check-in Crime Service Call

R2 ↑ R2 ↑ R2 ↑
HAFusion-w/o-D+ 0.803 ± 0.008 0.686 ± 0.015 0.459 ± 0.005
HAFusion-w/o-D∥ 0.816 ± 0.007 0.699 ± 0.009 0.468 ± 0.006
HAFusion-w/o-C 0.832 ± 0.004 0.696 ± 0.016 0.462 ± 0.011
HAFusion-w/o-S 0.838 ± 0.005 0.725 ± 0.017 0.482 ± 0.008

HAFusion 0.844 ± 0.012 0.734 ± 0.015 0.493 ± 0.014

(1) DAFusion contributes the most model performance
gains. The variants with DAFusion, i.e., HAFusion-w/o-C and
HAFusion-w/o-S, outperform those without DAFusion, i.e.,
HAFusion-w/o-D+ and HAFusion-w/o-D∥. This is because
the region-aware fusion enables the learning of correlations
between regions in the fused representation, leading to more
accurate embedding-based prediction results.

(2) HAFusion-w/o-S performs better than HAFusion-w/o-C,
which indicates that it is important to capture the correlation
information between all regions across all views.

E. Impact of Different Input Views

Check-in Crime Service Call
Downstream Tasks

0.2

0.4

0.6

0.8

1.0

R
2

0.
62

7

0.
59

1

0.
36

7

0.
70

3

0.
68

1

0.
39

8

0.
45

1

0.
35

5

0.
32

4

0.
83

6

0.
70

3

0.
47

5

0.
83

7

0.
71

8

0.
48

7

0.
84

4

0.
74

5

0.
49

3

MVURE
HREP
HAFusion-w/o-M

HAFusion-w/o-L
HAFusion-w/o-P
HAFusion

Fig. 6: Impact of different input views (NYC).

Our model HAFusion utilizes mobility, POI, and land use
views as input in region representation learning. Next, we ex-
cluded each of the mobility, POI, and land use views, forming
three variants of our model: HAFusion-w/o-M, HAFusion-
w/o-P, and HAFusion-w/o-L, respectively. We compare them
with the full model HAFusion to assess the importance of
each view. We also include MVURE and HREP in this set
of experiments, which use human mobility and POI features
like HAFusion does but not the land use view. By comparing
with them, we show that HAFusion can learn more informative
embeddings even without the extra land use view.

The results, as plotted in Fig. 6, show that the mobility view
contributes the most to the overall model performance (i.e.,
HAFusion-w/o-M performs the worst), as human movement
reflects the correlation between regions, which is particularly
relevant to the check-in and crime prediction tasks. The land
use view, which is used for the first time for urban region
representation learning in our work, contributes the second
most (i.e., HAFusion-w/o-L is worse than HAFusion-w/o-P),
emphasizing the importance of the feature. HAFusion-w/o-L
also outperforms MVURE and HREP across all downstream

tasks, e.g., by 20% and 10% in R2 for check-in prediction,
respectively, again demonstrating the effectiveness of our
model to better capture region features from the input.

F. Impact of Number of Regions

180 360 720 1440
Number of Regions

0.1

0.2

0.3

0.4

0.5

0.6

R
2

(a) Checkin prediction accuracy

180 360 720 1440
Number of Regions

102

103

Ti
m

e
(S

ec
on

ds
)

MVURE
MGFN
RegionDCL
HREP
HAFusion

(b) Overall running time (GPU)

Fig. 7: Impact of number of regions.

We verify the scalability of HAFusion by varying the num-
ber of regions. We expand the NYC dataset (which originally
contains regions from Manhattan) to include regions from
Queens and Brooklyn. We start from an urban region in Brook-
lyn and collect regions in a breath-first manner to construct
datasets of 180, 360, 720, and 1,440 regions, respectively, such
that the larger datasets are supersets of the smaller ones (the
baseline works have used only up to 180 regions).

Fig. 7 shows the prediction accuracy using the learned
embeddings, as well as the overall running time, which in-
cludes the embedding learning and downstream task running
times (regression model learning and inference times). All
models suffer in accuracy when the number of regions grows,
because more regions with sparse input features are included.
Importantly, our model HAFusion consistently outperforms all
competitors in check-in count prediction accuracy, achieving
approximately a 10% improvement over the second-best model
across all region settings (similar results are observed on the
other prediction tasks).

Meanwhile, the overall running time of HAFusion is also
the lowest, except when there are 180 and 1,440 regions,
where HAFusion is only slower than MVURE and HREP,
respectively. The core components of HAFusion are attention
networks, which can be efficiently parallelized on GPUs, and
this explains for the low running time.

MVURE utilizes self-attention, which computes in O(d·N2)
time, whereas HAFusion utilizes external attention, which
computes in O(d·dm ·N) time. Recall that d and dm represent
the embedding dimensionality and the number of representa-
tive embeddings (cf. Section V), respectively, while N denotes
the number of regions. Thus, the embedding learning time (and
hence the overall running time) of MVURE grows with N
faster than that of HAFusion does. HREP scales well to the
number of regions due to its simple model structure. Its overall
running time is dominated by its extra prompt embedding
learning time for each downstream task. This extra time is
amortized as N grows, and hence the overall running time
of HREP grows the slowest, at the cost of producing region
embeddings with a lower accuracy.

G. Impact of Population Density

0.0 0.2 0.4 0.6 0.8 1.0
R2

MVURE

MGFN

RegionDCL

HREP

HAFusion

M
od

el
s

0.627

0.69

0.47

0.703

0.844

-0.017

-0.006

0.061

0.136

0.208

Manhattan
Staten Island

Fig. 8: Impact of population density.

We further test the models with regions in Staten Island,
which have distinctly different urban characteristics from re-
gions in Manhattan used above. Manhattan is the most densely
populated and geographically smallest of the five boroughs of
NYC. In contrast, Staten Island is the least densely populated
and most suburban borough in NYC. We evaluate the models
over regions in these two areas and show the results of the
check-in count prediction task (similar results are observed on
the other prediction tasks).

As Fig. 8 shows, HAFusion outperforms all competitors
over both crowded and less crowded regions. Existing mod-
els suffer heavily over less crowded regions due to limited
regional features, particularly mobility features. For example,
Manhattan has 10,953,879 records in a single month, whereas
Staten Island only has hundreds. MGFN reports the largest
drop in accuracy, because it relies solely on mobility features.
This again highlights the importance of utilizing multiple types
of features, as done by HAFusion.

H. Impact of Parameter Values

Next, we study model sensitivity to two key hyper-
parameters: the dimensionality of the region embeddings
(d) and the number of RegionFusion layers in DAFusion
(#layers). We note that there are also multiple layers in
IntraAFL and InterAFL. The numbers of those layers are set
with grid search as mentioned earlier, and the experimental
results are omitted for conciseness.

36 64 72 96 144 288
d

0.4

0.5

0.6

0.7

0.8

R
2

(a) Check-in

36 64 72 96 144 288
d

0.2

0.3

0.4

0.5

0.6

0.7

R
2

MVURE
MGFN
RegionDCL
HREP
HAFusion

(b) Crime

36 64 72 96 144 288
d

0.0

0.1

0.2

0.3

0.4

0.5

R
2

(3) Service Call

Fig. 9: Impact of d (NYC).

Impact of the region embedding dimensionality d. We
study the impact of d by using the same d values across all
models. We vary d from 36 to 288 and use the learned region
embeddings for three downstream prediction tasks like in the
previous experiments. As Fig. 9 show, HAFusion consistently
outperforms all competitors across all values of d in terms
of the prediction accuracy under the R2 measure (results on
the MAE and RMSE measures show similar patterns and

are omitted for conciseness). The model prediction accuracy
grows with d initially. It starts to drop as d continues to grow,
where we conjecture overfitting may have occurred.

The peak performance of different models is observed at
different d values. Our model HAFusion performs better across
three tasks when d is between 144 and 288. As a larger
d value also translates to longer running time, we default
our model to using d = 144 to strike a balance between
learning effectiveness and efficiency. The optimal choice of d
for all baseline models is consistent with the respective original
papers. For example, the recommended value of d for MGFN
is 96, where the model yields the best performance on the
check-in and service call prediction tasks and the second-best
performance on the crime prediction task. We thus have used
this d value for MGFN by default.

TABLE VII: Impact of #layers (NYC)
#layers 1 2 3 4 5

Prediction Task R2 ↑ R2 ↑ R2 ↑ R2 ↑ R2 ↑
Check-in 0.838 0.839 0.844 0.842 0.840
Crime 0.721 0.725 0.734 0.729 0.706
Service Call 0.483 0.486 0.493 0.492 0.481

Impact of the number of RegionFusion layers in DA-
Fusion #layers. The number of layers in DAFusion reflects
the depth of our model. We vary it from 1 to 5. As Table. VII
shows, our model performance initially improves as #layers
increases but starts to decline when #layers exceeds 3.
Adding more layers can help the model better capture intricate
patterns, as the model can learn different levels of feature
representations. However, when there are too many layers,
the model is prone to overfitting due to its high capacity to
memorize the training data, resulting in poor generalization to
unseen data. We thus have set #layers as 3 by default.

VII. CONCLUSION

We proposed a model named HAFusion for urban region
representation learning by leveraging human mobility, POI,
and land use features. To learn region embeddings from each
region feature, we proposed a hybrid attentive feature learning
module named HALearning that captures the abundant correla-
tion information between different regions within a single view
and across different views. To fuse region embeddings learned
from different region features, we further proposed a dual-
feature attentive fusion module named DAFusion that encodes
higher-order correlations between the regions. We perform
three urban prediction tasks using the embeddings learned
by HAFusion. The results show that our learned embeddings
lead to consistent and up to 31% improvements in prediction
accuracy, comparing with those generated by the state-of-the-
art models. Meanwhile, our DAFusion module helps improve
the quality of the learned embeddings by up to 36% when
integrated into existing models.

VIII. ACKNOWLEDGMENT

This work is partially supported by Australian Re-
search Council (ARC) Discovery Projects DP230101534 and
DP240101006.

REFERENCES

[1] C. H. Liu, C. Piao, X. Ma, Y. Yuan, J. Tang, G. Wang, and K. K.
Leung, “Modeling Citywide Crowd Flows using Attentive Convolutional
LSTM,” in ICDE, 2021, pp. 217–228.

[2] Z. Li, C. Huang, L. Xia, Y. Xu, and J. Pei, “Spatial-Temporal Hypergraph
Self-Supervised Learning for Crime Prediction,” in ICDE, 2022, pp.
2984–2996.

[3] C. Xiao, J. Zhou, J. Huang, H. Zhu, T. Xu, D. Dou, and H. Xiong, “A
Contextual Master-Slave Framework on Urban Region Graph for Urban
Village Detection,” in ICDE, 2023, pp. 736–748.

[4] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban Computing:
Concepts, Methodologies, and Applications,” TIST, vol. 5, no. 3, pp.
1–55, 2014.

[5] J. Zhang, Y. Zheng, and D. Qi, “Deep Spatio-Temporal Residual
Networks for Citywide Crowd Flows Prediction,” in AAAI, 2017, pp.
1655–1661.

[6] Y. Liu, Y. Zheng, Y. Liang, S. Liu, and D. S. Rosenblum, “Urban Water
Quality Prediction based on Multi-Task Multi-View Learning,” in IJCAI,
2016, pp. 2576–2582.

[7] W. Zhuo, K. H. Chiu, J. Chen, J. Tan, E. Sumpena, S.-H. G. Chan, S. Ha,
and C.-H. Lee, “Semi-Supervised Learning with Network Embedding
on Ambient RF Signals for Geofencing Services,” in ICDE, 2023, pp.
2713–2726.

[8] Y. Chang, J. Qi, Y. Liang, and E. Tanin, “Contrastive Trajectory
Similarity Learning with Dual-Feature Attention,” in ICDE, 2023, pp.
2933–2945.

[9] P. Yang, H. Wang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “T3S: Ef-
fective Representation Learning for Trajectory Similarity Computation,”
in ICDE, 2021, pp. 2183–2188.

[10] M. Zhang, T. Li, Y. Li, and P. Hui, “Multi-View Joint Graph Repre-
sentation Learning for Urban Region Embedding,” in IJCAI, 2020, pp.
4431–4437.

[11] Y. Fu, P. Wang, J. Du, L. Wu, and X. Li, “Efficient Region Embed-
ding with Multi-View Spatial Networks: A Perspective of Locality-
Constrained Spatial Autocorrelations,” in AAAI, 2019, pp. 906–913.

[12] Y. Zhang, Y. Fu, P. Wang, X. Li, and Y. Zheng, “Unifying Inter-Region
Autocorrelation and Intra-Region Structures for Spatial Embedding via
Collective Adversarial Learning,” in KDD, 2019, pp. 1700–1708.

[13] J. Du, Y. Zhang, P. Wang, J. Leopold, and Y. Fu, “Beyond Geo-First
Law: Learning Spatial Representations via Integrated Autocorrelations
and Complementarity,” in ICDM, 2019, pp. 160–169.

[14] S. Zhou, D. He, L. Chen, S. Shang, and P. Han, “Heterogeneous Region
Embedding with Prompt Learning,” in AAAI, 2023, pp. 4981–4989.

[15] L. Zhang, C. Long, and G. Cong, “Region Embedding With Intra and
Inter-View Contrastive Learning,” TKDE, vol. 35, no. 9, pp. 9031–9036,
2023.

[16] N. Kim and Y. Yoon, “Effective Urban Region Representation Learning
using Heterogeneous Urban Graph Attention Network (HUGAT),” arXiv
preprint arXiv:2202.09021, 2022.

[17] P. Jenkins, A. Farag, S. Wang, and Z. Li, “Unsupervised Representation
Learning of Spatial Data via Multimodal Embedding,” in CIKM, 2019,
pp. 1993–2002.

[18] Z. Wang, H. Li, and R. Rajagopal, “Urban2Cec: Incorporating Street
View Imagery and POIs for Multi-Modal Urban Neighborhood Embed-
ding,” in AAAI, 2020, pp. 1013–1020.

[19] T. Huang, Z. Wang, H. Sheng, A. Y. Ng, and R. Rajagopal, “Learning
Neighborhood Representation from Multi-Modal Multi-Graph: Image,
Text, Mobility Graph and Beyond,” arXiv preprint arXiv:2105.02489,
2021.

[20] Z. Yao, Y. Fu, B. Liu, W. Hu, and H. Xiong, “Representing Urban
Functions through Zone Embedding with Human Mobility Patterns,” in
IJCAI, 2018, pp. 3919–3925.

[21] P. Wang, Y. Fu, J. Zhang, X. Li, and D. Lin, “Learning Urban Com-
munity Structures: A Collective Embedding Perspective with Periodic
Spatial-Temporal Mobility Graphs,” TIST, vol. 9, no. 6, pp. 1–28, 2018.

[22] S. Wu, X. Yan, X. Fan, S. Pan, S. Zhu, C. Zheng, M. Cheng, and
C. Wang, “Multi-Graph Fusion Networks for Urban Region Embedding,”
in IJCAI, 2022, pp. 2312–2318.

[23] W. Huang, D. Zhang, G. Mai, X. Guo, and L. Cui, “Learning Urban
Region Representations with POIs and Hierarchical Graph Infomax,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 196, pp.
134–145, 2023.

[24] Y. Li, W. Huang, G. Cong, H. Wang, and Z. Wang, “Urban Region
Representation Learning with OpenStreetMap Building Footprints,” in
KDD, 2023, pp. 1363–1373.

[25] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Frame-
work for Contrastive Learning of Visual Representations,” in ICML,
2020, pp. 1597–1607.

[26] N. Jean, S. Wang, A. Samar, G. Azzari, D. Lobell, and S. Ermon,
“Tile2vec: Unsupervised Representation Learning for Spatially Dis-
tributed Data,” in AAAI, 2019, pp. 3967–3974.

[27] Y. Zhao, J. Qi, B. D. Trisedya, Y. Su, R. Zhang, and H. Ren, “Learning
Region Similarities via Graph-based Deep Metric Learning,” TKDE,
vol. 35, no. 10, pp. 10 237–10 250, 2023.

[28] J. Li, H. Yong, B. Zhang, M. Li, L. Zhang, and D. Zhang, “A Probabilis-
tic Hierarchical Model for Multi-View and Multi-Feature Classification,”
in AAAI, 2018, pp. 3498–3505.

[29] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-View Learning Overview:
Recent Progress and New Challenges,” Information Fusion, vol. 38, pp.
43–54, 2017.

[30] C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie, D. Tao, and D. Xu, “Generalized
Latent Multi-View Subspace Clustering,” TPAMI, vol. 42, no. 1, pp. 86–
99, 2018.

[31] Y. Li, M. Yang, and Z. Zhang, “A Survey of Multi-View Representation
Learning,” TKDE, vol. 31, no. 10, pp. 1863–1883, 2018.

[32] H. Wang and Z. Li, “Region Representation Learning via Mobility
Flow,” in CIKM, 2017, pp. 237–246.

[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of
Word Representations in Vector Space,” in ICLR-Workshop, 2013.

[34] Y. Fu, H. Xiong, Y. Ge, Z. Yao, Y. Zheng, and Z.-H. Zhou, “Exploiting
Geographic Dependencies for Real Estate Appraisal: A Mutual Perspec-
tive of Ranking and Clustering,” in KDD, 2014, pp. 1047–1056.

[35] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Cetworks,” in ICLR, 2017.

[36] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph Attention Networks,” in ICLR, 2018.

[37] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous Graph Attention Network,” in WWW, 2019, pp. 2022–
2032.

[38] M. Schultz and T. Joachims, “Learning a Distance Metric from Relative
Comparisons,” in NeurIPS, 2003, pp. 41–48.

[39] OpenStreetMap. https://www.openstreetmap.org/.
[40] New York Dataset. https://opendata.cityofnewyork.us/.
[41] Chicago Dataset. https://data.cityofchicago.org/.
[42] San Francisco Dataset. https://datasf.org/opendata/.
[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is All You Need,” in NeurIPS,
2017, pp. 6000–6010.

[44] M.-H. Guo, Z.-N. Liu, T.-J. Mu, and S.-M. Hu, “Beyond Self-Attention:
External Attention using Two Linear Layers for Visual Tasks,” TPAMI,
vol. 45, no. 5, pp. 5436–5447, 2022.

[45] Foursquare Dataset. https://sites.google.com/site/yangdingqi/home/
foursquare-dataset.

[46] P. G. Ward, Z. He, R. Zhang, and J. Qi, “Real-Time Continuous
Intersection Joins over Large Sets of Moving Objects Using Graphic
Processing Units,” VLDBJ, vol. 23, no. 6, p. 965–985, 2014.

[47] Y. Wang, R. Zhang, C. Xu, J. Qi, Y. Gu, and G. Yu, “Continuous Visible
K Nearest Neighbor Query on Moving Objects,” Information Systems,
vol. 44, pp. 1–21, 2014.

https://www.openstreetmap.org/
https://opendata.cityofnewyork.us/
https://data.cityofchicago.org/
https://datasf.org/opendata/
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://sites.google.com/site/yangdingqi/home/foursquare-dataset

	Introduction
	Related Work
	Preliminaries
	Proposed model
	Model Overview
	Dual-Feature Attentive Fusion
	Model Training

	Hybrid Attentive Feature Learning
	EXPERIMENTS
	Experimental Settings
	Overall Results
	Task 1: Check-in Count Prediction
	Task 2: Crime Prediction
	Task 3: Service Call Prediction

	Applicability of Dual-feature Attentive Fusion
	Ablation Study
	Impact of Different Input Views
	Impact of Number of Regions
	Impact of Population Density
	Impact of Parameter Values

	Conclusion
	acknowledgment
	References

