
Strontium Ferrite Under Pressure: Potential Analogue to Strontium Ruthenate

Azin Kazemi-Moridani,1, 2, a Sophie Beck,2 Alexander Hampel,2 A.-M. S. Tremblay,3, b Michel Côté,1, c and Olivier Gingras2, d
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Despite the significant attention it has garnered over the last thirty years, the paradigmatic material strontium
ruthenate remains the focus of critical questions regarding strongly correlated materials. As an alternative plat-
form to unravel some of its perplexing characteristics, we propose to study the isostructural and more correlated
material strontium ferrite. Using density functional theory combined with dynamical mean-field theory, we at-
tribute the experimentally observed insulating behavior at zero pressure to strong local electronic correlations
generated by Mott and Hund’s physics. At high pressure, our simulations reproduce the reported insulator-to-
metal transition around 18 GPa. Along with distinctive features of a Hund’s metal, the resulting metallic state is
found to display an electronic structure analogous to that of strontium ruthenate, suggesting that it could exhibit
similar low-energy properties.

The unconventional superconductivity of strontium ruthen-
ate (Sr2RuO4, SRO) still fuels debates almost thirty years af-
ter its discovery [1–3]. It was the first layered perovskite su-
perconductor to be discovered after the cuprates. However,
contrarily to the cuprates, SRO does not necessitate doping
to exhibit superconductivity, which allows for investigations
in high-quality single crystals. This distinction has motivated
extensive studies aimed at characterizing both its normal and
superconducting states.

Theoretically, the normal state is nowadays understood as a
correlated Hund’s metal [4, 5] with important spin-orbit cou-
pling. Only the t2g electrons of the ruthenium atom play a
fundamental role and interactions can be considered local,
modelled by the Kanamori Hamiltonian [6–8]. Indeed, the
combination of density functional theory (DFT) and dynami-
cal mean-field theory (DMFT) has yielded impressive agree-
ment with experiments, reproducing for example the Fermi
surface [9] and the magnetic susceptibility [10]. Additionally,
it captures expected hallmarks of Hund’s metals such as or-
bital selective mass renormalizations [11, 12] and a crossover
from a bad metal to a Fermi liquid [13, 14]. The supercon-
ducting state, however, remains enigmatic. The debates per-
sist because thermodynamic measurements supported by the-
ory suggest a one-component order parameter [15–20], while
other experiments observed evidence of a two-component or-
der parameter [21–23]. New knobs to turn could help unravel
key additional information regarding SRO.

One such knob is simply to study a different, yet similar
material. In this regard, our focus turns to strontium ferrite
(Sr2FeO4, SFO) for which the ruthenium atom (Ru) is re-
placed with an isoelectronic iron atom (Fe). This substitution
results in an increased on-site Coulomb repulsion due to the
more localized nature of Fe’s 3d-shell compared to Ru’s 4d-
shell, along with a decreased spin-orbit coupling due to the
smaller nuclear charge of Fe compared with that of Ru. Our
study of SFO is driven by a dual purpose: first, to investi-
gate the distinctive behaviors and electronic properties exhib-
ited by a material with an identical crystal structure to SRO,
and second, to harness SFO as a potential source of deeper in-

sights into the elusive physics of SRO’s superconducting state.
This strategy has been previously successful to shed light on
Hund’s physics and the role of van Hove singularities by com-
paring SRO to Sr2MoO4 [8].

While only a few experiments have been performed, SFO
has hardly been studied and in particular no electronic struc-
ture calculation has been reported to our knowledge. Ex-
periments report that SFO is an antiferromagnetic insulator
with a Néel temperature around 60 Kelvin [24–26]. Also, a
room-temperature insulator-to-metal transition has been de-
tected around 18 GPa [27, 28]. Thus, applying pressure to
SFO could be a way to suppress the antiferromagnetic order
for the benefit of superconductivity, as is observed in many
unconventional superconductors [29–32].

In this paper, we explore the correlated electronic structure
of unstrained and strained SFO in its normal state above the
Néel temperature and compare it to experiments. Starting with
DFT, we find that the electronic structure of SFO differs from
that of SRO. In SFO, both the eg and the t2g orbitals cross
the Fermi energy and are partially occupied, whereas in SRO
the eg states are empty while the t2g orbitals are partially oc-
cupied. Then, by incorporating dynamical local correlations
within DMFT, we explore the rich phase diagram generated
by the on-site Coulomb repulsion U and Hund’s coupling J .
We argue that the phase most consistent with experiment is
found around U ≥ 2.5 eV and J < 0.7 eV. This value of U is
slightly above the one predicted using the constrained random
phase approximation (cRPA). In this phase, the eg states are
pushed above the Fermi energy, while the remaining electrons
in the t2g shell become Mott insulating. We show that this
phase undergoes an insulator-metal transition around 18 GPa
of isotropic pressure, consistent with experiments. By com-
paring the band structure, the Fermi surface and the mass en-
hancements of this metallic phase with that of SRO, we reveal
an exciting similarity between the two, suggesting SFO as an
alternative platform to understand SRO.

DFT electronic structure. — SFO (SRO) crystallizes in a
body-centered tetragonal structure with Fe (Ru) at the center
of FeO6 (RuO6) octahedra. The crystal field generated by the
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FIG. 1. Comparison of the open d-shell orbital character on the band structure of (a) SRO, and (b) SFO under 40 GPa of isotropic pressure.
The dxy , dyz/zx, dz2 and dx2−y2 orbital characters are shown in red, green, blue and orange, respectively. The horizontal line at zero marks
the Fermi energy. The eg orbitals are unoccupied in SRO while the dx2−y2 orbital is slightly metallic in SFO at 40 GPa.

p-orbitals of the surrounding oxygen atoms splits the five-fold
degeneracy of the Fe d-shell into an eg doublet (dx2−y2 and
dz2 orbitals) and a t2g triplet (dxy , dzx and dyz orbitals).

Figure 1 presents the band structures of both (a) SRO
and (b) SFO at 40 GPa obtained using DFT. The details of
the calculations can be found in the Supplemental Materials
(SM) [33]. We show the projection of the wave function onto
the d-orbitals of the transition metal element, along with the
orbital selective densities of states (DOS). Note that the elec-
tronic structure of SFO without pressure is qualitatively simi-
lar to the one at 40 GPa [33]. In SRO, the band dispersion re-
veals an overlap between the eg and t2g orbitals, but only the
t2g orbitals are partially filled and cross the Fermi level while
the eg orbitals remain completely unoccupied. Thus, as was
done in most theoretical studies of SRO [6–10, 12, 14, 18–20],
one can focus solely on the t2g orbitals.

However, in the case of SFO, both the t2g and dx2−y2 or-
bitals are active at the Fermi level, necessitating a minimal
model that includes the eg orbitals to describe the low-energy
physics accurately.

In short, although the non-interacting band structure of SFO
is similar to SRO’s, the presence of eg electrons at the Fermi
level is a massive distinction. Moreover, we have been ne-
glecting so far the role of strong electronic correlations. In
SRO, although important, they do not significantly affect the
Fermi surface itself [34]. In contrast, experiments on SFO ob-
serve an insulating state rather than a metallic one. We now
investigate whether the correlation effects among the Fe d-
electrons can be responsible for this discrepancy with DFT.

Strong correlations. — Because of the localized nature of
3d orbitals, SFO is expected to be affected by strong electronic
correlations. This is reinforced by the disagreement between
the ab initio prediction of a metallic state and the experimen-
tal observation of an insulating state. We now incorporate the
missing local electronic correlations from DFT using DMFT.
This is done by projecting the DFT Kohn-Sham wave function
onto a downfolded model considering only the five 3d orbitals
of the Fe atom and constructed using the Wannier90 pack-
age. The correlations are obtained by iteratively solving the
impurity model using DMFT, with the interactions modelled

by the full rotationally invariant Slater Hamiltonian (including
non-density-density terms) which depends on two parameters:
the strength of the electronic Coulomb repulsion U and the
Hund’s coupling J . Details about the downfolding, the nu-
merical calculations and the Slater Hamiltonian parametriza-
tion can be found in the SM [33].

We explore possible electronic states of SFO by investigat-
ing the U − J parameter space of the full Slater Hamiltonian.
The phase diagram in Fig. 2 summarizes our findings for a
temperature of 146 K (1/kBT = 80 eV−1). Based on ob-
servables such as the spectral function [33] and the resulting
orbital occupations, we classify the phases using three types
of colored markers: the blue triangles, red squares and green
stars, corresponding to the t2g orbitals being metallic, being
insulating due to correlations, or being orbital-selectively in-
sulating, respectively. For the first two classes (triangles and
squares), a filled (empty) symbol represents metallic (band
insulating) eg orbitals, while a half-filled symbol indicates
that only the dx2−y2 orbital is metallic. For the third class
(stars), the dxy and eg orbitals are found metallic, while the
dzx/yz ones are Mott insulating. We call this phase the orbital-
selective Mott phase (OSMP).

We now discuss the different phases and physical mecha-
nisms leading to the phase diagram shown in Fig. 2. Addi-
tional information can be found in the SM [33]. In the low
U and low J regime depicted by half-filled blue triangles, we
find the DFT solution shown in Fig. 1 (b) where only the dz2

orbital is empty. As mentioned before, experimental obser-
vations suggest SFO to be a small gap insulator at zero pres-
sure [24–26]. We find the phase that best reproduces these ob-
servations at larger U : the phase marked by open red squares
where all orbitals are insulating. This phase emerges by in-
creasing the cost of double occupancyU because it suppresses
charge fluctuations and constrains the Fe atoms to host four lo-
calized electrons. Due to the crystal field splitting generated
by the oxygen atoms surrounding the Fe atom, the dxy orbital
has the lowest on-site energy and is getting fully filled, the
eg orbitals have the highest on-site energies and are pushed
above the Fermi level making them band insulating, and the
dyz/zx orbitals have to share two electrons which make them
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FIG. 2. Phase diagrams of SFO in the space of the interaction
parameters at T = 146 K for three pressures. Here, the Hund’s cou-
pling J and on-site Coulomb repulsion U are expressed in the Slater
definition. The red squares distinguish Mott insulating t2g orbitals,
whereas the blue triangles correspond to metallic t2g orbitals. The
filling of the markers reflects whether both eg orbitals are partially
occupied (full), only the dx2−y2 is partially occupied (half-filled), or
none are (empty). The narrow region with green stars corresponds
to an orbital-selective Mott phase (OSMP) with dxy and eg metallic,
and dzx/yz Mott insulating. On the right, a selected region is com-
pared for three different pressures: 0, 20, and 40 GPa. It highlights
the insulator-to-metal transition observed around 18 GPa [27, 28] for
U ∼ 2.5 eV, where the resulting metallic states have empty eg or-
bitals.

Mott insulating.
This phase, most consistent with experimental observations

at zero pressure, is found roughly in the parameter regime
U ≥ 2.5 eV and J < 0.7 eV. Using the cRPA to calculate the
screened interaction parameters [33], we find the static values
(zero frequency limit) to be UcRPA, JcRPA = 1.5 eV, 0.5 eV.
Although these numbers are outside of the region deemed re-
alistic, it is known that cRPA overestimates screening effects,
leading to underestimated U values [35, 36]. Considering this
fact, UcRPA appears reasonably close to the empty red square
region. Now, to attain a deeper understanding of the physical
mechanisms at play and guide possible fine tuning, we con-
tinue analysing the full phase diagram.

If again we start from the small U and small J region, but
this time go along the direction of increasing J instead of U ,
we see that the occupancies of the eg orbitals start to increase.
This happens because of the Hund’s rule, which states that J
favors spin-alignment and thus spreads the orbital occupation
throughout the entire d-shell, making all orbitals metallic at
some point. Eventually at very large J , there is enough occu-
pation transfer from the t2g to the eg orbitals so that a Mott
gap opens up in t2g while eg remains metallic: first, the Mott

gap opens in the less occupied dyz/zx orbital (leading to the
green star phase), and then in the dxy orbital, resulting in the
t2g insulating and eg metallic phase (full red square phase).

Finally, another remarkable result from the phase diagram
of Fig. 2 is the empty blue triangle phase, which has band-
insulating eg and partially filled t2g orbitals. This configura-
tion is analogous to that of SRO and could offer an alternative
route to study the physics of this important system. Since this
metallic phase is on the border with the realistic insulating
phase, we believe isotropic pressure might actually allow to
realize this metallic phase.

Isotropic pressure. — In this section, we explore the
insulator-to-metal transition of SFO under pressure and show
that the metallic phase can be fine-tuned to have a similar band
structure and Fermi surface to that of SRO. The insulator-
to-metal transition observed experimentally happens around
18 GPa at room temperature [27, 28]. Our results natu-
rally predicts that this critical pressure should be temperature-
dependent, which can be tested experimentally. To investigate
this insulator-to-metal transition, we restricted our simulation
to a window near the phase transition between the insulating
(the empty red square phase) and the metallic phases. The
right panels of Fig. 2 present this evolution for three pressures:
0, 20, and 40 GPa. We preserve the original crystalline sym-
metry, in agreement with experiments that confirmed this up
to 30 GPa [27, 28, 37].

Increasing pressure increases the propensity of electrons
to hop from site to site t, i.e., it increases the bandwidth
of the d-shell without significantly affecting the Coulomb
repulsion U . Consequently, the effective Coulomb repul-
sion U/t decreases. This effect results in the expansion of
the metallic state within the parameter space as shown on
the right of Fig. 2, while also providing a clear explanation
for the insulator-to-metal transition observed in experiments.
Moreover, this effect suggests that the boundary between the
metallic and insulating regions should move with temperature,
leading to a temperature-dependent critical pressure for the
insulator-to-metal transition. Experiments could already be
performed to test this prediction.

We now focus on the region where both eg orbitals are
empty, which we observe also grows with pressure. This is
likely due to the modified competition between the crystal
field and Hund’s coupling J . Indeed, applying pressure on the
material increases the crystal field splitting which favors low-
spin states and pushes the eg orbitals further away in energy.
In contrast, J favors a high-spin state and spreads the orbital
occupations. Thus, with increasing pressure, a larger J is re-
quired to occupy the eg orbitals. Therefore the empty blue
triangle region that represents a metallic phase with empty eg
orbitals expands.

In order to compare the three-orbital metallic phase of SFO
found under pressure with SRO, we present their respective
correlated band structures, DOSs and Fermi surfaces in Fig. 3.
What is meant by these correlated objects is detailed in the
SM [33]. In (a), we display the 40 GPa phase of SFO to high-
light a case at higher pressure, and we selected U = 2.5 eV
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FIG. 3. Correlated band structure on the left, DOS in the middle
and Fermi surface on the right of (a) 40 GPa SFO in the three orbital
metallic phase and (b) SRO, both at T = 146 K. The DFT result is
represented by the black lines. Clearly, correlations push eg orbitals
away from the Fermi level. The Fermi surfaces are labeled α, β, γ
in part (b). The parameters for the calculations are on top of the
Fermi surfaces. Although calculations for both of the materials rely
on the Slater Hamiltonian, SRO’s parameters are presented in the
Kanamori convention to ease the comparison with previous studies.
The corresponding values of SRO in Slater are U = 1.66 eV and
J = 0.56 eV. See Eqs (S30, S31) of the SM for conversion relations
between Slater and Kanamori values.

and J = 0.45 eV as an example that reproduces the exper-
imental observations with physically relevant parameters. In
the first panel, we contrast the correlated band structure with
the one obtained using DFT and one clearly sees that corre-
lations have pushed the eg orbitals away from the Fermi level
compared to Fig. 1 (b).

Comparing the corresponding quantities for both systems,
we argue that SFO in this particular phase is analogous to
SRO. Both are metals with four t2g electrons, three similar
Fermi sheets and comparable DOSs with a van Hove singu-
larity in the vicinity of the Fermi energy. There are, however,
two important differences between the two, which can be re-
garded as opportunities: First, even with pressure, the band-
width of SFO remains smaller, implying stronger electronic
correlations than in SRO. Since higher pressure should bring
it to a value similar to that of SRO, this represents an opportu-
nity to study continuously a more correlated version of SRO.
This increased strength of interaction should lead to stronger
magnetic fluctuations which can promote a magnetic order, or
possibly superconductivity.

Second, the γ sheet of the Fermi surface of SFO is more
square-like than that of SRO. While the calculations presented
here do not include spin-orbit coupling, it should not have
an important impact on SFO because of the small charge of

Fe’s nuclei. As a result, the squareness of the γ sheet pre-
sented for SFO in Fig. 3 (a) should remain similar, leading
to a larger nesting than in SRO. Nesting itself leads to an in-
creased strength of the spin fluctuations. More studies need to
be performed on these speculations.

In addition to the observables presented above, we demon-
strate that the three-orbital metallic phase that we find for SFO
displays distinctive features of Hund’s metals [4, 5, 12]. This
is highlighted by inspecting the effect of Hund’s coupling J on
the orbital-selective effective mass enhancements m∗

mDFT

∣∣∣
l

and
on the scattering rates Γl. These quantities measure the degree
of electronic correlations missing from DFT and captured by
DMFT. They are reported in the SM [33]. Indeed, three points
stand out: First, we find that the mass enhancements and the
scattering rates all increase with J . Second, the effective mass
of the xy orbital increases faster than those of the yz/zx or-
bitals. Third, the larger J , the lower we have to go in tem-
perature before the effective masses saturate. This last point
highlights that it is increasingly challenging to reach the co-
herent regime where quasi-particles are well defined, that is
the Fermi liquid regime. The considerable increase in correla-
tion, orbital differentiation due to J and pushing of the Fermi
liquid scale to lower temperatures due to J are all hallmarks
of Hund’s metals [4, 5]. They are also observed in SRO [12],
thus supporting further the analogy between SFO and SRO.
We note that reaching the coherent regime at large J is es-
pecially challenging for five orbital systems, thus we plan on
extracting the effective masses that would be measured exper-
imentally in future works.

Conclusion. — We studied the correlated electronic struc-
ture of strontium ferrite, Sr2FeO4, using the combination of
density functional theory and dynamical mean-field theory.
Correctly capturing correlation effects of the Fe d-electrons is
essential to reproduce the experimentally observed insulating
state of Sr2FeO4. We find such a state for interaction strengths
U > 2.5 eV, where only the t2g orbitals are occupied. More-
over, we are able to reproduce the experimentally observed
insulator-to-metal transition in Sr2FeO4 under pressure. The
metallic state of Sr2FeO4 at 40 GPa with U > 2.5 eV dis-
plays the distinctive features of Hund’s metals and offers a
promising analogue state to Sr2RuO4, for which correlations
could be tuned with additional pressure. Indeed, both these
states are metals with four electrons in their t2g shells with
similar band structures, density of states and Fermi surfaces.
The difference is that the effective mass enhancement is gen-
erally larger in SFO, and the nesting of its Fermi surface is
suggestive of enhanced magnetic fluctuations that may lead to
superconductivity.
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teraction in transition metals from constrained random-phase
approximation, Phys. Rev. B 83, 121101 (2011).

https://doi.org/10.1103/PhysRevB.84.075145
https://doi.org/10.1103/PhysRevB.84.075145
https://doi.org/10.21105/joss.04623
https://doi.org/10.1103/PhysRevB.96.155128
https://doi.org/10.1103/PhysRevB.41.2380
https://doi.org/10.1103/PhysRevB.44.6011
https://doi.org/https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1103/PhysRevB.70.195104
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107781
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107781
https://doi.org/10.1103/PhysRevB.86.165105
https://doi.org/10.1103/PhysRevLett.119.056401
https://doi.org/10.1103/PhysRevB.83.121101


8

Supplemental Material

to

Strontium Ferrite Under Pressure: Potential Analogue to Strontium Ruthenatg

Azin Kazemi-Moridani,1,2,a Sophie Beck,2 Alexander Hampel,2 A.-M. S. Tremblay,3,b Michel Côté,1,c and Olivier Gingras2,d
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The content of this Supplemental Material is as follows:
Section one is devoted to the computational details of the
calculations performed on SFO and SRO, employing density
functional theory, Wannier90, dynamical mean-field theory,
and constrained random-phase approximation methods. In
section two, we explain the classification and potential mech-
anisms found in the phase diagram of SFO. The band struc-
tures of SFO obtained by DFT, both strained and unstrained,
are displayed in section three. Section four derives the rela-
tionship between Slater and Kanamori Hamiltonians. Sections
five provides the definitions for correlated band structure and
quasi-particle Fermi surface. Finally in section six, we report
the mass enhancement and scattering rate of SFO as a function
of Hund’s coupling.

Computational details

In this section, we present the computational details of the
density functional theory (DFT) [1–3], construction of the
downfolded models using Wannier90 [4], dynamical mean-
field theory (DMFT) [5–7] and constrained random-phase ap-
proximation (cRPA) calculations of both SFO and SRO.

DFT

We calculated the DFT electronic structures of SFO and
SRO using the ABINIT package [8, 9] version 9.6.2. We used
the local density approximation (LDA) functional and the pro-
jector augmented-wave (PAW) pseudo-potentials [10, 11] ver-
sion JTH v1.1 obtained from Pseudo-Dojo [12, 13]. The
initial crystal structures were obtained from the Materials
project [14] in the body-centered tetragonal unit cell (space
group I4/mmm #139) and were then relaxed. The Brillouin
zone was sampled using a 8×8×8 Monkhorst-Pack k-point
grid with a smearing of 0.001 Ha based on Fermi-Dirac statis-
tics.

For SFO, we used a wave function energy cutoff of
33 Hartrees. At zero pressure, we kept 37 electronic bands
and obtained the following lattice parameters for the relaxed
structure: a = b = 3.44 Å and c = 11.71 Å. At 40 GPa, the
relaxation was performed using the stress tensor functionality

of ABINIT. We kept 45 electronic bands and obtained the fol-
lowing lattice parameters: a = b = 3.27 Å and c = 10.98 Å.

For SRO, we used a wave function energy cutoff of
28 Hartrees. We kept 45 electronic bands and obtained the
following lattice parameters for the relaxed structure: a =
b = 3.60 Å and c = 11.77 Å.

FIG. S1. The band structure of SFO at zero pressure obtained from
Wannier90 Hamiltonian (thick line) within the localized subspace is
in complete agreement with that obtained from DFT (thin line). This
example serves to highlight that such agreement persists across all of
our other cases.

Wannier90

From the Kohn-Sham wave functions obtained from DFT,
the Wannier90 package allowed us to construct a downfolded
model of only the active d orbitals of the correlated atom, iron
in SFO and ruthenium in SRO.

This is done by constructing local Wannier orbitals and
maximally localizing them while still preserving the elec-
tronic dispersion of the bands near the Fermi level. Figure S1
shows the agreement between SFO’s band structure obtained
from DFT and the downfolded one obtained from Wannier90.

For SFO, we constructed a minimal model involving all
the five iron 3d orbitals (t2g and eg). At zero pressure, the
Wannier orbitals were constructed within the disentanglement
energy window [4.5, 12] eV with the Fermi energy being
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around 6.66 eV. Under 40 GPa, the values were [5, 16] eV,
and 8.82 eV respectively.

For SRO, only the t2g orbitals are partially occupied and
are needed for the minimal model. However, to have a fair
comparison to SFO with its whole d-shell partially occupied,
we constructed the five Wannier-like t2g and eg orbitals of
SRO in the disentanglement energy window [3, 16] eV with
the Fermi energy around 7.81 eV.

DMFT

We calculate the effects of the local interactions due to
Coulomb repulsion by solving an impurity model within
the DMFT framework using the TRIQS packages [15].
The second-quantized interacting Hamiltonian responsible of
these effects is expressed in a set of local orbitals with cre-
ation and annihilation operators given by doσ where o and σ
are the orbital and spin labels. It is expressed, in the general
form, as

Hint =
∑

oo′o′′o′′′

Uoo′o′′o′′′c
†
oc

†
o′co′′′co′′ (S1)

were the matrix elements Uoo′o′′o′′′ are explicitly written in
Eqs (S11, S12, S23, S24).

In the Kanamori formulation which typically used for
systems with only degenerate t2g orbitals, the interacting
Kanamori Hamiltonian reads [16]

Hint,K = UK

∑
o

n̂o↑n̂o↓ + U ′
K

∑
o ̸=o′

n̂o↑n̂o′↓

+ (U ′
K − JK)

∑
o<o′,σ

n̂oσn̂o′σ (S2)

− JK
∑
o̸=o′

d†o↑do↓d
†
o′↓do′↑ + JK

∑
o ̸=o′

d†o↑d
†
o↓do′↓do′↑

where UK is the intra-orbital Coulomb repulsion term, JK
is the Hund’s coupling and U ′

K is the inter-orbital inter-spin
Coulomb repulsion, usually given by U ′

K = UK − 2JK in
the rotationnally invariant formulation. The definition of the
Slater U and J and their relation with UK and JK can be
found around Eqs (S30, S31).

Now the non-interacting Hamiltonian depends on the
choice of these local orbitals. The construction of these or-
bitals is detailed in the previous section about Wannier90. The
interface between Wannier90 and TRIQS is done using DFT-
Tools [17] and the impurity is solved using the continuous-
time quantum Monte Carlo in the hybridization expansion for-
mulation [18, 19] with the CT-HYB solver [20]. The CT-HYB
solver computes the Green’s function in the domain of imagi-
nary time. The Green’s function can be represented in a more
compact basis by transforming it into the Legendre basis [21].
We used the solid dmft wrapper [22] to launch these calcu-
lations. Rather than performing full charge-self-consistent
DFT+DMFT calculations, we performed so-called ”one-shot”

DFT+DMFT calculations. In this case, DMFT is used sim-
ply as a post-processing tool within solid dmft to solve the
Hubbard-like Hamiltonian. To obtain the real frequency prop-
erties of the materials such as the density of states, we use the
TRIQS application MaxEnt [23] to perform the analytic con-
tinuation of the Green’s functions and self-energies [24–26].

cRPA

To determine the appropriate interaction parameters for
DMFT, we used the constrained random phase approxima-
tion (cRPA) [27] as implemented in the RESPACK code [28],
which allows the calculation of the effective partially screened
Coulomb interaction by separating the electronic structure
into a subspace near the Fermi level and the rest of the system.
Formally, this means the separation of the total electronic po-
larizability P = Psub + Prest where Psub is the polarizability
for the correlated subspace and Prest is for the rest of the sys-
tem. Then, the screened Coulomb tensor can be calculated in
a local basis from the bare Coulomb interaction tensor V , as
U(ω) = V /[1−V Prest(ω)]. We used the same well-localized
correlated subspace basis for cRPA as used within DMFT, i.e.
contributions to the polarizability for the target space are re-
moved via their overlap with the Kohn-Sham states [29] and
the screened and bare Coulomb integrals are then evaluated in
the maximally localized Wannier orbitals basis set of the cor-
related subspace treated in DMFT. Here, we limit ourselves to
the static limit U(ω = 0) of the screened interaction.

To derive an effective symmetrized interaction tensor that
can be efficiently handled by the impurity solver within
DMFT, we compute the spherical average of the full four-
index screened-Coulomb interaction tensor Uijkl to obtain
the U := F0 Slater parameter, and its corresponding ex-
change interaction parameter J := (F2 + F4)/14 assuming
F4/F2 = 0.625.

While our cRPA calculations give us an estimate as to the
appropriate U for the studied systems, these values are not
guaranteed to be quantitatively accurate for all materials prop-
erties [30, 31], and often tend to overestimate screening, i.e.
resulting in too low Coulomb interaction parameters.

Classification and mechanisms found in the phase diagram

In this section, we explain how we have classified the differ-
ent phases found in the phase diagram Fig. 2 of the main text.
The classification is based on the partial densities of states ob-
tained by analytically continuing the self-energy of the con-
verged solutions of the phase diagram. We also present poten-
tial mechanisms that explain this phase diagram by carefully
analyzing the dominant spin configurations present in each of
these phases.
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FIG. S2. Example of the partial density of states, or orbitally-
resolved spectral functions Al(ω), obtained in each different phase
of the phase diagram in Fig. 2 of the main text.

Density of states

The classification of phases is done based on the orbitally-
resolved spectral functions (or partial densities of states
(PDOSs)) obtained at every point of the phase diagram. These
PDOSs provide information on which orbitals are metal-
lic, band insulating or insulating due to correlations. The
orbitally-resolved spectral functions can be computed using

Al(ω) = − 1

π
ImGll(ω), (S3)

where Gll(ω) is the Green’s function on the real-frequency
axis corresponding to the propagation of an electron in the or-
bital l. Since the Green’s functions that we obtain from DMFT
procedure are computed on the imaginary-axis, we used the
MaxEnt code [23, 25] to perform the analytic continuation of
the impurity Green’s function, giving as a result G(ω).

Based on these definitions, we find a total of six distinct
phases in the phase diagram of SFO at zero pressure. In
Fig. S2, we showcase the PDOSs of one representative point
in each phase of the phase diagram. We also show the one ob-
tained for U = 0, J = 0 eV corresponding to the DFT case,
although it is not explicitly included in the phase diagram.

Spin configurations

From the many-body density matrix, we extracted the
eigenstates of the impurity Hamiltonian with the highest oc-
currence probabilities. Since we are dealing with the Fe d-
shell which has 10 orbitals, there are in total 210 = 1024 pos-
sible states. We present in Fig. S3 the states with the highest
probabilities at three different points in the phase diagram:

1. In the lowU and J regime corresponding to the bottom-
left corner of the blue triangle phase in Fig. 2, the num-
ber of Fe electrons on the impurity can vary between
N = 3, 4, or 5. It means the electrons are able to hop
around, corresponding to a metallic state. These three

cases are distinguished in Fig. S3 with different colors:
green (light grey) for N = 3, orange (medium grey)
for N = 4, and purple (dark grey) for N = 5. In this
regime, the crystal field is dominant and mostly the t2g
orbitals are active. For N = 3, Hund’s coupling fa-
vors the spreading of electrons on different orbitals. For
larger N , it is preferable to first doubly filled the xy or-
bital which has the lowest on-site energy, and then one
of the yz/zx orbitals.

2. Increasing U towards the bottom right corner where the
empty red square phase dominates, charge fluctuations
get suppressed, allowing only N = 4 electrons on each
correlated site rather than two sites to have N = 3 and
5 electrons. Again because of the strong crystal field, it
is more favorable to doubly occupy the xy orbital.

3. Moving to the top of the phase diagram where J has
large values, the eg shell becomes more occupied. In
this region, we find the Hund’s metal regime, where
a larger U is required to drive the system to the Mott
phase. Thus there is once again inter-site charge fluctu-
ations leading to N = 3 and N = 5 states. However,
the strong Hund’s coupling now favors different total
spin |ms| values.

FIG. S3. Rearrangement in spin configurations of Fe d-electrons as
a result of increasing U and J . The strength of U and J goes from
0.5 to 5 eV and from 0.15 to 0.94 eV respectively.

Band structure of Sr2FeO4 under pressure

In Fig. S4, we present the band structure of SFO a) at zero
pressure on the left and b) under 150 GPa of pressure on the
right. The bandwidth of SFO under pressure becomes broader
and the eg orbitals are pushed up in energy. However, the
dx2−y2 band is still touching the Fermi energy.
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FIG. S4. Comparison of the open d-shell orbital character on the band structure of SFO a) under no pressure, and b) under 150 GPa of
isotropic pressure. The dxy , dyz/zx, dz2 and dx2−y2 orbital characters are shown in red, green, blue and orange, respectively. The horizontal
line at zero marks the Fermi energy. The dx2−y2 orbital is slightly metallic at zero pressure and almost tangent to the Fermi level at 150 GPa.

Slater and Kanamori formulations of the local Coulomb
repulsion

In this section, we derive the effective Slater and Kanamori
Hamiltonians for a specific electronic shell of orbitals, start-
ing from the on-site Coulomb interaction Û =

∑
i ̸=j

1
|ri−rj | .

To do so, this interaction is first expanded in a basis of local
states, as

Û =
1

2

∑
ii′jj′

∑
npn′p′

U iji′j′

npn′p′d
†
ind

†
jpdj′p′di′n′ (S4)

where d†in (din) creates (annihilates) an electron on the lo-
cal site i with other quantum numbers n. Note the the bare
Coulomb interaction does not depend on the spin of the elec-
trons, so those are not written explicitly. Now, the coefficients
of the Coulomb interaction in that basis are given by

U iji′j′

npn′p′ = ⟨in; jp|Û |i′n′; j′p′⟩ (S5)

=

∫
dr1dr2
|r1 − r2|

ψ̄in(r1)ψ̄jp(r2)ψj′p′(r2)ψi′n′(r1).

In this derivation, we only consider the local part of this
interaction where i = i′ = j = j′. We remove these
indices from now on. Moreover, it is useful to derive
the Coulomb interaction in the basis of spherical harmon-
ics ψnlm(r) = Rnl(r)Y

l
m(θ, ϕ) which solve the hydrogen

atom, where n, l,m are the principal, total angular momen-
tum and projected angular momentum quantum numbers re-
spectively. The position is expressed in spherical coordinates
r = r sin θ cosϕx + r sin θ sinϕy + r cos θz and R, Y are the
radial and angular parts of the spherical harmonics. From now
on, we only consider a single electronic shell, so this basis has
fixed n and l, and the only varying quantum number is m.

In this basis, we can write

1

|r1 − r2|
=

∞∑
k=0

rk<
rk+1
>

4π

2k + 1

k∑
q=−k

Y k
q (Ω2)Ȳ

k
q (Ω1) (S6)

where Ω ≡ (θ, ϕ) is a solid angle, r< (r>) is the smaller
(larger) of r1 and r2, and Ȳ ≡ Y ∗. We insert this expression

in Eq. (S5) and find

Um1m2m3m4
=

2l∑
k=0

ak(m1m3;m2m4)Fk (S7)

where we defined the Slater integrals

Fk ≡
∫
dr1dr2 r

2
1r

2
2 R

2
nl(r1)

rk<
rk+1
>

R2
nl(r2) (S8)

and the angular integrals given by

ak(m1m2;m3m4)

4π
≡

k∑
q=−k

Gk
q (m1,m2)

[
Gk

q (m4,m3)
]∗

2k + 1

(S9)
with the Gaunt coefficients for l defined as

Gk
q (m,m

′) ≡
∫
dΩ Ȳ l

m(Ω)Y k
q (Ω)Y l

m′(Ω). (S10)

The most important components of the Coulomb interac-
tion are the direct (Umm′mm′ ) and exchange (Umm′m′m with
m ̸= m′) integrals, which we write as

Umm′mm′ ≡ Umm′ =

2l∑
k=0

bk(m,m
′)Fk (S11)

Umm′m′m ≡ Jmm′ =

2l∑
k=0

ck(m,m
′)Fk. (S12)

It can be shown that they are positive and that Umm′ ≥ Jmm′ .
In this basis, one can show that Ummm′m′ ≡ Kmm′ =
Umm′δmm′ . Neglecting the other terms, the Coulomb in-
teraction Eq. (S4) in the local approximation becomes, with
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nmσ ≡ d†mσdmσ ,

Ûloc =
1

2

∑
mm′

∑
σ

Umm′nmσnm′−σ (S13)

+
1

2

∑
m ̸=m′

∑
σ

(Umm′ − Jmm′)nmσnm′σ (S14)

+
1

2

∑
m ̸=m′

∑
σ

Jmm′d†mσd
†
m′−σdm−σdm′σ (S15)

+
1

2

∑
m ̸=m′

∑
σ

Kmm′d†mσd
†
m−σdm′−σdm′σ. (S16)

We now expressed this interaction in terms of the average
Coulomb parameters in the basis of spherical harmonics, de-
fined as

Uavg =
1

(2l + 1)2

∑
mm′

Umm′ and (S17)

Uavg − Javg =
1

2l(2l + 1)

∑
mm′

(Umm′ − Jmm′) . (S18)

Now in materials, real harmonics (that we now call orbitals)
are normally used, because they are better eigenstates of the
crystal fields. They are defined as follow:

yl0 ≡ Y l
0 , ylm ≡ 1√

2

(
Y l
−m + (−1)mY l

m

)
and (S19)

yl−m ≡ i√
2

(
Y l
−m − (−1)mY l

m

)
, for m > 0. (S20)

In this orbital basis, we use the letter o to denote a real spher-
ical harmonic. We define

Javg =
1

2l(2l + 1)

∑
o ̸=o′

Joo′ (S21)

and one can show that in the l = 2 case corresponding to
d-orbitals,

Javg =
5

7
Javg. (S22)

Moreover, in this basis, the terms Koo′ are non-vanishing for
off-diagonal elements.

We now look specifically at d electrons with a total angular
momentum l = 2. The basis of real spherical harmonics (or-
bitals) is chosen as {dxy, dyz, dz2 , dzx, dx2−y2}. In this basis,
the Uoo′ part of the Coulomb interaction is given as

Uoo′ = (S23)

U0 U0 − 2J1 U0 − 2J2 U0 − 2J1 U0 − 2J3

U0 − 2J1 U0 U0 − 2J4 U0 − 2J1 U0 − 2J1

U0 − 2J2 U0 − 2J4 U0 U0 − 2J4 U0 − 2J2

U0 − 2J1 U0 − 2J1 U0 − 2J4 U0 U0 − 2J1

U0 − 2J3 U0 − 2J1 U0 − 2J2 U0 − 2J1 U0


,

while the Joo′ = Koo′ parts are given as

Joo′ = Koo′ =



U0 J1 J2 J1 J3

J1 U0 J4 J1 J1

J2 J4 U0 J4 J2

J1 J1 J4 U0 J1

J3 J1 J2 J1 U0


. (S24)

In these expressions,

U0 = F0 +
4

49
F2 +

4

49
F4, (S25)

J1 =
3

49
F2 +

20

441
F4, (S26)

J2 =
4

49
F2 +

5

147
F4, (S27)

J3 =
5

63
F4, (S28)

J4 =
1

49
F2 +

10

147
F4. (S29)

This representation of the local Coulomb interaction for d-
electrons is called the Slater Hamiltonian and is parameterized
by the Slater integrals F0, F2 and F4. The standard notation
of the Slater Hamiltonian uses U ≡ F0, J ≡ (F2 + F4)/14
and F2/F4 is fixed at 0.625.

Projecting only on the t2g orbitals ({dxy, dyz, dzx}), we
find

Ut2g =


U0 U0 − 2J1 U0 − 2J1

U0 − 2J1 U0 U0 − 2J1

U0 − 2J1 U0 − 2J1 U0


and

Jt2g = Kt2g =


U0 J1 J1

J1 U0 J1

J1 J1 U0

 .
In this t2g subspace, Û|t2g is called the Kanamori Hamiltonian
and is parameterized solely by U0 and J1, referred to as UK

and JK in the main text. One can show that the Slater and the
Kanamori parameters are related by

U0 ≡ UK = U +
8

7
J and (S30)

J1 ≡ JK =
6
7
F2

F4
+ 40

63

1 + F2

F4

J ∼ 5

7
J. (S31)

Correlated band structure

A band structure typically presents the single-particle en-
ergy states of infinite lifetime quasiparticles as a function of
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momentum, obtained using band theory. We call the corre-
lated generalization the plot of the lattice spectral function
A(k, ω), proportional to the density of states. In the non-
interacting case, it boils down exactly to a typical band struc-
ture, but in the presence of interactions, the bands can be
broadened by a finite quasi-particle lifetime acquired due to
interactions between electrons.

To obtain the lattice spectral function, we first have to con-
struct the lattice Green’s function because

A(k, ω) = − 1

π
ImG(k, ω). (S32)

The lattice Green’s function is defined in the following way:

G(k, ω) =
1

ω + µ− ϵ(k)−∆Σ(k, ω)
(S33)

where µ is the chemical potential, ϵ(k) is the non-interacting
Hamiltonian obtained within Wannier90 and ∆Σ(k, ω) is
the lattice self-energy for which double-counting was sub-
tracted. This quantity is obtained by taking the impurity self-
energy that was analytically continued Σimp(ω), removing the
double-counting ΣDC, and re-embedding to the lattice using
the Wannier90 projectors Pkνl that allows to project the band
µ at the k momentum to the l orbital. In the band basis, the
components of this self-energy are given by

[∆Σ(k, ω)]νν′ =
∑
ll′

P ∗
kνl [Σimp(ω)− ΣDC]ll′ Pkl′ν′ . (S34)

Performing a summation over k of the spectral function
gives us A(ω) which can be compared with the density of
states from DFT. Instead of the self-energy, one can also an-
alytically continue the impurity Green’s function from the
imaginary axis,Gimp(τ), to the real axis,Gimp(ω), using Max-
Ent. Therefore, the spectral function A(ω) can also be ob-
tained from Gimp(ω). The orbitally-resolved spectral func-
tions of Fig. S2 are obtained from analytical continuation of
the impurity Green’s function.

Quasi-particle Fermi surface

The lattice Green’s function in the band basis can written as

Gνν′(k, ω) =
1

(ω + µ− ϵν(k))δνν′ −∆Σνν′(k, ω)
, (S35)

where νν′ are band indices.
The quasi-particle Fermi surface is the ω = 0 solution of the
poles of the above Green’s function, i. e. when the quasi-
particle dispersion relation crosses the Fermi level

det[(ω + µ− ϵν(k))δνν′ −∆Σ′
νν′(k, ω)] = 0 (S36)

where ∆Σ′
νν′ is the real part of the self-energy defined in

Eq. (S34). In the quasi-particle approximation, quasi-particles
are presumed to have infinite lifetime and the imaginary part
∆Σ′′ is neglected.

Mass enhancement

For an electron on the orbital l, the enhancement of the
effective mass due to electronic correlations captured by the
DMFT self-energy Σ compared to bare one given by DFT is
given, on the imaginary-axis, by

m∗

mDFT

∣∣∣
l
= 1− ∂ImΣl(iω)

∂(iω)

∣∣∣
iω→0+

, (S37)

where iω is the Matsubara frequency. This enhancement cap-
tures the renormalization of the DFT bands due to electronic
correlations. In a non-interacting system, there is no self-
energy (Σ = 0) and the mass enhancement is 1, whereas in
strongly correlated systems, m∗

mDFT
has a value larger than one,

which indicates that the quasi-particles have a heavier effec-
tive mass due to the electron-electron interactions. Because
interactions generally affect each orbital differently, m∗

mDFT
is

orbital-specific.
The concept of quasi-particle becomes no longer relevant

when electronic states are completely filled or empty. There-
fore, we computed the mass enhancement only for the metal-
lic t2g orbitals of SFO under 40 GPa. These are obtained
by fitting a fourth-order polynomial to the the imaginary part
of Σl(iω) on the six lowest Matsubara frequencies. This
fit allows us to extract the derivative ∂ImΣl(iω)

∂(iω)

∣∣∣
ω→0+

, cor-
responding to the effective mass enhancement due to elec-
tronic correlations. We can also extract the scattering rate
Γl = −ZlImΣl(iω)|ω→0+ from this fit, as the intercept of
the polynomial with the y-axis.

We present the mass enhancement and scattering rates in
Table I and Table II respectively, at fixed UK = 3 eV and as
a function of the inverse temperature β and Hund’s coupling
JK . In Table I, we compare with the effective masses calcu-
lated for SRO and reported in Ref. 32.

We keep UK fixed, because it corresponds to the standard
cost of double occupancy in the second-quantized interacting
Hamiltonian of Eq. S2 and varying only JK highlights better
the effect of Hund’s coupling and makes the comparison with
Ref. 32 straight forward.

The results reported in these tables highlight characteristics
that the clearly establish the metallic state of SFO under pres-
sure as a Hund’s metal. Indeed, we observe that, similarly to
what was observed in SRO [32], the Hund’s coupling leads to:

(i) An increase of electronic correlations apparent in the
effective masses and scattering rates,

(ii) An orbital selective enhancement of the effective
masses of the Fe d-shell, and

(iii) A push of the Fermi liquid crossover to lower tempera-
ture and a broader temperature range for the incoherent
regime.

This last point is the reason why it is more difficult to calcu-
late the effective masses with increasing JK : we need to reach
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TABLE I. Evolution of the orbital specific effective mass enhancement due to electronic correlations as a function of Hund’s coupling for both
40 GPa SFO in the three orbital metallic phase and SRO. We compute the enhancement at β = 1/kBT = 80 eV−1, 100 eV−1 and 150 eV−1.
We keep UK fixed at 3 eV. The uncertainties smaller than 0.1 are not specified in the table.

SFO (40 GPa), UK = 3 eV, β = 80 eV−1 β = 100 eV−1 β = 150 eV−1 SRO, UK = 2.3 eV

JK (eV) m∗

mLDA

∣∣∣
xy

m∗

mLDA

∣∣∣
yz/zx

m∗

mLDA

∣∣∣
xy

m∗

mLDA

∣∣∣
yz/zx

m∗

mLDA

∣∣∣
xy

m∗

mLDA

∣∣∣
yz/zx

m∗

mLDA

∣∣∣
xy

m∗

mLDA

∣∣∣
yz/zx

0.1 2.9 ± 0.1 2.6 3.1 2.7 3.2 ± 0.1 2.5 ± 0.2 1.7 1.7

0.2 3.6 ± 0.1 3.4 4.2 3.7 5.2 ± 0.2 3.9 ± 0.1 2.3 2

0.3 3.8 3.8 4.6 ± 0.2 4.2 6.1 ± 0.4 5.0 ± 0.2 3.2 2.4

0.4 3.7 ± 0.1 3.6 4.4 4.2 6.3 ± 0.3 5.4 ± 0.1 4.5 3.3

TABLE II. Evolution of the orbital specific scattering rate due to electronic correlations as a function of the Hund’s coupling for both 40 GPa
SFO in the three orbital metallic phase and SRO. We compute the enhancement at β = 1/kBT = 80 eV−1, 100 eV−1 and 150 eV−1. We
keep UK fixed at 3 eV. The uncertainties below 10 % are not explicitly specified.

SFO (40 GPa), UK = 3 eV, β = 80 eV−1 β = 100 eV−1 β = 150 eV−1

JK (eV) Γxy (meV) Γyz/zx (meV) Γxy (meV) Γyz/zx (meV) Γxy (meV) Γyz/zx (meV)

0.1 10.9 ± 1.2 4.0 ± 0.5 6.8 ± 0.8 1.0 ± 0.3 4.6 ± 1.1 2.3 ± 1.9

0.2 29.3 12.1 18.7 5.6 8.4 ± 1.3 2.2 ± 0.7

0.3 45.9 19.0 31.2 11.6 15.5 ± 2.2 4.0 ± 0.8

0.4 62.1 28.0 44.4 17.8 22.1 6.8

lower temperature to be in the coherent regime where the ef-
fective masses saturate. This is also supported by the larger
scattering rate. In our case, even at β = 150 eV, the effective
masses for JK = 0.4 eV are far from this saturation.
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plementation of the projector augmented-wave method in the
ABINIT code: Application to the study of iron under pressure,
Computational Materials Science 42, 337 (2008).

[12] F. Jollet, M. Torrent, and N. Holzwarth, Generation of Projector
Augmented-Wave atomic data: A 71 element validated table
in the XML format, Computer Physics Communications 185,
1246 (2014).

[13] M. van Setten, M. Giantomassi, E. Bousquet, M. Verstraete,
D. Hamann, X. Gonze, and G.-M. Rignanese, The pseudodojo:
Training and grading a 85 element optimized norm-conserving
pseudopotential table, Computer Physics Communications 226,
39 (2018).

[14] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and
K. A. Persson, Commentary: The materials project: A materi-
als genome approach to accelerating materials innovation, APL
Materials 1, 011002 (2013).

[15] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko,
L. Messio, and P. Seth, TRIQS: A toolbox for research on inter-
acting quantum systems, Computer Physics Communications
196, 398 (2015).

[16] J. Kanamori, Electron Correlation and Ferromagnetism of Tran-
sition Metals, Progress of Theoretical Physics 30, 275 (1963).

[17] M. Aichhorn, L. Pourovskii, P. Seth, V. Vildosola, M. Zingl,
O. E. Peil, X. Deng, J. Mravlje, G. J. Kraberger, C. Martins,
M. Ferrero, and O. Parcollet, TRIQS/DFTTools: A TRIQS ap-
plication for ab initio calculations of correlated materials, Com-
puter Physics Communications 204, 200 (2016).

[18] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J.
Millis, Continuous-time solver for quantum impurity models,
Phys. Rev. Lett. 97, 076405 (2006).

[19] E. Gull, P. Werner, S. Fuchs, B. Surer, T. Pruschke, and
M. Troyer, Continuous-time quantum monte carlo impurity
solvers, Computer Physics Communications 182, 1078 (2011).

[20] P. Seth, I. Krivenko, M. Ferrero, and O. Parcollet,
TRIQS/CTHYB: A continuous-time quantum Monte Carlo hy-
bridisation expansion solver for quantum impurity problems,
Computer Physics Communications 200, 274 (2016).

[21] L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann,

and O. Parcollet, Orthogonal polynomial representation of
imaginary-time Green’s functions, Phys. Rev. B 84, 075145
(2011).

[22] M. E. Merkel, A. Carta, S. Beck, and A. Hampel, solid dmft:
gray-boxing DFT+DMFT materials simulations with TRIQS,
Journal of Open Source Software 7, 4623 (2022).

[23] G. J. Kraberger, R. Triebl, M. Zingl, and M. Aichhorn, Maxi-
mum entropy formalism for the analytic continuation of matrix-
valued Green’s functions, Phys. Rev. B 96, 155128 (2017).

[24] R. N. Silver, D. S. Sivia, and J. E. Gubernatis, Maximum-
entropy method for analytic continuation of quantum Monte
Carlo data, Phys. Rev. B 41, 2380 (1990).

[25] J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia, Quan-
tum Monte Carlo simulations and maximum entropy: Dynam-
ics from imaginary-time data, Phys. Rev. B 44, 6011 (1991).

[26] M. Jarrell and J. Gubernatis, Bayesian inference and the an-
alytic continuation of imaginary-time quantum Monte Carlo
data, Physics Reports 269, 133 (1996).

[27] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Bier-
mann, and A. I. Lichtenstein, Frequency-dependent local inter-
actions and low-energy effective models from electronic struc-
ture calculations, Phys. Rev. B 70, 1 (2004).

[28] K. Nakamura, Y. Yoshimoto, Y. Nomura, T. Tadano, M. Kawa-
mura, T. Kosugi, K. Yoshimi, T. Misawa, and Y. Motoyama,
RESPACK: An ab initio tool for derivation of effective low-
energy model of material, Computer Physics Communications
261, 107781 (2021).
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