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Infrared and Raman spectroscopy are widely used for the characterization of gases, liquids, and
solids, as the spectra contain a wealth of information concerning in particular the dynamics of these
systems. Atomic scale simulations can be used to predict such spectra but are often severely limited
due to high computational cost or the need for strong approximations that limit application range
and reliability. Here, we introduce a machine learning (ML) accelerated approach that addresses
these shortcomings and provides a significant performance boost in terms of data and computational
efficiency compared to earlier ML schemes. To this end, we generalize the neuroevolution potential
approach to enable the prediction of rank one and two tensors to obtain the tensorial neuroevo-
lution potential (TNEP) scheme. We apply the resulting framework to construct models for the
dipole moment, polarizability, and susceptibility of molecules, liquids, and solids, and show that our
approach compares favorably with several ML models from the literature with respect to accuracy
and computational efficiency. Finally, we demonstrate the application of the TNEP approach to the
prediction of infrared and Raman spectra of liquid water, a molecule (PTAF– ), and a prototypical
perovskite with strong anharmonicity (BaZrO3). The TNEP approach is implemented in the free
and open source software package gpumd, which makes this methodology readily available to the
scientific community.

I. INTRODUCTION

Infrared (IR) and Raman spectroscopy are widely used
techniques for the non-destructive characterization of the
dynamics and to some extent chemistry of materials
spanning the entire range from the gas phase to con-
densed matter [1–3]. Over the years, various theoretical
approaches have been developed for simulating IR and
Raman spectra, including in particular methods based
on ab-initio molecular dynamics (MD) simulations [4–8].
While these approaches are capable of reproducing exper-
imental IR and Raman spectra of gases, liquids and solids
[5, 7–9], they are severely limited with respect to the sys-
tem sizes and time scales attainable for two main reasons
[5, 10]: Firstly, ab-initio MD simulations rely on com-
putationally demanding electronic structure calculations
that scale strongly with system size in order to obtain
energy and forces at every time step. Secondly, similarly
expensive calculations of dipole moment (µ), polarizabil-
ity (α) or electric susceptibility (χ) are required for at
least many thousand configurations to achieve numerical
convergence of the underlying correlation functions [5].

MD simulations can be accelerated by using classical
force fields [11–13] or empirical interatomic potentials
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[14, 15], which approximate the potential energy surface
(PES) with physically motivated yet constrained func-
tions and few fitted parameters. The accuracy of such
approaches for general materials is, however, often lim-
ited, negatively affecting the prediction of IR and Raman
spectra [16]. Machine learning (ML) potentials are well
suited to address this challenge as they bridge between
the accuracy of quantum mechanical methods and the
computational efficiency of classical force fields or em-
pirical interatomic potentials [17–21]. The power of this
approach, in particular for capturing vibrational prop-
erties of materials has been shown repeatedly, see, e.g.,
Refs. 22–26.

The calculation of µ, α or χ can be accelerated us-
ing parametric models in similar fashion. Consider-
ing only static charges, the dipole moment is given by

µ =
∑N

i=1 Qiri, where Qi and ri are the charge and po-
sition of atom i. Many classical force fields [11–13] assign
fixed charges to atoms and thereby provide a convenient
approach for calculating µ. Such fixed-charge models
neglect, however, polarization effects, which can lead to
large errors [27]. While this situation can in principle
be ameliorated by fluctuating-charge models [28, 29], the
latter tend to lack robustness and can be difficult to gen-
eralize [10, 30].

Both α and χ describe the dielectric response to an
applied electric field. For α or χ, the bond polarizabil-
ity model is one of the most frequently used paramet-
ric ones, and has for example been applied to alkanes
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[31, 32], zeolites [33] as well as carbon nanotubes [34].
However, this simple model often suffers from unsatisfac-
tory transferability when used in different environments
[35]. POLI2VS [36] and MB-pol [37] are two other para-
metric models that can be used for predicting µ and α,
but are limited to molecular systems such as water [10].

The successful applications of ML potentials have in-
spired the development of ML dipole, polarizability, and
susceptibility models [22, 38–41]. For µ, a rank-1 ten-
sor, both partial-charge and the partial-dipole ML mod-
els have been developed [30]. The objective of the partial-
charge models is to assign proper partial charges for
atoms in order to fit the total dipole moment [22, 30, 42].
Here, one concern is the balance between the fitting qual-
ity of µ and the reproducibility of total charges [22, 30].
By contrast partial-dipole models such as symmetry-
adapted Gaussian process regression (SA-GPR) [38], ten-
sorial embedded-atom neural network (T-EANN)[39],
and deep potential (DP) [40] treat µ as a sum of vec-
tors [30, 38] that can be determined from atom-centered
chemical environments.

While this approach works for µ, which is a rank-1
tensor, it does not transfer to the construction of ML
models for α or χ, which are rank-2 tensors. This has
motivated the pioneering development of the SA-GPR
method for tensorial properties [38] as well as later the
T-EANN [39, 43] and DP models [10].

The combination of ML potentials with ML models
for µ, α or χ enables the simulations of IR and Raman
spectra. This approach has been used to predict, e.g., the
IR spectra of methanol, n-alkanes, and a peptide [22], IR
and Raman spectra of liquid water [10, 20, 39, 44] or
the Raman spectra of various solid materials [45]. While
these earlier studies have established the usefulness of
ML models for predicting IR and Raman spectra, there
is still ample room for improvement of current models for
µ, α or χ in terms of computational and data efficiency
[30, 39] as well as the accessibility of these techniques in
order to lower the threshold for the widespread adoption
of such approaches.

This situation motivates the present work, in which we
introduce accurate as well as computationally and data
efficient ML models for rank-1 and rank-2 tensors based
on the NEP framework [21, 46, 47]. We demonstrate the
efficacy and efficiency of the resulting TNEP approach
by training models for µ, α, and χ, and combining these
with models for the PES to predict IR and Raman spec-
tra for a molecule (PTAF– ), a liquid (water), and a solid
(BaZrO3; Fig. 1). We make this methodology available
via the gpumd package [47], enabling comprehensive sim-
ulations of high-quality IR and Raman spectra with lim-
ited user effort.
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FIG. 1. Workflow for simulations of IR and Raman spectra
using NEP models for the PES and TNEP models for the
dipole moment µ, the polarizability α or the susceptibility χ.

II. METHODOLOGY

A. NEP models for the PES

Since the ML models for µ and α that we introduce be-
low are based on the NEP framework for modeling PESs
[21, 46, 47], we first provide a brief review of the latter.
Originally NEPs are ML potentials that model the high-
dimensional PES of finite or extended systems, in the
spirit of the neural network potential model proposed by
Behler and Parrinello [48]. In this formalism, the total
energy of the system is given by the sum of atomic site
energies U =

∑
i Ui. The site energy Ui for a given atom

i depends on the local environment of the atom, which
is represented by an abstract vector qνi with a number of
components indexed by ν. The function mapping from
the descriptor to the site energy is represented by a feed-
forward neural network (also known as a multilayer per-
ceptron) with typically a single hidden layer. The input
layer of the neural network is thus the descriptor vector
and the output layer consists of a single node whose value
is the site energy Ui of the considered atom i, which can
be formally expressed as

Ui = Ui(q
ν
i ). (1)

From the energy, we can derive the rank-2 virial ten-
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sor that serves as the foundation for the dipole and po-
larizability models developed in the present work. For a
given structure with N atoms, the virial tensor can be
expressed as [47]

W υν = −
N∑
i

∑
j ̸=i

rυij
∂Ui

∂rνij
, (2)

where rυij is the υ-component of the vector rij ≡ rj − ri,
and ri is the position of atom i. We refer to the term
∂Ui/∂r

ν
ij as the partial force, explicit expressions for

which have been presented in the original works devel-
oping the NEP approach [21, 47].

B. TNEP rank-1 tensor models

To develop a ML model for predicting µ, we first note
that it is a rank-1 tensor commonly expressed as a vec-
tor, in contrast to the energy, which is a rank-0 tensor
(i.e., a scalar). The partial force in Eq. (2) is a vector,
but the summation of it over the whole structure would
be zero as a result of Newton’s third law. To obtain a
vector representation that does not vanish for a general
structure, we note that the quantity defined in Eq. (2) is
a rank-2 tensor that can adopt both positive and nega-
tive values (as it is the virial tensor in the context of PES
models). We can thus obtain an expression for a vector
quantity by contracting this rank-2 tensor with a vector.
A natural choice for the vector to be contracted is rij ,
which yields the following expression for rank-1 tensors
such as the dipole moment

µ = −
N∑
i

∑
j ̸=i

rij ·
(
rij ⊗

∂Ui

∂rij

)

= −
N∑
i

∑
j ̸=i

r2ij

(
∂Ui

∂rij

)
, (3)

where r2ij = rij ·rij is the distance squared between atoms
i and j. We note that Ui here should have the dimension
of charge instead of energy. Crucially this goes to show
that the NEP formalism for PESs can be directly used
to construct a ML model for rank-1 tensors such as the
dipole moment. Below we refer to Eq. (3) as the TNEP
dipole model.

C. TNEP rank-2 tensor models

To develop ML models for predicting α or χ, we first
note that these are rank-2 tensors. Clearly, the quantity
defined in Eq. (2) is an ideal candidate. However, using
only Eq. (2) to represent α or χ does not lead to high
regression accuracy because the diagonal terms of α or χ
are usually much larger than the off-diagonal ones. We

therefore represent α (and equivalently χ) as a combina-
tion of Eqs. (1) and (2) as follows

αυν =

N∑
i

Uiδ
υν −

N∑
i

∑
j ̸=i

rυij
∂Ui

∂rνij
, (4)

where δυν is the Kronecker delta. Note that both the first
and second term on the right-hand side contribute to the
diagonal elements of αυν , but only the second term con-
tributes to the off-diagonal elements. Ui here has the di-
mension of polarizability instead of energy, yet the entire
NEP formalism can be reused. Below we refer to Eq. (4)
as the TNEP polarizability or susceptibility model.

D. Loss functions

The NEP approach is named after the underlying ML
model (a neural network) and the separable natural evo-
lution strategy used as the training algorithm [49]. The
latter is a principled real-valued black-box optimization
method that is very well suited for training the weight
and bias parameters in the neural network, of which there
are typically a few thousand. The optimization is driven
by the minimization of a loss function that is given by the
weighted sum of the root-mean-square errors (RMSEs)
of physical quantities as well as L1 and L2 regularization
terms. For the construction of PES models, the physical
quantities included in the loss function are the energies,
forces, and virial tensors of the structures in the training
set,

L(z) =λe∆U(z) + λf∆F (z) + λv∆W (z)

+ regularization terms, (5)

where ∆U(z), ∆F (z), and ∆W (z) are the RMSEs of en-
ergies, forces, and virials calculated using a set of train-
able parameters z, and λe, λf, and λv are the correspond-
ing relative weights. Explicit expressions for the regular-
ization terms can be found in Ref. 47. For the construc-
tion of dipole TNEP models, the loss function is defined
in terms of the RMSE of the dipole ∆µ(z)

L(z) = ∆µ(z) + regularization terms. (6)

For the construction of polarizability TNEP models, the
loss function is defined in terms of the RMSE of the po-
larizability ∆α(z)

L(z) = ∆α(z) + regularization terms. (7)

E. Dielectric response

It is instructive to recall some relations that describe
the response of finite (such as molecules) and extended
systems (such as solids and liquids) to an applied electric
field.
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If a molecule is subjected to an electric field E the
resulting displacement of nuclei and electrons induces a
dipole, which is given by [50]

µind = αE,

where α is the molecular polarizability.
For an extended system such as a solid or a liquid,

one considers equivalently the dipole moment per unit
volume, i.e., the polarization

P = ϵ0χE,

where χ is the electric susceptibility. In the context of
bulk liquids the latter has also been referred to as the
bulk polarizability. For clarity in the following, we use
the term polarizability only to refer to the molecular po-
larizability. There are different conventions for express-
ing µ, α, and χ leading to different units (Sect. S7).
Here, we use e · bohr for µ and bohr3 for α whereas χ is
unitless.

We note that under certain conditions, one can ap-
proximately connect the molecular polarizability and the
electric susceptibility via the Clausius-Mossotti relation,
which is based on a mean-field treatment of local field
effects (see Sect. S8 in the Supporting Information).

F. The IR intensity

The IR absorption cross section is given by [50]

σ(ω) =
4π2

ℏcn
ω
(
1 − e−βℏω)M(ω), (8)

where n is the refractive index of the material, c the
speed of light, β = 1/kBT and M(ω) is the absorption
lineshape given by the Fourier transform of the autocor-
relation function (ACF) of the (total) dipole moment µ,

M (ω) =
1

2π

∫ ∞

−∞
⟨(ϵ̂ · µ (0)) (ϵ̂ · µ (t))⟩ e−iωtdt,

where ⟨· · · ⟩ indicates the average over time origins and
ϵ̂ is the polarization of the light [50]. For an isotropic
sample, the time correlation should be averaged over the
three directions, i.e., the lineshape reduces to one third
of the trace of the dipole time correlation. Since the line-
shape is sampled classically, we make a classical approx-
imation for the prefactor by expanding the Boltzmann
factor to first order, which gives

σ(ω) ∝ ω2M(ω). (9)

G. The Raman intensity

The differential Raman cross-section for Stokes scat-
tering is given by [50–52]

∂2σ

∂ωout∂Ω
=

(
ωin − ω

c

)4 ∑
γδµν

n̂γ n̂µLγδµν(ω)ϵ̂δ ϵ̂ν , (10)

where n̂ is the polarization of observed light, ϵ̂ is the po-
larization of the incoming light, and Ω is a solid angle.
Here, it is assumed that the frequency of the incoming
light ωin is significantly larger than the Raman shift ω,
and significantly smaller than the band gap, i.e., far from
any electronic excitations. L(ω) is the Raman lineshape
given by the Fourier transform of the time-dependent
polarizability α(t) (finite systems) or susceptibility χ(t)
(extended systems), e.g., in the case of the former

Lγδµν(ω) =
1

2π

∫ ∞

−∞
⟨αγδ (0)αµν (t)⟩ e−iωtdt. (11)

Note that the elements of the polarizability (or suscep-
tibility) tensor are selected by the polarization of the
incoming and outgoing light as indicated in Eq. (10).
Polarized Raman measurements can be directly related
to Eq. (10) by combinations of the Raman lineshape
L(ω). One can also calculate an average spectrum for
isotropic samples [50]. The polarizability tensor (and
equivalently the susceptibility tensor) can also be written
as α = γI + β where γ = Tr(α)/3 and β is a traceless
tensor to obtain the isotropic (polarized) and anisotropic
(depolarized) spectrum. This leads to the decomposition

Liso(ω) ∝
∫ ∞

−∞
⟨γ (0) γ (t)⟩e−iωtdt

Laniso(ω) ∝
∫ ∞

−∞
⟨Tr[β (0)β (t)]⟩e−iωtdt.

(12)

The electric susceptibility (Sect. II E) can be separated
into an electronic and an ionic contribution

χ = χion(ω) + χe(ω),

where the general frequency dependence of these terms
is emphasized. For the prediction of Raman spectra we
only need to consider the electronic contribution χe(ω).
Furthermore, we limit ourselves to non-resonant Raman
spectroscopy. This means that we require the electric
susceptibility in the ion-clamped static limit, i.e., χe(0),
and do not have to consider the frequency dependence of
χe(ω), which arises from electronic transitions.

H. Workflow for simulations of IR and Raman
spectra

By combining a NEP model for the PES with TNEP
models for dipole, polarizability or susceptibility, one ob-
tains a simple yet general workflow for the computation
of IR and Raman spectra (Fig. 1). Starting from a NEP
PES model, large-scale MD simulations are performed to
sample the PES via the gpumd package, typically for a
few hundred picoseconds. TNEP dipole, polarizability or
susceptibility models are then employed to predict µ(t),
α(t) or χ(t) along the trajectory. Finally, IR or Raman
spectra are obtained via Fourier transformation of the
respective ACFs via Eqs. (9) or (10).
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FIG. 2. RRMSEs for the validation sets according to TNEP,
T-EANN, and SA-GPR models for water systems for (a) µ as
well as (b) α and χ/ρ. Validation RRMSEs for liquid water
from T-EANN [39] was reported for the averaged molecu-
lar polarizability obtained via the Clausius-Mossotti relation
(Sect. S8). The validation RRMSEs for χ/ρ should be some-
what higher than that for the averaged molecular polarizabil-
ity (also see Table S5).

III. PERFORMANCE EVALUATION

In this section, we evaluate the performance of TNEP
dipole, polarizability, and susceptibility models in com-
parison with models from the literature with respect to
both regression accuracy and computational speed. The
comparison includes the molecules H2O, (H2O)2, and
H5O2

+ (the Zundel cation), as well as a set of configura-
tions representing liquid water. Structures with dipole,
polarizability, and/or susceptibility data were retrieved
from the repository maintained by the developers of the
SA-GPR models [38, 53] (see Sect. S1 in the Supporting
Information for details). The data set for each of these
systems comprises 1000 configurations, half of which were
use for training, while the other half were used for vali-
dation. The hyperparameters used in the training of the
TNEP models are presented in Tables S1 and S2. In the
case of the SA-GPR method, the results for liquid wa-
ter were computed using a publicly available model [54]
while the models for the molecules were trained by us (see
Sect. S3 for details). In the case of the T-EANN method,
we only use those data available in the literature [39].

A. Dipole moment

The TNEP dipole models can achieve very high pre-
cision when predicting µ for both molecules and liquid
water with very low RMSEs (Table I) and coefficients of

TABLE I. RMSEs (in e · bohr) and RRMSEs (unitless) for µ
for the validation sets using NEP rank-1 tensor models. For
liquid water, the dipole moment is given per water molecule.

System RMSE RRMSE

H2O 2× 10−4 0.069%
(H2O)2 105× 10−4 1.681%
H5O2

+ 14× 10−4 0.371%
liquid water 17× 10−4 0.852%

determination (R2) very close to one (Fig. S2).
As a further, more intuitive measure, one can also con-

sider the root-mean-square-error relative to standard de-
viation (RRMSE) [39], defined as the RMSE divided by
the standard deviation of the reference data (Fig. 2a).
For the water monomer (H2O) all three methods yield ex-
tremely small RRMSEs below 0.1%. For the other three
systems, including liquid water, the TNEP and SA-GPR
models achieve comparable accuracy while the T-EANN
models perform systematically worse. This behavior is
particularly pronounced for liquid water and might arise
since the T-EANN model uses the positions relative to
the center of mass as input, which are not well defined in
periodic systems [55, 56].

Neutral molecules. The µ of neutral molecules such
as H2O or (H2O)2 is uniquely defined. In the TNEP ap-
proach µ is calculated by summing over atomic contribu-
tions which, by contrast to, e.g., the T-EANN approach,
does not require choosing a reference point. Therefore,
the TNEP dipole models are naturally suitable for neu-
tral molecules.

In this context, we note that we also trained and val-
idated a model for the QM7B data set containing thou-
sands of neutral organic molecules [57, 58], for which
we make similar observations (Sect. S4). The TNEP
model yields a very low RMSE for the validation set of
1.80 × 10−3 e · bohr/atom and a very high R2 score for
the validation set of about 0.998.

Charged molecules. The µ of charged molecules
is non-unique and depends on the choice of the refer-
ence point [4, 59]. For charged molecules, one should
therefore employ the relative permanent dipole µr de-
fined with respect to the center of mass, when training
TNEP dipole models. The reference µ in the H5O2

+

data set [38, 53] have already been transformed to µr.
Therefore, the absolute dipole moment of H5O2

+ includ-
ing the movement of the center of mass should then be
µ = µr +e ·rCOM. The same procedure has been applied
to the PTAF– molecule below (Sect. IV C).

Periodic systems. Traditional methods for calcu-
lating µ cannot be applied to periodic systems since
the position operator is not uniquely defined [56, 60].
This issue is overcome via the modern theory of polar-
ization [38, 60, 61], which provides a rigorous definition
for the polarization of periodic systems and established a
methodology for calculating µ. It was therefore used in
the present work to obtain µ for periodic systems includ-
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TABLE II. RMSEs (in bohr3) and RRMSEs (unitless) for
α (molecules) and χ/ρ (liquid water) for the validation sets
using TNEP rank-2 tensor models. For liquid water, the χ/ρ
is given per water molecule.

diagonal elements off-diagonal elements

System RMSE RRMSE RMSE RRMSE

H2O 85× 10−3 5.89% 4× 10−3 1.22%
(H2O)2 227× 10−3 8.82% 137× 10−3 12.59%
H5O2

+ 23× 10−3 1.20% 17× 10−3 1.06%
liquid water 54× 10−3 16.28% 37× 10−3 20.38%

ing water (Sect. S1) and α-Fe2O3 (Sect. S5).The TNEP
model for α-Fe2O3 yields a very high R2 score for the
validation set close to one.

B. Polarizability and susceptibility

The RMSEs for the diagonal and off-diagonal ele-
ments of α of (H2O), (H2O)2 and H5O2

+ are quite small
(Table II), indicating the high accuracy of the TNEP
polarizability model. The coefficients of determination
are larger than 0.98 mirroring this trend (Fig. S7 and
Fig. S8). For liquid water, we consider χ/ρ, which has
the same unit as the polarizability per atom. The RM-
SEs for χ/ρ are on the same order of magnitude as the
RMSEs for α (Table II).

The NEP models achieve an accuracy that is compa-
rable to the T-EANN and SA-GPR models for the po-
larizability of (H2O)2 and H5O2

+ as well as the suscep-
tibility of liquid water (Fig. 2b). While the performance
for the water monomer H2O is worse, the TNEP model
still yields a validation RRMSE of less than 1%.

As a further test we constructed a TNEP polarizabil-
ity model for the QM7B data set (Sect. S4). The RMSE
values for the validation set are 4.64×10−2 bohr3 atom−1

and 2.58 × 10−2 bohr3 atom−1 for the diagonal and off-
diagonal elements of α, respectively. For comparison,
Wilkins et al. [62] reported a higher RMSE value of
5.50×10−2 bohr3 atom−1 over both the diagonal and off-
diagonal elements of α using a SA-GPR model.

C. Computational speed

It is now instructive to evaluate the computational
performance of TNEP models in comparison with pub-
licly available SA-GPR models [53, 54]. To this end, we
consider liquid water systems with varying numbers of
atoms. Starting from a cell containing 96 atoms, larger
samples with up to 69 984 atoms were created by repli-
cation.

The SA-GPR models can only be run serially on a cen-
tral processing unit (CPU). In contrast, the TNEP model
can be run on CPUs using NEP CPU [63], e.g., via the in-
terface provided by the calorine package [64], or on
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FIG. 3. Comparison of computational speed of SA-GPR and
TNEP models for dipole (µ) and susceptibility (χ) of liquid
water. Here, the SA-GPR results were obtained using the
TENSOAP-FAST implementation [54].

graphics processing units (GPUs) by using the gpumd
package. The SA-GPR and TNEP (CPU) models were
tested on a server containing two Intel XEON Platinum
8275CL processors with a system memory of 256 GB,
while the TNEP (GPU) models were tested on a het-
erogeneous server containing two Intel XEON Gold 6148
processors and an Nvidia GeForce RTX 4090 card with
a graphics memory of 24 GB.

The comparisons show that for system sizes ≳ 1000
atoms the TNEP CPU models are at least one order of
magnitude faster than the SA-GPR models on CPUs for
both dipole and polarizability (Fig. 3). On CPUs the
TNEP models exhibit nearly perfect weak scaling over
the system sizes considered here. In contrast, the SA-
GPR models show a notable decrease in speed as the sys-
tem size increases. Running the TNEP models on GPUs
enables an additional speed up by an order of magnitude
or more. For very small systems the GPU implementa-
tion is limited by IO. In addition we note that gpumd al-
lows one to evaluate TNEP models on-the-fly during MD
simulations for prediction of tensorial properties with a
small impact on simulation speed (Sect. S10).

IV. APPLICATIONS

Having established the accuracy and computational
performance of the TNEP approach by comparison with
reference data sets, we now demonstrate the application
of NEP and TNEP models in combination for predicting
IR and Raman spectra of molecules, liquids, and solids.
To this end, we employ the correlation function approach
outlined above (Sect. II H and Fig. 1).
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A. IR spectrum of water

Firstly, we developed a NEP PES model for liquid wa-
ter using energy, atomic forces, and virial data from den-
sity functional theory (DFT) calculations (Sect. S2).

Next, a system of 216 water molecules was equilibrated
in the NPT ensemble for 100 ps using the trained PES
model at 298 K and 1 bar, followed by a further equilibra-
tion run in the NVT ensemble for another 100 ps. Three
production runs were carried out in the NVE ensemble
for a duration of 200 ps. A time step of 0.5 fs was used
throughout. We note that quantum effects can be actu-
ally rather pronounced in water as has been shown by
path integral MD simulations in, e.g., Refs. 65–67. Here,
we, however, decided to carry out classical MD simula-
tions in order to enable a one-to-one comparison with the
results of earlier studies.

The time dependence of the dipole (µ(t)) was com-
puted for the production trajectories with a spacing of
1 fs using the TNEP dipole model for liquid water de-
scribed above (Sect. III A). The IR spectrum was then
obtained by Fourier transforming the dipole moment
ACF via Eq. (9). The final IR spectrum was obtained
by averaging the IR spectra from the production runs.

For comparison, we also ran a 200 ps MD simulation
with the TIP3P force field [68] via the CP2K software
package [69], where the TIP3P force field uses charges
of −0.834 e and 0.417 e for oxygen and hydrogen, respec-
tively.

The NEP-TNEP method yields an IR spectrum that is
in very good agreement with experimental data [70, 71]
over the entire frequency range from 0 to 4000 cm−1

(Fig. 4a). This includes the hydrogen-bond stretch-
ing band [10] between 160 and 250 cm−1, the libration
band [10] from 400 to 800 cm−1 associated with hin-
dered molecule rotations [37], the bending modes [37, 72]
at about 1650 cm−1 as well as the OH stretching band
[37, 72] from 2800 to 4000 cm−1. The NEP and TNEP
models for PES and µ in conjunction with the underlying
exchange-correlation functional thus succeed in capturing
the entire range stretching from the soft intermolecular
to the stiff intramolecular modes. This performance is
also observed for the DP model (Fig. 4a).

By comparison classical models produce rather large
errors for the location of several features in the IR spec-
trum of water. MD simulations with classical force fields
[68, 73] such as TIP3P (Fig. 4a) and SPC/E tend to pre-
dict a blue-shifting of the bending modes by roughly 100
to 200 cm−1. A similar tendency was also observed for
the POLI2VS model [36]. The results from the MB-pol
model on the other hand exhibit a blue-shift of the OH
stretching band by about 50 cm−1 [37].

The width of the OH stretching band has been proven
to be quite difficult to predict due to the anharmonicity
of the OH stretch mode [37]. The NEP-TNEP approach
yields a value of 380 cm−1 for the full width at half max-
imum of this band, which is in good agreement with ex-
perimental estimates of about 350 cm−1 from Downing’s

experiment [70]. Both NEP-TNEP and DP predictions
exhibit a slight high-frequency tail for this band, which
is not visible in the experimental spectra. This small
difference could originate from the strongly constrained
and appropriately normed (SCAN) functional [76] that
was used for generating the PES training data [10, 77]
and/or the absence of quantum effects in the (classical)
MD simulations [10, 37].
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FIG. 4. Comparison of (a) infrared as well as (b) anisotropic
(depolarized) and (c) isotropic (polarized) Raman spectra of
water at ambient conditions from simulations and experiment.
Experimental data from Downing et al. [70], Max et al. [71],
Brooker et al. [74], and Morawietz et al. [75]. Simulated spec-
tra from T-EANN [39], MB-pol [37], and DP [10, 44] models
were adapted from the literature. In (a) and (b) the spectra
were normalized by the integral between 80 and 2500 cm−1,
while in (c) they were normalized by the integral between
1000 and 2500 cm−1.



8

B. Raman spectra of water

To obtain the Raman spectra of liquid water we sam-
pled the time dependence of χ(t) using the TNEP sus-
ceptibility model and subsequently computed the ACFs
for the same trajectories used for the prediction of the
IR spectra. The full spectrum given by Eq. (10) and av-
eraged over the available trajectories was then split into
isotropic (polarized) and anisotropic (depolarized) con-
tributions via Eq. (12).

The anisotropic spectrum predicted by the NEP-
TNEP approach is overall in very good agreement with
experimental data (Fig. 4b) [74, 75]. The locations of
peaks and relative intensities of the stretching, bend-
ing, and librational modes in the simulated anisotropic
Raman spectra are all well produced. It is noteworthy
that in the low frequency region below approximately
1000 cm−1, the variation between the experimental spec-
tra is larger than the variation between the ML models
and the experimental data. This could be related to dif-
ficulties associated with processing the experimental raw
data in this frequency region.

The T-EANN and DP models yield similar results
as the NEP-TNEP approach in the region up to about
1900 cm−1. On the other hand, all ML models under-
estimate the intensity of the association band between
1900 and 2500 cm−1, which is arising from the combi-
nation of librational and bending modes [37, 75]. Here,
the NEP-TNEP prediction is actually still the one that
comes closest to the experimental spectra.

The broad high-frequency peak above 3000 cm−1,
which is associated with the OH stretch mode, is no-
tably blue-shifted and broadened for the T-EANN model,
while the DP model strongly underestimates the intensity
of this peak. In contrast, the NEP-TNEP combination
predicts this feature in good agreement with the experi-
mental data.

Finally, the parametric MB-pol model yields the worst
agreement with experiment, for example, strongly over-
estimating the intensity of the bending band while un-
derestimating the libration band.

With regard to the isotropic Raman spectrum
(Fig. 4c), one should first note the variation among the
experimental data. In particular in the region below
1000 cm−1, the resulting uncertainty is comparable or
even larger than the deviation between the NEP-TNEP
prediction and the experimental data, while the position
of the libration band predicted by T-EANN appears red-
shifted. With regard to the higher frequency region both
NEP-TNEP and T-EANN reproduce the bending band
well. In the case of NEP-TNEP this also applies for the
OH stretch band, whereas in the case of T-EANN a blue-
shift can be observed similar to the anisotropic spectrum
(Fig. 4b).

C. IR spectrum of PTAF–

The NEP-TNEP method for predicting IR spectra can
be easily adopted for other molecular systems as long
as the underlying observables to be learned are avail-
able. Naturally, this includes the molecular configura-
tions along a chemical reaction, such that experimen-
tally observable spectral changes can be connected to
metastable complexes. One such complex is PTAF– (see
inset in Fig. 5), the intermediate reaction minimum in the
deprotection reaction 1-phenyl-2-trimethylsilylacetylene
(PTA) with tetra-n-butylammonium fluoride [78–81].

To train NEP and TNEP models, we obtained PES
and µ data for a set of 20 170 structures via DFT calcula-
tions using the ORCA code [82], the PBE functional [83],
and a def2-TZVP basis set [84] while enforcing tight con-
vergence of the self-consistent field cycles. Subsequently,
MD simulations at various temperatures were performed
in the NVE ensemble using a timestep of 0.1 fs for 1 ns,
during which µ(t) was recorded with a time resolution of
0.5 fs.

The IR spectra obtained via the analysis of the ACF
of µ show a pronounced temperature dependence in par-
ticular of the linewidths (Fig. 5). The molecule supports
several soft modes with frequencies in the region below
250 cm−1, which are associated with bending of and rota-
tion about the ethynyl linker. These modes in particular
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FIG. 5. IR spectra for the metastable PTAF– complex (see
inset) at various temperatures. The gray dashed line repre-
sents the broadened integrated absorption coefficients of the
harmonic spectrum obtained directly from DFT calculations.
The overall agreement is good considering the lack of anhar-
monic corrections (intensity and vibrational frequencies) and
temperature sensitivity of the spectrum obtained from DFT
calculations.



9

lead to strong mode coupling (i.e., anharmonicity), which
underlies the changes in linewidth and the redistribution
of the dipole strength across the spectrum. Here, the
computational efficiency of the NEP-TNEP implemen-
tation in gpumd was crucial to resolve these features,
as it enabled sampling on the nanosecond time scale,
which would be prohibitive for a DFT-MD simulations
and computationally very expensive for a CPU imple-
mentation.

D. Raman spectra of BaZrO3

BaZrO3 is a perovskite that is being investigated, e.g.,
as a proton conductor for applications in fuel cells. It
has also been the subject of various fundamental studies,
as it is a prototypical antiferroelectric perovskite [86–
88]. It features soft and strongly temperature-dependent
phonon modes [89, 90], which have been carefully ana-
lyzed with Raman spectroscopy [85], rendering BaZrO3

an ideal application for the present approach.
For benchmarking, we constructed models for χ using

both the TNEP and SA-GPR approaches. The reference
data set comprised cubic and tetragonal supercells with
up to 40 atoms. The training structures were taken from
MD simulations at different temperatures and pressures,
generated using a NEP PES model constructed in an ear-
lier study [90]. In total the reference data set contained
940 structures. 140 structures were randomly placed in a
hold-out set for validation, while training sets were com-
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FIG. 7. Raman spectra of BaZrO3 for (a,b) parallel and (c,d)
crossed polarization from simulations using a combination of
NEP and TNEPmodels (red lines) as well as experiment (gray
lines) [85]. The spectra shown in (a,c) have been predicted
for the nominal alignments used in the experimental measure-
ments. The corresponding polarizations are indicated by the
dashed horizontal lines in (b,d).

piled by the shuffle-split method (random selection with
replacement) with 200 to 800 structures and five data
sets per training set size.

A comparison of models generated using different
choices for the size of the neural network as well as the de-
scriptor demonstrates that viable models can be obtained
for a wide range of parameters, and that even small mod-
els with as few as 1500 or so parameters can yield very
good results (Fig. S12). Yet fine-tuning of these param-
eters as well as the regularization parameters (Fig. S13)
allows one to maximize model performance.

The convergence of RMSEs and R2 scores with training
set size is similar for TNEP and SA-GPR with a slightly
better performance for TNEP (Fig. 6). In both cases,
training sets of about 400 structures already yield very
good models, demonstrating the data efficiency of these
approaches. This behavior has also been observed in the
construction of models for amino acids [91].

Next MD simulations were carried out using 12×12×12
supercells (8640 atoms) and a timestep of 1 fs using the
NEP model for the PES. Following equilibration at 300 K
and 0 GPa in the NPT ensemble, the time-dependent sus-
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ceptibility χ(t) was recorded for 500 ps using a time res-
olution of 5 fs. For production, we used a TNEP model
for χ trained against the full data set but we found that
models based on at least approximately 400 structures to
yield results that are practically indistinguishable within
the statistical uncertainty. The Raman lineshape was
subsequently obtained via the ACF of χ according to
Eq. (11). We then computed the Raman spectra for
parallel (Fig. 7a,b) and crossed polarization (Fig. 7c,d),
which in Porto notation correspond to Z(XX)Z̄ and
Z(XY )Z̄, respectively, where X and Y are arbitrary
crystal axes. The final spectra were obtained by aver-
aging over 20 independent MD trajectories.

The results are overall in very good agreement with
experiment, especially considering the very strong an-
harmonicity of this material and the strong tempera-
ture dependence of the vibrational spectrum [89]. The
main difference with respect to the position of the peaks
is a slight red-shift in the predicted spectra in the re-
gion above 600 cm−1. This overly soft response can be
attributed to the underlying exchange-correlation func-
tional (vdW-DF-cx, Refs. 92, 93), which the NEP model
truthfully reproduces. One can also observe an inversion
in the intensity of the low and high energy features. This
effect is almost certainly due to the classical sampling
used here. It is rather common to correct for quantum
effects in IR and first order Raman spectra by includ-
ing a factor similar to the prefactor in Eq. (9). In the
case of BaZrO3 the room-temperature Raman spectrum
arises, however, due to second-order scattering, i.e., due
to combinations of modes. In that case, the application
of the commonly used correction factor is no longer valid.
Here, we therefore omit such corrections entirely.

The Raman spectra depend on the crystal orientation
with respect to the excitation laser. The present ap-
proach allows one to readily map out this dependence
via Eqs. (10) and (11) (Fig. 7b,d). While we are unaware
of experimental measurements of the polarization depen-
dence for BaZrO3, we note that such experiments have
been carried out for, e.g., NaCl [94]. As demonstrated in
the former study, such measurements can provide valu-
able additional information.

V. CONCLUSIONS

In this contribution, we have introduced an extension
of the NEP approach to tensors, resulting in the TNEP
scheme. This was achieved by constructing expressions
for rank-1 and rank-2 tensors based on the expression for
the virial, which is a rank-2 tensor that arises naturally
from derivatives of the energy (a rank-0 tensor) with re-
spect to the atomic distances. This approach, which can
be extended to tensors of higher rank, thus allows one to
easily construct models that are equivariant.

We demonstrated the accuracy of this approach and its
computational efficiency by constructing models for the
dipole moment µ, the molecular polarizability α, and

the electric susceptibility χ for several molecules, a liq-
uid as well as two crystalline materials. In particular, the
computational speed of the current method and its im-
plementation in the gpumd package provide a significant
advantage both in terms of the time scales and system
sizes that can be sampled.

Finally, we applied the approach to predict IR and
Raman spectra of liquid water, the molecule PTAF– ,
and the perovskite BaZrO3 in very good agreement with
available experimental data, illustrating the range of sys-
tems that can be readily addressed using the TNEP
methodology introduced here.
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