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We study a partially disordered one-dimensional system with interacting particles. Concretely,
we impose a disorder potential to only every other site, followed by a clean site. Our numerical
analysis of eigenstate properties is based on the entanglement entropy and density distributions.
Most importantly, at large disorder, there exist eigenstates with large entanglement entropies and
significant correlations between the clean sites. These states have volume-law scaling, embedded into
a sea of area-law states, reminiscent of inverted quantum-scar states. These eigenstate features leave
fingerprints in the nonequilibrium dynamics even in the large-disorder regime, with a strong initial-
state dependence. We demonstrate that certain types of initial charge-density-wave states decay
significantly, while others preserve their initial inhomogeneity, the latter being the typical behavior
for many-body localized systems. This initial-condition dependent dynamics may give extra control
over the delocalization dynamics at large disorder strength and should be experimentally feasible
with ultracold atoms in optical lattices.

I. INTRODUCTION

A generic quantum many-body system is expected to
thermalize through its intrinsic dynamics [1–4]. There
are exceptional cases where the system refuses to ther-
malize, such as integrable systems [5–10], which are fine-
tuned systems. The many-body localized (MBL) phase,
a phenomenon in which a quantum-mechanical many-
body system ceases to thermalize in the presence of dis-
order [11–14], is a generic counter-example of a thermal-
izing system. However, there are different viewpoints on
whether a stable MBL phase exists or not in the thermo-
dynamical limit.

On the one hand, numerical evidence in small sys-
tems implies many-body localization in the presence of
large random potentials [15–21] (for other theoretical ar-
guments in favor of MBL, see [22–24] and review arti-
cles [11, 13, 25]). Experimental observations also advo-
cate localization at large disorder, signaling clear signa-
tures of MBL phases in finite systems and on accessible
time scales [26–32]. Recently, a large pre-thermal MBL
regime has been predicted that results from many-body
resonances and exhibits exponentially long thermaliza-
tion times [33, 34]. This pre-thermal MBL phase moves
the MBL phase into a larger-disorder regime compared
to the original predictions [19, 33].

On the other hand, the interpretation of numerical re-
sults that are in favor of MBL on small systems has been
challenged in a series of studies altogether, even in one
dimension [35–43] (see also [44, 45]). The main mech-
anisms proposed for destabilizing MBL are many-body
resonances (see, e.g., [33] and references therein) and so-
called avalanches [33, 38, 46–50], a nonperturbative ef-
fect. According to that theory, a small thermal bubble
can serve as a bath and ultimately cause the entire system
to thermalize through the propagation mechanism of an
avalanche. A recent experiment studies a partially dis-
ordered system to seek experimental evidence for quan-
tum avalanches [32]. Concretely, an interface between a
disordered and a clean system is studied with ultracold
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FIG. 1. (a) Schematic diagram of the model Hamiltonian

(Ĥm) from Eq. (1) shown for m = 1, 2 and 3. The light gray
(deep blue) sites are clean (disordered) sites, i.e., ϵi = 0 or
ϵi random numbers. The particles (yellow circles) can hop
to the nearest-neighbor site with hopping amplitude J and
two particles sitting at nearest-neighbor sites interact with
energy V . (b) The effective correlated-hopping between the
clean sites at large disorder strength is pictorially represented
for the m = 2 case (solid arrows are direct while dashed lines
indicate higher-order hopping processes). See the discussion
in Sec. V.

atoms in optical lattices. An accelerated penetration of
the thermal bath through the interface has been inter-
preted as evidence of such quantum avalanches.
Such partially disordered models can therefore provide

insights into the localization and delocalization properties
in disordered systems. So far, several models have been
studied in this context but mostly in the non-interacting
limit, such as the mosaic lattice with quasi-periodic po-
tentials [51] and a partially disordered ensemble of ran-
dom regular graphs [52], which has mobility edges that
essentially extend to infinite disorder potentials. Even
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though the non-interacting limits of such systems are
well-studied, less is known about the effect of interac-
tions in these kinds of systems.

We study a particularly simple example of patterned
disorder (see Fig. 1(a) for a sketch), namely a one-
dimensional partially disordered system, where not all
sites of the system are subject to the disorder potential,
but an equal number of disorder-free (clean) sites sepa-
rate disordered sites, similar to the mosaic lattice [51].
The random disorder potential is sampled from a uni-
form box distribution. In the single-particle spectrum,
there exist unique states that are completely extended
and do not localize even for very large values of disor-
der strength. Therefore, we expect interesting effects to
occur in the many-body case as well.

In the interacting case with hardcore bosons, we first
observe a larger ergodic regime compared to the fully
disordered case on finite systems. This, however, can
be understood by the reduced variance of the disorder
distribution due to the presence of clean sites. More
importantly, the patterned disorder introduces highly-
entangled states in the background of low-entanglement
states, where the latter is typical for a finite-size system
in the MBL regime.

Consequently, by choosing appropriate initial states,
the presence of the patterned disorder affects the tem-
poral dynamics and a strong initial-condition dependent
dynamics is observed. Depending on whether particles
are initially localized on disordered or clean sites, there
is either a strongly nonergodic dynamics or a significant
decay of density imbalances, respectively. The latter is
associated with retaining less memory about the initial
state on the same system sizes in the measurement of lo-
cal densities and such memory is increasingly erased on
larger system sizes.

A similar phenomenon has been found in an interact-
ing disordered ladder system with hardcore bosons [53].
Depending on the initial condition, that system shows
thermalizing or localizing behavior. Another such coex-
istence is present in a two-dimensional interacting sys-
tem [54]. Our results can be cast into the language
of random hopping models [55–60] (see Fig. 1(b) for a
sketch): The presence of the disorder sites leads to effec-
tive random hopping processes between the clean sites,
while processes between disordered sites are suppressed.

Our observation of highly-entangled states in a sea of
area-law states is reminiscent of the recently discussed
inverted quantum-scar states [61–63] for models different
from ours (see also [64–66] and [67, 68] for reviews on
quantum-scar states). In our case, these states are not
quantum scars, just the phenomenology with respect to
entanglement is similar. Our set-up provides an exper-
imentally easy-to-implement scheme to introduce fast-
decaying dynamics in strongly disordered systems and
a significant initial-state dependence. Patterned disorder
such as envisioned in our work can easily be implemented
in quantum-gas microscopes with digital mirror devices.

The rest of the paper is structured in the following

way. We explain the model and method to simulate
the partially disordered system in Sec. II. We explore
the properties of eigenstates of finite systems with in-
teraction in Sec. III, where we establish the existence
of eigenstates with large entanglement and significant
density-density correlations between disorder-free sites in
the large-disorder regime. Section IV presents the initial
state-dependent relaxation dynamics. The diagonal en-
semble average of different observables, such as density
imbalance and density-density correlations, is provided in
Sec. V to summarize the localization properties in such
systems. Finally, we conclude in Sec. VI. An appendix
contains a discussion of non-interacting systems, finite-
size dependencies of the von Neumann entropy, its time
dependence, finite-size dependencies of density correla-
tors, and additional results for half filling.

II. MODEL AND METHOD

The one-dimensional partially disordered model, illus-
trated in Fig. 1, where clean sites are periodically placed
between the disordered sites, can be described by the
Hamiltonian

Ĥm =− J
∑
⟨i,j⟩

(
b̂†i b̂j + h.c.

)
+

∑
i∈[1,L,m]

ϵin̂i

+ V
∑
⟨i,j⟩

n̂in̂j . (1)

Here, b̂†i (b̂i) and n̂i are bosonic creation (annihilation)
and number operators at a given site i. The system has
an onsite hardcore constraint where each site has a lo-
cal Hilbert space of dimension d = 2 ({|0⟩, |1⟩}) and

b̂†2i |0⟩ = 0. The first term defines the nearest-neighbor
hopping process with matrix element J , with ⟨i, j⟩ indi-
cating nearest neighbors. The second term adds disorder
to the Hamiltonian. The onsite potentials ϵi are ran-
dom numbers uniformly drawn from a box distribution
ϵi ∈ [−W,W ]. Here, the notation i ∈ [1, L,m] stands for
a site index i that varies between [1, L] with regular in-
terval m. This makes the system periodically disordered
where m − 1 disorder-free sites separate two disordered
sites (see Fig. 1). The third term in the Hamiltonian
stands for nearest-neighbor interactions with interaction
strength V . Note that we use periodic-boundary con-
ditions for our calculations. Here, we consider J = 1,
defining the unit of energy and other parameters and ob-
servables. The energy density is defined as

ϵ =
Eα − Emin

Emax − Emin
, (2)

where Eα is an eigenenergy of Ĥm and Emin (Emax) is the
groundstate (antigroundstate) energy for a given disorder
configuration.
In the non-interacting limit (V/J = 0) and for

m = 1, the model is the well-known Anderson-disorder
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FIG. 2. The von Neumann entanglement entropy SvN is plot-
ted in the W versus energy density ϵ plane for the (a) m = 1
and (b) m = 2 cases with V = 2J . Here, we consider 20
bins in the energy density for a system of L = 16. We see an
expanded ergodic region for the m = 2 case, which, however,
can be explained by the reduced variance of the distribution
of disorder potential strengths due to the presence of clean
sites.

model [69, 70]. In this case, we know that all single-
particle eigenstates localize for any finite W . Switching
on interactions, i.e., V > 0, the system exhibits many-
body localization at large W in finite systems (see, e.g.,
[15, 17, 19–21, 71]). For m = 1, and with our choice
of units, the finite-size crossover scale to localization is
at Wc ≳ 4J (see, e.g., [19]). For the m = 2 case and at
V = 0, there exists an extended state in the middle of the
spectrum for all disorder strength W (see App. VII). We
anticipate that an analogon will persist in the many-body
case. To analyze the many-body system, we consider a
filling of ρ = 1/4. There are two reasons: First, larger
system sizes can be reached, second, localization is more
stable at lower filling factors [72]. Note, though, that our
main observations also apply to half filling ρ = 1/2 as
shown in App. VII E.

Unless otherwise mentioned, we diagonalize the Hamil-
tonian fully to calculate all the observables from the
eigenstates. To calculate the Hamiltonian, we use the
QuSpin library [73, 74]. The time evolution of the initial
states is performed by exponentiating the Hamiltonian
using the scaling-and-squaring algorithm implemented in
SciPy’s linear algebra library [75]. All observables pre-
sented in the results sections are averaged overNr = 1000
disorder realizations. Our numerical data for interacting
systems are computed for V = 2J .

III. EIGENSTATE PROPERTIES OF
INTERACTING SYSTEM

In this section, we analyze the Hamiltonian Ĥm in
many-body setups with V > 0. We consider a filling
of ρ = 1/4 and calculate the entanglement entropy, den-
sity distributions, and correlations from the eigenstates.
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FIG. 3. Distribution of von Neumann entanglement entropy
SvN for (a) m = 1 and (b) m = 2 for a system of L = 16 sites
at ϵ = 0.5 (averaged over ten eigenstates). We take W = 20J
and consider different interaction strength V , represented by
different colors. In (a) and (b), we divide the SvN axis into
20 and 30 bins, respectively. The dashed lines in (a) and
(b) represent SvN = ln(2). We can see a significant peak
at SvN = ln(2) for m = 2 compared to m = 1 case and
most importantly, the emergence of a tail of highly-entangled
states.

Note that in finite systems, Ĥm=1 is expected to show
many-body localization behavior at large W/J as this
system is the paradigmatic random-disorder model with
nearest-neighbor interactions [15, 17, 19–21, 71]. In the
following, we study and compare the m = 2 with the
m = 1 case to elucidate the effect of the patterned disor-
dered potential on the many-body states.

A. Entanglement entropy

The bipartite entanglement entropy of the many-body
eigenstates can be exploited to diagnose the degree of lo-
calization in many-body eigenstates. Localized states are
expected to follow an area law of entanglement, whereas
the delocalized states are expected to follow a volume law
of entanglement [76, 77]. We can calculate the bipartite
von Neumann entanglement entropy (SvN ) of a subsys-
tem A from the reduced density matrix ρ̂A after dividing
the system into two subsystems A and B with length LA

and LB as

SvN = −Tr [ρ̂Aln(ρ̂A)] , (3)

where ρ̂A = TrB(|Ψ⟩⟨Ψ|) is the reduced density matrix
of the subsystem and |Ψ⟩ is the pure state of the whole
system. Throughout, we set LA = L/2.

In Fig. 2, we plot SvN/LA with respect to energy-
density ϵ and W/J computed in the eigenstates of a sys-
tem of L = 16 for a finite interaction strength V = 2J .
Figures 2(a) and (b) contain results for the m = 1 and 2
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FIG. 4. (a)–(d): Entanglement entropy versus eigenstate en-
ergy for (a),(c) m = 1 and (b),(d) m = 2 for L = 16 sites
and (a), (b) W/J = 1 (c), (d) W/J = 20. The box in (d)
indicates the highly-entangled states. (e) Number of particles
in the clean sites a versus eigenstate energy for m = 2 case
with L = 20 and W = 20J . (f) The same as (d), but for
L = 20. The horizontal dotted lines in (c), (d), and (f) indi-
cate SvN =M ln(2) with M = 1, 2, 3, 4, 5.

cases, respectively. Compared to them = 1 case, a larger
region is occupied by the ergodic phase in them = 2 case,
evidenced by large values of SvN . This observation can
simply be explained by the fact that the standard devia-
tion of disorder potentials for the m = 2 case is a factor
of 1√

2
smaller than the one for the m = 1 case due to

the presence of clean sites in the former case. One can
rescale the W/J axis of Fig. 2(b) by 1√

2
and compare

to Fig. 2(a), resulting in a comparable extension of the
ergodic regime in both the m = 2 and m = 1 cases [not
shown here]. The finite-size dependence of the entan-
glement entropy is discussed in App. VIIB. As we shall
see next, the key effect of the patterned disorder is to
introduce a set of highly entangled states.

Investigating further, we find that the m = 2 case
gives rise to the emergence of a tail of high-entanglement
states and at the same time, an increase in the number
of two-particle resonances in the eigenstates, which is re-
flected in the distribution of SvN and a peak at ln(2).
In Figs. 3(a) and (b), we plot this distribution for the

m = 1 and 2 cases, respectively, at ϵ = 0.5 for differ-
ent interaction strengths and at a large disorder strength
W = 20J . For m = 1 and for all values of V considered
here, the distribution resembles the typical distribution
of an MBL regime with a large peak near zero and a small
peak at SvN = ln(2), the latter a result of rarely occur-
ring two-site resonances [71, 76, 78]. In contrast, m = 2
leads to a different scenario. The peak at ln(2) followed
by a tail at large SvN is significant compared to the peak
at zero. The emergence of highly-entangled states is due
to many-body resonances resulting from the many clean
sites in the system.

Finite values of V make the peak near zero larger com-
pared to V = 0, signaling a higher degree of localization,
and the peak at SvN = ln(2) and the extent of the tail
decrease but remain large in comparison. Such a distri-
bution of SvN in the m = 2 case also explains the higher
SvN at large W in Fig. 2(b) compared to the m = 1 case
shown in Fig. 2(a). Nonetheless, even with interactions,
there is a sizable tail at large values of SvN compared to
the m = 1 case, which will also give rise to initial-state
dependent faster relaxation dynamics.

A central result of our paper is obtained from plotting
the half-chain entanglement entropy versus eigenstate en-
ergy, shown in Figs. 4(a)-(d) for a system of L = 16.
At weak disorder [W/J = 1, Fig. 4(a),(b)], a typical
band emerges, with high-entanglement states in the bulk
of the spectrum, with no discernible difference between
the m = 1 and m = 2 cases. At large disorder and for
m = 1, there are mostly low-entanglement states (spread-
ing over the entire many-body bandwidth) and states at
SvN ≈ ln(2) [see Fig. 4(c)]. For m = 2, a significant
structure emerges as is evident from Fig. 4(d). First,
there are subsequent bands at M ln(2) (M = 1, 2, 3, 4),
with a varying bandwidth indicated by the dashed hori-
zontal lines. Second, at Eα = 0, highly-entangled states
emerge that reach almost as large values as for weak dis-
order [see the box in Fig. 4(d)]. For orientation, our
estimate for the maximum possible entanglement for the
clean part alone is SvN = ln

(
2M

)
= M ln(2) ≤ 2.77 (for

M = 4) for the parameters of Fig. 4(d), which is consis-
tent with the data (for a discussion of SvN in eigenstates,
see [79–81]). We will argue that these high-entanglement
states are responsible for the initial-state dependent fast
relaxation dynamics discussed in Sec. IV.

The highly-entangled states follow volume-law scaling
as expected from the discussion above. In Fig. 4(f), we
present L = 20 data, to be compared with the for L = 16
data from Fig. 4(d). We can see that there is an incre-
ment in the number of bands (M ln(2)) compared to the
L = 16 case. Now, the estimate for the entanglement
from the clean sites alone reaches 5 ln(2) ≈ 3.47, signi-
fying the volume-law scaling. The actual SvN exceeds
this value due to contributions from the disordered sites.
The phenomenology emerging here is similar to the case
studied in [63], where another potential is introduced that
localizes some but not all states.

The structure for m = 2 in the W ≫ J regime can
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FIG. 5. Distributions of the onsite densities ni = ⟨n̂i⟩ in eigenstates for the m = 2 case at a site with disorder (here i = 1) and
one clean site (i = 2), represented by black and red colors, respectively, for (a) W = J and (b) W = 20J . At small W = J , the
distribution peaks at the total density ρ = 1/4 of the system. At large disorder W = 20J , the disordered (clean) site exhibits
a bimodal (trimodal) distribution. (c) Occupation distance δni for the disordered and clean sites (the difference only matters
for the m = 2 case) for both the m = 1 and m = 2 case as a function of W . (d) Finite-size dependence of δni for m = 2.

be understood by assuming different energy-dependent
distributions of particles on clean and disordered sites
and approximating the total entanglement SvN ≈ Sdis

vN +
Sclean
vN by the sum of contributions from particles on dis-

ordered and clean sites. While there is a very minor con-
tribution from the disordered sites in the W ≫ J limit,
the main contribution comes from the clean sites. In
Fig. 4(e), we portray the total number of particles avail-
able in the clean sites (Nclean) versus the eigenstates. We
can see the emergence of the bands with different num-
bers of particles at different energies. The structure in
Nclean correlates with the bands in SvN = M ln(2) with
M = Nclean.

B. Density Distribution

Some other markers which are experimentally observ-
able can give insight into the degree of localization. In
the following, we analyze the onsite densities and density-
density correlations, which may tell us if there is any dis-
tinction between clean and disordered sites for the m = 2
case. We first look at the probability distributions P(ni)
of densities ni = ⟨n̂i⟩ in one of the disordered sites (i = 1)
and one of the clean sites (i = 2), computed in all eigen-
states.

Figures 5(a) and (b) show the density distributions
for W = J and 20J , respectively, in a disordered and
a clean site. In the small-disorder regime (W = J), we
observe maxima in the distributions at ni = 1/4, which
is equal to the filling. This is the expected behavior in
the ergodic regime [72, 82]. At large disorder (W = 20J),
we get a clear differentiation of the distribution in clean
and disordered sites. While the disordered site exhibits

a bimodal distribution implying strong localization, the
clean site shows a trimodal distribution. This behavior of
the density distribution on clean sites deviates from the
case of strong localization. The central peak for m = 2
is at n ≈ 0.5, corresponding to the situation where all
particles sit on the clean sites.
We can quantify this difference between the clean and

disordered sites in the m = 2 case by calculating the oc-
cupation distance δni = |ni−[ni]| where [ni] is the closest
integer of ni and study it as a function ofW [72, 82]. We
plot δni, averaged over eigenstates and disorder realiza-
tions (δni,av), for disordered (δn1,av) and clean (δn2,av)
sites in Fig. 5(c) for both the m = 1 and m = 2 cases.
In the ergodic and strongly localized regime, we expect
δni,av → ρ or to be small and L-independent, respec-
tively. As we can see from Fig. 5(c), in the m = 1 case,
δni,av asymptotically goes to zero at large W consistent
with localization. However, for the m = 2 case, we find
differences between clean and disordered sites. The occu-
pation distance δni,av for a disordered site behaves sim-
ilarly to the m = 1 case but δni,av for a clean site never
goes close to zero even at very largeW . The actual values
are lower than ρ = 1/4, the latter the expected result in
the ergodic regime, yet clearly different from the typical
behavior of the localized case [72]. By increasing sys-
tem size, for W ≲ 10J , there is a clear trend for δni to
increase with L towards 0.25 [see Fig. 5(d)].

C. Density Correlations

Now, we analyze the nearest-distance connected
density-density correlations between a disordered and a
clean site (Cc

i,i+1), two disordered sites (Cc
2i,2i+2), and
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FIG. 6. Connected two-site density-density correlators Cc
i,j

for (a-c) W = J , (d-f) W = 10J , and (g-i) W = 20J for
the m = 2 case. We show the nearest-neighbor correla-
tions between a disordered and a clean site (Cc

i,i+1), between
two disordered sites (Cc

2i,2i+2), and between two clean sites
(Cc

2i+1,2i+3) in the first, second, and third columns, respec-
tively. As the disorder strength W increases, the correlators
Cc

i,i+1 and Cc
2i,2i+2 decrease (compare the W = 10J and 20J

cases) but Cc
2i+1,2i+3 remains large.

two clean sites (Cc
2i+1,2i+3). The definitions are:

Cc
ij = ⟨n̂in̂j⟩ − ⟨n̂i⟩⟨n̂j⟩ . (4)

We plot these correlators in Fig. 6 as a function of the
eigenenergy Eα for the m = 2 case, after averaging over
the whole system, for W = J , 10J , and 20J .
In the ergodic regime (W = J), the correlations are

smooth functions of energy with a small spreading due
to the small system size. The spreading decreases with
increasing system size (see App. VIID). In the large W
regime, we see a non-ETH-like behavior on finite systems
[83, 84]: the correlations spread over large values at the
same energy and do not shrink with increasing system
size (see App. VIID). Importantly, Cc

i,i+1 and Cc
2i,2i+2

keep decreasing with increasing W (compare the W =
10J and 20J cases). However, the correlation between
the clean sites (Cc

2i+1,2i+3) remains finite and large in this
regime (compare the W = 20J case). These features are
absent in them = 1 case where in the largeW regime, all
the correlations systematically decrease with increasing
W .
One can notice a wedding cake-like structure in the

correlation between the clean sites Cc
2i+1,2i+3 for large

W [Fig. 6(i)] which is also present in the entanglement
entropy [Fig. 3(d)]. This interesting structure can be un-
derstood from the distributions of the particles in clean
and disordered sites for a given eigenstate. If all the par-
ticles are in the clean sites, Cc

2i+1,2i+3 is at its maximum
and sharply peaked near Eα = 0. Now, if only one parti-
cle belongs to the disordered sites, Cc

2i+1,2i+3 decreases,
and the spread over the energy window Eα ∈ [−W,W ]

|Ψ1⟩ :

|Ψ2⟩ :

101 102 103

tJ

0

0.5

1

O
C
D
W

(a) m = 1

|Ψ1〉
|Ψ2〉
W = J

W = 10J

W = 20J

101 102 103

tJ

(b) m = 2

FIG. 7. Time dependence of the CDW order parameter
OCDW . The sketches illustrate the dynamics for the two
initial states |Ψ1⟩ and |Ψ2⟩ from Eqs. (5) and (6) (see also
Fig. 1). (a),(b): OCDW (t) for L = 16 sites and m = 1 and
2, respectively. Different disorder strength W are represented
by different colors and the two initial states |Ψ1⟩ and |Ψ2⟩ are
represented by the solid and dashed lines, respectively. We
can see a drastic difference in the long-time value of OCDW

between the two initial states for the m = 2 case at large
disorder (W = 10J and 20J).

forms the topmost step. Similarly, with an increasing
number of particles in the disordered site (say Ndis par-
ticles out of N), the correlations between particles in the
clean sites decreases and form the lower steps one by one
with energy windows Eα ∈ [−NdisW,NdisW ]. Note that
if all the particles are in the disordered sites, Cc

2i+1,2i+3

is the lowest and spreads over the whole energy spec-
trum. Therefore, there is an emulsion of different classes
of eigenstates depending on the number of particles in
the disordered site in the many-body spectrum.

We will next argue that the features at zero energy –
existence of highly entangled eigenstates and large cor-
relations between clean sites – impact the time evolution
form appropriately chosen initial states.

IV. QUENCH DYNAMICS OF CDW STATES

We investigate the quench dynamics for different initial
conditions to get further insights into the system. We
consider two representative initial states |ψ(t = 0)⟩ for
the m = 2 case, where in one case, the particles are
initialized in disordered sites

|Ψ1⟩ =
L/4−1∏
i=0

b̂†4i+1|0⟩ (5)
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and in the other case, particles are initiated from clean
sites

|Ψ2⟩ =
L/4−1∏
i=0

b̂†4i+2|0⟩ (6)

(see the upper panel of Fig. 7). Note that these two
charge-density-wave (CDW) states are equivalent in the
m = 1 case since there, all sites are disordered. Now, we
define a CDW order parameter as (similar to the imbal-
ance [26])

OCDW =
1

N

L/4∑
i=1

⟨n̂4i −
1

3
n̂4i+1 −

1

3
n̂4i+2 −

1

3
n̂4i+3⟩ (7)

for |ψ(t = 0)⟩ = |Ψ1⟩, and

OCDW =
1

N

L/4∑
i=1

⟨−1

3
n̂4i+ n̂4i+1−

1

3
n̂4i+2−

1

3
n̂4i+3⟩ (8)

for |ψ(t = 0)⟩ = |Ψ2⟩.
The relaxation of the CDW states is presented in Fig. 7

for a system of L = 16 with V = 2J . Figures 7(a) and
(b) show the evolution of OCDW with time for different
values of W (represented by different colored lines) and
the two initial states (represented by two different line
styles) for the m = 1 and 2 cases, respectively. We see
the expected results for the m = 1 case; here, the curves
for both initial states are on top of each other. At small
disorder (W = J), there is a complete relaxation of the
particle inhomgeneity, consistent with delocalization and
thermalization [42, 85]. For large disorder 20J , OCDW

saturates at a finite value, signaling localization in finite
L [42, 85]. For m = 2, we find an interesting contrast be-
tween the relaxation of the two initial states. While small
disorder such as W = J leads to complete relaxation for
both states, for large W , the states relax to vastly dif-
ferent values of OCDW at a long time. We demonstrate
that a similar initial-state dependent dynamics is present
for ρ = 1/2, which is shown in App. VII E.

The distinct behavior for the two initial states at large
W for the m = 2 case can be related to the eigenstate
properties discussed in Sec. III. We first check where the
states |Ψ1⟩ and |Ψ2⟩ have their largest weight in the

eigenspectrum of Ĥ2. To that end, we decompose both
states in the eigenbasis |ψα⟩ of Ĥ2

|ψ(t = 0)⟩ =
∑
α

cα|ψα⟩ . (9)

We plot the energy distribution ρdiag (arbitrary units),
which is |cα|2 multiplied with the density of states (DoS),
for the two initial states versus eigenenergy Eα in Fig. 8.
The DoS is calculated by dividing the spectrum into 100
bins and counting the number of eigenstates in each bin.
There are no qualitative difference between the two ini-
tial states for W = J . At large W = 20J , |Ψ2⟩ has

-8 0 8
0.0

0.5

ρ
d

ia
g

(a) W = J
m = 2

|Ψ1〉
|Ψ2〉

-2 0 2

Eα/W

0

10

20

ρ
d

ia
g

(b) W = 20J
m = 2

FIG. 8. The energy distribution ρdiag (arbitrary units) of the
initial states in the eigenbasis plotted for the two initial states
|Ψ1⟩ (solid lines) and |Ψ2⟩ (dashed lines) for (a) W = J and
(b) W = 20J . We can see that the initial state |Ψ2⟩ has high
weights around energy Eα/W = 0 for large disorder strength.

a large probability at energy Eα = 0 in contrast to
|Ψ1⟩, which has contributions from across the spectrum.
From the analysis of the entanglement entropy [Fig. 3(d)]
and the correlations Cc

2i+1,2i+3 [Fig. 6(f)], we know that
both quantities are large around Eα = 0. These large-
entanglement eigenstates and large correlations between
clean sites explain the small value of OCDW after a long
time for the initial state |Ψ2⟩. The emergence of highly-
entangled eigenstates also leads to a much faster time-
dependent increase of the entanglement entropy, dis-
cussed in App. VIIC.

V. DIAGONAL ENSEMBLE AVERAGE

After analyzing the properties of the many-body eigen-
states and the temporal dynamics of different initial
states, we discuss the infinite-time values of different ob-
servables in this section. The diagonal ensemble average
determines the infinite-time expectation value of an ob-
servable Ô [83], given by

ODE =
∑
α

|cα|2Oαα, (10)

where Oαα = ⟨ψα|Ô|ψα⟩ with |ψα⟩ being the eigenstates
of the Hamiltonian.
First, we calculate the diagonal ensemble average of

the CDW order parameter (OCDW,DE) for the two ini-
tial states considered in Sec. IV and plot it in Fig. 9 for
different system sizes withm = 2, and over many decades
of disorder strength. A drastic difference between the two
initial states can immediately be spotted. At large W ,
|Ψ1⟩ leads towards complete localization (OCDW,DE ∼ 1)
and OCDW,DE becomes L-independent on the system
sizes considered here. In contrast, the dynamics starting
from |Ψ2⟩ does not completely localize even for very large
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W/J

0.0

0.5

1.0
O
C
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W
,D
E

m = 2

|Ψ1〉 |Ψ2〉
L = 8

L = 12

L = 16

L = 20

L = 8

L = 12

L = 16

L = 20

FIG. 9. Diagonal-ensemble average OCDW,DE of the imbal-
ance as a function of disorder strength, computed for the two
initial states |Ψ1⟩ and |Ψ2⟩ represented by two different line
styles and for different system sizes L = 8, 12, 16. At largeW ,
OCDW,DE saturates at two different values for the two initial
states.

W but saturates to a much smaller value of OCDW,DE .
In this case, we also find a large system-size dependence
of OCDW,DE , decreasing with increasing L, even at huge
values of W .

Next, we calculate the diagonal ensemble average of
the connected density-density correlations Cc

ij (Eq. (4))
to capture the underlying physics for such a signifi-
cant initial-condition dependent dynamics. We calcu-
late three such correlations: nearest-neighbor correla-
tions (Cc

i,i+1,DE), shortest-distance correlations between

disordered sites (Cc
2i,2i+2,DE), and shortest-distance cor-

relations between clean sites (Cc
2i+1,2i+3,DE) and average

over the whole system.
If we compare the two initial states, we see a qualita-

tively similar behavior at small W values. The system
generates correlations, which leads to thermalization. At
large W , however, for |Ψ1⟩, all correlations start to van-
ish, some earlier and some later. In contrast, for the
initial state |Ψ2⟩, other than Cc

2i+1,2i+3,DE , which cor-
responds to the correlation between clean sites, all the
correlations vanish at very large W . The non-vanishing
Cc

2i+1,2i+3,DE for |Ψ2⟩ (see Fig. 10) at large W explains
the tendency for delocalization seen in Fig. 9 for the sec-
ond initial state.

VI. CONCLUSIONS

In conclusion, we studied the delocalization proper-
ties of a partially disordered one-dimensional system and
compared it with the fully disordered case. In the single-
particle spectrum, extended states exist for the partially
disordered case, which do not disappear in the large-
disorder regime.

In the many-body case, the distribution of the half-
chain entanglement entropy displays a tail of highly-

W/J

0

-0.04

C
c i,
i+

1,
D
E

(a) disordered-to-clean m = 2

|Ψ1〉
|Ψ2〉

W/J

0

-0.04

C
c 2i
,2
i+

2,
D
E

(b) disordered-to-disordered

10−1 100 101 102 103

W/J

0

-0.04

C
c 2i

+
1,

2i
+

3,
D
E

(c)
clean-to-clean

FIG. 10. Diagonal-ensemble average of correlators Ci,j,DE as
a function of disorder strength, computed for the two different
initial states |Ψ1⟩ and |Ψ2⟩ represented by two different line
styles. We show results for (a) nearest-neighbor correlators
Cc

i,i+1,DE , (b) shortest-distance correlations Cc
2i,2i+2,DE be-

tween disordered sites (i.e., i even), and (c) shortest-distance
correlators Cc

2i+1,2i+3,DE between clean sites (i.e., i odd), rep-
resented by black, red and blue lines, respectively. The large
non-vanishing values of Cc

2i+1,2i+3,DE for the initial state |Ψ2⟩
at large W compliment the small values of OCDW,DE seen
in Fig. 9 for the same parameters. This phenomenon is il-
lustrated in Fig. 1(b), showing that dynamics between clean
sites are possible at large W via resonances while processes
between disordered sites are suppressed.

entangled states, absent in a fully localized system.
These states result from resonances between particles in
the clean sites. This is also reflected in the density-
density correlators between clean sites which remain
large with increasing disorder whereas the correlation be-
tween clean-to-disordered and disordered-to-disordered
sites decreases rapidly. As a result, it should be possible
to derive an effective model consisting solely of clean sites
in the large disorder limit. The strength of effective hop-
ping matrix elements between the neighboring clean sites
is then determined by the second-order hopping process
through a disordered site of the original model. This re-
sults in an effective model that bears resemblance to a
tight-binding random hopping model [55–60]. An analy-
sis of such a model is left for future work.
As a consequence of the highly-entangled states, a sig-

nificant initial state-dependent dynamical behavior is ob-
served in the partially disordered system, in particular, at
large disorder. Two representative charge-density-wave
states evolve to two very distinct steady states depending
on whether the particles are initially localized on disor-
dered or clean sites. Whenever particles originate from
clean sites, the residual long-time values are reduced com-
pared to particles spreading out from disordered sites and
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decay with system size.
Our set-up could be realized in optical-lattice experi-

ments and would yield an avenue for systematic studies
of delocalization in initial state-dependent schemes.
Both the initial states and the disorder patterns can
be realized using digital mirror devices. We stress
the similarity to inverted quantum scars discussed in
[61–63]. A natural extension of our work would be the
investigation of patterned disorder in the Bose-Hubbard
model realized in some quantum-gas experiments [27, 32].

The research data shown in the figures will be made
available as ancillary files on arXiv.org post publication.
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VII. APPENDIX

A. Noninteracting case

Here, we want to discuss the single-particle physics of
the partially disordered system and compare it to the An-
derson disorder model in this section. Ĥm=1 with V = 0
is the well-known Anderson disorder model, where all the
states are localized for W/J > 0. In contrast, the system
exhibits extended states for m > 1 in the spectrum. We
calculate the inverse participation ratio (IPR), a marker
to distinguish extended and localized states, for m = 1
and m = 2 to depict the physics. The IPR of an eigen-
state |ψα⟩ can be calculated as,

IPRα =

L∑
l=1

|ψα,l|4 (11)

where l is the site index and ψα,l is the amplitude of
|ψα⟩ on site l. The IPRα is proportional to 1/L for
an extended state and is O(1) for localized states. In
Fig. 11(a) and (b), we show IPRα in the spectrum

0 0.5 1

α/L

0

10

20

W
/J

(a) m = 1

0 0.5 1

α/L

(b) m = 2

I
P
R

0.0

0.5

1.0

FIG. 11. Non-interacting case: Existence of extended states
at large disorder strength in the single-particle spectrum of
a partially disordered system. The IPR of all the single-
particle eigenstates |ψα⟩ is plotted with respect to the disorder
strength for (a) m = 1 and (b) m = 2. Here, we consider L =
3000 and the IPR is averaged over Nr = 1000 realizations.
The m = 2 case exhibits a region with IPR ∼ 0 at the center
of the spectrum, signifying the existence of an extended state
in the partially-disordered case.

with varying W for m = 1 and m = 2, respectively.
While Fig. 11(a) shows trivial Anderson localization of
the eigenstates, Fig. 11(b) clearly shows the existence of
an extended state at the middle of the spectrum for all
disorder strength W .

One can show from an elementary analysis that, for the
non-interacting Ĥm=2, the system can have one special
periodic eigenstate |ψp⟩ =

∑
l∈[1,L,4](|l + 1⟩ − |l + 3⟩)

with eigenenergy Ep = 0. Similarly for a non-interacting

Ĥm=3 there exist two periodic states with E±
p = ±J and

so on. These states can survive and remain delocalized
for any W > 0. In general, we find m − 1 number of
exactly periodic states in the single-particle spectrum of
the Hamiltonian Ĥm (not shown).

B. Finite-size dependence of eigenstate
entanglement entropy

The finite-size trends in SvN are captured in Fig. 12.
Here, we plot SvN/LA, averaged over the states present
in the middle bin corresponding to ϵ = 0.5 of Fig. 2. Note
that for L = 20, we use the shift-and-invert method to
find fifty eigenstates around energy density ϵ = 0.5 and
calculate the averaged SvN/LA. The m = 1 and 2 cases
look qualitatively similar, but the entropy at large W is
larger for m = 2 compared to the corresponding m = 1
cases.
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FIG. 12. Von Neumann entanglement entropy SvN at energy
density ϵ = 0.5 shown for different system sizes and for the
same the parameters as in (a) Fig. 2(a) and (b) Fig. 2(b),
respectively.
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W = J
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tJ
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FIG. 13. Time evolution of the entanglement entropy SvN

for (a) m = 1 and (b) m = 2 and L = 16 sites. Different
values of W are represented by different colours and data for
the two initial states |Ψ1⟩ (Eq. (5)) and |Ψ2⟩ (Eq. (6)) are
represented by the solid and dashed lines, respectively. In
both the m = 1 and 2 case and for small W = J , SvN quickly
reaches a large value and saturates, while for large W = 20J ,
we see a logarithmic increase. For the m = 2 case and for
large disorder strength, SvN increases faster for the initial
state |Ψ2⟩ compared to the state |Ψ2⟩.

C. Time-dependence of the entanglement entropy

We also calculate and analyze the evolution of en-
tanglement entropy SvN to complement the aforemen-
tioned finding. We plot the time-dependent SvN (t) in
Figs. 13(a) and (b) for the initial states and model pa-
rameters considered in Fig. 7(a) and (b), respectively.
The logarithmic growth of SvN for m = 1 case with large
W = 10J and 20J indicates typical behavior of the MBL
phase [16, 18], and the rapid growth of the same for small
W = J indicates the thermalization of the system. For
the m = 2 case, we see a similar behavior for smaller
W = J since the system thermalizes in this parameter

FIG. 14. System-size dependence of the nearest-neighbor cor-
relations between disordered-to-clean (Cc

i,i+1), disordered-to-
disordered (Cc

2i,2i+2), and clean-to-clean (Cc
2i,2i+3) sites. For

small W = J , the distribution becomes smoother as a func-
tion of energy with increasing L. For large W = 20J , the
step-like structure for Cc

2i,2i+3 emerges with increasing sys-
tem size.

regime. At large W = 10J and 20J , however, there is
a clear distinction between the two initial states. In the
intermediate time dynamics, SvN grows as a logarithm,
implying MBL-like behavior for both initial states. How-
ever, SvN for the initial state |Ψ2⟩ increases compara-
tively faster than for |Ψ1⟩ and saturates at a higher value
after a long time.

D. Finite-size dependence of density correlators

Here, we explore the finite-size dependence of the den-
sity correlations discussed in Sec. III. We plot the correla-
tions Cc

i,j at small (W = J) and large disorder strengths
(W = 20J) in Fig. 14(a-c) and Fig. 14(d-f), respectively,
for the m = 2 case. For W = J , the correlations be-
come smoother function of energy for larger L. Also, the
distribution of Cc

i,j shrinks at a given energy which is ex-
pected for an ergodic system obeying ETH. In the large
W case, we see non-ETH-like behavior and the wedding-
cake structure emerges with increasing system size on the
available system sizes.

E. Results for the ρ = 1/2 case

For our main results presented above, we have consid-
ered the filling of ρ = 1/4. However, it is important to
note that the physics we are discussing is not limited to
this specific filling. In this section, we present our find-
ings for a filling of ρ = 1/2. Similar to Fig. 4(e) and
(f), we have plotted the entanglement entropy and the
number of particles in clean sites for the m = 2 case
with L = 16, ρ = 1/2, and W = 20J in Fig. 15(a)
and (b), respectively. We can clearly observe the highly-
entangled states and the wedding cake-like structure of
Nclean in this case as well. However, unlike in the ρ = 1/4
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FIG. 15. (a) Entanglement entropy and (b) number of parti-
cles in the clean sites versus eigenstate energy for m = 2 case
with L = 16, ρ = 1/2, and W = 20J . The red dotted lines in
(a) are integer multiples of ln(2).
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m = 2, W = 20J, ρ = 1/2

|Ψ(t = 0)〉 = |Ψa〉
|Ψ(t = 0)〉 = |Ψb〉
|Ψ(t = 0)〉 = |Ψc〉

FIG. 16. Time evolution of the CDW order parameter corre-
sponding to the three initial states |Ψa⟩, |Ψb⟩ and |Ψc⟩ shown
for the m = 2 case with L = 16, ρ = 1/2 and W = 20J .

case where the highest entangled eigenstates correspond
to the states with Nclean ∼ N , for ρ = 1/2, eigenstates
with Nclean ∼ N are (trivially) localized states. For the
ρ = 1/2 case, if Nclean = N , all the clean sites are filled
leading to an energy E ∼ 0, and the sites in the neighbors
(disordered sites) are not correlated at large W , which

explains the localized nature of these eigenstates. The
large entangled states visible in Fig. 15(a) mostly corre-
spond to the case where the clean sites are half filled,
i.e., Nclean = N/2. Therefore, the filling ρ = 1/4 chosen
in the main text gives a more illustrative example of the
connection between SvN and Nclean. We can also cap-
ture this aspect in the time evolution of different initial
states discussed below. There, we find that the initial
state with Nclean = N/2 relaxes significantly compared
to the initial states with Nclean = N and Nclean = 0.
As mentioned above, we also see the initial-state de-

pendent dynamics for ρ = 1/2 filling for m = 2 case.
Here, we consider three initial states:

|Ψa⟩ =
L/4−1∏
i=0

b̂†4i+1b̂
†
4i+2|0⟩ (12)

where half of the particles are in clean sites and the other
half in disordered sites,

|Ψb⟩ =
L/4−1∏
i=0

b̂†4i+1b̂
†
4i+3|0⟩ (13)

where all particles are in disordered sites, and

|Ψc⟩ =
L/4−1∏
i=0

b̂†4i+2b̂
†
4i+4|0⟩ (14)

where all particles are in the clean sites. The initial states
are time evolved and the order parameter for this initial
state, given by

OCDW =
NA −NB

N
, (15)

is monitored. This OCDW is identical to the imbalance
in the density between initially occupied and unoccupied
sites. Here, NA (NB) is the total number of particles
in initially occupied (unoccupied) sites. As we can see
from the Fig. 16, the initial state |Ψa⟩ shows different
relaxation dynamics (similar to |Ψ2⟩ in ρ = 1/4 case)
compared to the other two initial states.
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